
Department of Informatics, University of Zürich

BSc Thesis

Design and Implementation of a
Workload Generator for the Oshiya

Demo Application

Robert Dewor
Matrikelnummer: 08-715-922

January 23, 2012
supervised by Prof. Dr. M. Böhlen and C. Tilgner

Abstract

The goal of this bachelor thesis was to design and implement a workload generator for the Os-
hiya demo application. The demo application displays the functionality of the Oshiya schedul-
ing model and allows the user to create traditional and domain-specific scheduling protocols.
In order to develop protocols, the user has to be able to analyse and test them for specific prop-
erties or behaviour. The workload generator enables the user to create customized transactions
that allow the user to do so.
In this thesis, concept and design of the workload generator will be discussed and presented.
The solution that has been implemented allows the user to create customized transactions in a
flexible manner.

Zusammenfassung

Das Ziel dieser Bachelorarbeit war das Design und die Implementierung eines Workload
Generators für die Oshiya Demo Applikation. Die Demo Applikation veranschaulicht die
Funktionalität des Oshiya Scheduling Model und emöglicht dem Benutzer traditionelle und
domain-spezifische scheduling Protokolle zu erstellen. Um Protokolle zu erstellen, muss
der Benutzer in der Lage sein, diese auf spezifische Eigenschaften und spezifisches Verhal-
ten zu analysieren und zu testen. Der Workload Generator erlaubt dem Benutzer individuell
angepasste Transaktionen zu erstellen, die ihm dies ermöglichen.
In diesem Dokument wird das Konzept und Design des Workload Generator präsentiert und
diskutiert. Die implementierte Lösung erlaubt dem Benutzer individuell angepasste Transak-
tionen auf flexible Art und Weise zu erstellen.

5

Contents

1 Introduction 10

2 Preliminaries 11
2.1 Oshiya . 11
2.2 Oshiya Demo Application . 12
2.3 Terminology . 12

3 Problem Description 14

4 Design of the Workload Generator 15
4.1 Model . 15
4.2 Selecting the Right Requests . 18

4.2.1 Requirements . 19
4.2.2 Request Selection Algorithm . 19

4.3 Static and Dynamic Workloads . 24

5 Implementation 26
5.1 Implementation Request Selection Algorithm 26

5.1.1 Creating new Transaction Ids . 31
5.1.2 Restoring old Transaction Ids . 33

5.2 Creating the Workload . 34
5.3 Managing the Workload . 35
5.4 Creating Patterns . 37
5.5 Flexibility vs. Usability . 39

6 Future Work 41

7 Summary 42

8 Appendix 43
8.1 Scenario . 43
8.2 Simple Pattern Generator . 43
8.3 Advanced Workload Generator . 43

6

List of Figures

2.1 Oshiya Algorithm [1, Figure 2] . 12

4.1 Concept of the Workload Generator . 16
4.2 Pseudo Code of the Request Selection Algorithm 20

5.1 UML Class Diagram Workload Generator 27
5.2 Structure of the Advanced Workload Generator 36
5.3 Structure of the Workload Menu . 38

8.1 Scenario - Template . 44
8.2 Scenario - Pattern Selection . 45
8.3 Scenario - Amount of Clients . 46
8.4 Scenario - Amount of Employees . 47
8.5 Scenario - Result . 48

8

1 Introduction

Modern database systems have to schedule huge amounts of concurrent requests and have to
ensure that the produced schedules fulfil certain correctness criteria (e.g., serializability). The
state of art is to develop domain-specific schedulers imperatively for a given application. This
leads to very complex scheduler implementations. The Oshiya demo application, is a tool for
developing scheduling protocols declaratively [1].

The Oshiya demo application implements the Oshiya scheduling model. In the Oshiya schedul-
ing model, scheduler states are stored in relations. The application displays the functionality of
the generic Oshiya algorithm. In the Oshiya algorithm, protocols are implemented as schedul-
ing queries. Requests are scheduled by iteratively executing these queries over relations. Ev-
ery single step of the algorithm is displayed to the user graphically. The user also has the
possibility to undo single steps the algorithm has performed. This helps the user to develop
protocols as well as analyse and test them for specific properties or behaviour and display the
results. Therefore the application provides an intuitive and easy-to-understand opportunity to
develop protocols [1].

The aim of this bachelor thesis is to design and implement a workload generator for the demo
application. The user will be enabled to create customized transactions. These transactions
can be input manually or generated semi-automatically. This allows the user to simulate dif-
ferent clients executing transactions on the scheduler in order to analyse the behaviour of the
chosen protocol. That means the user can define transactions that allow him to test protocols
for specific behaviour or properties.

This paper is structured as follows: In Section 2, the background information about the Oshiya
scheduling model and the Oshiya demo application will be given. In Section 3, the implemen-
tation task will be explained. In Section 4, the concept and design of the workload generator
will be displayed. In Section 5, the chosen implementation of the workload generator will
be shown. In Section 6 possible additional features for the Oshiya demo application are pre-
sented. In Section 7, a summary over the thesis is displayed. In Section 8, a scenario is shown,
which displays the different GUI elements that have been created in order to allow the user to
create an advanced workload.

10

2 Preliminaries

In this section, background information about the Oshiya scheduling model and the Oshiya
demo application is given (Section 2.1). The generic Oshiya algorithm that is used in the Os-
hiya demo application is explained, as well as the functionality of the Oshiya demo application
(Section 2.2). Afterwards necessary terminology is explained (Section 2.3).

2.1 Oshiya
Modern database systems have to schedule huge amounts of concurrent client requests. Stan-
dard database systems often do not satisfy domain-specific scheduling requirements, because
they do not offer support for service-level agreements and only offer a limited set of fixed
consistency levels. The state of the art is to develop schedulers imperatively for a given appli-
cation [1].

Oshiya is a declarative scheduling model that is highly flexible. It allows the user to im-
plement concise scheduling protocols. In Oshiya, the state of a scheduler is stored in three
scheduling relations. These three relations are called PendingRequests (R), Executable (E)
and RelevantHistory (H). Relation N stores new requests, that will be scheduled by the Os-
hiya algorithm [1].

Pending requests are stored in relationR. Requests that have been scheduled for execution are
stored in relation E . Relation H stores already executed requests in their execution order. In
Oshiya, a protocol is formalized as a set of constraints called protocol specification. The con-
straints are implemented as declarative scheduling queries: QScheduled, QRevoked, QIrrelevant.
The scheduling of the requests is performed by executing the scheduling queries repeatedly
over the scheduling relations. QScheduled identifies pending requests in relation R that can
be selected for execution in this iteration, QRevoked identifies non executable requests (e.q.,
deadlocked), QIrrelevant returns requests that are irrelevant for future scheduling decisions.
Irrelevant requests are removed fromH [1].

The Oshiya algorithm is the same for every protocol (shown in Figure 2.1). Protocols can
be created or modified by changing QScheduled, QRevoked, QIrrelevant and the schema of the
scheduling relations [1]. The algorithm is executed in seven steps:

• In step 1, requests that were scheduled in the previous iteration are removed fromR.

• In step 2, new requests are added toR from N .

11

Figure 2.1: Oshiya Algorithm [1, Figure 2]

• In step 3, QRevoked identifies the non executable requests in R. Those requests are
removed fromR.

• In step 4, QScheduled selects all requests from R that can be executed in this iteration
without violating the protocol constraints.

• In step 5 and 6, the requests in E are executed and added toH.

