

Martin Brandtner

Harald Gall

Open software development: an overview

University of Zurich
Department of Informatics (IFI)
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland ifi

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

–
N

o.
IF

I-
20

12
.0

4

2012

Martin Brandtner, Harald Gall
Open software development: an overview
Technical Report No. IFI-2012.04
Software Evolution and Architecture Lab
Department of Informatics (IFI)
University of Zurich
Binzmuehlestrasse 14, CH-8050 Zurich, Switzerland
http://seal.ifi.uzh.ch

software evolution & architecture lab

Open Software Development: An Overview
Development Processes and Partner Programs

Martin Brandtner, Harald Gall
Department of Informatics

University of Zurich
8050 Zurich, Switzerland

{brandtner,gall}@ifi.uzh.ch

Abstract - The interlinking of software systems requires software vendors to implement standardized data

exchange formats or an API to allow direct access to the software system. In both cases, a software vendor

has to open the development in terms of communication with partners and customers. This report provides

an overview of open development processes and discusses key findings for such a process.

1

Contents

1 Introduction 3

2 Community-driven Development Processes 3
2.1 Eclipse Development Process . 3

Participation Model . 3
Management of Development Process . 4
Promotion and Handling of Innovation . 4

2.2 Java Community Process (JCP) 2 . 5
Participation Model . 5
Management of Development Process . 6
Promotion and Handling of Innovation . 6

2.3 Khronos Group Development Process . 6
Participation Model . 6
Management of Development Process . 7
Promotion and Handling of Innovation . 7

3 Partner Programs 8
3.1 Value-added Resellers (VAR) and Independent Software Vendors (ISV) 8
3.2 Object Management Group (OMG) . 8
3.3 Classic Certified Partner Program . 9

4 Open Software Development 10
4.1 Governance . 10

Committers . 10
Project Types . 10
Standards . 11
Key Findings . 11

4.2 Architecture . 11
General . 11
APIs . 12
Modularity . 12
Key Findings . 12

4.3 Tooling . 12
Knowledge Management and Social Media . 12
Testing . 13
Key Findings . 13

4.4 Culture . 13
Roles . 13
Transparency . 14
Key Findings . 14

5 Conclusion 15

2

1 Introduction

The development of software systems can take place in different environments (e.g. in a commu-
nity, in a company, etc.) and under different degrees of openness to the outside world. The last
point, the openness to the outside world is often misunderstood and wrongly equated with the
openness of source code. In the last years, more and more software projects are developed in a
community or at least with the support of a community. Openness of software development can
be split into openness of the development process and openness of the source code. Many com-
panies opened their development process to gain innovative ideas through a community. In this
technical report, we analyze community-driven and partly company-driven development pro-
cesses for software systems. We provide an overview of common commercial partner programs
and of three community-driven software development processes, namely: Eclipse Development
Process, Java Community Process 2, and Khronos Group Development Process. Based on this, we
discuss key findings for a successful open development of software systems.

2 Community-driven Development Processes

Many successful and well-known software products such as Apache or Eclipse are developed
under open source with a development process influenced by open development. Many new or
recent closed source software projects (e.g. Java-Runtime etc.) rely on such open and transparent
development processes. This section provides an overview of three open development commu-
nities with focus on management, participation and innovation handling.

2.1 Eclipse Development Process

The Eclipse development process is the driving force behind the Eclipse project. It describes basic
technical handling, project management and communication between participants. Especially
cultivation of a transparent and profitable ecosystem for all community members (individuals
and companies) is a key principle of the Eclipse project.

"It is an explicit goal of the Development Process to provide as much freedom and auton-
omy to the Projects as possible while ensuring the collective qualities benefit the entire Eclipse
community." [1]

Participation Model

An Eclipse project consists of three major groups of stakeholders: contributors, adopters, and
users. A project member might be an individual person or a company. Figure 1 shows an
overview of interaction between each group. The contributor group is responsible for the core
technical development and coordination of the project. This group has to define the development
roadmap, do the implementation and keep the community alive. The second group is the users
group.

