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Abstract

In the last decade solid state drives (SSD) gained more amd imgortance in the field
of databases, due to their fast access time compared ttidredihard disk drives (HDD).
The flash translation layer (FTL), an abstraction layer oDSSprovides the same API as
traditional HDDs and makes their use transparent. On topraf Eaditional access methods
and algorithms operate acceptably without any modificatitime asymmetry of access time
of read and write operations and the requirement to perfarmexensive erase operation
prior to an in-place update, raises the need for specializedss methods. This thesis shows
an implementation and an evaluation of an approach for avkkye store, called in-page
logging. It reduces the number of erase operations due péaice updates on data pages by
using logs.



Abstract

Solid State Drives (SSD) haben im letzten Jahrzehnt daek #whnellen Zugriffszeit gegentber
traditionellen Festplatten mehr und mehr an Bedeutung inerii@nkumfeld gewonnen. Der
Flash Translation Layer (FTL), eine Abstraktionsschiakhver SSD, stellt das gleiche API
zur Verfigung wie traditionelle Festplatten und machersde<sebrauch transparent. Tra-
ditionelle Zugriffmethoden und Algorithmen oberhalb déd_E funktionieren deshalb auch
ohne Veranderungen akzeptabel. Die asymmetrische LeseScimreibzugriffszeit und die
Anforderung, eine teure Loschoperation vor einer in-sikiu&lisierung zu machen, verlangt
nach dem Bedurfnis spezialisierter Zugriffsfunktionene$ai Arbeit zeigt eine Implementa-
tion und eine Evaluation von einem Ansatz fur ein Key-Valter& namens in-page logging.
Dieser Ansatz reduziert die Anzahl der von einer in-situushisierung einer Datenpage aus-
geldsten Loschoperationen mit der Verwendung von Logs.
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1 Introduction

In the last few years, flash based storage, namely solidditisess (SSD), gained increasingly
importance in the database field due to their fast accesctm@ared to traditional hard disk
drives (HDD). The increase in capacity and the decreaseicé prade them more and more
interesting for the storage of large amounts of data. Thenasstry of read and write access
time and expensive in-place updates poses new challendesiaas the need for specialized
access methods and algorithms.

The solution, that is presented in this thesis, is callegage logging (IPL) and was pro-
posed by Sang-Wong Lee et. al. in [15]. The idea of IPL is to enadage of efficient write
mechanism to reduce the number of erase cycles. The in-pgagey approach wins over
with its small and simple implementation. This gives theauage that this approach can be
applied to an existing database solution only by changiegriplementation of the storage
layer and keeping the rest of the database solution as it is.

Combined with the implementation of a key-value store, | skizat the proposed solution
has about 45% less read access, about 50% less write acdemsaea cycles, and about 50%
faster estimated runtime than a regular non-SSD implertientaf a key-value store on a
SSD in a read-write workload.

The purpose of this thesis is to develop and implement an $®Difec key-value store and
comparing it against a non-SSD implementation of a keyevatore, both running on a SSD.
The SSD implementation is based on the in-page logging agprpresented in [15]. The
output shows, that the overall speed can be increased wah shanges on the database en-
vironment, namely on the storage layer.

The rest of this paper is organized as follows. Chapter 2 givesverview on key-value
stores and flash memory. Chapter 3 describes the problem. é2lapitroduces a possible
solution called "in-page logging". Chapter 5 gives an undadstey of the implementation,
whereas in Chapter 6 the work is evaluated. Chapter 7 givescdusiton and points out future
work.



2 Overview of Key-Value Store and
Flash Memory

2.1 Key-Value Store

Key-value stores [9] are similar to NoSQL [4, 5, 18] datalsas& NoSQL database is, like
the name says, a database where it is not possible to exe8Q@k query directly on it. Some
commercial key-value stores are Oracles Berkeley DB [6],gBsoBigTable [10] or Amazons
Dynamo [13].

A relation of a key-value store consists of two columns, arétie key and one for the data,
the latter is also called value. There are no limitationsetlvhr the value contains a simple
string or an object or any other data types provided by trentkpplication, since the value
is stored as a binary large object (BLOB). Thus, the value inJaye stores has no schema,
so the client application is responsible for the semantidchk@data and how it is organized.
Additionally, key-value stores can be used as a column stadnere the value is the column
and the key is used for the index.

An advantage of key-value stores is their simple API. To ipalaite relations, three func-
tions put(key, data)get(key)andremove(keyare provided. Search operations are only pos-
sible on keys, thus access can be optimized, e.g. with isddxarther the APl has no SQL
interface. If the caller wants to run a SQL query, it has to aggnits SQL query and schema
on its own.

Key-value stores are often considered for update and loakepsive online transaction
processing (OLTP) workloads or specialized workloads &sinhent repositories, where they
score with its lightweight design.

2.2 Flash Memory Overview

Despite flash memory [2] was invented around 1980, it madbréak through not till the
mid nineties in memory sticks and sd-cards. Even thoughtsieSEDs [8, 16] came into pro-
duction at the same time, it took about 10 years until a coesdimendly SSD was established.

Flash memory is a type of non-volatile memory that can betetatly erased and repro-
grammed. Compared to HDDs [3], there are no mechanical pesitda flash memory. SSDs
are based on NAND chips, which must be read or written blodewFurther, NAND chips

are built with either single level cells (SLC) or multi levadlls (MLC). Whereas a single level
cell can only store one bit, a multi level cell can store savbits. The advantage of SLCs



are its writing speed, lower power consumption and londgerdpan comparing to a MLC.
Since they are more expensive than MLC, SLC flash memory is usackas where high-
performance is needed. The advantage of a MLC is lower casirpeof storage. Despite
there exists also some enterprise MLC, they are mostly useohsumer flash storage.

reads T * writes

| Flash Translation Layer |
Block Block Unit
Read Write Erase
[Block] [ [ | 1
[ 1| |l | 1
[ 1| |l | 1
Erase Unit
NAND Flash Memory

SSD

Figure 2.1: Simple Design of a Solid State Drive

Figure 2.1 shows the design of a SSD. A SSD consists of its flfemhory and the corre-
sponding flash translation layer (FTL). More about FTL inutea 3. The flash memory is
divided into erase units, whereas every erase unit is divia® blocks.

Flash memory has an important limitation. Although it carrded or written block wise, a
block can only be updated or deleted by erasing the correfspgerase unit. An erase sets all
bits of the erase unit to 1. After an erase, it is possible titevan the erase unit again at any
position. Once a bit has been set to 0, it cannot be changeeicept with an erase operation.
It follows directly that an in-place update is only possjhkfethe data bits switching from 1
to O or stays at 0. For example, a vallid 1 can be updated to101. Continuous updates to
1001, 1000 and finally0000 are possible. Further updates to this value will result irE@ase
operation. However, this thesis does not consider suchtegdaut consider a block to erase
whenever it has been written once.