• In step 7, QIrrelevant identifies the requests that are irrelevant for future decisions. Those
requests are removed fromH.

2.2 Oshiya Demo Application
The existing demo application implements and illustrates the functionality of the Oshiya
scheduling model and the Oshiya algorithm. It enables the user to develop new scheduling
protocols by specifying the schema for the scheduling relations R, E and H as well as in-
stances of the scheduling queries QRevoked, QScheduled and QIrrelevant. When request schedul-
ing is done by iteratively executing scheduling queries over scheduling relationsR, E , H, the
application displays the three scheduling relations graphically. This allows the user to follow
every step of the Oshiya algorithm. The application allows the user to undo and redo single
steps of the Oshiya algorithm. This enables the user to analyse the behaviour of protocols.

2.3 Terminology
A user is the person accessing the Oshiya demo application.

A transaction is a sequence of read or write operations followed by an abort or commit oper-
ation.

A client consists of exactly one transaction. Each client inserts one request into relation N at
a time. Once the request has been scheduled for execution, the next request can be inserted

12

into N .

A set of requests of one or more clients is called workload.

The Oshiya algorithm consists of seven steps that can be executed in iterations. One step can
be displayed as n:s. N stands for the current iteration, s for the current step of the iteration.

13

3 Problem Description

The current implementation of the Oshiya demo application creates transactions with random
values that are used to display the functionality of the Oshiya algorithm. In order to develop
protocols, the user has to be able to test those protocols for certain criteria or properties. This
is not possible with the current implementation of the Oshiya demo application. In order to
test protocols for certain criteria or properties, the user has to be able to create her own transac-
tions. For example, if the user wants to test the worst case scenario for the two-phase locking
protocol (2PL) she needs to be able to create transactions that create a deadlock.

The main task of this bachelor thesis is the design and implementation of a workload gen-
erator. The workload generator has to enable the user to configure the requests that have to
be scheduled. It includes the ability to simulate clients that execute requests simultaneously.
Those requests will be inserted into relation N in step 2 of the Oshiya algorithm. The main
challenges of the development of the workload generator are:

• A client can only insert one request at a time. The next request can only be inserted, once
the last request has been executed. That means the right requests have to be selected for
insertion into N .

• The user can undo steps from the Oshiya algorithm. The workload generator needs to
offer the same functionality. It has to be able to restore the information of the previous
steps and redo them.

• The user has to be able to design workloads, where the value column holds references
to records in the database. That means, the user has to be able to create workloads that
change the value of a data item based on its current value. For example, increasing the
value of data item 1 by ten percent will be written as $1 * 1.1. $1 holds the reference to
the value of data item 1.

14

4 Design of the Workload Generator

In the last chapter it was explained, why it is necessary to enable the user to create her own
transactions with the Oshiya demo application. In this chapter, we analyse the requirements
(section 4.2.1) and describe the design of the workload generator (section 4.1). Problems that
arose during the development of the workload generator will be discussed and the chosen so-
lutions explained in detail. In Section 4.2.2 the concept of the workload generator is described.
In Section 4.3, workloads will be explained in detail.

In order to test the behaviour of protocols, the user has to be able to create real-world trans-
actions with the Oshiya demo application. That means the demo application has to simulate
the behaviour of one or more clients executing request transactions on the Oshiya scheduling
model.

The workload generator, has to create a stream of requests. In step 2 of the Oshiya algo-
rithm, requests are selected from the workload that has been specified. The selected requests
are then processed by the Oshiya algorithm. Figure 4.1 displays the concept of the workload
generator:

4.1 Model
After a workload has been created and finalized by the user, it has to be stored in an efficient
manner. In order to simplify the process of selecting requests of the workload, it was chosen
to store the workload in a database relation. This relation is called relation Workload. Re-
quests are stored as tupel in the scheduling relations. Those requests have to consist of a set of
columns that cannot be changed or removed. These columns are: client id (’cid’), transaction
id (’ta’), sequence number (’seq’), operation (’op’), object (’ob’) and value (’val’). This is
because relation N , R, E and H are based on this set of columns. Inserting request from
relation Workload into relation N can only be done, when both relations are based on the
same schema. That is why the schema of relation Workload and the schema of the scheduling
relations will be based on the same set of columns. Additional columns can be added to the
schema by the user. The user can also be interested in information generated by the applica-
tion, for example the current step of the current iteration of the Oshiya algorithm. That is why
additional columns can be of two different types.

Columns of type UserInput will be based on values the user specifies when she is creating
a workload. An example is the column class of the class-based 2PL protocol. In this column,
the user can specify a class for each transaction. Requests of transactions with a higher class

15

Workload
Generator R E H

Executor

Stream of
requests

Figure 4.1: Concept of the Workload Generator

16

value get executed before requests of transactions with a lower class value.

Columns of type SystemVariable display values generated by the application and cannot be
changed by the user. The column SI is a column of type SystemVariable. It stores the current
SchedulingIteration step when the request has been inserted into relation N .

It is important to note, that the schema of relation Workload and the schema of relation N
are not equal. The schema of relation Workload only consists of columns of type UserInput.
This is done because the user can undo and redo steps of the Oshiya algorithm and the val-
ues in columns of type SystemVariable are generated automatically. To avoid storing runtime
values, all columns of type SystemVariable in relation N will be updated every time requests
have been inserted into the relation.

Every transaction has a a unique transaction id. All transaction ids are stored and mapped
to the client, the transaction belongs to. A mapping relation called client_ta _mapping will be
used to store transaction ids with their corresponding clients. New transaction ids are gener-
ated based on the maximum value of all transaction ids in the mapping relation plus one. If
a transaction has been committed or was aborted, the new transaction id will be added to the
mapping relation. When the algorithm is stepping backwards and therefore an old transaction
id has to be restored, the maximum value of all transaction ids of the corresponding client
is deleted, and the new maximum value will be used to update the transaction id in relation
Workload. The following table displays relation client_ta _mapping:

client_ta _mapping
CID TA

Relation N stores new requests, that will be scheduled by the Oshiya algorithm. In order to
create customized workloads, the workload generator must determine the requests in relation
N based on user input. In step 2 of every iteration of the Oshiya algorithm, requests are se-
lected from relation Workload and inserted into relation N . All requests from N are then
inserted into relation R and all values in relation N are deleted. Requests in relation R that
have been selected for execution will be inserted in relation E . Requests in relation E will
be executed by the Executor and inserted into relation H. In order to automatically store the
return values of the executer, an interface has to be created.

The following example illustrates two transactions t1 and t2 that can be used to test the two-
phase locking protocol (2PL) for a worst-case scenario. Executed under the 2PL protocol,
these transaction cause a deadlock.

Example 1 Worst-case scenario for the 2PL protocol: A workload consisting of two clients,
the first client executing t1 and the second client executing t2, can be used to display the worst-
case scenario graphically with the help of the Oshiya demo application.

17

t1 reads item 1 and item 2, then t1 changes the value of item 1 to +5.
t2 reads item 1 and item 2, then t2 changes the value of item 2 to +6.