This group uses the software and provides feedback. A big user group offers a great attraction
to companies and developers. These companies may become either a member of the users group
or an adopter. Members of the adopters group develop plug-ins or use the underlying project as
framework (e.g. Eclipse RCP) for their own products. The benefit for an adopter is an active and
working community, which can be directly addressed.

3

Software

Contributors
(Committers)

Users

Adopters

In: Feedback, Attraction f. commerce
Out: Useful Software

In: Active development, Diversity
Out: Kudos, Earning

In: Plugins, Attraction f. consumer
Out: Framework, Incentive

Project

Figure 1: Participation Model with information flow of Eclipse Development Process

Management of Development Process

The management of the development process is influenced by so called councils. A council is
comprised of strategic members and representatives of the project management committee. Three
councils support and guide the project. The requirements council takes account of the roadmap
and has to define the feature set of a software version. The definition of a feature set is based on re-
views and incoming requests. The planning council is responsible for the cross-project planning,
coordination, and integration issues. The purpose of the architecture council is to ensure prin-
ciples of the development process and maintenance of the Eclipse platform architecture. Only
members with sufficient experience can be part of this council. There is a more detailed definition
for the main tasks of each council (see [1]).

Depending on the type of a project, a lead is either called project lead (in case of a sub-project)
or project management committee (in case of a top-level project). A committee consists of one or
more leads and zero or more members. The lead of a project keeps responsibility that all members
follow the development process, which is influenced by the councils.

To keep the whole management process transparent regular reviews take place. There are nine
different types of reviews and each applies to a fixed review process. In contrast to other parts
of the development process the description of these review processes is quite strict and detailed
(see [1]).

Promotion and Handling of Innovation

The best way to introduce innovation into an existing project under the Eclipse development
process is a so-called Incubator project. An incubator project is always a sub-project of a top-level
project and it must be covered by the scope of the owning project. The rule set is smaller and less
restrictive as for a regular Eclipse project.

At least one committer of the incubator project has to be a member of the top-level project and
an incubator project never has releases, but only builds and downloads are allowed. The result
of such a project can either be used as base for a new project or for integration into the top-level
project. To avoid uncontrolled development only top-level projects in a mature phase are allowed
to own incubator projects.

4

For short, these projects provide a playground for innovation, new ideas or growing function-
ality with a loose but controlled binding to a related project. The creation or termination of an
incubator project happens through a review of the current top-level and incubator project.

2.2 Java Community Process (JCP) 2

The Java Community Process is mainly used for development and evolvement of the Java plat-
form. Experts and individuals with deep knowledge of a specific topic are the basement of this
process. Before a draft is released to the public at least two different groups of experts have re-
viewed it. It is also important to clarify that this process only supports the establishment of a
specification and not the development of a product it self.

"The JCP produces high-quality specifications in internet time using an inclusive, consensus
building approach that produces a specification, a reference implementation (to prove the speci-
fication can be implemented), and a technology compatibility kit (a suite of tests, tools, and doc-
umentation that is used to test implementations for compliance with the specification)." [2]

Participation Model

The participation model of the Java Community Process defines and knows a large set of different
roles and user groups. In the following only roles that have a major impact to the whole process
are discussed.

The so-called Spec Lead and members of the Java Specification Process (JSP) group provide al-
most everything for a new specification. Beside the specification they have to provide a Reference
Implementation (RI), a Technology Compatibility Kit (TCK) and an adequate license for each of
this. A TCK mainly consists of different testing suites to prove if an implementation fulfills the
according specification. Feedback and reconsideration ballots from each review round have to be
processed by the responsible JSP group.

The Executive Committee (EC) is the main communication partner for groups with a new
specification request. The EC takes a first review before the draft of a new specification request is
published to the JCP web site for public review.