In Table 3.1, we see a comparison between the access timdd@bDaand a SSD [15]. De-
spite the values are some years old, they show the time eliiter for read, write and erase
operations. Further, we will refer flash memory as NAND batsesh memory, because NOR
based flash memory, which is not mentioned in this overviewpt relevant in this thesis.



3 Problem Statement

Due to the Flash Translation Layer (FTL) [14], a SSD appearspper layers like a con-
ventional disk drive. Hence an FTL provides the same APl aP® Hecause of the FTL,
conventional disk-base database algorithms and acce$®dsebperate acceptably without
any modification. But without any modification, every in-pdagodate on a SSD will result in
an erase operation, as explained in Chapter 2.2.

Despite the expensive update, a SSD is still faster than eeotional HDD, as following
example shows: Assume a block sizedokByteand the size of an erase unit ti28 KByte
According to Table 3.1, an in-place update of a block on a entignal disk cost&7.4ms.
Since an erase unit contains 32 blocks, an in-place updatebtufck on a SSD will cost 32
read operations to read the erase unit, one erase opekitB2 write operations to write the
erase unit. This take).46ms.

Nevertheless, if an in-place update on a SSD could be replagevriting the additional
update into an empty place, it would be much faster, i.e 4qQ@KB), than a complete erase
and rewrite, despite these updates need to be read and nwathetie page when accessing
it. The idea is to take advantage of the asymmetry of read aitd access time to postpone
an erase by writing logs and sacrifice fast read operatiohs.approach in the next chapter
realizes exactly this idea.

Media Acces_s time
Read \ Write \ Erase
Magnetic Disk|| 12.7 ms (2KB)| 13.7 ms (2KB) N/A
NAND Flasi? | 80us (2KB) | 200us (2KB) | 1.5ms (128KB)

! Disk: Seagate Barracuda 7200.7 ST380011A, average adoess including
seek and rotational delay;
2 NAND Flash: Samsung K9WAGO08U1A 16 Gbits SLC NAND

Table 3.1: Access Speed: Magnetic disk vs. NAND Flash



4 |In-Page Logging

To find an accurate approach, | have read several papers.

e [17] proposes a buffer manager for DBS running on flash bas&dsdiThey devel-
oped a new replacement policy in which they separate modinedunmodified pages
into two buffer pools. They take account of the read-writgnametry and achieve an
improvement of the overall performance up to 33%.

e [11]introduces FlashStore, a high throughput persisteptJalue store, that uses flash
memory as a hon-volatileachebetween RAM and hard disk. One of the design goals
of FlashStore is to use flash memory in an FTL friendly manner.

e [12] introduces SkimpyStash, a RAM space skimpy key-valagesin flash-based stor-
age, designed for high throughput, low latency server appbns. The distinguishing
feature of SkimpyStash is the design goal of extremely low Rfdlgtprint at about
1(+0.5) byte per key-value pair, which is more aggressive thatiee designs like
FlashStore [11].

The solution | have chosen is the "in-page logging" appropidposed in [15]. | have chosen
this approach, because I'd like to show that with minimalrges to the storage layer of a
key-value store, the overall performance can already beaweol.

Besides taking advantage of the characteristics of flash mgswch as uniform access speed
due to no mechanical latency and asymmetric read and writesacspeed, in-page logging
has the aim to minimize the changes made to the databasensydémce the design changes
will be limited mainly to the buffer manager and file managerthis chapter will show.

To avoid confusion about the terms block and page, we defineck las a contiguous
sequence of bytes on disk, whereas a page is a structurddibkbe implementation. A block
is the main disk storage unit, whereas a sector is the midiahit. Figure 4.1 illustrates the
design of in-page logging. On the upper half, it shows a byfége, whereas the lower half
shows the layout of an erase unit. Following enumerationtsaiut the main structures of the
design:

e A buffer page consists of a data page and the corresponding lo
e The erase unit has a size 1?8 KByte
e Every erase unit has 28 data paged #iByteeach and 32 log sectors 512 byteeach.

e Every page has one corresponding log. With this decisi@nethre 4 logs per erase unit
left for future extensions.



e A page and its log sector have the same size in the buffer astiigvalent in the flash

memory.
Update-in-place
in-memory | (S —
Database Buffer data page ]
(4kB) In-memory
(512B)
Erase unit: 128 kB
N
[ )
Flash Memory I
— -~ —/ %_)
28 data pages Log region (16kB):
32 sectors

Figure 4.1: The Design of In-Page Logging

The idea of in-page logging is as follows: A relation corssddta file, which in turn contains
several erase units with several pages in it. Without ineplagging, it was necessary to
rewrite the whole erase unit for an update operation, evenlyf a single record from a page
was affected. This leads to frequent write and erase opesatilo avoid this, in-page logging
writes only the changes made to a page to the database oagembpsis, instead of writing
the entire page. These change requests can be written entmthlesponding log. Figure 4.2
shows an example of an update operation: The relation hageavpigh two tuple T1 and T2.
To update T2, the page needs to be read into memory in ordertorp the update. Before
the non-SSD implementation can perform a the write operatiothe file, the erase unit needs
to be erased, which implies to read the whole erase unite eraspdate the page, and write
the erase unit with the updated page back. On the contrapage logging writes the change
request into the log, and writes only the log to disk. That esal difference of one write
operation instead of 32 write-, 32 read- and one erase operat

- Erase Unit Erase Unit
non-SSD l 2. Update T2 Page Page
e ) ——— |
Erase Unit [ T2 ] 3. Erase whole 4. Write whole
b Erase Unit Erase Unit
age 1. Read Page
T1| T2 update Erase Unit
Tuple T2
[z ] ] e[
. Write Log
. T1 -T2 -
| 2.1 Update T2 I to Erase Unit . -
In-Page > :
Logging 2.2 Write change LOG oG
into Log

Figure 4.2: Example of an Update Operation

Aread operation in in-page logging always results in regthie page and the corresponding
log. Figure 4.3 shows an example by reading page two of ae erds After reading the page
and its log into memory, the application needs to merge tige path the corresponding log.



l read Page 2 return Page 2 T
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Figure 4.3: Read a Page with corresponding Log
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Data Pages Log Sectors Merge Page with Log

This means to go through the log and apply every log entryeqtige. For example, if the
entry states a deletion of key 45, the tuple with key 45 hasetodmoved from the page.
Despite the higher read effort due to the log, this won't ligarded as a disadvantage, since
read operations on a SSD are highly efficient.

To optimize an erase operation, in-page logging colocaeekg of a page within the same
erase unit, as Figure 4.1 shows. If the log sectors were gliacanother erase unit, an erase
operation would have to erase two erase units, one for thespagd one where the log sectors
are placed.