Because t1 is holding locks on data item 1 and 2, t2 cannot write data item 2 and because
t2 is holding locks on data item and 2 as well, t1 cannot write data item 1. t1 is waiting for t2
to release the locks and t2 is waiting for t1 to release the locks. Because both transactions are
waiting on each other, a deadlock is created.

t1 : r(1) r(2) w(1, +5) c
t2 : r(1) r(2) w(2, +6) c

Those two transactions will result in the following history:

H1 : r1(1)r2(1)r1(2)r2(2)w1(1,+5)w2(2,+6)a1c2

The following tables display relations R, E and H for Example 1, after the deadlock has
occurred:

R
CID TA Seq Op Ob Val
1 1 3 w 1 5
1 1 3 w 2 6

E
CID TA Seq Op Ob Val
1 1 2 r 2
2 2 2 r 2

H
CID TA Seq Op Ob Val
1 1 1 r 1
1 1 2 r 2
2 2 1 r 1
2 2 2 r 2

Under 2PL, one of the transactions has to be aborted, in order to commit the other. Relation E
only displays the requests executed in the last iteration of the Oshiya algorithm, other requests
are deleted from the relation.

4.2 Selecting the Right Requests
After the workload has been stored in relation Workload, requests have to be selected from the
relation and inserted into relation N . Every client in a workload can only insert one request
at a time into relation N . The next request can only be inserted, once the previous request
has been executed in step 4 of the Oshiya algorithm. In order to select the right requests from
relation Workload, an algorithm has to be created. This algorithm is called request selection
algorithm. Requests will be inserted into relation N in step 2 of the Oshiya algorithm.

18

4.2.1 Requirements
In order to enable the user to test protocols or display their functionality it will be convenient
to allow the user to execute transactions in an infinite mode, that means, transactions that have
been committed or aborted will restart with a new transaction id. An algorithm has to be de-
veloped that can create new transaction ids as well as store old transaction ids.

The Oshiya demo application allows the user to undo and redo steps of the Oshiya algorithm.
That means, the workload generator must be able to select requests from relation Workload
and insert them into relation N , undo those steps and then select and insert them again. A
difficulty that occurred during the development of the concept for the request selection algo-
rithm was multiple transactions committing or aborting at the same time. In this case, new
transaction ids have to be generated for each of the transactions. That is why the following
solution has been chosen.

4.2.2 Request Selection Algorithm
Figure 5.2 shows the algorithm that is used to determine which requests will inserted into
relation N in step n:2 of the Oshiya algorithm. The algorithm is executed in 5 steps.

• Step(1): In row 2 the algorithm checks if any requests have been inserted into relation
N in step n-1:2. If no requests have been inserted, the first request of each transaction
is inserted into relation N . Then, the system variables of relation N are updated.

• Step(2): In row 7 relation Workload is joined with relation E , this is done to check which
requests of which transactions have been executed in step n-1:2.

• Step(3): In row 13 it is being checked, if any of the transactions were aborted in iteration
step n-1:2

• Step(4): In rows 15 to 23 the requests of all transactions that did not abort recently are
inserted into relation N . After that, the system variables of relation N are updated.

• Step(5): In row 25 the algorithm checks if any transaction has been committed in step
n-1:2. For all committed transactions, the transaction id is updated in relation Work-
load. Then the first request of all transactions that have been committed in step n-1:2
are inserted into relation N . After that the system variables of relation N are updated.

Forward Mode
There are three different cases when requests are selected from relation Workload and in-
serted into relation N .

19

Figure 4.2: Pseudo Code of the Request Selection Algorithm

20

Case 1: The Oshiya algorithm is in the initial state, where relations N , R, E and H are
empty. No request has been inserted into relationN . This means that the first request of every
transaction has to be inserted during the first iteration 1:2. Example 2 displays case 1 based
on relation Workload from Example 1:

Example 2 In this example, the first requests from transactions t1 and t2, o1 and o2 are in-
serted into relation N . Then both requests are inserted into relation R. After that the trans-
action ids are inserted into relation client_ta _mapping along with the client ids of the clients,
the transactions belong to.

Workload
CID TA Seq Op Ob Val
1 1 1 r 1
1 1 2 r 2
1 1 3 w 1 5
1 1 4 c
2 2 1 r 1
2 2 2 r 2
2 2 3 w 2 6
2 2 4 c

N
CID TA Seq Op Ob Val SI
1 1 1 r 1 1
2 2 1 r 1 1

client_ta _mapping
CID TA
1 1
2 2

R
CID TA Seq Op Ob Val SI
1 1 1 r 1 1
2 2 1 r 1 1

E
CID TA Seq Op Ob Val SI

H
CID TA Seq Op Ob Val SI

In case 1, the following actions have to be performed:

• insert the first request of every transaction ti of relation Workload into relation N

• update all columns of type SystemVariable in relation N with their current values

• insert the transaction and client ids into relation client_ta _mapping

• insert all requests from relation N into relationR

Case 2: The Oshiya algorithm is in step n:2 with n>1. If request o1 with o[seq] = i is not an
abort or commit operation and has been inserted into relation H in scheduling iteration n-1,
the next request o2 with o2[seq] = i+1 is selected from relation Workload for insertion into
relation N . Example 3 visualizes case 2 based on relation Workload from Example 1:

Example 3 In this example, the Oshiya algorithm is in scheduling iteration 2:2. The request
o1, o2 with o1[seq] = 1, o2[seq] = 1 from transactions t1 and t2 have been executed in schedul-
ing iteration 1:4. Request o3, o4 with o3[seq] = 2, o4[seq] = 2 from t1 and t2 will be inserted
into relationN . Then both requests will be selected from relationN and inserted into relation
R.

21

Workload
CID TA Seq Op Ob Val
1 1 1 r 1
1 1 2 r 2
1 1 3 w 1 5
1 1 4 c
2 2 1 r 1
2 2 2 r 2
2 2 3 w 2 6
2 2 4 c

N
CID TA Seq Op Ob Val SI
1 1 2 r 2 2
2 2 2 r 2 2

client_ta _mapping
CID TA
1 1
2 2

R
CID TA Seq Op Ob Val SI
1 1 2 r 2 2
2 2 2 r 2 2

E
CID TA Seq Op Ob Val SI
1 1 1 r 1 1
2 2 1 r 1 1

H
CID TA Seq Op Ob Val SI
1 1 1 r 1 1
2 2 1 r 1 1

In case 2, the following actions have to be performed:

• check for the last request o[seq] = i of every transaction ti inserted into relation N in
preceding scheduling iterations

• if request o[seq] = i has been inserted into relation E in scheduling iteration n-1, and
therefore has been executed:

- insert request o[seq] = i+1 into relation N

• update all columns of type SystemVariable in relation N with their current values

Case 3: The algorithm is in step n:2. Multiple requests have been selected from relation
Workload and inserted into relation N in preceding scheduling iterations. If a request oi of
a transaction ti is a commit or abort operation, a new transaction id has to be created for
transaction t. Then the first request of transaction ti is then inserted into relation N . Example
4 displays case 3 based on relation Workload from Example 1:

Example 4 In this example, the Oshiya algorithm is in scheduling iteration 6:2. Transaction
t1 has been committed in scheduling iteration 5:4. A new transaction id has to be created for
t1. The new transaction id for t1 will be t3. After relation Workload has been updated with the
new transaction id, the first request of transaction t3 will be inserted into relation N . Then
the new transaction id is inserted into relation client_ta _mapping.

