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Abstract

In the last decade solid state drives (SSD) gained more and more importance in the field
of databases, due to their fast access time compared to traditional hard disk drives (HDD).
The flash translation layer (FTL), an abstraction layer of SSDs, provides the same API as
traditional HDDs and makes their use transparent. On top of FTL, traditional access methods
and algorithms operate acceptably without any modification. The asymmetry of access time
of read and write operations and the requirement to perform an expensive erase operation
prior to an in-place update, raises the need for specializedaccess methods. This thesis shows
an implementation and an evaluation of an approach for a key-value store, called in-page
logging. It reduces the number of erase operations due to in-place updates on data pages by
using logs.
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Abstract

Solid State Drives (SSD) haben im letzten Jahrzehnt dank ihrer schnellen Zugriffszeit gegenüber
traditionellen Festplatten mehr und mehr an Bedeutung im Datenbankumfeld gewonnen. Der
Flash Translation Layer (FTL), eine Abstraktionsschickt von der SSD, stellt das gleiche API
zur Verfügung wie traditionelle Festplatten und machen dessen Gebrauch transparent. Tra-
ditionelle Zugriffmethoden und Algorithmen oberhalb des FTLs funktionieren deshalb auch
ohne Veränderungen akzeptabel. Die asymmetrische Lese- und Schreibzugriffszeit und die
Anforderung, eine teure Löschoperation vor einer in-situ Aktualisierung zu machen, verlangt
nach dem Bedürfnis spezialisierter Zugriffsfunktionen. Diese Arbeit zeigt eine Implementa-
tion und eine Evaluation von einem Ansatz für ein Key-Value Store namens in-page logging.
Dieser Ansatz reduziert die Anzahl der von einer in-situ Aktualisierung einer Datenpage aus-
gelösten Löschoperationen mit der Verwendung von Logs.
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1 Introduction

In the last few years, flash based storage, namely solid statedrives (SSD), gained increasingly
importance in the database field due to their fast access timecompared to traditional hard disk
drives (HDD). The increase in capacity and the decrease of price made them more and more
interesting for the storage of large amounts of data. The asymmetry of read and write access
time and expensive in-place updates poses new challenges and raises the need for specialized
access methods and algorithms.

The solution, that is presented in this thesis, is called in-page logging (IPL) and was pro-
posed by Sang-Wong Lee et. al. in [15]. The idea of IPL is to make usage of efficient write
mechanism to reduce the number of erase cycles. The in-page logging approach wins over
with its small and simple implementation. This gives the advantage that this approach can be
applied to an existing database solution only by changing the implementation of the storage
layer and keeping the rest of the database solution as it is.

Combined with the implementation of a key-value store, I showthat the proposed solution
has about 45% less read access, about 50% less write access and erase cycles, and about 50%
faster estimated runtime than a regular non-SSD implementation of a key-value store on a
SSD in a read-write workload.

The purpose of this thesis is to develop and implement an SSD specific key-value store and
comparing it against a non-SSD implementation of a key-value store, both running on a SSD.
The SSD implementation is based on the in-page logging approach presented in [15]. The
output shows, that the overall speed can be increased with small changes on the database en-
vironment, namely on the storage layer.

The rest of this paper is organized as follows. Chapter 2 givesan overview on key-value
stores and flash memory. Chapter 3 describes the problem. Chapter 4 introduces a possible
solution called "in-page logging". Chapter 5 gives an understanding of the implementation,
whereas in Chapter 6 the work is evaluated. Chapter 7 gives a conclusion and points out future
work.
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2 Overview of Key-Value Store and
Flash Memory

2.1 Key-Value Store

Key-value stores [9] are similar to NoSQL [4, 5, 18] databases. A NoSQL database is, like
the name says, a database where it is not possible to execute aSQL query directly on it. Some
commercial key-value stores are Oracles Berkeley DB [6], Googles BigTable [10] or Amazons
Dynamo [13].

A relation of a key-value store consists of two columns, one for the key and one for the data,
the latter is also called value. There are no limitations, whether the value contains a simple
string or an object or any other data types provided by the client application, since the value
is stored as a binary large object (BLOB). Thus, the value in key-value stores has no schema,
so the client application is responsible for the semantics of the data and how it is organized.
Additionally, key-value stores can be used as a column store, where the value is the column
and the key is used for the index.

An advantage of key-value stores is their simple API. To manipulate relations, three func-
tionsput(key, data), get(key)andremove(key)are provided. Search operations are only pos-
sible on keys, thus access can be optimized, e.g. with indexes. Further the API has no SQL
interface. If the caller wants to run a SQL query, it has to manage its SQL query and schema
on its own.

Key-value stores are often considered for update and lookupintensive online transaction
processing (OLTP) workloads or specialized workloads as document repositories, where they
score with its lightweight design.

2.2 Flash Memory Overview

Despite flash memory [2] was invented around 1980, it made itsbreak through not till the
mid nineties in memory sticks and sd-cards. Even though the first SSDs [8, 16] came into pro-
duction at the same time, it took about 10 years until a consumer friendly SSD was established.

Flash memory is a type of non-volatile memory that can be electrically erased and repro-
grammed. Compared to HDDs [3], there are no mechanical parts inside flash memory. SSDs
are based on NAND chips, which must be read or written block wise. Further, NAND chips
are built with either single level cells (SLC) or multi level cells (MLC). Whereas a single level
cell can only store one bit, a multi level cell can store several bits. The advantage of SLCs
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are its writing speed, lower power consumption and longer life span comparing to a MLC.
Since they are more expensive than MLC, SLC flash memory is usedin areas where high-
performance is needed. The advantage of a MLC is lower cost per unit of storage. Despite
there exists also some enterprise MLC, they are mostly used inconsumer flash storage.

Block

... ... ... ...

Erase Unit

NAND Flash Memory

Flash Translation Layer

Block

Read

Block

Write

 Unit

Erase

reads writes

SSD

Figure 2.1: Simple Design of a Solid State Drive

Figure 2.1 shows the design of a SSD. A SSD consists of its flashmemory and the corre-
sponding flash translation layer (FTL). More about FTL in chapter 3. The flash memory is
divided into erase units, whereas every erase unit is divided into blocks.

Flash memory has an important limitation. Although it can beread or written block wise, a
block can only be updated or deleted by erasing the corresponding erase unit. An erase sets all
bits of the erase unit to 1. After an erase, it is possible to write on the erase unit again at any
position. Once a bit has been set to 0, it cannot be changed to 1except with an erase operation.
It follows directly that an in-place update is only possible, if the data bits switching from 1
to 0 or stays at 0. For example, a value1111 can be updated to1101. Continuous updates to
1001, 1000 and finally0000 are possible. Further updates to this value will result in anerase
operation. However, this thesis does not consider such updates, but consider a block to erase
whenever it has been written once.