JCP Web SiteJava Specification

Executive
Committee

Java Specification
Process Members

Reference
Implementation

Technology
Compatibility Kit

In: Guidance (Approval or not)
Out: Description, RI & TCK

In: Java Specification Request (RI & TCK)
Out: Approval or reconsideration

In: Feedback, Review
Out: Proposal of Specification

Java Community Process

Figure 2: Participation Model with information flow of JCP

5

The third major group of the JCP is the Internet user group. Each individual can participate
through the public web site. An actual browser and Internet access is sufficient to take part in the
process.

Management of Development Process

The process for a new Java Specification starts with a Java Specification Request. Within 14 days
an Executive Committee has to decide whether the request is approved or not. If the request is
not approved it is possible to adopt and file it a second time. Otherwise the Spec Lead has to
define an Expert Group that can start working on the Early Draft.

There are no rules for a special working style except that the process should be transparent
and use Internet-based technology. Based on the output of this step the Community Review and
Early Draft Review take place. The review phase lasts between 30 and 90 days. The difference
of these coexisting reviews is the user group. A Community Review addresses Java Community
Process Members whereas an Early Draft Review is accessible for everyone. It is also possible
for an Expert Group to update a draft during this review process. All members have to be noti-
fied about such an update. If the Early Draft Review ends up in an approval the Expert Group
will complete the specification for a Public Draft. Such a Public Draft contains a full specification
and has again to be reviewed for 30 to 90 days. In the phase before Final Draft Review the Ex-
pert Group completes TI and TCK. After the Final Draft Review and approval by the Executive
Committee a new specification is established.

Promotion and Handling of Innovation

The maintenance and innovation in a project happens under the lead of an Expert (Maintenance
Lead). Without a Maintenance Lead at least no maintenance is carried out and the specification is
marked as Dormant. Maintenance Leads collect feedback and ideas via an email feedback address
from the public.

The Maintenance Lead decides to initiate a Minor Change or more depending on the relevance
of a feedback to specification. Each correction or new feature gets listed on an according section of
the specification. Depending on the status or impact of a request it gets marked as Proposed (for
not yet implemented), Accepted (for change made), or Deferred (for change items to be consid-
ered in a new JSR in the Change Log section). A revision of the specification must be reviewed in
a Maintenance Review before it can be released. Any new feature or changes that do not address
issues of an existing specification always lead to a new JSR.

2.3 Khronos Group Development Process

The Khronos Group Development Process is the stepping-stone for all standards under the OpenGL
brand and many other visual computing standards.

"All Khronos members are able to contribute to the development of Khronos API specifica-
tions, are empowered to vote at various stages before public deployment, and are able to accel-
erate the delivery of their cutting-edge 3D platforms and applications through early access to
specification drafts and conformance tests." [3]

Participation Model

The Khronos Group is a non-profit organization with almost every big player of the computer and
mobile device industry being a member. A member can take part as Promoter or Contributor.
The annual membership fee is twice as high for a Promoter as for a Contributor member. The

6

main difference (except the fee) is a higher degree of influence towards the future direction of
working groups and the Khronos Group. The development of a new specification begins with
the initialization and ends with the ratification through members of the Promoter group. In a
working group both parties have equal rights on marketing, frequently meetings, early access on
specification, voting, ratification and the right to chair a group.

Promoters Contributors

Working groups

SDK

Specification Adopter
Packages

In: Voting rights
Out: Early access on specification

In: Initiation of groups, Ratification
Out: Status, Usage of their products

Khronos Group

Khronos Process

Figure 3: Participation Model with information flow of Khronos Group Development Process

Based on the ratified output of the working groups all other stakeholders can use and imple-
ment the standards. Depending on the kind (soft- or hardware) and conformance of an imple-
mentation a developer is allowed to use the official trademarks on the product.