22

Workload
CID TA Seq Op Ob Val
1 3 1 r 1
1 3 2 r 2
1 3 3 w 1 5
1 3 4 c
2 2 1 r 1
2 2 2 r 2
2 2 3 w 2 6
2 2 4 c

N
CID TA Seq Op Ob Val SI
2 2 3 w 2 6 4
1 3 1 r 1 6

client_ta _mapping
CID TA
1 1
1 3
2 2

R
CID TA Seq Op Ob Val SI
2 2 3 w 2 6 4
1 3 1 r 1 6

E
CID TA Seq Op Ob Val SI
1 1 4 c 5
2 2 2 r 2 3

H
CID TA Seq Op Ob Val SI
1 1 4 c 5
2 2 2 r 2 3

In case 3, the following actions have to be performed:

• check for the last request o[seq] = i of every transaction ti inserted into relation N in
scheduling iteration n-1.

• if request o[seq] = i has been inserted into relation E in scheduling iteration n-1, and is
a commit or abort operation:

- create a new transaction id for the transaction

- insert the transaction and client ids into the client_ta _mapping relation

- update the transaction id in relation Workload

- insert the first request of the transaction

• update all columns of type SystemVariable in relation N with their current values

Backward Mode
The user has the opportunity to undo steps of the Oshiya algorithm. If the user decides to undo
one step from step n:2 to n-1:1, information has to be restored. The scheduling relationsR, E
and H are restored by the Oshyia demo application. In order to restore relation Workload, it
has to be checked, if there is a transaction ti that has been committed or aborted in scheduling
iteration n-1. If transaction ti has been committed or aborted, the old transaction id ti has to
be restored. Example 5 displays this functionality for Example 1:

Example 5 In this example, the Oshiya algorithm is in scheduling iteration 6:2. The user
has decided to undo the last step. The Oshiya algorithm is now in scheduling iteration 6:1.
In order to restore relation Workload, the old transaction id of t3 has to be restored. The
transaction id of transaction t3 in relation Workload will be updated with its old value. The
following tables display scheduling iteration step 6:1 after relations Workload, N ,R, E and
H have been restored.

23

Workload
CID TA Seq Op Ob Val
1 1 1 r 1
1 1 2 r 2
1 1 3 w 1 5
1 1 4 c
2 2 1 r 1
2 2 2 r 2
2 2 3 w 2 6
2 2 4 c

N
CID TA Seq Op Ob Val SI
1 1 4 c 5
2 2 3 w 2 6 6

client_ta _mapping
CID TA
1 1
2 2

R
CID TA Seq Op Ob Val SI
1 1 4 c 5
2 2 3 w 2 6 6

E
CID TA Seq Op Ob Val SI
1 1 3 w 1 5 4
2 2 2 r 2 3

H
CID TA Seq Op Ob Val SI
1 1 3 w 1 5 4
2 2 2 r 2 3

The following actions have to be performed:

• check for the last request o[seq] = i of every transaction ti inserted into relation N in
scheduling iteration n-1:2

• if request o[seq] = i has been inserted into relation E in scheduling iteration n-1:4, and
is a commit or abort operation:

- delete the highest transaction id of the client the transaction belongs to from

the client_ta _mapping relation

- update the transaction id in relation Workload with the highest transaction

- id of the client the transaction belongs to from the client_ta _mapping relation

4.3 Static and Dynamic Workloads
Recall relation Workload of Example 1:

Workload
CID TA Seq Op Ob Val
1 1 1 r 1
1 1 2 r 2
1 1 3 w 1 5
1 1 4 c
2 2 1 r 1
2 2 2 r 2
2 2 3 w 2 6
2 2 4 c

In this example,the values for item 1 and 2 can be written with the following queries:

24

UPDATE N SET VAL = 5 WHERE OB = 1

UPDATE N SET VAL = 6 WHERE OB = 2

Any value held by item 1 and 2 will be lost.

There are real-world transactions that perform changes to existing data items, for example,
increasing the salary of all employees by ten percent. In order to enable the user to create
transactions like that, the user has to be able to modify the values of an item when a data item
is written. The value for employee 1 can be written with the following query:

UPDATE N SET VAL = VAL∗1 . 1 WHERE OB = 1

The workload generator supports two different types of Workloads. Static workloads are work-
loads, where the values that are written on objects are static integer numbers. The table of the
Workload Relation of example 1, is an example for a static workload.

The second type of workload is the dynamic workload. When creating a dynamic workload,
the user can specify place holder variables in the column ’Val’. A place holder variable is
specified as a single ’$’ and the sequence number (Column ’Seq’) of a read operation of the
same transaction (e.g. $1). The place holder variable holds a reference to the value returned
by the read operation with the corresponding attribute ’seq’. The value written on an item will
consist of arithmetic operations on one or more place holder variables. This will allow the
user for example to increase the salary of employee 1 who currently earns fifty Euro by ten
percent. The following table displays this example:

Workload
CID TA Seq Op Ob Val
1 1 1 r 1
1 1 3 w 1 $1*1.1
1 1 4 c

Requests that have been scheduled for execution by the Oshiya scheduling model are executed
by the Executor. The workload generator replaces $1 with the value returned by the executor.
This value is then inserted in relation N .

25

5 Implementation

In the last chapter, the concept and design for the workload generator have been explained.
In this chapter, the implementation of different classes that were needed for the workload
generator will be described. The implementation of the request selection algorithm will be
explained (section 5.1). Then GUI elements of the workload generator, as well as the menu
structure of the workload generator will be displayed (section 5.2 and 5.3). After that, patterns
will be explained (section 5.4). At last, examples from the library that has been implemented
are displayed (section 5.5). Figure 5.1 displays an UML Class Diagram of the classes that
have been created in order to implement the workload generator.

5.1 Implementation Request Selection Algorithm
In this section, the SQL statements used in the different steps of the request selection algo-
rithm will be shown and explained.

The SQL statements that were created for the request selection algorithm are called System
Queries. The System Queries used in the request selection algorithm had to be written dy-
namically. The schema that is used for the scheduling relations can be changed by the user by
adding additional columns to the existing six columns (’cid’, ’ta’, ’seq’, ’op’, ’ob’, ’val’). The
SQL statements have to be independent from the structure of the scheduling relations. They
also have to be dynamic concerning the type of the values they process. In order to create dy-
namic SQL queries, SQL statements will be pre-compiled and stored in a PreparedStatement
object. This object can then be used to efficiently execute this statement multiple times with
different values for the specified variables [3].

The Oshiya demo application supports three database management systems: PostgreSQL,
MSSQL and Oracle. Therefore all SQL statements used in the request selection algorithm had
to be written so they are syntactically correct for all three database management systems at the
same time.

The variable sColumnsString is used to store the schema of relation Workload. The column
SI is a SystemVariable that displays the scheduling iteration step when the request has been
inserted into the relation.

In order to allow the user to undo steps of the Oshiya algorithm, all information stored in
the scheduling relations has to be stored. This is done in system relations. The following table
displays the schema of E Sys, the system relation for scheduling relation E .

