
Master thesis
November 16, 2011

OntoX
A Scriptable Visualization Framework for the

Semantic Web

Stefan Zehnder
of Attelwil, Switzerland (02-918-563)

supervised by

Prof. Dr. Harald C. Gall
Michael Würsch and Matthias Hert

Department of Informatics software evolution & architecture lab

Master thesis

OntoX
A Scriptable Visualization Framework for the

Semantic Web

Stefan Zehnder

Department of Informatics software evolution & architecture lab

Master thesis

Author: Stefan Zehnder, stefan.zehnder@uzh.ch

Project period: 17.05.2011 - 17.11.2011

Software Evolution & Architecture Lab
Department of Informatics, University of Zurich

Acknowledgements

I would like to thank my supervisors Michael Würsch and Matthias Hert for all their ideas and
support during this work, and I also like to thank Professor Harald Gall for giving me the oppor-
tunity to write this interesting thesis.

Abstract

In information science, an ontology represents a shared vocabulary for a domain of interest with
the purpose to describe entities of the domain and the relationships between these entities. One
of the more common goals in developing ontologies, is to share a common understanding of the
domain knowledge among people and software agents. An agent can process large amounts
of data in native ontology syntax, whereas human beings need to have the data in a visualized
form to be able to detect patterns, structures, and elements in the ontology. But most of today’s
visualization tools have problems in scalability, cannot include domain specific knowledge, and
confront the user with too much visualized details.

The aim of this thesis is to create novel and powerful way for the user to analyse the data
integrated into ontologies. Therefore a framework named OntoX has been developed that can
read RDF/OWL files and present this data as an interactive information graph. In contrast to
traditional tools that only rely on the user interface to interact with the graph, OntoX comes with
its own implemented domain specific language. Through this simple language, a user can write
ontology specific scripts that filter out elements, modify the design, or change the structure of the
graph. Therefore the user gets a tool that assists him in analyzing the domain knowledge, and
allows an individual configuration for every ontology.

Zusammenfassung

In der Informatik versteht man unter dem Begriff Ontologie ein gemeinsames Vokabular einer
bestimmen Domäne, welches die Entitäten der Domäne und deren Beziehungen zueinander
beschreibt. Eines der häufigsten Ziele in der Ontologie-Entwicklung, ist das Teilen des gemein-
samen Verständnisses des Domänenwissens unter Menschen und Agenten. Ein Agent kann
riesige Mengen von Daten im nativen Ontologie Syntax verarbeiten, aber Menschen müssen die
Daten in visualisierter Form haben, damit sie Muster, Strukturen und einzelne Elemente ent-
decken können. Die meisten der heutigen gebräuchlichen Visualisierungstools haben aber Prob-
leme mit der Skalierbarkeit, können kein domänenspezifisches Wissen verwenden und konfron-
tieren den Benutzer mit zu viel Details.

Das Ziel dieser Arbeit ist das Erarbeiten einer neuen Möglichkeit, welche es den Benutzern er-
laubt das integrierte Wissen einer Ontologie in einer neuartigen Weise zu analysieren. Zu diesem
Zweck wurde eine neue Applikation namens OntoX entwickelt, welche RDF/OWL-Dateien lesen
und die Informationen dann in einem interaktiven Informationsgrafen darstellen kann. Im Gegen-
satz zu herkömmlichen Entwicklungen, welche nur eine Bedienung über die Benutzerschnittstelle
zulassen, kommt OntoX mit der eigenen implementierten domänenspezifischen Programmier-
sprache. Durch diese einfache Sprache kann ein Benutzer einfache Skripte erstellen, welche
es ihm erlauben Elemente des Grafen zu filtern, das Design oder die Struktur zu verändern.
Dadurch erhält der Benutzer ein Tool, welches ihm bei der Analyse einer Domäne unterstützt
und je nach Ontologie individuell konfiguriert werden kann.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Goal . 1
1.3 Structure . 2