In Table 3.1, we see a comparison between the access times of aHDD and a SSD [15]. De-
spite the values are some years old, they show the time difference for read, write and erase
operations. Further, we will refer flash memory as NAND basedflash memory, because NOR
based flash memory, which is not mentioned in this overview, is not relevant in this thesis.
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3 Problem Statement

Due to the Flash Translation Layer (FTL) [14], a SSD appears to upper layers like a con-
ventional disk drive. Hence an FTL provides the same API as a HDD. Because of the FTL,
conventional disk-base database algorithms and access methods operate acceptably without
any modification. But without any modification, every in-place update on a SSD will result in
an erase operation, as explained in Chapter 2.2.

Despite the expensive update, a SSD is still faster than a conventional HDD, as following
example shows: Assume a block size of4 KByteand the size of an erase unit of128 KByte.
According to Table 3.1, an in-place update of a block on a conventional disk costs27.4ms.
Since an erase unit contains 32 blocks, an in-place update ofa block on a SSD will cost 32
read operations to read the erase unit, one erase operation,and 32 write operations to write the
erase unit. This takes10.46ms.

Nevertheless, if an in-place update on a SSD could be replaced by writing the additional
update into an empty place, it would be much faster, i.e. 400µs (4KB), than a complete erase
and rewrite, despite these updates need to be read and mergedwith the page when accessing
it. The idea is to take advantage of the asymmetry of read and write access time to postpone
an erase by writing logs and sacrifice fast read operations. The approach in the next chapter
realizes exactly this idea.

Media
Access time

Read Write Erase

Magnetic Disk1 12.7 ms (2KB) 13.7 ms (2KB) N/A
NAND Flash2 80µs (2KB) 200µs (2KB) 1.5ms (128KB)
1 Disk: Seagate Barracuda 7200.7 ST380011A, average access times including

seek and rotational delay;
2 NAND Flash: Samsung K9WAG08U1A 16 Gbits SLC NAND

Table 3.1: Access Speed: Magnetic disk vs. NAND Flash
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4 In-Page Logging

To find an accurate approach, I have read several papers.

• [17] proposes a buffer manager for DBS running on flash based disks. They devel-
oped a new replacement policy in which they separate modifiedand unmodified pages
into two buffer pools. They take account of the read-write asymmetry and achieve an
improvement of the overall performance up to 33%.

• [11] introduces FlashStore, a high throughput persistent key-value store, that uses flash
memory as a non-volatilecachebetween RAM and hard disk. One of the design goals
of FlashStore is to use flash memory in an FTL friendly manner.

• [12] introduces SkimpyStash, a RAM space skimpy key-value store on flash-based stor-
age, designed for high throughput, low latency server applications. The distinguishing
feature of SkimpyStash is the design goal of extremely low RAMfootprint at about
1(±0.5) byte per key-value pair, which is more aggressive than earlier designs like
FlashStore [11].

The solution I have chosen is the "in-page logging" approach,proposed in [15]. I have chosen
this approach, because I’d like to show that with minimal changes to the storage layer of a
key-value store, the overall performance can already be improved.

Besides taking advantage of the characteristics of flash memory, such as uniform access speed
due to no mechanical latency and asymmetric read and write access speed, in-page logging
has the aim to minimize the changes made to the database system. Hence the design changes
will be limited mainly to the buffer manager and file manager,as this chapter will show.

To avoid confusion about the terms block and page, we define a block as a contiguous
sequence of bytes on disk, whereas a page is a structured block in the implementation. A block
is the main disk storage unit, whereas a sector is the minimalIO unit. Figure 4.1 illustrates the
design of in-page logging. On the upper half, it shows a buffer page, whereas the lower half
shows the layout of an erase unit. Following enumeration points out the main structures of the
design:

• A buffer page consists of a data page and the corresponding log.

• The erase unit has a size of128 KByte.

• Every erase unit has 28 data pages of4 KByteeach and 32 log sectors of512 byteeach.

• Every page has one corresponding log. With this decision, there are 4 logs per erase unit
left for future extensions.
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• A page and its log sector have the same size in the buffer as their equivalent in the flash
memory.

Database Buffer

Flash Memory

In-memory

log sector

(512B)

Update-in-place
In-memory

data page

(4kB)

...................

..
..
..
..
..
..
..
..
..
.

              Erase unit: 128 kB

28 data pages
Log region (16kB):

32 sectors

Figure 4.1: The Design of In-Page Logging

The idea of in-page logging is as follows: A relation consists of a file, which in turn contains
several erase units with several pages in it. Without in-page logging, it was necessary to
rewrite the whole erase unit for an update operation, even ifonly a single record from a page
was affected. This leads to frequent write and erase operations. To avoid this, in-page logging
writes only the changes made to a page to the database on per-page basis, instead of writing
the entire page. These change requests can be written into the corresponding log. Figure 4.2
shows an example of an update operation: The relation has a page with two tuple T1 and T2.
To update T2, the page needs to be read into memory in order to perform the update. Before
the non-SSD implementation can perform a the write operation on the file, the erase unit needs
to be erased, which implies to read the whole erase unit, erase it, update the page, and write
the erase unit with the updated page back. On the contrary, in-page logging writes the change
request into the log, and writes only the log to disk. That makes a difference of one write
operation instead of 32 write-, 32 read- and one erase operation.

Page

Erase Unit

 update 

Tuple T2

non-SSD

In-Page

Logging

3. Erase whole

    Erase Unit

Page

Erase Unit

2. Update T2

3. Write Log 

    to Erase Unit 2.1 Update T2

LOG

Page

Erase Unit

1. Read Page

4. Write whole 

    Erase Unit

2.2 Write change 

      into Log

Page

Erase Unit

T2

Figure 4.2: Example of an Update Operation

A read operation in in-page logging always results in reading the page and the corresponding
log. Figure 4.3 shows an example by reading page two of an erase unit. After reading the page
and its log into memory, the application needs to merge the page with the corresponding log.
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read Page 2
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Data Pages Log Sectors Merge Page with Log
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Figure 4.3: Read a Page with corresponding Log

This means to go through the log and apply every log entry to the page. For example, if the
entry states a deletion of key 45, the tuple with key 45 has to be removed from the page.
Despite the higher read effort due to the log, this won’t be regarded as a disadvantage, since
read operations on a SSD are highly efficient.