If a write or update operation occurs, the affected pagebeitlead from disk and loaded into
the buffer, if it's not already there. Then the in-memory @agwritten / updated in place and
handled like a traditional page (see Figure 4.1). In adaljttbhe buffer adds a corresponding
log to the buffer page. An in-memory log sector will autoroally be created if needed, and
deleted when the log entries are written to the SSD. To keepetd effort within a limit in
my implementation, every page has exactly one correspgridinsector, as described before.

A page in the buffer is called dirty, if it has been changed panng to its copy on the disk.
If a dirty page has to be swapped out from the buffer to digk,nbt always necessary to write
the whole page, since every change request was also writierhie log. As long as its log
was not already written into the flash memory, it is enough wafsout” the log. After the
log has been written to disk, it will be deleted in the buffEine page itself stays in the buffer
and is not dirty anymore, since the page in the buffer is etputile page on the disk merged
with its corresponding log.

Whenever both, a page and its log have been written to diskerdme unit needs to be
erased and rewritten for the next write operation affectivig page. When rewriting the erase
unit, the pages will be merged with its corresponding logigofithm 1 shows the rewriting
and associated merging of the pages with their logs. Theralgo is as follows:

1. The function takes two erase units as in@gy.is the old erase unit to merge, wherdass
a new, unused erase unit.

2. Then the algorithm goes through every pag&gflif a log for a corresponding page exists,
then every log entry is applied to the page, as describeddefith the example of deleting
the tuple with key 45.

3. If the page is merged or the page did not have any log, itheillvritten into the new erase
unit B.



4. Atthe end, the old erase u#®, will be erased and freed.

After merging due to step 2., all log sectorsBrare empty.

Algorithm 1 Merge Operation

Input: B,y: an old erase unit to merge
Output: B: a new erase unit with merged content

1: function MERGHB,, B)

2 allocate a free erase urit

3 for each data page p in By do

4 if any log entry for p exists then
5: p' < apply the log entry tp

6: write p’ to B

7 else

8 write pto B

9 end if

10: end for
11: erase and fre®,
12: end function




5 Implementation

This chapter is subdivided into two sections. The first sectlescribes the implementation

of a non-SSD key-value store, the second section explagnsithnges to be made to optimize
the key-value store for SSDs, according to the in-page taggpproach. Further is to mention

that the implementation is a functional simulation and redttested on a real SSD. Because
an FTL [14] abstracts structures like erase units, we sitaukee rewriting of erase units.

5.1 Magnetic Hard Disk Drive Implementation

Non-SSD Key-Value Store
Storage smgrkvs
Manager
------------ page kvsTup
R
Buffer buffer bufferPage
Manager
|
(Tt keymgr
File { fmgrKvs fmgrKvsRelation
Manager
index
e e

Figure 5.1: Non-SSD Key-Value Store Implementation

Figure 5.1 shows an overview of the non-SSD implementation.

e The file managefmgrKvsdeals with relations callefingrKvsRelation Every relation
has a corresponding key manageymgrand anindex A key manager provides unique
keys within the relation. An index stores the key and its esponding block number
of the page which the tuple contains. Further an index pesvelficient lookup access



when looking for a tuple by its key. The file manager is resggago communicate
with its underlying disk thus dealing with data files orgaaanto blocks.

e The buffer managebuffer is the link between the storage manager and file manager.
Every block transfer goes through the buffer, which cachegdraffic in itsbufferPages
to reduce block 10s. The buffer fetches the blocks from tleerfibnager.

e The storage managemgrKvson top acts as API towards other applications. It struc-
tures the receiving data intovsTuptuple and uses the buffer manager to store and re-
trieve them.

| created a header file namety/pes.hListing 5.1), which contains a macro to define the
blocksizeo 4 KByte, and a typedef for theey.

Listing 5.1: ctypes.h

#def i ne BLKSI ZE 4096

typedef size_t key;

The blocksize defines the size of a block on disk. As we willisgke next subsection, the file
manager manages a file using several blocks, since a blokk isnit for 10 transfers in this
non-SSD implementation. Figure 5.2 shows an example witle @dnsisting of three blocks
and a buffer with one buffer page. In the example, Block 1 isay in the Buffer. If a query
needs access to tuple T1 or tuple T2, the buffer can immeygiatirn these two without any
disk access. If a query needs access to tuple T3 or T4, therbnénager has to read and load
the corresponding block from the hard disk / file into the buthrough the file manager.

Block 1 Block 2 Block 3

File: [T [f2i[_13 ] [14]
access BUffer request Block *
— <
Query: load Block

return

-€

Figure 5.2: Example of a Buffer with one BufferPage

5.1.1 Structures
Page

As the file manager deals with blocks, we define the structiisebdock and call a formatted
block a page. Therefore the size of a page corresponds taziefsa block, which isA

KByte The structure of a page is designed to have as less overkgauksible, so that the
implementation stays lightweight. Figure 5.3 shows an etanof a structured page that

10



contains 3 tuples. It consists of a header, that includesuh#er of tuples the page contains
and the size of free space. After the header we store the®fiséhe tuples in the page. The
corresponding tuple is then added at the end of the availeddspace.

Blocksize (4kB)

A
r N

Number | Size of Offset ' Offset ' Offset : T Tuple3 + .
of Tuples |Fr Tuple1 . Tuple2 . Tuple3 | ; Tuple3 s Tuplez  Tupled
. ' — FREESPACE - ' '

size_t size_t offt , offt , offt , void* void* \ void*

|

Header

Figure 5.3: Example of a Page with 3 Tuples

The implementation of a page follows the idea to have as lesthead as possible (Listing
5.2). Thus a page is represented as a void pofipage, because the size of a page is always
constant. To manipulate pages we have the following funstio

e A page can be created by callintakeEmtyPage()

e pAddTup()provides the functionality to add a tuple to the page, wheep&emoveTup()
removes a tuple from a page.

e As a last function implemented, the caller can search aftepke in the page by key
with pGetTupFromKey()

Listing 5.2: page.h

t ypedef voi d+x page;
#defi ne SI ZEOFPAGE BLKSI ZE

/+ Create an enpty Page =/
page makeEnt yPage();

/+ Add a Tuple to the Page */
i nt pAddTup(page p, const kvsTup tup);

/+* Renoves a Tuple fromthe Page */
i nt pRenobveTup(page p, const kvsTup tup);

/* Returns the Tuple with Key k =/
kvsTup pGet TupFronKey(page p, key Kk);

Tuple

A key and its corresponding value is stored in a key-valueedigple. The structure of a tuple
is held simple and lightweight, so that the implementationtains no unnecessary overhead.
Figure 5.4 shows the structure of a tuple. A tuple consiste@¥alue and a header, whereas
a header contains the key and the total size of the tuple. iZkeofa tuple can vary, but it’s
limited by the size of a page minus its header and offset. ifamentation remains small
and well-arranged, as Listing 5.3 shows. Because a tuplepresented as a void pointer