2 Related Work 3
2.1 Semantic Web . 3

2.1.1 Resource Description Framework . 3
2.1.2 Ontology . 5

2.2 Visualization . 5
2.2.1 Challenges in graph visualization . 6

3 Background 9
3.1 Semantic Web Visualization Tools . 9
3.2 Mondrian . 10
3.3 Visualisation Frameworks . 11

3.3.1 Jung - Java Universal Network/Graph Framework 11
3.3.2 Prefuse . 12

4 Technological Foundations 13
4.1 Eclipse . 13
4.2 Jena . 14
4.3 Graphical Editing Framework (GEF) . 14

4.3.1 Draw2D . 14
4.3.2 Zest . 16
4.3.3 GEF . 17

4.4 Groovy . 17
4.4.1 Features of Groovy . 18
4.4.2 Groovy Builders . 20

4.5 Domain Specific Language . 22

5 OntoX Framework 23
5.1 OntoX Application . 23
5.2 OntoX DSL . 28

5.2.1 Graph Scripts . 29
5.2.2 Filter Scripts . 35
5.2.3 OntoX DSL in Action . 35

viii CONTENTS

6 Implementation Details 43
6.1 Architecture Overview . 43
6.2 OntoX Model . 44

6.2.1 History Tracker . 47
6.3 Graph Builder . 48
6.4 OntoX DSL . 48
6.5 GEF Implementation . 51

6.5.1 Controller (EditPart) . 51
6.5.2 Figures and their layouts . 53
6.5.3 Layout Algorithms . 54

6.6 Persistent Storage System . 55

7 Evaluation 59
7.1 Introduction . 59
7.2 Setup . 59
7.3 Results . 60

7.3.1 Tasks . 60
7.3.2 General Questions . 62
7.3.3 Features . 63
7.3.4 Remarks . 64

7.4 Discussion . 65

8 Final Remarks 67
8.1 Conclusion . 67
8.2 Future Work . 67

8.2.1 SPARQL Query Language for RDF . 68
8.2.2 Layout Algorithms . 68
8.2.3 Persistent Graph State . 69
8.2.4 Enhancing OntoX DSL . 69
8.2.5 Enhanced Script Editor . 71
8.2.6 Design . 71

A Survey 73

B Class Node.groovy 83

C Class Edge.groovy 87

CONTENTS ix

List of Figures
2.1 RDF statement example . 4

3.1 Visualized model with Mondrian . 11

4.1 FanRouter example . 15

5.1 Overview of the application components . 24
5.2 Script Wizard . 25
5.3 Node and edge labels . 26
5.4 Context menu . 27
5.5 Node and edge tooltips . 28
5.6 Standard visualization example . 36
5.7 Graph with adapted design . 38
5.8 Dynamically computed node sizes . 40
5.9 Subgraph containing the target nodes . 41
5.10 Collapsed subgraph node . 42

6.1 Overview of the application components . 43
6.2 OntoX Model . 46

8.1 Tooltip example for an analytical script . 70
8.2 GraphicsBuilder example shapes . 70

List of Tables
5.1 All possible values for “has” in a node selection statement. 30
5.2 All possible values for “set” in a node selection statement. 30
5.3 All possible values for “has” in an edge selection statement. 31
5.4 All possible values for “set” in an edge selection statement. 31
5.5 All possible values for changing settings of the graph (root node). 32
5.6 All possible values for “set” in a subgraph statement. 34
5.7 All possible values for “has” in a filter code block. 35

6.1 Overview over all controller (EditPart) classes. 51
6.2 Events to trigger the controller . 52

7.1 Results of task 1 . 60
7.2 Results of task 2 . 60
7.3 Results of task 3 . 61
7.4 Results of task 4 . 61
7.5 Results of task 5 . 62
7.6 Results of task 6 . 62
7.7 Results of task 7 . 62
7.8 General Questions . 63
7.9 Features . 63
7.10 Results of the participants experience . 65