26

WorkloadCreateForm

WorkloadXMLhandler
wsettings: Workloadsettings
+loadWorkloadXML(String)
+saveWorkloadXML()
+savePatternXML()

SystemVariableMapping

+getMethod(object) : object

WorkloadXMLContentHandler
-currentValue : String
-wsettings: Workloadsettings
+startElement()

Workloadsettings
-wTableList: ArrayList<WorkloadJTable>
+getWTableList : ArrayList<WorkloadJTable>
+add(WorkloadJTable)
+getTable(int) : WorkloadJTable

WorkloadFileChooser
-sCurrentFilePath : String
-sCurrentName : String
+loadWorkload(WorkloadCreateForm)
+loadPattern(PatternCreateForm)
+saveWorkload(JavaContainer)
+savePattern(JavaContainer)
+deleteWorkload()
+deletePattern()
+lastFile()

ExecuterMapping
-sClient : String
-sTA : String
-sSeq : String
-sValue : String
+getValueString()

Package:GUI

Package:Display

WorkloadGuiHandler
-wGuiHandler : WorkloadGuiHandler
-wsettings : Workloadsettings
+createNewView()
+importWorkload(String)
+exportWorkload(String)
+checkTableSyntax()
+finalSyntaxCheck()

WorkloadSaveForm

PatternCreateForm

PatternSaveForm AdvancedWorkloadCreateForm

AdvancedWorkloadPreCreateForm

AdvancedWorkloadGuiHandler
-aGuiHandler : WorkloadGuiHandler
-wsettings : Workloadsettings
+createPatternList()
+generateWorkload()
+generateAutomatedWorkload()

PatternGuiHandler
-pGuiHandler : WorkloadGuiHandler
-wsettings : Workloadsettings
+createNewView()
+importPattern(String)
+exportPattern(String)
+checkTableSyntax()
+finalSyntaxCheck()

Package:Workloadhandler

+setExecuterMapping(ResultSet)
+updateTaForward()
+updateTaBackward()
+insertWorkloadIntoSQL()
+createMappingRelation()
+insertNextOperation()

Package:Workloadhandler

CType
-type: string
+getType(): String

WorkloadJTable

+setTable(JTable)
+getTable() : JTable

WorkloadResultSetTableModel
-cache: ArrayList<Object>
+updateCacheData()
+getValueAt()/ : object
+getRowCount() : int
+addRow()
+deleteRow()
+reset()

ContentHandler

AbstractTableModel

avax.swing.JPanel

Package:Model

wGuiModel
-wForm : WorkloadCreateForm
+getWGuiForm() : WorkloadCreateForm

pGuiModel
-pForm : PatternCreateForm
+getPGuiForm() : PatternCreateForm

wGuiModel
-aPForm : AdvancedWorkloadCreateForm
+getAPGuiForm() : AdvancedWorkloadCreateForm

Figure 5.1: UML Class Diagram Workload Generator

27

E Sys

CID TA Seq Op Ob Val SI BeginINT EndINT

The column BeginInt stores the scheduling iteration step, in which the request has been in-
serted into relation E . The column EndINT stores the scheduling iteration step, in which a
request has been selected for execution. Because the request selection algorithm is selecting
requests from relation Workload in step 2 of the Oshiya algorithm, and requests in relation E
will be executed in step 4 of the Oshiya algorithm, the value for column EndInt will be NULL
for the last request that has been added to relation E when checked in step 2 of the Oshiya
algorithm. That means in order to find the last request of a transaction that has been executed,
it is being checked which requests in relation E Sys have an EndInt value of NULL. In the fol-
lowing, the System Queries that were used for the five steps of the request selection algorithm
will be displayed.

In step (1) of the request selection algorithm, the Oshiya algorithm is in its initial state and the
first request of all transactions is inserted into relation N by executing SQ1.

SQ1 :
INSERT INTO N(s C o l u m n s S t r i n g)
SELECT s C o l u m n s S t r i n g FROM WORKLOAD WHERE Seq = 1

After the requests have been inserted into relation N , the columns of type SystemVariable
in relation N are updated with their runtime values. This SQL statement is executed in iter-
ations for every column of type SystemVariable (as explained in Section 4.1) that exists in
relation N . The variable SystemVariableValue, for example the SchedulingIteration step, is
generated by the application. The System Query SQ2 is used to update all columns of type
SystemVariable in relation N and is executed in iterations, once for each SystemVariable.

SQ2 :
UPDATE N SET SysColumn = S y s t e m V a r i a b l e V a l u e
WHERE TA IN (SELECT TA FROM WORKLOAD WHERE Seq = 1

All transaction ids and client ids that exist in relation Workload are added to the client_ta
_mapping relation by executing System Query SQ3.

SQ3 :
INSERT INTO CLIENT_TA_MAPPING(CID , TA)
SELECT DISTINCT CID , TA FROM WORKLOAD

Example 6 Recall Example 3 from Section 4.2.2. The first requests of t1 and t2 are selected
from relation Workload and inserted into relation N (SQ1, SQ2). New requests in relation N
are inserted into relationR by the Oshiya algorithm. Then the transaction ids of t1 and t2 are
inserted into relation client_ta _mapping (SQ3).

28

Workload
CID TA Seq Op Ob Val
1 1 1 r 1
1 1 2 r 2
1 1 3 w 1 5
1 1 4 c
2 2 1 r 1
2 2 2 r 2
2 2 3 w 2 6
2 2 4 c

N
CID TA Seq Op Ob Val SI
1 1 1 r 1 1
2 2 1 r 1 1

client_ta _mapping
CID TA
1 1
2 2

R
CID TA Seq Op Ob Val SI
1 1 1 r 1 1
2 2 1 r 1 1

E
CID TA Seq Op Ob Val SI

H
CID TA Seq Op Ob Val SI

In step (2) of the request selection algorithm, relation Workload is joined with relation E Sys

based on the transaction id by executing System Query SQ4. This is done to check which
requests have been executed in scheduling iteration n-1:4.

SQ4 :
SELECT CID , TA, Seq , Op , Ob , Val
FROM WORKLOAD WHERE TA IN (SELECT TA FROM E_sys)

In step (3) of the request selection algorithm, it is checked if any transaction, that has executed
a request in scheduling iteration n-1:4, has been aborted (SQ5).

SQ5 :
SELECT CID , TA, Seq , Op , Ob , Val
FROM WORKLOAD
WHERE TA IN (SELECT TA FROM E_sys WHERE OP = ’ a ’ AND ENDINT i s NULL)

In step (4) of the request selection algorithm, it is being checked if any transaction has been
committed or aborted in scheduling iteration n-1:4. Only requests from transactions that did
not commit or abort in scheduling iteration n-1:4 will be selected for insertion into relationN .

If no transaction has been aborted or committed, System Queries SQ6 and SQ7 will be exe-
cuted.

The next request for all transactions that have executed a request in scheduling iteration n-
1:4, will be inserted into relation N .

SQ6 :
INSERT INTO N (s C o l u m n s S t r i n g)
SELECT s C o l u m n s S t r i n g FROM WORKLOAD W, E_SYS E
WHERE W. Seq = E . Seq+1 AND W. Ta = E . Ta AND E . Op != ’ c ’
AND E . En dI n t i s NULL)

29

After the requests have been inserted into relation N , the columns of type SystemVariable in
relation N are updated with their runtime values.

SQ7 :
UPDATE N SET SysColumn = S y s t e m V a r i a b l e V a l u e
WHERE TA IN (SELECT W. TA FROM WORKLOAD W, E_SYS
WHERE W. Seq = E_SYS . Seq+1 AND W. Ta = E_SYS . Ta AND E_SYS . Op != ’ c ’
AND E_SYS . E nd In t i s NULL)

If one or more transactions have been aborted, SQ8 and SQ9 will be executed.

The next request for all transactions that have executed a request and have not been aborted or
committed in scheduling iteration n-1:4, will be inserted into relation N .