11



Total Size

K
d of Tuple

key size_t void*

Header Value (size can vary)

Figure 5.4: Structure of a Key-Value Store Tuple

*kvsTup we need to keep the overall size of the tuple. A tuple can bated by calling
makeKvsTup()

Listing 5.3: kvsTup.h

t ypedef voi dx kvsTup;

/+* Creates a Kvs Tuple */
kvsTup makeKvsTup(key k, size_t datasize, const void xdata);

5.1.2 File Manager

A relation is represented as a struct, defined in the file mam@gsting 5.4). The client
application comes with the name of the tablespace, datarabeelation and createsfia-

grKvsRellnfo From this, the file manager convertfnagrkKvsRellnfanto afmgrKvsRelation

that contains the filename and the corresponding file of tla¢ioa.

Listing 5.4: Structs of fmgrKvs.h
typedef struct fngrKvsRel ation

char = fil eNane;
FILE » file;
} frgrKvsRel ati on;

typedef struct fngrKvsRellnfo

char tbl Sp[ MAX_FI LENAMESI ZE + 1];
char db[ MAX_FI LENAMESI ZE + 1];
char rel [ MAX_FI LENAMESI ZE + 1];

} fnorKvsRel | nfo;

Further the file manager provides a couple of functions ifigsb.5). First it has to be able to
create a file to the corresponding relation where to writedtéta. In addition it has to provide
a function to remove a relation. As a second pair of functibmgeds to provide the ability

to write and read data. As a third it provides functionatitie either extend or truncate a file.
The following enumeration describes the order in which tirefions have to be called:

1. As the first and last functionfngrKvsinit()andfmgrKvsShutdown@ave to be called at
the startup and the shutdown respectively of the file manager

2. Before any call to other functions can be performfatgyrKvsCreate(have to be called,
that creates EmgrKvsRelatiorirom afmgrKvsRellnfo

12



3. To open the file of a relatiofingrkvsOpen(have to be called. With a parameter the caller
can decide whether the file will be created, if it does nottexisjust openedfmgrKvs-
Close()provides the functionality to close the filengrKvsExists(ran be used to test, if a
specific file of a relation already exists.

4. When the file is open, one caffagrkKvsRead(@ndfmgrKvsWrite()Xo read and write from
/ to the file.

5. fmgrKvsExtend(andfmgrKvsTruncate(provide the functionality to extend or truncate a
file.

6. With fmgrKvsNrBlocks()t can be checked how many blocks of data the file contains.

7. fmgrKvsUnlink()allows the caller to remove the file from the relation, whereagrKvs-
Flush()take care of writing the content of the file permanently todfsk.

Listing 5.5: fmgrKvs.h

/* Initialize File Manager x/
void frgrKvslnit();

/* Shutdown File Manager x/
voi d fngr KvsShut down() ;

/+ Create a Relation */
fngr KvsRel ati on *f ngr KvsCreat e(const fngrKvsRel Info *rellnfo);

/+ Close a Relation */
int fngrKvsd ose(fngrKvsRel ation *rel);

/+* QOpen the Relation */
int frgrKvsOpen(fngrKvsRel ation *rel, bool create);

/+ Read one Block fromthe Relation */
size_t fngrKvsRead(fngrKvsRel ation *rel, size_t blckNr, void *buffer);

/* Wite one Block to the Relation =/
size_t frmgrKvsWite(fngrKvsRel ation *rel, size_t blckNr, void »buffer);

/+ Drop the File fromthe Relation */
int frgrKvsUnlink(fngrKvsRel ation xrel);

/* Check if the File fromthe Relation exist =*/
bool fngrKvsExi sts(fnmgrKvsRel ation *rel);

/* Nunmber of Blocks fromthe File of the Relation =x/
size_t frgrKvsNrBl ocks(fnmgrKvsRel ation *rel);

/+ Extend the File fromthe Relation =/
bool fngrKvsExtend(fngrKvsRel ation *rel, int blckN, void xbuffer);

/* Truncate the File fromthe Relation x/
int fngrKvsTruncate(frmgrKvsRel ation *rel, int bl ckNr);

/* Wite the Content of the File permanently to disk */
int fngrKvsFl ush(fmgrKvsRel ation *rel);
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5.1.3 Buffer Manager

The buffer manageBufferis represented as a struct, defined in Listing 5.6. It comsisan
array ofbufferPage and a counter variable clock. ufferPagedtself consists of:

e The corresponding relation the data page belongs to,

the page number,

the data page,

a variable to keep its clock and

a boolean to notice if the page has been changedi(ty) comparing to its version on
the disk or not.

The clock is used to realizelzeast Recently UsefLRU) [1, 7] page replacement strategy.
Every time abufferpages used, it gets the highest clock. If the clock can't be inteated
anymore due to overflow, it will be reset internally. Th#ferPages will be adapted analogous.
The number obufferPags is defined by the maci®UF_NUM_PAGES

Listing 5.6: Structs of buffer.h

#defi ne BUF_NUM _PAGES 10

t ypedef struct Buffer

voi d *dat a; [+ array of bufferPage of |ength BUF_NUM PAGES */
size_t clock; /* next clock to give to a page */
} Buffer;

t ypedef struct bufferPage
{

f mgr KvsRel ation =rel;

size_t pageNum /= pageNum of Page in Relation */
page p; )

size_t clock; /* clock time for buffer strategy */
bool isDirty; /* has page been witten x/

} bufferPage;

Further the buffer manager provides functions to ensurtunstionality (Listing 5.7). The
following enumeration summarizes them:

1. As the first and last functionbufferKvsinit()andbufferKvsShutdownf)ave to be called
at the startup and the shutdown respectively of the bufferager.

2. Before any call to other functions can be performedfOpenRel(needs to be called,
which opens and, if necessary, creates the relation in therfdnager. At the end, the
relation needs to be closed wiblafCloseRel()

3. bufferKvsRead(and bufferkKvsWrite()provide the functionality to read and write a page
from and to the file by the buffer. They use the internal fumtsiswapin()andswapPage-
Out() to get a page into or out of the buffer respectively.