Management of Development Process

The Khronos process is rather focused on standardization than on the development itself. Techni-
cal development takes place in the working groups. A working group can be initialized through a
member of the Promoter group. After the initialization a Working group starts working on its first
draft. The actual state of work is transparent and accessible through the Website of each group.
A group provides at least a forum to receive feedback from public. Many of them also offer a
public wiki or a mailing list to advocate discussion between the group and developers or users.
For the coordination inside the Khronos group teleconferences take place every week. Additional
face-to-face meetings between a working group and Promoters/Contributors enrich the commu-
nication. The release of a specification needs ratification through the promoters and contributors.
The ratification period should last at least 30 days but no longer than 60 days.

Promotion and Handling of Innovation

A Promoter mainly influences the direction in a new working group. Based on this direction and
an early access to the specification other Promoters or Contributors can enhance or influence the
output of a working group. Weekly meetings or teleconferences should support the Promotion

7

of Innovation. The decision if a feature or change request is integrated occurs through a voting
of Promoters and Contributors. Each member of this group has exactly one vote. A majority can
be reached if more than 50% of the attending groups vote for it. Last but not least a public forum
offers a possibility for the public to contribute new ideas or change requests.

3 Partner Programs
As valuable information about open development and especially the establishment of an open
development communities with commercial background is rare, a closer look onto partner pro-
grams of leading companies might provide a useful input for further research. In the following
sections an overview of following three well-established partner programs (and paradigms) is
provided:

• Value-added reseller (VAL) and independent software vendor (ISV)
• Object Management Group (CORBA, UML, etc.)
• Certified partner program (Microsoft)

3.1 Value-added Resellers (VAR) and Independent Software Vendors (ISV)
The greatest benefit of a value-added reseller program is the ability to offer a product that covers
a wide range of particular industries and multiple markets. With a high coverage it is possible
to sell more systems and to reduce the development costs per unit. This also means that cus-
tomization takes place outside of the kernel and only general functionality is encapsulated in the
kernel (see [5]). To open the customization and localization for partners it is favorable or even
necessary to provide an integrated development environment, which is relatively easy to use. As
different partners can do the verticalization and localization a simple exchange between the part-
ners is highly desirable (e.g. one tool for everything). A separation of these two layers forces an
interaction and information exchange between partners.

A company can satisfy a wider range of customers and offer ready to use solutions through
value-added partners. The second channel to attract partners and customers are independent
software vendors. These ISVs develop and service modules that offer additional functionality to
the core system. In case of banking solutions a switch from one provider to another is not usual.
So the decision finding for the best offer is mainly depending on the extensibility and the total
cost of ownership and not on the initial price. A marketplace with a large selection of additional
modules and providers is a big impact factor for the decision.

There are two major reasons why companies prefer to sell directly and without partners. One
reason is the low portion on the total earnings (around 15-20%). The second reason is the risk to
lose the direct contact to customers and therefore the ability to fulfill their needs.

Open development and a central marketplace offer potential solutions for these two major
problems. The low portion on total earnings can be compensated through more sells of the prod-
uct via value-added partners (see [5]). Furthermore a company earns the annual member fees,
revenues from the certification program (e.g. certification expires after a year) and fees of every
sold module in the central marketplace.

3.2 Object Management Group (OMG)
A challenge of many software products is the Return on investment (ROI). Basically there are
two possible solutions to maximize the ROI of a software product. A common solution is the
reduction of development costs through outsourcing in countries with lower wages. A second

8

solution is to expand the lifetime of a product. An expansion of the lifetime requires the ability
to adopt the product on changing markets. Therefore it is necessary to model a software product
before it is built. This second solution is one major driving force behind the Object Management
Group.

The OMG has many software vendors as members as well as end-users. The following expla-
nation for the high amount of end-user members is suggested through the OMG: Our end-user
members are the leaders; the companies that drive their IT, instead of letting it drive them. [6].
This statement can provide an important input for the establishment of a community and proba-
bly a marketplace. Because this force to drive the future development of a product might have a
positive impact in terms of motivation to use and support such a community or marketplace.