To optimize an erase operation, in-page logging colocates the log of a page within the same
erase unit, as Figure 4.1 shows. If the log sectors were placed in another erase unit, an erase
operation would have to erase two erase units, one for the pages, and one where the log sectors
are placed.

If a write or update operation occurs, the affected page willbe read from disk and loaded into
the buffer, if it’s not already there. Then the in-memory page is written / updated in place and
handled like a traditional page (see Figure 4.1). In addition, the buffer adds a corresponding
log to the buffer page. An in-memory log sector will automatically be created if needed, and
deleted when the log entries are written to the SSD. To keep the read effort within a limit in
my implementation, every page has exactly one corresponding log sector, as described before.

A page in the buffer is called dirty, if it has been changed comparing to its copy on the disk.
If a dirty page has to be swapped out from the buffer to disk, itis not always necessary to write
the whole page, since every change request was also written into the log. As long as its log
was not already written into the flash memory, it is enough to "swap out" the log. After the
log has been written to disk, it will be deleted in the buffer.The page itself stays in the buffer
and is not dirty anymore, since the page in the buffer is equalto the page on the disk merged
with its corresponding log.

Whenever both, a page and its log have been written to disk, theerase unit needs to be
erased and rewritten for the next write operation affectingthis page. When rewriting the erase
unit, the pages will be merged with its corresponding logs. Algorithm 1 shows the rewriting
and associated merging of the pages with their logs. The Algorithm is as follows:

1. The function takes two erase units as input.B0 is the old erase unit to merge, whereasB is
a new, unused erase unit.

2. Then the algorithm goes through every page ofB0. If a log for a corresponding page exists,
then every log entry is applied to the page, as described before with the example of deleting
the tuple with key 45.

3. If the page is merged or the page did not have any log, it willbe written into the new erase
unitB.
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4. At the end, the old erase unitB0 will be erased and freed.

After merging due to step 2., all log sectors inB are empty.

Algorithm 1 Merge Operation
Input: B0: an old erase unit to merge
Output: B: a new erase unit with merged content

1: function MERGE(B0, B)
2: allocate a free erase unitB
3: for each data page p in B0 do
4: if any log entry for p exists then
5: p′ ← apply the log entry top
6: write p′ toB

7: else
8: write p to B

9: end if
10: end for
11: erase and freeB0

12: end function

8



5 Implementation

This chapter is subdivided into two sections. The first section describes the implementation
of a non-SSD key-value store, the second section explains the changes to be made to optimize
the key-value store for SSDs, according to the in-page logging approach. Further is to mention
that the implementation is a functional simulation and not yet tested on a real SSD. Because
an FTL [14] abstracts structures like erase units, we simulate the rewriting of erase units.

5.1 Magnetic Hard Disk Drive Implementation

Disk

fmgrKvs

buffer

smgrKvs

fmgrKvsRelation

page kvsTup

bufferPage

keymgr

index

Storage 

Manager

Buffer

Manager

File 

Manager

Non-SSD Key-Value Store

Figure 5.1: Non-SSD Key-Value Store Implementation

Figure 5.1 shows an overview of the non-SSD implementation.

• The file managerfmgrKvsdeals with relations calledfmgrKvsRelation. Every relation
has a corresponding key managerkeymgrand anindex. A key manager provides unique
keys within the relation. An index stores the key and its corresponding block number
of the page which the tuple contains. Further an index provides efficient lookup access
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when looking for a tuple by its key. The file manager is responsible to communicate
with its underlying disk thus dealing with data files organized into blocks.

• The buffer managerbuffer is the link between the storage manager and file manager.
Every block transfer goes through the buffer, which caches the traffic in itsbufferPages
to reduce block IOs. The buffer fetches the blocks from the file manager.

• The storage managersmgrKvson top acts as API towards other applications. It struc-
tures the receiving data intokvsTuptuple and uses the buffer manager to store and re-
trieve them.

I created a header file namedctypes.h(Listing 5.1), which contains a macro to define the
blocksizeto 4 KByte, and a typedef for thekey.

Listing 5.1: ctypes.h
#define BLKSIZE 4096

typedef size_t key;

The blocksize defines the size of a block on disk. As we will seein the next subsection, the file
manager manages a file using several blocks, since a block is the unit for IO transfers in this
non-SSD implementation. Figure 5.2 shows an example with a file consisting of three blocks
and a buffer with one buffer page. In the example, Block 1 is already in the Buffer. If a query
needs access to tuple T1 or tuple T2, the buffer can immediately return these two without any
disk access. If a query needs access to tuple T3 or T4, the buffer manager has to read and load
the corresponding block from the hard disk / file into the buffer through the file manager.

access
Buffer

return

Query:

File:

Block 1 Block 2 Block 3

T3T1 T2 T4

T1 T2

request Block

load Block

Figure 5.2: Example of a Buffer with one BufferPage

5.1.1 Structures

Page

As the file manager deals with blocks, we define the structure of a block and call a formatted
block a page. Therefore the size of a page corresponds to the size of a block, which is4
KByte. The structure of a page is designed to have as less overhead as possible, so that the
implementation stays lightweight. Figure 5.3 shows an example of a structured page that
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contains 3 tuples. It consists of a header, that includes thenumber of tuples the page contains
and the size of free space. After the header we store the offsets of the tuples in the page. The
corresponding tuple is then added at the end of the availablefreespace.

 Number 

of Tuples

 Offset 

Tuple 1

  Size of

Freespace

 Offset 

Tuple 3

 Offset 

Tuple 2

size_t													size_t													off_t															off_t														off_t																																																																																														void*																					void*																			void*

Tuple 1Tuple 2Tuple 3

FREESPACE

Header

Blocksize (4kB)

Figure 5.3: Example of a Page with 3 Tuples

The implementation of a page follows the idea to have as less overhead as possible (Listing
5.2). Thus a page is represented as a void pointer*page, because the size of a page is always
constant. To manipulate pages we have the following functions:

• A page can be created by callingmakeEmtyPage().

• pAddTup()provides the functionality to add a tuple to the page, whereaspRemoveTup()
removes a tuple from a page.

• As a last function implemented, the caller can search after atuple in the page by key
with pGetTupFromKey().