4. Finally flushBuffer()is used to clean the buffer by writing every dirty page to is. firhe
data pages however stay in the buffer.
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Listing 5.7: buffer.h

/+ Initialize Buffer Manager =*/
voi d bufferKvslinit();

[+ Shut down Buffer Manager =/
voi d buf f er KvsShut down() ;

/+* Wite the Content of the Buffer permanently to disk =/
void flushBuffer();

/+* Read corresponding Block either fromBuffer or File */
size_t bufferKvsRead(fnmgrKvsRel ation *rel, int blockNr, page p);

/+* Wite corresponding Block into Buffer */
voi d bufferKvsWite(frmgrKvsRelation *rel, int blockNr, page p);

/* Open the Relation */
f ngr KvsRel ati on *buf OpenRel (char *tbl Spc, char *db, char =rel);

/+ Close the Relation */
voi d buf C oseRel (fmgr KvsRel ation *rel);

5.1.4 Storage Manager

The storage manager is the API of the key-value store. Agitbesin Section 2.1, a key-value
store provides the three functiopst(), get() andremove() Beside these three function, the
storage manager needs additional functions to ensure tioéidnality of the whole storage

layer. These functions are shown in Listing 5.9. The follagvenumeration describes the

order in which the functions need to be called:

1. To start and to terminate the storage manager, the claantdcallsmgrKvsinit(Jandsm-
grKvsShutdown()espectively. Both functions call internally the relatedial- and shut-

down functions from the buffer- and file manager.

2. Before any call to other functions can be performed, trentkpplication has to open and
create the relation witbpenRel(¥irst. On contrastloseRel(heeds to be called to close a

relation.

3. Beside the three initial functiomssertKeyVal(Xo insert a valuesearchKey(jo get a tuple
andremoveKey(}o remove a value, the storage manager provides a fourthidnnap-
dateKey(which allows to update the value of a specific key an. An upatealized as a

delete and followed by insert.

A call to this modification functions requires an index andeg knanager as parameter. We
consider the index as a main memory index, in which the keythadtorresponding page
number of the page the tuple is inside are stored. A key mamagefined as follows:

Key Manager

Every relation has a key manager, which provides unique.kagd isting 5.8 shows, a key
manager is implemented as a struct. This contains only atepuariablenextValup to now.

A key manager provides following functions:
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¢ With makeKeymgr()he caller has to create a key manager.
e getNewKey(Js a getter function which returns a unique key.

e storeKeymgr(provides the functionality of saving a key manager to a fileisTan be
restored withmakeKeymgrFromFile()

Listing 5.8: keymgr.h

typedef struct keyngr
{

key next Val ;
} keyngr;
/+ Create a new Key Manager =/
keyngr *nmakeKeyngr();

/+* Qpen an existing Key Manager fromFile */
keyngr *nmakeKeyngr FronFil e(char *fil epath);

/* Store the Key Manager into a File =/
size_t storeKeyngr(char =filepath, keymgr =*ngr);

/* CGet a unique key */
key get NewKey(keyngr *ngr);

Listing 5.9: smgrKvs.h

/+* Initialize Storage Manager =*/
void snmgrKvslinit();

/* Shut down St orage Manager =*/
voi d sngr KvsShut down() ;

/* Open a Relation */
fmgr KvsRel ati on xopenRel (char =*tbl Spc, char =db, char =xrel);

/* Close a Relation x/
voi d cl oseRel (fmgr KvsRel ation *rel);

/* Insert a new Value with a unique Key fromthe Key Manager =*/
int insertKeyVal (key k, void *value, size_t sizeO Value, fngrKvsRelation *rel,
kval I dx ix);
/* Search Tuple according to its Key =*/
kvsTup searchKey(key k, fngrKvsRelation *rel, kvalldx ix);

/+* Renmpove a Tuple according to its Key x/
int removeKey(key k, fngrKvsRelation *rel, kvalldx ix);

/+* Updates a Tuple according to its Key x/
i nt updat eKey(const key k, void *value, size_t datasize, fngrKvsRelation *rel,
kval 1 dx ix);

5.2 Flash Memory Specific Implementation

In the next subsections only those sublayers are describadh\wave been changed or added
to the implementation due to the SSD specific implementatiagure 5.5 shows the overview
of the whole implementation with highlighted parts thatéahanged. Beside the three man-
agers have changed, the log comes along as a new structure.

16



SSD Key-Value Store
Storage smgrKvs_ssd
Manager
"""""" page kvsTup
R
Buffer buffer_ssd bufferPage_ssd log
Manager
|
(Tt keymgr
File { fmgrKvs_ssd fmgrKvsRelation_ssd
Manager
index
e e e e

Figure 5.5: SSD Key-Value Store Implementation

The header filetypes.hwhich has been renamed ¢types_ssd,thas been extended, as
Listing 5.10 shows. New are the definitions of a sector sizeclwis equal to the size of a
Log) to 512 byteand the size of an erase unit1@8 KByte

Listing 5.10: ctypes_ssd.h

#i ncl ude "ctypes.h"

#defi ne SECTORSI ZE 512
#defi ne ERASEUNSI Z (128+1024)

5.2.1 Structures
Log

The size of a log is equal a sector, whictbik2 byte The structure of a log is similar to the
structure of a page. Figure 5.6 shows a log with three entfiibe log consists of a header,
which includes the number of entries the log contains andsitbe of free space. After the

header we store the offsets of the entries in the log. Thespanding log entry is then added
at the end of the available freespace.

A log entry contains its type (add, update or delete), thedkay if the entry is for adding or

updating, the corresponding value. Figure 5.7 shows thetstre of both an add or update
entry and delete entry.

The implementation of a log follows the idea to have as lesslm®ad as possible (Listing
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Sectorsize (512B)
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Figure 5.6: Example of a Log with 3 Entries

Add / Update Entry § Delete Entry
Total Size i Total Size
0/1 Key of Entry Value . 2 Key of Entry
int key size_t void* : int key size_t
~ —— /
(size can vary)

Figure 5.7: Structure of a Log Entry

5.11). Thus a log is represented as a void poitltgIPS, because its size is always constant.
To manipulate logs we have the following functions:

e Alog can be created by callingakeEmtyloglPS()
e makelLoglPSentry{Jill create an entry.

¢ With addEntryTologlPS(@he entry can be added to a log.

Listing 5.11: Log Listing of log_ssd.h
#def i ne LOG PSSI ZE SECTORSI ZE

#def i ne ADDENTRY O

#defi ne UPDATEENTRY 1
#defi ne DELETEENTRY 2
typedef void I ogl PS;

/+* Create an entpy Log */
| ogl PS nmakeEnt yl ogl PS() ;

typedef void x| ogl PSEntry;

/+ Create a Log Entry =/
| ogl PSEntry makelLogl PSentry(int | gEntryTyp, key k, size_t datasize, void xdata);

/+ Add a Log Entry to a Log */
int addEntryTol ogl PS(1 ogl PS I, |ogl PSEntry ent);

5.2.2 File Manager

The representation of a relation has not been changed ahd same struct as in the non-
SSD implementation in section 5.4. The requirements fofittenanager of the SSD based
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implementation are similar as for the non-SSD one. Besidduhetions from Listing 5.5,
the SSD based file manager needs additional functions toldnéimel new introduced erase
unit and log. Listing 5.12 gives a full overview of all funotis. The following enumeration
pretends the order the functions have to be called, whemlgsdo 5. and 7. have been
changed compared to enumeration in section 5.1.2:

1. As the first and last functioningrKvsinit_ssd(andfmgrKvsShutdown_ssdfave to be
called at the startup and the shutdown respectively of therfdnager.