OMG lines out following six reasons to join their group as end-user (see [6]):

• Help shape industry standards and vendor products to your company’s needs
• Leverage the work and knowledge of the industry’s best minds
• Plan, purchase, and implement in front of the curve, instead of behind it
• Keep your competition from jumping ahead of you
• Let your company, and your department, be seen as a leader
• Cover your costs (and more!) with savings

As OMG tries to establish technology-free standards many of these points are applicable to
different kinds of industries.

In terms of community there is an interesting fact on the amount of provided input because
there is no obligation. Each community member can influence different projects with different
efforts. The concentration of industry players and solution providers will usually fill gaps if a
member decides to reduce or stop supporting a project (see [6]).

3.3 Classic Certified Partner Program
Classic certified partner programs usually offer different levels of a membership. Those levels
are categorized by annual fees, turnover, competence level, and number of certifications or a
combination out of these. To allow companies a first look onto the program without paying any
fees it is possible to join a partner program as a registered member. Such a membership is free
but it is already necessary to provide some personal data and to confirm the official membership
agreement.

The main target of a certified partner program is to spread the usage of own products and
encourage sells of the program owner. If a partner sells only the products or uses it as funda-
mental for own products is not matter. Additional support on topics such as sales, marketing
as well as technical resources and knowledge bases attacks potential partners. Certifications are
needed for partners mainly as unique selling proposition and for customers as an indicator for
the proficiency.

Typical promoted benefits of a partner program are (see [8]):

• Build your business and increase profitability
• Reduce costs and increase operational efficiency
• Realize your full business potential

These benefits can be achieved if a partner knows your product and has the ability to configure
it. For a partner it is necessary to have clear structured hierarchy of the different membership lev-
els. Again, each of these levels need something unique (e.g. a badge) for the selling proposition.
The requirements for a level are typically defined as a combination out of revenue and received
certifications. A possible hierarchy of partner levels can be seen as follows (see [8]):

9

• Registered member (3rd level)
• Certified partner (2nd level)
• Gold certified partner (1st level)

This classical idea of a certified partner program is probably outdated and will be replaced
through community oriented partner programs. Microsoft for example tries to establish a net-
work between all partners, the Microsoft Partner Network (MPN) (see [7]).

Each partner has to join the MPN (similar to registered member) and to choose a specific com-
petence program. These specific competence programs probably should address a major issue
of the classic partner program. In the classic partner program it was possible to achieve a level
through specialization or through diversity.

4 Open Software Development

This section discusses key findings of open software development processes based on the three
community-driven development processes introduced in Section 2. In cooperation with a soft-
ware development company we elaborated the following categorization:

• Governance
• Architecture
• Tooling
• Culture

For the company, these four categories are the most important ones to prepare a switch from
closed software development to an open software development.

4.1 Governance

Committers

Eclipse differentiates levels of projects from top-level to sub-level ones. Committers can con-
tribute only to the project they are member of but not to others. Furthermore, existing committers
of a project always have to agree on a new committer.

In JCP 2 committers can be divided into two groups: JCP members and non-JCP members.
The only way to submit a new specification request is as a JCP member. After the initial review
and acknowledgment through the Executive committee everybody is allowed to comment on the
Java Specification Request (JSR). The development of a new specification is driven by a group of
JCP members. Outside people can only provide comments.

In Khronos, the development of a new specification takes place in working groups initiated
through a member of the Promoter group. A second group called Contributors has early access to
the specification and can influence the development through voting rights. Outside persons can
comment on the (final) work of a working group through the public website.

Project Types

Eclipse: Of the two different types of projects, namely top-level projects and sub-projects, an in-
cubator project is a special kind of a sub-project. Incubator projects are used for the promotion of
innovative new projects (in the context of the top-level project) or as a sandbox for major reengi-
neering of an existing project.