SQ8 :
INSERT INTO N(s C o l u m n s S t r i n g)
SELECT s C o l u m n s S t r i n g FROM WORKLOAD W, E_SYS
WHERE W. Seq = E_SYS . Seq+1 AND W. Ta = E_SYS . Ta AND E_SYS . Op != ’ c ’
AND E_SYS . Op != ’ a ’ AND E_SYS . E nd In t i s NULL

After the requests have been inserted into relation N , the columns of type SystemVariable in
relation N are updated with their runtime values.

SQ9 :
UPDATE N SET SysColumn = S y s t e m V a r i a b l e V a l u e
WHERE TA IN (SELECT W. TA FROM WORKLOAD W, E_SYS
WHERE W. Seq = E_SYS . Seq+1 AND W. Ta = E_SYS . Ta AND E_SYS . Op != ’ a ’
AND E_SYS . Op != ’ c ’ AND E_SYS . E nd In t i s NULL)

Example 7 Recall Example 4 from Section 4.2.2. No transaction has been committed or
aborted. The first requests of t1 and t2 have been executed in scheduling iteration n-1:4.
Therefore the next requests have to be selected from relation Workload and inserted into rela-
tion N . The requests o1 with o[seq] = 2, o2 with o[seq] = 2 from t1 and t2 are selected from
relation Workload and inserted into relation N (SQ4, SQ5 and SQ6, SQ7 / SQ8, SQ9). New
requests in relation N are inserted into relationR by the Oshiya algorithm.

Workload
CID TA Seq Op Ob Val
1 1 1 r 1
1 1 2 r 2
1 1 3 w 1 5
1 1 4 c
2 2 1 r 1
2 2 2 r 2
2 2 3 w 2 6
2 2 4 c

N
CID TA Seq Op Ob Val SI
1 1 2 r 2 2
2 2 2 r 2 2

client_ta _mapping
CID TA
1 1
2 2

30

R
CID TA Seq Op Ob Val SI
1 1 2 r 2 2
2 2 2 r 2 2

E
CID TA Seq Op Ob Val SI
1 1 1 r 1 1
2 2 1 r 1 1

H
CID TA Seq Op Ob Val SI
1 1 1 r 1 1
2 2 1 r 1 1

In step (5) of the request selection algorithm, it is checked if any transaction has been com-
mitted in scheduling iteration n-1:4 (SQ10).

SQ10 :
SELECT TA FROM E_Sys
WHERE Op = ’ c ’ AND ENDINT i s NULL

If one or more transaction have been committed in scheduling iteration n-1:4, new transaction
ids have to be generated so the transactions can be restarted (as shown in section 4.1). The
generation of new transaction ids will be shown in Section 5.1.1.

Then the first request of all transactions that have been committed in scheduling iteration
n-1:4 is inserted into relation N (SQ11).

SQ11 :
INSERT INTO N(s C o l u m n s S t r i n g)
SELECT s C o l u m n s S t r i n g FROM WORKLOAD
WHERE Seq = 1 AND TA NOT IN (SELECT TA FROM R)
AND TA NOT IN (SELECT TA FROM E_SYS)
AND TA NOT IN (SELECT TA FROM N)

After the requests have been inserted into relation N , the columns of type SystemVariable in
relation N are updated with their runtime values (SQ12).

SQ12 :
UPDATE N SET SysColumn = S y s t e m V a r i a b l e V a l u e
WHERE TA IN (SELECT TA FROM WORKLOAD
WHERE Seq = 1 AND TA NOT IN (SELECT TA FROM E_SYS))

5.1.1 Creating new Transaction Ids
When new transaction ids have to be created, the System Queries SQ13-SQ16 are executed.
The System Queries SQ13-SQ16 are executed in iterations, once for each transaction that has
been committed.

In a first step, all transactions that have been committed in scheduling iteraton n-1:4 are se-
lected (SQ13).

SQ13 :
SELECT TA FROM WORKLOAD
WHERE TA NOT IN (SELECT TA FROM E_SYS WHERE Op= ’ c ’ AND En dI n t i s NULL)

31

Then for each transaction, the System Queries SQ14 and SQ15 are executed. First, the highest
transaction id is selected from relation client_ta _mapping (SQ14).

SQ14 :
SELECT max (TA) as M FROM CLIENT_TA_MAPPING

System Query SQ15 will be used to update the ids of transactions in relation Workload. The
new transaction id will be the highest transaction selected from relation client_ta _mapping id
plus one. The query has been written as a prepared statement.

SQ15 :
UPDATE WORKLOAD SET TA = ? WHERE TA = ?

After relation Workload has been updated, the new transaction ids are added to relation client_ta
_mapping (SQ16).

SQ16 :
INSERT INTO CLIENT_TA_MAPPING(CID , TA)
SELECT DISTINCT CID , TA FROM WORKLOAD
WHERE TA NOT IN (SELECT TA FROM E_SYS)
AND TA NOT IN (SELECT TA FROM CLIENT_TA_MAPPING)

Example 8 Recall Example 4 from Section 4.2.2. t1 has been committed in scheduling it-
eration n-1:4. A new transaction id has been created and inserted into relation client_ta
_mapping (SQ13, SQ14, SQ16). Then the transaction id of t1 has been updated in relation
Workload (SQ15). Transaction t1 is restarted transaction t3. The first request of t3 is selected
from relation Workload and inserted into relation N (SQ10, SQ11, SQ12). New requests in
relation N are then inserted into relationR by the Oshiya algorithm.

Workload
CID TA Seq Op Ob Val
1 3 1 r 1
1 3 2 r 2
1 3 3 w 1 5
1 3 4 c
2 2 1 r 1
2 2 2 r 2
2 2 3 w 2 6
2 2 4 c

N
CID TA Seq Op Ob Val SI
1 3 1 r 1 6

client_ta _mapping
CID TA
1 1
1 3
2 2

R
CID TA Seq Op Ob Val SI
2 2 3 w 2 6 4
1 3 1 r 1 6

E
CID TA Seq Op Ob Val SI
1 1 4 c 5
2 2 2 r 2 3

H
CID TA Seq Op Ob Val SI
1 1 4 c 5
2 2 2 r 2 3

32

5.1.2 Restoring old Transaction Ids
When the user decides to undo one step of the Oshiya algorithm, one step after a transaction
has been restarted with a new transaction id, the old transaction id has to be restored. In order
to do that, the System Queries SQ17-SQ20 are executed: First all transactions that have been
committed in scheduling iteration n-1:4 are selected from relation Workload. The System
Queries SQ17-SQ20 will be executed in iterations, once for each transaction id that has to be
restored. First all transactions that have been committed are selected (SQ17).

SQ17 :
SELECT TA FROM WORKLOAD
WHERE TA NOT IN (SELECT TA FROM E_SYS
WHERE Op= ’ c ’ AND En dI n t i s NULL)

Then the selected transaction ids are removed from relation client_ta _mapping relation (SQ18).

SQ18 :
DELETE FROM CLIENT_TA_MAPPING
WHERE TA NOT IN (SELECT TA FROM E_SYS)

After that, the highest transaction id for each client will be selected from relation client_ta
_mapping. The variable currentTA, stores the currently selected transaction, for which the
transaction id has to be restored (SQ19).

SQ19 :
SELECT max (C . TA) as M
FROM CLIENT_TA_MAPPING C
WHERE C . CID IN (SELECT CID FROM WORKLOAD
WHERE TA = cur r en tTA

System Query SQ20 is a prepared statement. It will be used to update the transaction ids
of transactions that have to be restored with the highest transaction id selected from relation
client_ta _mapping plus one.