2. Before call any other functionfngrkvsCreate ssdf)ave to be called, that create$na-
grKvsRelation_ssttom afmgrKvsRellnfo

3. To open the file of a relatiodmgrkvsOpen_ssdf)eeds to be called. With a parameter
the caller can decide whether the file will be created if itgloet exists, or just opened.
fmgrKvsClose_ssdfrovides the functionality to close the filémgrKvsExists_ssd@an
be used to test, if a specific file of a relation already exists.

4. If the file is open, one calls

e fmgrKvsReadBlock_ssd{hdfmgrKvsWriteBlock _ssd()
e fmgrKvsReadLog_ssddhdfmgrKvsWriteLog_ssdy()
e fmgrKvsReadErUn_ssdédndfmgrKvsWriteErUn_ssd()
to read and write the corresponding block, log or erase umib f to the file.

5. If a block is already written on the disk and needs to be tgajimgrKvsEraseUnit_ssd()
clears the corresponding erase unit.

6. fmgrKvsExtend_ssd@nd fmgrKvsTruncate_ssdfrovide the functionality to extend or
truncate a file.

7. With fmgrKvsNrEraseUnits_ssdf)can be checked how many erase units the file contains.
8. fmgrKvsUnlink_ssd(allows the caller to remove the file from the relation, wherisa-

grKvsFlush_ssd(fakes care of writing the content of the file permanently ®3i$D.

Listing 5.12: fmgrKvs_ssd.h

/+ Initialize File Manager x/
void frgrKvslinit_ssd();

[+ Shutdown File Manager */
voi d fngr KvsShut down_ssd() ;

/+ Create a Relation */
fngr KvsRel ati on_ssd *f mgr KvsCreat e_ssd(const fngrKvsRel Info *rel|nfo);

/+* Close a Relation */
int frgrKvsd ose_ssd(fnmgrKvsRel ati on_ssd *rel);

/+* Qpen the Relation */
int frgrKvsOpen_ssd(fngrKvsRel ati on_ssd *rel, bool create);
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/* Read one Block fromthe Relation =/
size_t fngrKvsReadBl ock_ssd(fngrKvsRel ation_ssd *rel, int erUnit, int blckNr,

voi d *xbuffer);
/* Wite one Block to the Relation x/
size_t fngrKvsWiteBl ock_ssd(fngrKvsRel ati on_ssd *rel, int erUnit, int blckNr,

voi d *xbuffer);
/+* Read one Log fromthe Relation */
size_t fngrKvsReadLog ssd(fngrKvsRel ation_ssd *rel, int erUnit, int |ogNr,

voi d *xbuffer);
/+* Wite one Log to the Relation */
size_t frmgrKvsWitelLog ssd(fngrKvsRel ation_ssd *rel, int erUnit, int |ogNr,

voi d *=buffer);
/+ Read one Erase Unit fromthe Relation */
size_t fmgrKvsReadEr Un_ssd(fngrKvsRel ation_ssd *rel, int erUnit, void xbuffer);

/* Wite one Erase Unit to the Relation */
size_t frmgrKvsWiteErUn_ssd(fngrKvsRel ation_ssd *rel, int erUnit, void *buffer);

/+ Clear one Erase Unit =/
voi d frgrKvsEraseUnit_ssd(fngrKvsRel ation_ssd *rel, int erUnit);

/+ Drop the File fromthe Relation =/
int frmgrKvsUnlink_ssd(fngrKvsRel ation_ssd *rel);

/* Check if the File fromthe Rel ation exist =*/
bool fngrKvsExi sts_ssd(fngrKvsRel ati on_ssd *rel);

/+* Nunber of Erase units fromthe File of the Relation =/
size_t frgrKvsNrEraseUnits_ssd(fngrKvsRel ation_ssd *rel);

/+ Extend the File fromthe Relation */
bool fngrKvsExtend_ssd(fngrKvsRel ation_ssd *rel, int erUnitNr, void xbuffer);

/* Truncate the File fromthe Relation x/
int frgrKvsTruncate_ssd(fngrKvsRel ation_ssd *rel, int erUnitNr);

/+* Wite the Content of the File permanently to disk =/
int fngrKvsFl ush_ssd(fngrKvsRel ation_ssd *rel);

5.2.3 Buffer Manager

The buffer managebuffer_ssds represented as a struct, defined in the buffer manager (Lis
ing 5.13). It consists of an array blifferPages_ssdnd a counter variable clock. Buffer-
Page_ssdtself consists of:

e The corresponding relation the data page belongs to,
e the page number,

¢ the data page,

e avariable to keep its clock and

e a boolean to notice if the page has been changedif(ty) comparing to its version on
the disk or not,

e a boolean to notice if the log has been changedi(rty) comparing to its version on
the disk or not,

¢ the corresponding log to the page,
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e aboolean to notice if the page on the disk is erase and onhgeibuffer or not,

e a boolean which indicates if the page ib@nbor not.

Bombis defined as the condition when the log is full or too smalkoentry. If thdbombBitis
set to true, the log of this bufferPage will then be disabledl@hanges are made directly to the
page without any entry in the log. When the page needs to bepalaqut, the process has to
write the page, even though if the corresponding log on teésfiémpty. With the bombBit the
size of a inserted tuple is not limited to the size of a log.tlk@rrit allows unlimited accessing
(adding, updating and removing) to the page in a row. WithbetbomBit the log would be
full after a certain number of access, which would then taaidwapping out either the page
or the log.

The clock is used to realize a LRU strategy, as describeddtiose5.1.3. The number of
bufferPages_ssis defined by the macrBUF_NUM_PAGES_SSD

Listing 5.13: Structs of buffer_ssd.h
#define BUF_NUM PAGES_SSD 10

typedef struct Buffer_ssd
voi d *dat a; /+ array of bufferPage_ssd of |ength BUF_NUM PAGES */
size_t clock; /+* next clock to give to a page */

} Buffer_ssd;

t ypedef struct bufferPage_ssd

{

fnogr KvsRel ati on_ssd =rel;
size_t pageNum

page p;

size_t clock; [+ clock time for buffer strategy */

bool pagDirty; /+* has page been witten */

bool logDirty; /* has | ogl PS been witten =/

| ogl PS I;

bool i sErasedOnDi sk;

bool bonbBit; /+ if alogis full or too small, the page becones a "bonb".