Listing 5.2: page.h
typedef void* page;

#define SIZEOFPAGE BLKSIZE

/* Create an empty Page */
page makeEmtyPage();

/* Add a Tuple to the Page */
int pAddTup(page p, const kvsTup tup);

/* Removes a Tuple from the Page */
int pRemoveTup(page p, const kvsTup tup);

/* Returns the Tuple with Key k */
kvsTup pGetTupFromKey(page p, key k);

Tuple

A key and its corresponding value is stored in a key-value store tuple. The structure of a tuple
is held simple and lightweight, so that the implementation contains no unnecessary overhead.
Figure 5.4 shows the structure of a tuple. A tuple consists ofthe value and a header, whereas
a header contains the key and the total size of the tuple. The size of a tuple can vary, but it’s
limited by the size of a page minus its header and offset. The implementation remains small
and well-arranged, as Listing 5.3 shows. Because a tuple is represented as a void pointer
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Key
Total Size 

 of Tuple

			key														size_t																																			void*

Header

Value

Value (size can vary)

Figure 5.4: Structure of a Key-Value Store Tuple

*kvsTup, we need to keep the overall size of the tuple. A tuple can be created by calling
makeKvsTup()

Listing 5.3: kvsTup.h
typedef void* kvsTup;

/* Creates a Kvs Tuple */
kvsTup makeKvsTup(key k, size_t datasize, const void *data);

5.1.2 File Manager

A relation is represented as a struct, defined in the file manager (Listing 5.4). The client
application comes with the name of the tablespace, databaseand relation and creates afm-
grKvsRelInfo. From this, the file manager converts afmgrKvsRelInfointo afmgrKvsRelation,
that contains the filename and the corresponding file of the relation.

Listing 5.4: Structs of fmgrKvs.h
typedef struct fmgrKvsRelation
{
char * fileName;
FILE * file;

} fmgrKvsRelation;

typedef struct fmgrKvsRelInfo
{
char tblSp[MAX_FILENAMESIZE + 1];
char db[MAX_FILENAMESIZE + 1];
char rel[MAX_FILENAMESIZE + 1];

} fmgrKvsRelInfo;

Further the file manager provides a couple of functions (Listing 5.5). First it has to be able to
create a file to the corresponding relation where to write thedata. In addition it has to provide
a function to remove a relation. As a second pair of functionsit needs to provide the ability
to write and read data. As a third it provides functionalities to either extend or truncate a file.
The following enumeration describes the order in which the functions have to be called:

1. As the first and last functions,fmgrKvsInit()andfmgrKvsShutdown()have to be called at
the startup and the shutdown respectively of the file manager.

2. Before any call to other functions can be performed,fmgrKvsCreate()have to be called,
that creates afmgrKvsRelationfrom afmgrKvsRelInfo.
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3. To open the file of a relation,fmgrKvsOpen()have to be called. With a parameter the caller
can decide whether the file will be created, if it does not exist, or just opened.fmgrKvs-
Close()provides the functionality to close the file.fmgrKvsExists()can be used to test, if a
specific file of a relation already exists.

4. When the file is open, one callsfmgrKvsRead()andfmgrKvsWrite()to read and write from
/ to the file.

5. fmgrKvsExtend()andfmgrKvsTruncate()provide the functionality to extend or truncate a
file.

6. With fmgrKvsNrBlocks()it can be checked how many blocks of data the file contains.

7. fmgrKvsUnlink()allows the caller to remove the file from the relation, whereas fmgrKvs-
Flush()take care of writing the content of the file permanently to thedisk.

Listing 5.5: fmgrKvs.h
/* Initialize File Manager */
void fmgrKvsInit();

/* Shutdown File Manager */
void fmgrKvsShutdown();

/* Create a Relation */
fmgrKvsRelation *fmgrKvsCreate(const fmgrKvsRelInfo *relInfo);

/* Close a Relation */
int fmgrKvsClose(fmgrKvsRelation *rel);

/* Open the Relation */
int fmgrKvsOpen(fmgrKvsRelation *rel, bool create);

/* Read one Block from the Relation */
size_t fmgrKvsRead(fmgrKvsRelation *rel, size_t blckNr, void *buffer);

/* Write one Block to the Relation */
size_t fmgrKvsWrite(fmgrKvsRelation *rel, size_t blckNr, void *buffer);

/* Drop the File from the Relation */
int fmgrKvsUnlink(fmgrKvsRelation *rel);

/* Check if the File from the Relation exist */
bool fmgrKvsExists(fmgrKvsRelation *rel);

/* Number of Blocks from the File of the Relation */
size_t fmgrKvsNrBlocks(fmgrKvsRelation *rel);

/* Extend the File from the Relation */
bool fmgrKvsExtend(fmgrKvsRelation *rel, int blckNr, void *buffer);

/* Truncate the File from the Relation */
int fmgrKvsTruncate(fmgrKvsRelation *rel, int blckNr);

/* Write the Content of the File permanently to disk */
int fmgrKvsFlush(fmgrKvsRelation *rel);
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5.1.3 Buffer Manager

The buffer managerBuffer is represented as a struct, defined in Listing 5.6. It consists of an
array ofbufferPages and a counter variable clock. AbufferPageitself consists of:

• The corresponding relation the data page belongs to,

• the page number,

• the data page,

• a variable to keep its clock and

• a boolean to notice if the page has been changed (= dirty) comparing to its version on
the disk or not.

The clock is used to realize aLeast Recently Used(LRU) [1, 7] page replacement strategy.
Every time abufferpageis used, it gets the highest clock. If the clock can’t be incremented
anymore due to overflow, it will be reset internally. ThebufferPages will be adapted analogous.
The number ofbufferPages is defined by the macroBUF_NUM_PAGES.

Listing 5.6: Structs of buffer.h
#define BUF_NUM_PAGES 10

typedef struct Buffer
{
void *data; /* array of bufferPage of length BUF_NUM_PAGES */
size_t clock; /* next clock to give to a page */

} Buffer;

typedef struct bufferPage
{
fmgrKvsRelation *rel;
size_t pageNum; /* pageNum of Page in Relation */
page p;
size_t clock; /* clock time for buffer strategy */
bool isDirty; /* has page been written */

} bufferPage;

Further the buffer manager provides functions to ensure itsfunctionality (Listing 5.7). The
following enumeration summarizes them:

1. As the first and last functions,bufferKvsInit()andbufferKvsShutdown()have to be called
at the startup and the shutdown respectively of the buffer manager.

2. Before any call to other functions can be performed,bufOpenRel()needs to be called,
which opens and, if necessary, creates the relation in the file manager. At the end, the
relation needs to be closed withbufCloseRel().

3. bufferKvsRead()andbufferKvsWrite()provide the functionality to read and write a page
from and to the file by the buffer. They use the internal functionsswapIn()andswapPage-
Out() to get a page into or out of the buffer respectively.