x CONTENTS

List of Listings
3.1 Mondrian example script . 10
4.1 Example of MarkupBuilder for building HTML pages. 21
5.1 Basic structure of a select script . 29
5.2 Properites of the select object . 31
5.3 Select statement with eval code block . 32
5.4 Example for a ’subgraph’ statement . 33
5.5 Example for a ’filter’ code block . 35
5.6 Example script for changing the design of the graph 37
5.7 Script that dynamically computes the node sizes . 39
5.8 Script collects the nodes that represent a road . 41
6.1 OntoX DSL example script . 49
6.2 Example script with full syntax . 49
6.3 Implementation of the ’script’ method . 50
6.4 A more complex script example . 50
6.5 JPA entity example. 56
6.6 One to one reference example . 57
8.1 SPARQL query example . 68
8.2 Example scripts from GraphicsBuilder . 70

Chapter 1

Introduction

1.1 Motivation
The Semantic Web is a Web of Linked Data, an extension to the classic Web of Documents, in which
information is given a well-defined meaning. Through augmenting Web pages with data targeted
at computers, machines can understand the semantics, or meaning of information, in the World
Wide Web [BLHL01].

Through ontologies it is possible to enrich the data with additional meaning, defining relation-
ships between semantic data, and specifying logical rules for reasoning about it. The Semantic
Web has been proven useful whenever knowledge had to be processed by machines, and gained
more and more importance as the need of knowledge and technologies working together started
to grow.

Whereas machines can easily process all the information stored in RDF/OWL files, it is for
human beings much more cognitively challenging to understand these large and complex data
sets. Human beings therefore can benefit from visualization techniques that can visualize the data
as a graph, since graphs are often used to visualize relationships and patterns between entities.
Such graphs, produced from RDF triples, can contain more information, like implicit information
such as the underlying structure of a data model or which instances are most closely connected
[MG03].

Visualizing the Semantic Web is not a trivial task. The large data sets result in graphs that are
quite connected and overload therefore the graph with too much information. Also irrelevant
data and redundant information increase the complexity of the graph. There are other tools avail-
able for visualizing the Semantic Web in the form of a graph, but they have problems in scalability,
limited filtering, or cannot visualize certain ontology specific characteristics.

1.2 Goal
The goal of this thesis is to develop a novel visualization framework, named ONTOX, for display-
ing an information graph that is described in RDF/OWL. The visualized graph should allow a
user to incrementally explore the graph, by starting with a small set of nodes and then dynami-
cally adding or removing elements.

2 Chapter 1. Introduction

Additionally, the framework should possess its own domain specific language that allows a
user to create simple scripts that can alter the design and structure of the graph for the purpose
of graph customization and the use of domain specific knowledge. Another requirement is the
ability to filter unwanted node and edge elements from the graph to improve scalability and
preventing an information overload in the graph.

1.3 Structure
The remainder of this thesis is structured as follows: Chapter 2: Related Work introduces the Seman-
tic Web and gives some basic information about visualization techniques. Chapter 3: Background
lists some similar work that has been done in the area of Semantic Web visualization and presents
some basic visualization frameworks. Chapter 4: Technological Foundations gives an overview about
the basic technology that is used to build the ONTOX framework. In Chapter 5: OntoX Framework
the implemented application is presented with all its features, including the implemented domain
specific language that allows a user to interact with the application in a more complex way. Some
interesting details of the implementation, which helps to understand the structure and function-
ality of the framework, are presented in Chapter 6: Implementation Details. Chapter 7: Evaluation
list the results of the evaluation that was performed after the implementation of the prototype.
Chapter 8: Final Remarks concludes this thesis with a summary and some ideas how to improve
the ONTOX framework.

Chapter 2

Related Work

This chapter introduces the Semantic Web and some of its technologies, which form the basis for
this thesis. Also related work in information visualization is presented in this chapter.

2.1 Semantic Web
What is the Semantic Web? The World Wide Web Consortium [wc3b] states it as follows: “In
addition to the classic “Web of documents” W3C is helping to build a technology stack to support a Web
of data, the sort of data you find in databases. The ultimate goal of the Web of data is to enable computers
to do more useful work and to develop systems that can support trusted interactions over the network. The
term Semantic Web refers to W3Cs vision of the Web of linked data. Semantic Web technologies enable
people to create data stores on the Web, build vocabularies, and write rules for handling data. Linked data
are empowered by technologies such as RDF, SPARQL, OWL, and SKOS.”