10

JCP 2: The only project type known by JCP 2 is a Java Specification Request (JSR). A JSR is
opened for every new specification or for an adoption of an existing specification.

Khronos: The development of new Khronos specification takes place in Working Groups es-
tablished by the Promoters of the specification. Similar to JCP 2 it is not possible to adopt an
existing specification.

Standards

The standardization of Eclipse, JCP 2, and Khronos processes mainly rely on restrictive review
processes. In contrast to many other requirements of the development process (e.g. documenta-
tion) these reviews must strictly follow the regulation.

Key Findings

Governance is a key enabler for communities to work in an open and business oriented envi-
ronment. All reviewed community processes choose a similar approach to face the challenge of
openness and profit-orientation in the development process.

• Openness through coordinated contributions and decision transparency:
One might think openness stands for free access and everybody is allowed to contribute.
None of the reviewed development processes allows such random and uncoordinated con-
tribution or access to a project. The openness of these processes is given through the pos-
sibility that every member can trace decisions and easily raise a comment on an issue. If a
member raises a comment he/she can be sure that it is heard because the addressed receiver
has to reply on the comment. Such a conversation is normally traceable by any member of
the process. Transparency and traceability promote the growth of trust between members
of a community.

• Simplicity of project structures:
Simplicity is another key success factor besides transparency, traceability, and trust. The
project structure in community-driven development processes is simple and has a hierarchy
with no more than two levels (project and sub-project). Every project should work stand-
alone to avoid dependencies to other projects. Dependencies to other projects might stall the
innovation in a project. A dependency can be everything that is in more than one project.
Even a human can count as dependency. So it is clear that every project should be able
to decide who is allowed to contribute to the project. In some places all these stand-alone
projects should fit together and build one big solution. The synchronization of multiple
projects to one big product should not impact the innovation process of a project.

• Multi-stage, community-driven reviews:
Community-driven development processes use reviews for the synchronization of the sin-
gle projects. Reviews take place on multiple stages (e.g. creation, graduation, etc.) of a
project. Each of these reviews is fully specified through the development process descrip-
tion.

4.2 Architecture

General

In Eclipse the so-called Architecture Council is responsible for the development, articulation and
maintenance of the Eclipse Platform Architecture. This council consists of about 50 members
for about 35 mentored top-level projects. The communication and voting take place mainly on

11

a public mailing list. An issue tracker is used for the communication between the council and
outside people.

JCP 2 does not have a specific technical architecture such as Eclipse. In JCP 2 it is possible
to establish a technical specification that may also contain a specification of the used architecture
itself. It is even possible that a JCP request constitutes the definition of architecture such as JSR244
(Java EE 5 specification).

Khronos is similar to JCP 2 in that the technical architecture is defined through specifications.

APIs
The Eclipse project offers a large API to plugin developers. This API is well documented and
expects that developers take some usage rules into account. These rules are a kind of extended
coding conventions. If a plugin developer obeys the rules the possibility that something might be
broken in a new version of the API is minimal (for the detailed rules see [9]).

A JCP 2 specification has to contain a specification of the API and a Technology Compatibility
Kit. The Technology Compatibility Kit consists of tests to ensure that an implementation meets
the requirements of the implemented specification.

Khronos specifications normally specify a standardized layer between hardware and software
products. The final specification is available both as document and implementation in an SDK.

Modularity
Eclipse heavily depends on the Open Services Gateway initiative framework (OSGi) standard as
driver for modularization [11]. OSGi is a module system for Java that implements a complete and
dynamic component model.

JCP 2 and Khronos do not have a special mechanism to achieve or ensure modularity. The
focus of these two processes is on a correctly working implementation with little interest on the
implementation. In JCP 2 it is possible to establish a specification to improve modularity, e.g. JSR
294 - Improved Modularity Support in the Java Programming Language.