4. Finally flushBuffer()is used to clean the buffer by writing every dirty page to its file. The
data pages however stay in the buffer.
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Listing 5.7: buffer.h
/* Initialize Buffer Manager */
void bufferKvsInit();

/* Shutdown Buffer Manager */
void bufferKvsShutdown();

/* Write the Content of the Buffer permanently to disk */
void flushBuffer();

/* Read corresponding Block either from Buffer or File */
size_t bufferKvsRead(fmgrKvsRelation *rel, int blockNr, page p);

/* Write corresponding Block into Buffer */
void bufferKvsWrite(fmgrKvsRelation *rel, int blockNr, page p);

/* Open the Relation */
fmgrKvsRelation *bufOpenRel(char *tblSpc, char *db, char *rel);

/* Close the Relation */
void bufCloseRel(fmgrKvsRelation *rel);

5.1.4 Storage Manager

The storage manager is the API of the key-value store. As described in Section 2.1, a key-value
store provides the three functionsput(), get()andremove(). Beside these three function, the
storage manager needs additional functions to ensure the functionality of the whole storage
layer. These functions are shown in Listing 5.9. The following enumeration describes the
order in which the functions need to be called:

1. To start and to terminate the storage manager, the client has to callsmgrKvsInit()andsm-
grKvsShutdown()respectively. Both functions call internally the related initial- and shut-
down functions from the buffer- and file manager.

2. Before any call to other functions can be performed, the client application has to open and
create the relation withopenRel()first. On contrastcloseRel()needs to be called to close a
relation.

3. Beside the three initial functionsinsertKeyVal()to insert a value,searchKey()to get a tuple
and removeKey()to remove a value, the storage manager provides a fourth function up-
dateKey()which allows to update the value of a specific key an. An updateis realized as a
delete and followed by insert.

A call to this modification functions requires an index and a key manager as parameter. We
consider the index as a main memory index, in which the key andthe corresponding page
number of the page the tuple is inside are stored. A key manager is defined as follows:

Key Manager

Every relation has a key manager, which provides unique keys. As Listing 5.8 shows, a key
manager is implemented as a struct. This contains only a counter variablenextValup to now.
A key manager provides following functions:
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• With makeKeymgr()the caller has to create a key manager.

• getNewKey()is a getter function which returns a unique key.

• storeKeymgr()provides the functionality of saving a key manager to a file. This can be
restored withmakeKeymgrFromFile().

Listing 5.8: keymgr.h
typedef struct keymgr
{
key nextVal;

} keymgr;

/* Create a new Key Manager */
keymgr *makeKeymgr();

/* Open an existing Key Manager from File */
keymgr *makeKeymgrFromFile(char *filepath);

/* Store the Key Manager into a File */
size_t storeKeymgr(char *filepath, keymgr *mgr);

/* Get a unique key */
key getNewKey(keymgr *mgr);

Listing 5.9: smgrKvs.h
/* Initialize Storage Manager */
void smgrKvsInit();

/* Shutdown Storage Manager */
void smgrKvsShutdown();

/* Open a Relation */
fmgrKvsRelation *openRel(char *tblSpc, char *db, char *rel);

/* Close a Relation */
void closeRel(fmgrKvsRelation *rel);

/* Insert a new Value with a unique Key from the Key Manager */
int insertKeyVal(key k, void *value, size_t sizeOfValue, fmgrKvsRelation *rel,

kvalIdx ix);
/* Search Tuple according to its Key */
kvsTup searchKey(key k, fmgrKvsRelation *rel, kvalIdx ix);

/* Remove a Tuple according to its Key */
int removeKey(key k, fmgrKvsRelation *rel, kvalIdx ix);

/* Updates a Tuple according to its Key */
int updateKey(const key k, void *value, size_t datasize, fmgrKvsRelation *rel,

kvalIdx ix);

5.2 Flash Memory Specific Implementation

In the next subsections only those sublayers are described which have been changed or added
to the implementation due to the SSD specific implementation. Figure 5.5 shows the overview
of the whole implementation with highlighted parts that have changed. Beside the three man-
agers have changed, the log comes along as a new structure.
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Figure 5.5: SSD Key-Value Store Implementation

The header filectypes.h, which has been renamed toctypes_ssd.h, has been extended, as
Listing 5.10 shows. New are the definitions of a sector size (which is equal to the size of a
Log) to512 byteand the size of an erase unit to128 KByte.

Listing 5.10: ctypes_ssd.h
#include "ctypes.h"

#define SECTORSIZE 512
#define ERASEUNSIZ (128*1024)

5.2.1 Structures

Log

The size of a log is equal a sector, which is512 byte. The structure of a log is similar to the
structure of a page. Figure 5.6 shows a log with three entries. The log consists of a header,
which includes the number of entries the log contains and thesize of free space. After the
header we store the offsets of the entries in the log. The corresponding log entry is then added
at the end of the available freespace.
A log entry contains its type (add, update or delete), the keyand if the entry is for adding or
updating, the corresponding value. Figure 5.7 shows the structure of both an add or update
entry and delete entry.
The implementation of a log follows the idea to have as less overhead as possible (Listing
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5.11). Thus a log is represented as a void pointer*logIPS, because its size is always constant.
To manipulate logs we have the following functions:

• A log can be created by callingmakeEmtylogIPS().

• makeLogIPSentry()will create an entry.

• With addEntryTologIPS()the entry can be added to a log.

Listing 5.11: Log Listing of log_ssd.h
#define LOGIPSSIZE SECTORSIZE

#define ADDENTRY 0
#define UPDATEENTRY 1
#define DELETEENTRY 2

typedef void *logIPS;

/* Create an emtpy Log */
logIPS makeEmtylogIPS();

typedef void *logIPSEntry;

/* Create a Log Entry */
logIPSEntry makeLogIPSentry(int lgEntryTyp, key k, size_t datasize, void *data);

/* Add a Log Entry to a Log */
int addEntryTologIPS(logIPS l, logIPSEntry ent);

5.2.2 File Manager

The representation of a relation has not been changed and is the same struct as in the non-
SSD implementation in section 5.4. The requirements for thefile manager of the SSD based
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implementation are similar as for the non-SSD one. Beside thefunctions from Listing 5.5,
the SSD based file manager needs additional functions to handle the new introduced erase
unit and log. Listing 5.12 gives a full overview of all functions. The following enumeration
pretends the order the functions have to be called, whereas only 4., 5. and 7. have been
changed compared to enumeration in section 5.1.2:

1. As the first and last functions,fmgrKvsInit_ssd()andfmgrKvsShutdown_ssd()have to be
called at the startup and the shutdown respectively of the file manager.