SQ20 :
UPDATE WORKLOAD SET TA = ? WHERE TA = ?

Example 9 Recall Example 5 from Section 4.2.2. The Oshiya algorithm is in scheduling
iteration 6:2. The user has decided to undo the last step. In scheduling iteration 6:1, t1 has
been committed. A new transaction id has been created and transaction t1 became t3. The
Oshiya algorithm is now in scheduling iteration 6:1. First t3 is selected (SQ17). Then the
old transaction id of t3 is restored in relation Workload (SQ18, SQ19, SQ20). The scheduling
relationsR, E andH are restored by the Oshiya algorithm.

33

Workload
CID TA Seq Op Ob Val
1 1 1 r 1
1 1 2 r 2
1 1 3 w 1 5
1 1 4 c
2 2 1 r 1
2 2 2 r 2
2 2 3 w 2 6
2 2 4 c

N
CID TA Seq Op Ob Val SI
1 1 4 c 5

client_ta _mapping
CID TA
1 1
2 2

R
CID TA Seq Op Ob Val SI
1 1 4 c 5
2 2 3 w 2 6 4

E
CID TA Seq Op Ob Val SI
1 1 3 w 1 5 4
2 2 2 r 2 3

H
CID TA Seq Op Ob Val SI
1 1 3 w 1 5 4
2 2 2 r 2 3

5.2 Creating the Workload
A GUI has to be created, that allows the user to create and test different workloads. The GUI
must be user-friendly and guide the user through the process of creating and testing workloads.
In addition, false input must be handled. A syntax checker must check workloads for errors,
before they can be stored in relation Workload. The input created by the user must be stored
efficiently. Good performance is important for the request scheduling. Bad performance will
cause delays between the request processing. In presentations, the scheduling process must
run without large delays because the scheduling of the requests is displayed graphically in the
Oshiya demo application.

The GUI has to offer good usability. Before a workload can be created, protocol and schedul-
ing relations have to be created. After a workload has been created, the user has to have ability
to go back and change the protocol without having to recreate the workload. There also has to
be the opportunity to apply changes to workloads after they have been created. The user has
to have the ability to create, schedule and change workloads in iterations.

That is why, in order to create a workload, the user must complete the following steps: First
she must chose a connection to a database system. Then she must choose or create a protocol.
After that she has to create the scheduling relations and save her selection. The user then
can decide what type of workload she wants to create or load an already existing workload.
The GUI must guide the user through these different steps. This is achieved by disabling
functionalities that require pre-steps that have not been completed. In order to maximize the
performance, only the finalized workloads or patterns are stored in SQL relations. Everything
else is stored in internal java structures.

A user might want to create large workloads, consisting of many transactions with a lot of

34

requests. Creating such a workload manually requires a lot of time and effort. In order to
provide functionality to the user that allows the creation of such workloads more easily, two
different types of workload will be defined. Workloads that are created manually by the user
will be referred to as simple workloads. Workloads that are generated semi-automatically by
the application based on the specifications of the user will be referred to as advanced work-
loads.

The behaviour of some real-world transactions follows patterns. In order to simplify the
creation of real-world transactions, the user has the opportunity to design and create patterns
in order to generate workloads. It was decided, that an advanced workload can be created in
one of two ways: based on a pattern, or based on generic settings. A pattern is a template
the user can create manually. This template can be used to generate large workloads semi-
automatically. The pattern generator is a GUI form that allows the user to create templates
for advanced workloads.

The simple workload generator is a GUI form that allows the user to create a set of clients.
The user can enter requests for the transaction manually. The columns client id, transaction
id and sequence number are generated by the application and cannot be modified by the user.
This is to ensure that each client only has one transaction. These columns will be displayed to
the user, in order to provide a complete picture of a transaction.

The advanced workload generator consists of two GUI forms that allow the user to gener-
ate partial generated workloads and generated workloads. Generated workloads are normal
workloads that have been created semi-automatically by the application based on generic set-
tings and/or templates the user has specified. One partial workload is generated based on one
pattern and one set of generic settings. Multiple partial generated workloads can be added to
one generated workload. The structure of the advanced workload generator is displayed in
figure 4.3. This design allows the user to create workloads in iterations by adding up multi-
ple partial workloads. It allows the user to create one workload based on multiple different
patterns and different generic settings. This provides flexibility to the user when designing
generated workloads.

5.3 Managing the Workload
The schema of the tables in the GUI elements, that are used to create workloads, must be
equal to the schema of the scheduling relations R, E and H specified in the protocol at all
times. Requests in relation Workload that are based on a different schema than the scheduling
relations can lead to wrong behaviour or errors in the Oshiya scheduling model. In order to
avoid that, the schema of the workload tables is created based on the schema of the schedul-
ing relations. If the user changes the schema of the scheduling relations, the schema of the
workload tables is re-created automatically. Workloads created based on a different schema of
a protocol, can be be used even after the schema of the scheduling relations for that protocol
have been changed.

35

Pattern Selection Generator Settings Workload

Use Pattern 1

Use Pattern 2

Use Pattern 3

Do not use a
Pattern

Create Partial Workload

Create Workload

Partial
Workload

Figure 5.2: Structure of the Advanced Workload Generator

36

The columns of type SystemVariable are generated by the application. The user cannot change
the values in those columns. It makes sense for these columns to be invisible to the user. It was
decided, that the workload tables in the GUI will consist of six basic columns and possible
additional columns of type UserInput. Columns of type SystemVariable will not be part of the
schema of relation Workload.

Recall relation Workload from Example 1, the following table displays the workload and the
basic schema of relation Workload:

Workload
CID TA Seq Op Ob Val
1 1 1 r 1
1 1 2 r 2
1 1 3 w 1 5
1 1 4 c
2 2 1 r 1
2 2 2 r 2
2 2 3 w 2 6
2 2 4 c

In order to test multiple protocols with multiple workloads, the user has to have the ability to
save and load workloads. Every time a protocol is created a folder for the protocol is created
as well. This folder is used to store workloads belonging to the protocol. This is done because
workloads are protocol-specific. A user can save or load all types of workload in a xml file.
This allows the user to create a library of workloads and to exchange them with other users.
The workloads can also be exchanged between different users of the Oshiya demo application.

The workload generator offers a lot of different functionality to the user. In order to en-
able the user to manage this functionality in a user-friendly way, the Workload Menu will be
created. It will consist of 3 parts: Manage Patterns, Manage Workloads and Recently used
workloads. The Manage Patterns menu allows the user to delete, load and create patterns with
the help of separate GUI elements. The Manage Workloads menu allows the user to delete,
load and create simple and advanced workloads. It also allows the user to edit the currently
active workload. Figure 4.2 displays the structure of the workload menu.