* as long as page is in buffer, changes are nade directly
* to the page, log is not needed anynore.
*/

} bufferPage_ssd;

Further the buffer manager provides, similar to its non-3fBed equivalent, functions to
ensure its functionality (Listing 5.14). The following eneration summarizes them, whereas
only 3. has been changed compared to enumeration in seclid 5

1. As the first and last functionbufferKvsinit_ssd(@ndbufferKvsShutdown_ssd{ave to be
called at the startup and the shutdown respectively of tiffetamanager.

2. Before call any other functionbufOpenRel_ssdf)eeds to be called, which opens and,
if necessary, creates the relation in the file manager. Aetitk the relation needs to be
closed withbufCloseRel_ssd()

3. bufferKvsRead_ssdé@ndbufferKvsWrite _ssd@rovide the functionality to read and write
a page from and to the file by the buffer. They use the inteumadtfonsswaplin_ssd(and
swapPageOut_ssd()vhich are responsible to get a page into or out of the buéispec-
tively. mergePageWithloglPS_ssdifjovides the functionality of merging a page with its
log.
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4. Finally flushBuffer_ssd(s used to clean the buffer by writing every dirty page to its.fi
The data pages however stay in the buffer.

If a swap out of a page results in an erase and rewriting theeenait, the buffer manager will
swap out every page of the corresponding erase unit. Inldataerase is proceeded in the
following way:

1. The whole erase unit is loaded into the buffer.
2. Every page will be merged with its log.
3. The merged pages will be written to the disk into erase, wiiereas their logs will be

deleted.

Listing 5.14: buffer_ssd.h

/* Initialize Buffer Manager =*/
voi d bufferKvslnit_ssd();

/* Shutdown Buffer Mnager =/
voi d buf f er KvsShut down_ssd();

/* Open the Relation */
f ngr KvsRel ati on_ssd *buf OpenRel _ssd(char =*tbl Spc, char *db, char =*rel);

/* Close the Relation */
voi d buf d oseRel _ssd(fngrKvsRel ati on_ssd *rel);

/* Read corresponding Bl ock either fromBuffer or File %/
size_t bufferKvsRead_ssd(fngrKvsRel ati on_ssd *rel, int blockNr, page p);

/* Wite corresponding Block into Buffer */
voi d bufferKvsWite_ssd(fngrKvsRel ation_ssd *rel, int blockNr, page p,
| ogl PSEntry entry);
/* Merge a Page with its Log */
page mergePageWthl ogl PS_ssd(page p, loglPS |);

/+* Wite the Content of the Buffer permanently to disk =/
voi d flushBuffer_ssd();

5.2.4 Storage Manager

The interface of the storage manager is not allowed to chasthehe SSD based implemen-
tation. The functions have not been changed either, asgistil5 shows. However inside the
implementation, the functions needed to be adapted sinog edme along with a page. For
an order the functions need to be called, | refer to the enatio@rin section 5.1.4.

Listing 5.15: smgrKvsS_ssd.h

/+* Initialize Storage Manager =*/
voi d sngrKvslnit_ssd();

/* Shut down Storage Manager =/
voi d sngr KvsShut down_ssd();

/+* Open a Relation */
fngr KvsRel ati on_ssd *openRel _ssd(char =*tbl Spc, char *db, char =*rel);

22



/+ Close a Relation x/
voi d cl oseRel _ssd(fngrKvsRel ati on_ssd *rel);

/* Insert a new Value with a unique Key fromthe Key Manager =*/
int insertKeyVal ssd(key k, void *value, size_t sizeO Val ue,

f ngr KvsRel ati on_ssd *rel,
/+* Search Tuple according to its Key =/
kvsTup sear chKey_ssd(key k, fngrKvsRel ation_ssd *rel, kvalldx ix);

/+ Renmpbve a Tuple according to its Key */
int renmoveKey_ssd(key k, fngrKvsRel ation_ssd *rel, kvalldx ix);

/+ Updates a Tuple according to its Key */
i nt updat eKey_ssd(const key k, void *value, size_t datasize,
fmgr KvsRel ati on_ssd =rel,

kval 1 dx iXx);

kval 1 dx ix);
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6 Evaluation

The evaluation has been run on a IBM Thinkpad T60p with a moBiee2Duo T7400
2.16GHz processor, 2GB RAM and Windows 7 Professional 32bit.

The implementation ran on a conventional HDD, hence theuati@n is only simulated.
The number of read- and write access and the number of reg/f@n erase unit has been
measured. To get an estimated runtime, the measured rbautisbeen multiplied with the
values of Table 3.1. Further the assumption is that the r8D-nplementation triggers an
erase every time a write occurs, except the page on the diskpsy.

Three main hypotheses have been established. The firstdsaimdlerts only, the second
handles reads only and the third handles a random case. $henar hypotheses have sub-
hypotheses each, where | distinguish between the factitbaetjuested page is already in the
buffer or not. Despite it is very unlikely that the first twopggtheses occur on an ordinary
database system, they give an interesting insight in tlegfopmance.

To set up the test environment, two relations have beenexte&tsert and read operations
are always performed on the first relation, whereas the skeoelation only contains one
tuple. Further the size of the buffer has been limited to cagep The second relation is used
to evaluate the two sub-hypotheses, where the requestedgagt in the buffer. After every
access to relation one, the accessed page needs to be swappédhe buffer. By reading
the tuple from relation two, the page in the buffer is forceth¢ swapped out. Hence the next
time a page from relation one is accessed, it won'’t be in tlilebanymore.

Every hypothesis has been run 10 times. | started with parfgy 1000 insert or read-
access respectively and incremented the number of accd€¥0Byevery run. The read, write
and erase count will be shown each in separate graphs, veherfearth graph estimates the
overall runtime.

6.1 Hypothesis 1 - Insert only

6.1.1 Hypothesis 1.1 - Sequential Insert

This hypothesis evaluates how the implementations periomrrase of inserts only, whereas |
assume that the page, where the tuple is inserted, is not iouffier. This results in swapping
out a page from the buffer and swapping in the requested pagg #me a tuple is inserted. |
call this sequential insert.

The expectation is, that the in-page logging approach pedat least as good or better
as the non-SSD implementation. The read- as well as writg-eaase counts from the in-
page logging approach should be about 50% smaller, sincesakwery insert in the non-SSD
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implementation triggers an erase operation. Whereas wigage logging, about only every
second insert should trigger an erase.

Figure 6.1 shows the read, write and erase count graphs otlnggis 1.1, whereas Figure
6.2 shows the estimated runtime:
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Figure 6.1: Sequential Insert: Read, Write and Erase Count
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Figure 6.2: Sequential Insert: Estimated Runtime

According to the results the hypothesis has been fulfilledpdrticular Figure 6.1 shows
the improvement due to in-page logging compared to the r®D-Bplementation. Figure
6.2 is the logical conclusion of the previous figure. Thisutesf nearly 50% improvement
validates the described effect of the in-page logging aggrpthat only about every second
insert triggers an erase operation.