2. Before call any other functions,fmgrKvsCreate_ssd()have to be called, that creates afm-
grKvsRelation_ssdfrom afmgrKvsRelInfo.

3. To open the file of a relation,fmgrKvsOpen_ssd()needs to be called. With a parameter
the caller can decide whether the file will be created if it does not exists, or just opened.
fmgrKvsClose_ssd()provides the functionality to close the file.fmgrKvsExists_ssd()can
be used to test, if a specific file of a relation already exists.

4. If the file is open, one calls

• fmgrKvsReadBlock_ssd()andfmgrKvsWriteBlock_ssd(),

• fmgrKvsReadLog_ssd()andfmgrKvsWriteLog_ssd(),

• fmgrKvsReadErUn_ssd()andfmgrKvsWriteErUn_ssd()

to read and write the corresponding block, log or erase unit from / to the file.

5. If a block is already written on the disk and needs to be updated,fmgrKvsEraseUnit_ssd()
clears the corresponding erase unit.

6. fmgrKvsExtend_ssd()and fmgrKvsTruncate_ssd()provide the functionality to extend or
truncate a file.

7. With fmgrKvsNrEraseUnits_ssd()it can be checked how many erase units the file contains.

8. fmgrKvsUnlink_ssd()allows the caller to remove the file from the relation, whereas fm-
grKvsFlush_ssd()takes care of writing the content of the file permanently to the SSD.

Listing 5.12: fmgrKvs_ssd.h
/* Initialize File Manager */
void fmgrKvsInit_ssd();

/* Shutdown File Manager */
void fmgrKvsShutdown_ssd();

/* Create a Relation */
fmgrKvsRelation_ssd *fmgrKvsCreate_ssd(const fmgrKvsRelInfo *relInfo);

/* Close a Relation */
int fmgrKvsClose_ssd(fmgrKvsRelation_ssd *rel);

/* Open the Relation */
int fmgrKvsOpen_ssd(fmgrKvsRelation_ssd *rel, bool create);
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/* Read one Block from the Relation */
size_t fmgrKvsReadBlock_ssd(fmgrKvsRelation_ssd *rel, int erUnit, int blckNr,

void *buffer);
/* Write one Block to the Relation */
size_t fmgrKvsWriteBlock_ssd(fmgrKvsRelation_ssd *rel, int erUnit, int blckNr,

void *buffer);
/* Read one Log from the Relation */
size_t fmgrKvsReadLog_ssd(fmgrKvsRelation_ssd *rel, int erUnit, int logNr,

void *buffer);
/* Write one Log to the Relation */
size_t fmgrKvsWriteLog_ssd(fmgrKvsRelation_ssd *rel, int erUnit, int logNr,

void *buffer);
/* Read one Erase Unit from the Relation */
size_t fmgrKvsReadErUn_ssd(fmgrKvsRelation_ssd *rel, int erUnit, void *buffer);

/* Write one Erase Unit to the Relation */
size_t fmgrKvsWriteErUn_ssd(fmgrKvsRelation_ssd *rel, int erUnit, void *buffer);

/* Clear one Erase Unit */
void fmgrKvsEraseUnit_ssd(fmgrKvsRelation_ssd *rel, int erUnit);

/* Drop the File from the Relation */
int fmgrKvsUnlink_ssd(fmgrKvsRelation_ssd *rel);

/* Check if the File from the Relation exist */
bool fmgrKvsExists_ssd(fmgrKvsRelation_ssd *rel);

/* Number of Erase units from the File of the Relation */
size_t fmgrKvsNrEraseUnits_ssd(fmgrKvsRelation_ssd *rel);

/* Extend the File from the Relation */
bool fmgrKvsExtend_ssd(fmgrKvsRelation_ssd *rel, int erUnitNr, void *buffer);

/* Truncate the File from the Relation */
int fmgrKvsTruncate_ssd(fmgrKvsRelation_ssd *rel, int erUnitNr);

/* Write the Content of the File permanently to disk */
int fmgrKvsFlush_ssd(fmgrKvsRelation_ssd *rel);

5.2.3 Buffer Manager

The buffer managerbuffer_ssdis represented as a struct, defined in the buffer manager (List-
ing 5.13). It consists of an array ofbufferPages_ssdand a counter variable clock. Abuffer-
Page_ssditself consists of:

• The corresponding relation the data page belongs to,

• the page number,

• the data page,

• a variable to keep its clock and

• a boolean to notice if the page has been changed (= dirty) comparing to its version on
the disk or not,

• a boolean to notice if the log has been changed (= dirty) comparing to its version on
the disk or not,

• the corresponding log to the page,
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• a boolean to notice if the page on the disk is erase and only in the buffer or not,

• a boolean which indicates if the page is abombor not.

Bombis defined as the condition when the log is full or too small foran entry. If thebombBitis
set to true, the log of this bufferPage will then be disabled and changes are made directly to the
page without any entry in the log. When the page needs to be swapped out, the process has to
write the page, even though if the corresponding log on the file is empty. With the bombBit the
size of a inserted tuple is not limited to the size of a log. Further it allows unlimited accessing
(adding, updating and removing) to the page in a row. Withoutthe bomBit the log would be
full after a certain number of access, which would then result in swapping out either the page
or the log.

The clock is used to realize a LRU strategy, as described in section 5.1.3. The number of
bufferPages_ssdis defined by the macroBUF_NUM_PAGES_SSD.

Listing 5.13: Structs of buffer_ssd.h
#define BUF_NUM_PAGES_SSD 10

typedef struct Buffer_ssd
{
void *data; /* array of bufferPage_ssd of length BUF_NUM_PAGES */
size_t clock; /* next clock to give to a page */

} Buffer_ssd;

typedef struct bufferPage_ssd
{
fmgrKvsRelation_ssd *rel;
size_t pageNum;
page p;
size_t clock; /* clock time for buffer strategy */
bool pagDirty; /* has page been written */
bool logDirty; /* has logIPS been written */
logIPS l;
bool isErasedOnDisk;
bool bombBit; /* if a log is full or too small, the page becomes a "bomb".

* as long as page is in buffer, changes are made directly
* to the page, log is not needed anymore.
*/

} bufferPage_ssd;

Further the buffer manager provides, similar to its non-SSDbased equivalent, functions to
ensure its functionality (Listing 5.14). The following enumeration summarizes them, whereas
only 3. has been changed compared to enumeration in section 5.1.3:

1. As the first and last functions,bufferKvsInit_ssd()andbufferKvsShutdown_ssd()have to be
called at the startup and the shutdown respectively of the buffer manager.