Berners-Lee et al. [BLHL01] describes it as: “The Semantic Web is not a separate Web but an
extension of the current one, in which information is given well-defined meaning, better enabling computers
and people to work in cooperation.”

The Semantic Web is about the integration and combination of data drawn from different
sources. It is a presentation of information that can be interpreted by machines, so machines
become much more capable in processing and understanding the data that they merely display
at present.

2.1.1 Resource Description Framework
The Resource Description Framework (RDF) has been developed by the World Wide Web Con-
sortium (WC3). It is a language designed to standardize the definition and use of metadata. RDF
is designed to support the Semantic Web as a language representing information in the web and
providing a model for describing, and creating relationships between resources. The framework
describes a resource as an object that is uniquely identifiable by a Uniform Resource Identifier
(URI).

Resources are described in triples (also called statements). A RDF triple consist of the three
elements Subject, Predicate, and Object. These three pieces of information are all that is needed to
fully define a single bit of knowledge. The RDF triple allows the definition of information in a

4 Chapter 2. Related Work

consistent and human understandable way. The first part of the triple is the subject. It specifies
the resource that is being described with a triple. The predicate (also called property) defines the
kind of information one wants to express about the subject, e.g. an attribute, a relationship, or a
characteristic. The last element of the triple is the object. Within RDF, the object defines the value
of the predicate. It can be a literal or another resource. Each triple represents a complete unique
fact.

The RDF Core Working Group decided to use a directed labeled graph for describing the RDF
data model. A directed graph consists of a set of nodes which are connected by an arc, where
the subject is the source node of the directed graph, the predicate is the arc that connects the two
nodes, and the object is the target node in the directed graph.

As an example, the sentence “Tolkien wrote Lord of the Rings.” can be transformed into an
RDF statement: Subject “Tolkien”, predicate “wrote”, and object “Lord of the Rings”. If this
information would be visualized, then the graph would look as shown in Figure 2.1.

(a) Visualized triple

(b) Triple with URIs

Figure 2.1: RDF statement example

To access a specific resource object, a unique identifier is needed. URIs provide a common
syntax for naming a resource, regardless of the protocol to access the resource. URIs are related
to URLs (Uniform Resource Locators), both can either include a complete location or a path to
a resource or a partial or relative path. The URI can optionally include a fragment identifier,
separated by a “#” character. In the following example

http://books.net/writer#Tolkien,

is Tolkien the fragment and the rest represents the URI.

Namespaces can be used to simplify the URIs. A namespace can be defined in RDF/XML in
the form of

xmlns:rdf=http://www.w3.org/1999/02/22-rdf-syntax-ns#

then an element in RDF, like

http://www.w3.org/1999/02/22-rdf-syntax-ns#resource,

can be shortened to

rdf:resource.

2.2 Visualization 5

RDF Schema (RDFS) is an extension of the Resource Description Framework and provides a
higher level of abstraction. It provides a type system for RDF. RDFS allows resources to be de-
fined as classes, properties and values. Classes are also resources but they are also a collection of
resources. Resources that belong to a class are called individuals of that class. RDFS can also be
used to define relationships among classes and resources [Pow03, Car06].

2.1.2 Ontology
[wc3a] defines an ontology in the following way: “On the Semantic Web, ontologies define the concepts
and relationships used to describe and represent an area of concern. Ontologies are used to classify the
terms that can be used in a particular application, characterize possible relationships, and define possible
constraints on using those terms.”

Ontologies are the structural frameworks for organizing information. The Web Ontology Lan-
guage (OWL) is a semantic markup language for publishing and sharing ontologies. It has been
developed as a vocabulary extension of RDF. A OWL class is an abstraction mechanism for group-
ing resources with similar characteristics, its individuals are called instances.