6.1.2 Hypothesis 1.2 - Bulk Insert

This hypothesis evaluates how the implementations perforoase of inserts only, whereas
the page, where the tuple is inserted, this time is in theebuificall this bulk insert.
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| expect identical results from both implementations. 8Sitiee actual page is always in the
buffer, they will only read the empty page once from the fil®ithe buffer and will swap the
page out, if it is full. This implies, that the page will nevss updated on disk. Hence there
should be no erase operations.

Figure 6.3 shows the read, write and erase count graphs ottggs 1.2, whereas Figure
6.4 shows the estimated runtime:
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Figure 6.3: Bulk Insert: Read, Write and Erase Count
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As the results illustrate, the hypothesis was fulfilled. bthofigures, Figure 6.3 and 6.4,
the graphs show identical results for both implementatidks expected, there are no erase

counts (Figure 6.3(c)).

26



6.2 Hypothesis 2 - Read only

6.2.1 Hypothesis 2.1 - Random Read

This hypothesis evaluates how the implementations perfaroase of reads only, where |
assume that the page, that contains the tuple, is not in fifer.blihat results in swapping out
a page from the buffer and swapping in the requested pagg &ver we want to read a tuple.
| call this random read.

Because only read operations are performed, there should ite and erase counts, in
neither of the implementations. According to the fact, thaead in the in-page logging ap-
proach results in reading the page and additionally itsesponding log, | expect that it will
result in more read count, and thus have worse write perfiocmas the non-SSD implemen-
tation.

Figure 6.5 shows the read, write and erase count graphs oflmgis 2.1. Figure 6.6 shows
the estimated runtime:
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Figure 6.5: Random Read: Read, Write and Erase Count
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Figure 6.6: Random Read: Estimated Runtime
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As the results illustrate, the hypothesis was approvedothn figures, Figure 6.5(a) and 6.6,
the graphs show the expected difference, which is the aadditiog that the in-page logging
implementation has to read from disk. As expected, thera@werite and erase counts (Figure
6.5(b) and 6.5(c)).

6.2.2 Hypothesis 2.2 - Sequential Scan

This hypothesis evaluates how the implementations perforoase of reads only, where the
page, that contains the tuple, is always in the buffer. ltbadl hypothesis sequential scan.

| expect that the outcome of this hypothesis is similar tqoiteious hypothesis 2.1 (random
read), and that the outcome has less read access than irhégo2.1 (random read), since
the required page stays in the buffer. Nevertheless, tipage logging approach still should
have more read counts, and thus a worse overall runtime.

Figure 6.7 shows the read, write and erase count graphs otliggis 2.2, whereas Figure
6.8 shows the estimated runtime:
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Figure 6.7: Sequential Scan: Read, Write and Erase Count
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The outcome is, as expected, almost identical with the pusvhypothesis 2.1 (random
read). As predicted there are no write and erase countsr@-gyu(b) and 6.7(c)). There is
also the slight gap in the read counts and runtime of the twaddmentations, because of the
additional log the in-page logging has to read. The onlyed#hce to hypothesis 2.1 (random
read) is the lower number of read counts due to bufferingcé@bso the estimated runtime.

6.3 Hypothesis 3 - Random Read and Write

This hypothesis evaluates how the implementations performandom read and write access.
At the starting point, the relation is half full. This prewsnhe first couple of read operations
of reading nothing.

| expect that the in-page logging approach performs forererasurement at least as good
or better as the non-SSD implementation. The write as wethaserase counts from the
in-page logging should be about 50% lower, since almostyewesert in the non-SSD im-
plementation triggers an erase operation. Whereas for thage logging, only every second
insert on an existing page triggers an erase. Due to thetighe effort in the in-page logging
approach, | expect that the improvement in read counts dotefsihout as high as expected
in the write- and erase counts. Nevertheless, the numberaaf operations in the in-page
logging approach should be clearly lower than in the non-8&ementation.

Figure 6.9 shows the read, write and erase count graphs ottggis 3, whereas Figure
6.10 shows the estimated runtime:
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Figure 6.9: Random Read and Write: Read, Write and Erase Count

The outcome covers my expectations of the hypothesis, asd-§9 and 6.10 show. In
particular Figure 6.9(b) and 6.9(c) with an improvementluda 50% show the advantage of
the in-page logging compared to the non-SSD implementafitve improvement of 45% in
Figure 6.9(a) falls out fairly high too.

The difference of about 50% in Figure 6.10 shows clearlyt tha additional write effort
to read the logs does not weight much, since read operatrensighly efficient on a SSD.
Rather the reduction of almost 50% in erase operations is #ie improvement. Less erase
operations imply also fewer write- and read operations.
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Figure 6.10: Random Read and Write: Estimated Runtime

6.4 Impact of Buffer Size

Further | wanted to know how the impact of increasing thednsfze turns out at both imple-
mentations. This evaluation was done with 100’000 accesstipns.

Figure 6.11 shows clearly that both implementations prafita#ly up to a certain point.
The block I/O gets static when the buffer has the capacityeeping the whole relation into
it.
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Figure 6.11: Random Block IO by Varying Buffer Size

6.5 Summary of the Evaluation

The idea of in-page logging is mainly to use fast read aceessduce expensive erase op-
erations. Less erase operations implies also less readwi@edoperations, because an erase
consists of first reading the whole erase unit, merging tlgepand rewrite the erase unit.
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Therefore it is a win-win situation concerning the read amiieras well as erase counts. This
phenomenon is shown mostly in hypothesis 1.1 (sequensattinand 3 (random read/write),
where we have about 45% less read-, and about 50% less wrditerage counts. Due to the
in-page logging approach cuts the erase counts in half stma&ted runtime gain of in-page
logging comparing to a non-SSD approach is about 50%.
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/7 Summary / Conclusion

Conventional access methods and algorithms can be useduivdng modification due to
the flash translation layer (FTL). Despite this possihilitys thesis showed, that the overall
performance of a key-value store can significantly be iregdawvith small changes in the
implementation.

To show this increase, | implemented a key-value store aptleaban approach called
in-page logging (IPL). The approach reduces the number pémrsive erase operations by
introducing a log based system. Despite in-page loggingesi only one positive ability of
flash memory and disregards the software layers of the S@Deualuation showed that the
increase of the overall performance is up to 50%.

As a future work, it would be interesting to investigate omvitbe approach performs with
the use of more log sectors per page. It should be possibéeltace the number of erase oper-
ations even more by using more reads. Further, it could blyzedh how the implementation
performs on a real SSD.
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