2. Before call any other functions,bufOpenRel_ssd()needs to be called, which opens and,
if necessary, creates the relation in the file manager. At theend, the relation needs to be
closed withbufCloseRel_ssd().

3. bufferKvsRead_ssd()andbufferKvsWrite_ssd()provide the functionality to read and write
a page from and to the file by the buffer. They use the internal functionsswapIn_ssd()and
swapPageOut_ssd(), which are responsible to get a page into or out of the buffer respec-
tively. mergePageWithlogIPS_ssd()provides the functionality of merging a page with its
log.
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4. Finally flushBuffer_ssd()is used to clean the buffer by writing every dirty page to its file.
The data pages however stay in the buffer.

If a swap out of a page results in an erase and rewriting the erase unit, the buffer manager will
swap out every page of the corresponding erase unit. In detail, an erase is proceeded in the
following way:

1. The whole erase unit is loaded into the buffer.

2. Every page will be merged with its log.

3. The merged pages will be written to the disk into erase unit, whereas their logs will be
deleted.

Listing 5.14: buffer_ssd.h
/* Initialize Buffer Manager */
void bufferKvsInit_ssd();

/* Shutdown Buffer Manager */
void bufferKvsShutdown_ssd();

/* Open the Relation */
fmgrKvsRelation_ssd *bufOpenRel_ssd(char *tblSpc, char *db, char *rel);

/* Close the Relation */
void bufCloseRel_ssd(fmgrKvsRelation_ssd *rel);

/* Read corresponding Block either from Buffer or File */
size_t bufferKvsRead_ssd(fmgrKvsRelation_ssd *rel, int blockNr, page p);

/* Write corresponding Block into Buffer */
void bufferKvsWrite_ssd(fmgrKvsRelation_ssd *rel, int blockNr, page p,

logIPSEntry entry);
/* Merge a Page with its Log */
page mergePageWithlogIPS_ssd(page p, logIPS l);

/* Write the Content of the Buffer permanently to disk */
void flushBuffer_ssd();

5.2.4 Storage Manager

The interface of the storage manager is not allowed to changewith the SSD based implemen-
tation. The functions have not been changed either, as Listing 5.15 shows. However inside the
implementation, the functions needed to be adapted since a log come along with a page. For
an order the functions need to be called, I refer to the enumeration in section 5.1.4.

Listing 5.15: smgrKvsS_ssd.h
/* Initialize Storage Manager */
void smgrKvsInit_ssd();

/* Shutdown Storage Manager */
void smgrKvsShutdown_ssd();

/* Open a Relation */
fmgrKvsRelation_ssd *openRel_ssd(char *tblSpc, char *db, char *rel);
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/* Close a Relation */
void closeRel_ssd(fmgrKvsRelation_ssd *rel);

/* Insert a new Value with a unique Key from the Key Manager */
int insertKeyVal_ssd(key k, void *value, size_t sizeOfValue,

fmgrKvsRelation_ssd *rel, kvalIdx ix);
/* Search Tuple according to its Key */
kvsTup searchKey_ssd(key k, fmgrKvsRelation_ssd *rel, kvalIdx ix);

/* Remove a Tuple according to its Key */
int removeKey_ssd(key k, fmgrKvsRelation_ssd *rel, kvalIdx ix);

/* Updates a Tuple according to its Key */
int updateKey_ssd(const key k, void *value, size_t datasize,

fmgrKvsRelation_ssd *rel, kvalIdx ix);
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6 Evaluation

The evaluation has been run on a IBM Thinkpad T60p with a mobileCore2Duo T7400
2.16GHz processor, 2GB RAM and Windows 7 Professional 32bit.

The implementation ran on a conventional HDD, hence the evaluation is only simulated.
The number of read- and write access and the number of rewriting an erase unit has been
measured. To get an estimated runtime, the measured resultshave been multiplied with the
values of Table 3.1. Further the assumption is that the non-SSD implementation triggers an
erase every time a write occurs, except the page on the disk isempty.

Three main hypotheses have been established. The first handles inserts only, the second
handles reads only and the third handles a random case. The first two hypotheses have sub-
hypotheses each, where I distinguish between the fact that the requested page is already in the
buffer or not. Despite it is very unlikely that the first two hypotheses occur on an ordinary
database system, they give an interesting insight in their performance.

To set up the test environment, two relations have been created. Insert and read operations
are always performed on the first relation, whereas the second relation only contains one
tuple. Further the size of the buffer has been limited to one page. The second relation is used
to evaluate the two sub-hypotheses, where the requested page is not in the buffer. After every
access to relation one, the accessed page needs to be swappedout of the buffer. By reading
the tuple from relation two, the page in the buffer is forced to be swapped out. Hence the next
time a page from relation one is accessed, it won’t be in the buffer anymore.

Every hypothesis has been run 10 times. I started with performing 1000 insert or read-
access respectively and incremented the number of access by1000 every run. The read, write
and erase count will be shown each in separate graphs, whereas a fourth graph estimates the
overall runtime.

6.1 Hypothesis 1 - Insert only

6.1.1 Hypothesis 1.1 - Sequential Insert

This hypothesis evaluates how the implementations performin case of inserts only, whereas I
assume that the page, where the tuple is inserted, is not in the buffer. This results in swapping
out a page from the buffer and swapping in the requested page every time a tuple is inserted. I
call this sequential insert.

The expectation is, that the in-page logging approach performs at least as good or better
as the non-SSD implementation. The read- as well as write- and erase counts from the in-
page logging approach should be about 50% smaller, since almost every insert in the non-SSD
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implementation triggers an erase operation. Whereas with in-page logging, about only every
second insert should trigger an erase.

Figure 6.1 shows the read, write and erase count graphs of hypothesis 1.1, whereas Figure
6.2 shows the estimated runtime:
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Figure 6.1: Sequential Insert: Read, Write and Erase Count
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Figure 6.2: Sequential Insert: Estimated Runtime

According to the results the hypothesis has been fulfilled. In particular Figure 6.1 shows
the improvement due to in-page logging compared to the non-SSD implementation. Figure
6.2 is the logical conclusion of the previous figure. This result of nearly 50% improvement
validates the described effect of the in-page logging approach, that only about every second
insert triggers an erase operation.