Key Findings
Well-defined evolution of the architecture by strict compliance: The architecture of a system must
be well defined and evolutionary changes should take place in a predictable manner. Every re-
viewed community-driven development process takes a different approach of how to specify the
architecture but one thing is common for every process: a strict compliance test of the public
interface. Every API or SDK has to have at least 100% signature test coverage.

• Established API evolution rules:
One major challenge in software development is the evolution of an API. JCP 2 and Khronos
solve the problem of API evaluation with a new specification. This makes sense because it
is not possible to adopt every existing product that is based on a specification. The Eclipse
process has established a set of API evolution rules. These rules are a kind of coding con-
vention. They describe how to use the API based on the underlying extension strategy of
the API. This extension strategy heavily depends on to the modularity of the product.

4.3 Tooling
Knowledge Management and Social Media
Knowledge management in Eclipse, JCP 2 and Khronos currently takes place via mailing lists,
forums or Wikis. There are discussions in the communities to find a more structured solution but
no concrete approach yet how this problem can be solved.

12

Testing

Eclipse: The Eclipse Test and Performance Tools Platform (TPTP) Project provides an open plat-
form that supplies powerful frameworks and services for testing. TPTP addresses the entire test
and performance lifecycle, from early testing to production application monitoring, including
test editing and execution, monitoring, tracing and profiling, and log analysis capabilities. The
platform currently supports a broad spectrum of computing systems including embedded, stan-
dalone, enterprise, and high-performance and will continue to expand support to encompass the
widest possible range of systems. [10]

JCP 2: Testing is an essential part of every JCP 2 specification. Tests of a JCP2 specification have
to fulfill 100% signature coverage. For all other tests a specification has to provide specification
coverage and how this coverage was achieved (such as techniques, criteria, etc.). Depending on
this information it should be possible to evaluate the quality of the tests.

Khronos: Based on the kind of hardware and its certification, the testing process is subject to
a specific set of testing criteria (e.g. identical rendering pipeline like some reference product).

Key Findings

Tooling as enabler for a working community: Tooling builds the key platform for an optimal
working community. Current IDEs used in community-driven development processes support
different views for almost every group of technical users. Designers, developers and testers use
the same tool with different views to work on one common project.

• Knowledge management has not adopted Social Media yet:
However, knowledge management outside the source code is still pretty old fashioned.
Most common knowledge management tools used in community-driven processes are mail-
ing lists and bug trackers. Actual scientific research has the focus on social media and so-
cial networks as knowledge and information exchange platform coupled to the source code
(see [12]).

4.4 Culture

Roles

Next, we provide a brief overview of the roles in different open development communities.
Eclipse and JCP are more rigorous in having strategic decision bodies; Khronos works with less
structure and is driven by initiatives.

Roles in Eclipse:

• The Council takes management and strategic decisions for the development process
• A Project Management Committee leads a project under the Eclipse development process
• A Project lead that leads a sub-project in the Eclipse development process
• Contributor contributes to the Eclipse platform
• Adopters use the Eclipse platform for their own products
• Users of Eclipse or a product based on Eclipse

Roles in JCP 2:

• The Program Management Office is the responsible group in Oracle for JCP
• An Executive Committee guides the evolution of the Java technology
• An Expert Group develops or makes significant revisions to a specification

13

• Java Community Process Members take part in the process
• A Maintenance Lead is responsible for maintaining the specification

Roles in Khronos:

• A Promoter initiates Working Groups and ratification
• A Contributor can influence the work in Working Groups
• Working groups devise new specifications
• Adopters build conformant implementations
• Developers program applications using the Khronos API

Transparency

Eclipse: The information exchange in each of the three councils is transparent as it is publicly
accessible. Voting and decision finding only takes place inside each of these councils. Therefore
the process is transparent and targeted but not influenced from the outside. The transparency of
information exchange on levels under the council depends on the kind of project (open/closed,
free/commercial, etc.)