5.4 Creating Patterns
Imagine a company pays the salary to three employees at the end of the month. Item 1 rep-
resents the bank account of the company, items 2, 3 and 4 represent the bank accounts of the
employees. The workload created based on this example can be the following:

37

Workload Menu

Recently used
Workloads

Manage Patterns

Manage Workloads

Delete pattern

Load Pattern

Create
Pattern

Delete Workload

Load Workload

Edit Current
 Workload

Create Simple
 Workload

Create Advanced
Workload

Figure 5.3: Structure of the Workload Menu

38

Workload
CID TA Seq Op Ob Val
1 1 1 r 1
1 1 2 w 1 $1-150
1 1 3 r 2
1 1 4 w 2 $3+50
1 1 5 r 3
1 1 6 w 3 $5+50
1 1 7 r 4
1 1 8 w 4 $7+50

A workload like that can be created manually by the user. But if the company had 300 em-
ployees instead of 3, creating the workload manually is a lot of effort. The workload for this
transaction contains a pattern. This pattern is displayed in the following table:

Pattern
Seq Op Ob Val
1 r 1
2 w 1 $1-50
3 r 2
4 w 2 $3+50

A pattern is a template that consists of four columns (sequence number, operation, object,
value). This template can be used to generate the salary payments for all 300 employees semi-
automatically by duplicating the three requests of the template and only changing the number
of the bank account of the employee for each duplicate. The advanced workload generator
allows the user to do so.

5.5 Flexibility vs. Usability
By allowing the user to create simple workloads manually and advanced workloads semi-
automatically the user is offered high flexibility when creating workloads. But flexibility is
not the only important aspect for the Oshiya demo application. Usability is also important. In
order to provide that to the user, a library of patterns and workloads has been created. In the
following, three workloads and one pattern that are in the library will be displayed.

Simple Bank Transaction: Ten Euro are subtracted from bank account 1 and added to bank
account 2.

Workload
CID TA Seq Op Ob Val
1 1 1 r 1
1 1 2 w 1 $1-10
1 1 3 r 2
1 1 4 w 2 $2+10
1 1 5 c

39

Stock booking transaction: This workload displays two transactions that try to access the same
stock concurrently. t1 wants to add 10 items to stock 1 and 20 items to stock 2. t2 wants to
subtract 5 items from stock 1 and add 50 items to stock 2.

Workload
CID TA Seq Op Ob Val
1 1 1 r 1
1 1 2 w 1 $1+10
1 1 3 r 2
1 1 4 w 2 $3+20
1 1 5 c
2 2 1 r 1
2 2 2 w 1 $1-5
2 2 3 r 2
2 2 4 w 2 $3+50
2 2 5 c

Write Skew Anomaly: The Snapshot Isolation Protocol will be supported by the Oshiya demo
application in the near future. This workload displays the write skew anomaly that can occur
under this protocol.

Workload
CID TA Seq Op Ob Val
1 1 1 r 1
1 1 2 r 2
1 1 3 w 1 $1+5
1 1 4 c
2 2 1 r 1
2 2 2 r 2
2 2 3 w 2 $2+6
2 2 4 c

Bonus Salary: This pattern allows the user to create a workload, that can consist of one or
more bonus salary payments from a company to its employees. Every employee is getting a
salary bonus of ten percent.

Pattern
Seq Op Ob Val
1 r 1
2 w 1 $1*1.1

40

6 Future Work

In its current implementation, the Oshiya demo application does not support multiversion con-
currency protocols. A future task will be to extend the existing application in order to support
the execution of multiversion concurrency control protocols such as Snapshot Isolation [4].

Currently, the application allows the user to develop and test one protocol at a time. In a
future project, the Oshiya demo application shall be extended in order to support the concur-
rent execution of two scheduling protocols allowing to compare their executions [4].

In its current state, the Oshiya demo application displays the Oshiya algorithm. In a future
task, the application shall be extended in order to allow the user to collect and display statisti-
cal information about the behaviour of protocols in order to compare and analyse them.

41

7 Summary

The existing Oshiya demo application allowed the user to create protocols and test them with
transactions that consist of random requests. In order to enable the user to test protocols for
specific behaviour or properties, the workload generator feature was added to the existing Os-
hiya demo application.

In the preceding elaborations, the concept and design for the workload generator have been
displayed. The focus of this thesis has been to develop and implement this feature into the Os-
hiya demo application. The workload generator enables the user to create customized transac-
tions. This allows the user to simulate different clients executing transactions on the scheduler
in order to analyse the behaviour of a protocol. During the development different problems
had to be solved. Those problems have been described in Section 4.1.2.

One of the major challenges, was the creation of the request selection algorithm. The algo-
rithm selects the right requests from relation Workload in step 2 of the Oshiya algorithm and
inserts them into relationN . The algorithm has been created based on System Queries. These
queries were implemented dynamically as prepared statements. This means, that the request
selection algorithm is independent from the schema of the scheduling relations or the type of
database system. This allows the user to customize the schema of protocols. An infinite mode
for transactions has been introduced. It allows the user to run transactions in iterations. This
enables the user to test protocols more thorough. Transactions, that are executed in infinite
mode get new transaction ids, once they have been committed or aborted. These transaction
ids are generated automatically and stored in the client_ta _mapping relation. The user has the
opportunity to undo steps of the Oshiya algorithm. Because of that, the chosen solution allows
the user to select requests from relation Workload and insert them into relationN , undo those
steps and then select and insert them again.

In order to assist the user in creating workloads, a GUI has been created. The GUI guides
the user through the process of creating workloads. The user has the opportunity to exchange
workloads with other users of the application. A library of workloads and patterns has been
created. This library allows the user to use different real-world scenarios in order to test pro-
tocols. This library has been presented in Section 5.3.

42

8 Appendix

In this section, a scenario is described that displays an advanced workload. The different GUI
elements that are needed to create the advanced workload, will be displayed in section 8.2 and
8.3.

8.1 Scenario
Consider the following scenario: A company wants to award successful employees with a ten
percent salary bonus. Depending on the amount of employees the company has, this can lead
to a large workload. In the following, we show how to generate an advanced workload for this
example that is based on a pattern.

8.2 Simple Pattern Generator
The simple pattern generator allows the user to create a template, that she can duplicate. In this
pattern, object 1 stands for the salary the employee earns. It is then increased by ten percent.
The simple pattern generator is displayed in Figure 9.1.

8.3 Advanced Workload Generator
The advanced workload generator can now be used to generate a workload for as many em-
ployees as needed. In this example, three employees will be awarded a ten percent bonus.
First the pattern has to be selected. This is done in Figure 9.2. After the user has selected the
pattern ’prämienzahlung’, she has to specify the amount of clients that shall be generated. In
this scenario, one client will be created. This is done in Figure 9.3. After that, the user has
to specify the multiplicator for the template pattern. In this case this means the amount of
employees that shall be awarded a bonus. In this scenario, three employees will be awarded
a bonus. This is shown in Figure 9.4. After the advanced workload has been generated, it is
displayed to the user. Figure 9.5 displays the result.

43

Figure 8.1: Scenario - Template

44

Figure 8.2: Scenario - Pattern Selection

45

Figure 8.3: Scenario - Amount of Clients

46

Figure 8.4: Scenario - Amount of Employees

47

Figure 8.5: Scenario - Result

48

Bibliography

[1] Christian Tilgner, Boris Glavic, Michael Böhlen, and Carl-Christian Kanne, Smile:
Enabling Easy and Fast Development of Domain-Specific Scheduling Protocols: In
BNCOD Posters, 2011.

[2] Christian Tilgner, Boris Glavic, Michael Böhlen, and Carl-Christian Kanne. Declar-
ative Serializable Snapshot Isolation. In Fifteenth East-European Conference on Ad-
vances in Databases and Information Systems (ADBIS), September 2011.

[3] http://download.oracle.com/javase/1.4.2/docs/api/java/sql/PreparedStatement.html,
10.1.12

[4] http://www.ifi.uzh.ch/dbtg/research/smile/Studentprojects.html, 10.1.12

49