6.1.2 Hypothesis 1.2 - Bulk Insert

This hypothesis evaluates how the implementations performin case of inserts only, whereas
the page, where the tuple is inserted, this time is in the buffer. I call this bulk insert.
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I expect identical results from both implementations. Since the actual page is always in the
buffer, they will only read the empty page once from the file into the buffer and will swap the
page out, if it is full. This implies, that the page will neverbe updated on disk. Hence there
should be no erase operations.

Figure 6.3 shows the read, write and erase count graphs of hypothesis 1.2, whereas Figure
6.4 shows the estimated runtime:
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Figure 6.3: Bulk Insert: Read, Write and Erase Count
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Figure 6.4: Bulk Insert: Estimated Runtime

As the results illustrate, the hypothesis was fulfilled. In both figures, Figure 6.3 and 6.4,
the graphs show identical results for both implementations. As expected, there are no erase
counts (Figure 6.3(c)).
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6.2 Hypothesis 2 - Read only

6.2.1 Hypothesis 2.1 - Random Read

This hypothesis evaluates how the implementations performin case of reads only, where I
assume that the page, that contains the tuple, is not in the buffer. That results in swapping out
a page from the buffer and swapping in the requested page every time we want to read a tuple.
I call this random read.

Because only read operations are performed, there should be no write and erase counts, in
neither of the implementations. According to the fact, thata read in the in-page logging ap-
proach results in reading the page and additionally its corresponding log, I expect that it will
result in more read count, and thus have worse write performance as the non-SSD implemen-
tation.

Figure 6.5 shows the read, write and erase count graphs of hypothesis 2.1. Figure 6.6 shows
the estimated runtime:
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Figure 6.5: Random Read: Read, Write and Erase Count
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Figure 6.6: Random Read: Estimated Runtime
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As the results illustrate, the hypothesis was approved. In both figures, Figure 6.5(a) and 6.6,
the graphs show the expected difference, which is the additional log that the in-page logging
implementation has to read from disk. As expected, there areno write and erase counts (Figure
6.5(b) and 6.5(c)).

6.2.2 Hypothesis 2.2 - Sequential Scan

This hypothesis evaluates how the implementations performin case of reads only, where the
page, that contains the tuple, is always in the buffer. I callthis hypothesis sequential scan.

I expect that the outcome of this hypothesis is similar to theprevious hypothesis 2.1 (random
read), and that the outcome has less read access than in hypothesis 2.1 (random read), since
the required page stays in the buffer. Nevertheless, the in-page logging approach still should
have more read counts, and thus a worse overall runtime.

Figure 6.7 shows the read, write and erase count graphs of hypothesis 2.2, whereas Figure
6.8 shows the estimated runtime:
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Figure 6.7: Sequential Scan: Read, Write and Erase Count

2 4 6 8 10

20

40

60

80

100

No. of Inserts (×1000)

E
st

im
at

ed
R

un
tim

e
(m

se
c) Non SSD

In-Page Logging

Figure 6.8: Sequential Scan: Estimated Runtime
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The outcome is, as expected, almost identical with the previous hypothesis 2.1 (random
read). As predicted there are no write and erase counts (Figure 6.7(b) and 6.7(c)). There is
also the slight gap in the read counts and runtime of the two implementations, because of the
additional log the in-page logging has to read. The only difference to hypothesis 2.1 (random
read) is the lower number of read counts due to buffering, hence also the estimated runtime.

6.3 Hypothesis 3 - Random Read and Write

This hypothesis evaluates how the implementations performfor random read and write access.
At the starting point, the relation is half full. This prevents the first couple of read operations
of reading nothing.

I expect that the in-page logging approach performs for every measurement at least as good
or better as the non-SSD implementation. The write as well asthe erase counts from the
in-page logging should be about 50% lower, since almost every insert in the non-SSD im-
plementation triggers an erase operation. Whereas for the in-page logging, only every second
insert on an existing page triggers an erase. Due to the higher read effort in the in-page logging
approach, I expect that the improvement in read counts does not fall out as high as expected
in the write- and erase counts. Nevertheless, the number of read operations in the in-page
logging approach should be clearly lower than in the non-SSDimplementation.

Figure 6.9 shows the read, write and erase count graphs of hypothesis 3, whereas Figure
6.10 shows the estimated runtime:
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Figure 6.9: Random Read and Write: Read, Write and Erase Count

The outcome covers my expectations of the hypothesis, as Figure 6.9 and 6.10 show. In
particular Figure 6.9(b) and 6.9(c) with an improvement of about 50% show the advantage of
the in-page logging compared to the non-SSD implementation. The improvement of 45% in
Figure 6.9(a) falls out fairly high too.

The difference of about 50% in Figure 6.10 shows clearly, that the additional write effort
to read the logs does not weight much, since read operations are highly efficient on a SSD.
Rather the reduction of almost 50% in erase operations is the main improvement. Less erase
operations imply also fewer write- and read operations.
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Figure 6.10: Random Read and Write: Estimated Runtime

6.4 Impact of Buffer Size

Further I wanted to know how the impact of increasing the buffer size turns out at both imple-
mentations. This evaluation was done with 100’000 access operations.

Figure 6.11 shows clearly that both implementations profit equally up to a certain point.
The block I/O gets static when the buffer has the capacity of keeping the whole relation into
it.
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Figure 6.11: Random Block IO by Varying Buffer Size

6.5 Summary of the Evaluation

The idea of in-page logging is mainly to use fast read access to reduce expensive erase op-
erations. Less erase operations implies also less read- andwrite operations, because an erase
consists of first reading the whole erase unit, merging the pages and rewrite the erase unit.
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Therefore it is a win-win situation concerning the read and write as well as erase counts. This
phenomenon is shown mostly in hypothesis 1.1 (sequential insert) and 3 (random read/write),
where we have about 45% less read-, and about 50% less write and erase counts. Due to the
in-page logging approach cuts the erase counts in half, the estimated runtime gain of in-page
logging comparing to a non-SSD approach is about 50%.
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7 Summary / Conclusion

Conventional access methods and algorithms can be used without any modification due to
the flash translation layer (FTL). Despite this possibility, this thesis showed, that the overall
performance of a key-value store can significantly be increased with small changes in the
implementation.

To show this increase, I implemented a key-value store and applied an approach called
in-page logging (IPL). The approach reduces the number of expensive erase operations by
introducing a log based system. Despite in-page logging utilizes only one positive ability of
flash memory and disregards the software layers of the SSD, the evaluation showed that the
increase of the overall performance is up to 50%.

As a future work, it would be interesting to investigate on how the approach performs with
the use of more log sectors per page. It should be possible to reduce the number of erase oper-
ations even more by using more reads. Further, it could be analyzed, how the implementation
performs on a real SSD.
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