JCP 2: Transparency is an essential part of the JCP 2: Expert Groups must operate in a trans-
parent manner, enabling the public to observe their deliberations and to provide feedback. All
feedback must be taken into consideration and public responses to such feedback must be pro-
vided. [2]

Depending on the degree of transparency even the voting process is influenced: The EC
should take the Expert Group’s transparency record into consideration when voting on its JSR. [2]

Khronos: Compared to Eclipse and JCP 2, the Khronos process is not really transparent to the
public. Only the final specification is available for the public. During the specification creation
process information is only available to Promoters and Contributors. Both types of membership
require a fee ($30.000 for Promoters and $10.000 for Contributors).

Key Findings

Strategic bodies versus bottom-up working groups: The role models in the three communities
vary quite a bit. Eclipse and JCP run top-down by strategic initiatives and the respective bod-
ies (e.g. councils); the Khronos process runs bottom-up with working groups that are initiated.
However, the essence is conformance that is the major goal for platform evolution and usage.

• Establishing a culture of transparency and trust:
For an open and innovation-driven culture it is necessary to strengthen transparency and
trust. Firstly, long-term architectural strategies must be available to every member of a
community. A second step is the opening of the strategy finding process.

• Strategy finding process open to major partners:
Depending on the business targets of a company or institution the strategy finding process
is open for major partners only or the whole community. Also the amount of a parties
influence needs to be derived from the main business target of the leading company behind
the community process.

14

5 Conclusion

In this technical report we provided an overview of open software development processes and
commercial partner programs, and key findings for a successful open development of software
systems. The opening of software development processes is necessary due to the increasing in-
terlinking of software systems and the indirect need to inform partners and customers about up-
coming changes in the software system. This opening allows partners and customers not only to
react on upcoming changes, it opens them a new way to have impact on the future development
of the software system. For example, a customer needs an implementation of a new data export
interface. In a closed development process the software vendor or a partner would implement
the extension to the software system. In a open development process the customer can imple-
ment the extension himself and supply it to other customers, partners and the software vendor.
Open development allows a software vendor to focus on the development of the core system and
customers to adopt the software system to their needs.

References

[1] Eclipse Development Process (Last visited: April 2, 2012)
http://www.eclipse.org/projects/dev_process/development_process_

2010.php

[2] Java Community Process 2 (Last visited: April 2, 2012)
http://jcp.org/en/procedures/jcp2

[3] Khronos Group - Member Agreement (Last visited: April 2, 2012)
http://www.khronos.org/files/member_agreement.pdf

[4] Khronos Group - Member Levels (Last visited: April 2, 2012)
http://www.khronos.org/members/benefits/

[5] Michelle Antero, Niels Bjorn-Andersen, A Tale of Two ERP Vendors – and the Crucial Decision
of Choosing the Right Business Model, CENTERIS 2011, Part I, CCIS 219, pp. 147-157, 2011

[6] Jon Siegel - Vice President Object Management Group, Why Should My End-User Company
Join OMG?, 2010

[7] Microsoft Partner Network, Quick Reference Guide for U.S. Microsoft Dynamics Partners,
2011

[8] Microsoft Partner, The Microsoft Partner Program Guide for all Microsoft Partners, 2005
[9] How to Use the Eclipse API (Last visited: April 11, 2012)

http://www.eclipse.org/articles/article.php?file=Article-API-Use/

index.html

[10] Eclipse Test and Performance Tools Platform Project (Last visited: April 11, 2012)
http://www.eclipse.org/tptp/

[11] Eclipse and OSGi (Last visited: April 11, 2012)
http://www.eclipse.org/osgi/

[12] Andrew Begel, Robert DeLine; Microsoft Research; Codebook: Social Network-
ing over Code; Association for Computing Machinery, Inc.; Proceedings of ICSE 09
(New Ideas and Emerging Results) http://research.microsoft.com/pubs/81052/
codebook-icse2009.pdf

15