OWL distinguishes two main categories of properties: “Object properties” (instance of class
owl:ObjectProperty), which links individuals to individuals, and “Datatype properties” (instance
of class owl:DatatypeProperty), which links individuals to data values.

Data values in OWL are instances of the RDFS class rdfs:Literal. Literals can be either plain, they
have no datatype, or typed, they have an rdf:datatype attribute. All datatypes are instances of the
class rdfs:Datatype [OWL04].

2.2 Visualization
In their schematic form, XML/RDF data can barely be understood by human begins. It is possible
to read small sets of RDF data, but almost impossible to keep an overview or track relationships
between the elements. Human beings need the data in another form to work with it. Here comes
the field of Information Visualization into play that describes how to transform the information
into a visual form. This way, human beings can explore and understand large amounts of in-
formation. To visualize information, users rely on applications that can read the data and create
a visual representation out of it. Information is mostly represented in the form of a graph with
nodes and edges, where nodes represent single entities and edges represent the relationship be-
tween two entities.

Cui [Cui07] states the following reasons why graphs are powerful visualization tools:

• Graphs are very simple models that can be applied to various fields. Every data set, that
has internal relationships, can be modeled as graph, e.g. World-Wide-Web.

• Graphs are an abstract concept having a specific definition: The long history of graph the-
ory has a very solid foundation and comes with a set of powerful algorithms for graph
processing.

• Human beings have strong visual processing abilities. Information can be directly perceived
and used without being interpreted and formulated explicitly.

6 Chapter 2. Related Work

• The most powerful way, to express that there is a relationship between graphical elements,
is to connect them by a line.

Shneiderman [Shn96] presents seven tasks that an information visualization application should
support:

1. Overview: Gain overview of the entire data collection. This may include a separate zoomed
out view that contains a movable field-of-view box to control the contents of the detail view.

2. Zoom: Zoom in on items of interest. Smooth zooming helps users to preserve their sense of
position and context.

3. Filter: Filter out uninteresting items. Users need to control the content of the display, so they
can quickly focus on their interests by eliminating unwanted items.

4. Details-on-demand: : Select an item or group and get details when needed. A simple example
would be a pop-up window that contains details about the selected item.

5. Relate: View relationships among items.

6. History: Keep a history of actions to support undo, replay, and progressive refinement. Nor-
mally, the process of information exploration has many steps, therefore the history of actions
allows the user to retrace his steps.

7. Extract: Allow extraction of sub-collections and of the query parameter. Store desired sub-
part of the collection.

Tufte [Tuf01] builds a set of common-sense principles for data visualization:

1. Show the data: Show the data in its full complexity and let viewers make their own discov-
eries.

2. Tell the truth: Visual representations of data must tell the truth.

3. Help the viewer to think about the information rather than the design: Focus on content of data
not the visualization technique.

4. Encourage the eye to compare the data: Comparative rather than descriptive visualizations

5. Make large data sets coherent: Present huge amounts of information compactly and reveal the
data at several levels of detail.

2.2.1 Challenges in graph visualization
Graph visualization is a complex field, since it draws on ideas from several intellectual domains:
computer science, psychology, semiotics, graphic design, cartography, and art. This makes the
task of analyzing a set of data with relations, full of challenges. One of these challenges is the size
of the graph, because large graphs can cause difficult problems: Algorithm complexity, display
clutter, readability, and navigation.

• Algorithm complexity: The bigger the graph gets, the longer the processing time takes to
compute the layout which makes it hard for real-time graph interaction.

• Display clutter: The more data items are visualized in the graph, the more the graph becomes
cluttered and visually confusing.

2.2 Visualization 7

• Readability: Human perceptual abilities usually require a small graph size.

• Navigation: How to navigate through a huge graph without getting lost? Users are having a
problem to keep the overview over large graph with only a small display.

Another challenge is the complex data structure. Current data items typically can contain more
than three attributes. A graph can have different types of nodes and links, because of the complex
data structure, e.g. in an ontology graph, a node could be a resource or literal. To represent all this
information at the same time, is a challenging task that can be solved by using visual cues, such
as color, shape, or transparency. But these solutions also lead to another question: How should
different information be visualized? Because due to the constraint of the human perception, some
visual attributes have more representational power than others. For example, some pairs of colors
are more distinguishable than others [Cui07].

Novak [Nov02] lists the size of the graph also as a key issue in graph visualization. Large
graphs can compromise performance or can even reach the limit of the viewing device. If the
number of elements is large then it will become impossible to discern between nodes and edges.
Another problem is that the layout algorithms may not scale up when displaying thousand of
nodes, and can make an algorithm completely unusable. Navigation and interaction is a very
important help for information visualization when dealing with large graphs. One of these in-
teraction tools is zooming and is quite indispensable in exploration of large graph structures.
Zooming may lead to the lost of the contextual information, therefore keeping the focus is a very
important complement to zooming. Two other important features, that help when dealing with
large graphs, are clustering and filtering. Clustering is the process of grouping information to
achieve more recognizable presentation of source data. Data Filtering should be used to reduce
the amount of visualized information.

Chapter 3

Background

This chapter introduces some existing visualization tools that are used for visualizing the Seman-
tic Web. It also provides an example of a framework that comes with its own scripting language
for displaying data models. At the end of this chapter, several basic graph visualization frame-
works are presented that can be used to visualize information as graphs.

3.1 Semantic Web Visualization Tools
In this section some tools are presented that provide aid in the visualization of RDF/OWL files.

RDF Gravity

RDF Gravity (RDF Graph Visualization Tool) [GW04] is a tool for visualizing RDF/OWL graphs.
The tool allows the user to specify global and local filters. Global filters can hide or show specific
edges based on their type. Local filters can be used to hide or show particular instances of nodes
or edges. RDF Gravity has a full text search implemented to search over concepts, properties
and instanced specified in a RDF file. A user has the ability to select multiple elements in the
graph and change their position simultaneously. Also a Zoom functionality is integrated into
the tool. The nodes and edges have different colors, styles, and figures according to the type they
represent. RDF Gravity allows the user to make RDQL (RDF Data Query Language) queries to the
RDF model and show the result directly in the graph. The strengths of the tool are the advanced
filter capabilities and the possibility to use queries, but it is not ideal with respect to layouting.
When a lot of elements need to be visualized, the graph gets too clustered.

OntoGraf

OntoGraf [pro] is an OWL visualization plug-in for the Protégé application. Protégé is an on-
tology editor and a knowledge-base editor. OntoGraf supports the interactive navigation of the
relationships of an ontology. The plug-in comes with a set of different layout algorithms like
spring, tree, radial, and grid. It allows the filtering of nodes and relationships to help the user to
create the desired view of the ontology. Additional features are zooming capabilities, and con-
figurable tooltips that show detailed information about nodes and edges. The plug-in allows the
user to incrementally explore an OWL file.

10 Chapter 3. Background

GrOWL

GrOWL [KWV07] is a tool developed to visualize and edit OWL ontologies. It has been used
in the Ecosystem Services Database, a data and analysis portal to assist the informed estimation
of the economic values of ecosystem services. When a user enters a query into the database,
the result is displayed with GrOWL. GrOWL also allows the development of ontologies. The tool
comes with a set of layout algorithms that can be used for automatic layouting, but also allows the
manual layout of individual nodes. The filer mechanism of GrOWL can restrict the view only to
show class definition, the subclasses, the superclasses, or all instances associated with a selected
node. GrOWL has implemented a prefix search: User can search for nodes using incremental
matching.

Jambalaya

Jambalaya [SNM+02] is a visualization tool for Protégé, designed to support ontology evolution
and knowledge acquisition. In addition to standard visualization techniques, representing RDF
data as nodes and edges, Jambalaya allows the nesting of nodes. A node representing a class can
have nested nodes representing subclasses or instances of that class, which in turn can have other
nested nodes, representing instances of those instances. To handle scalability issues, Jambalaya
loads data incrementally from large data sources, strictly on as needed basis.

3.2 Mondrian
Another approach for the visualization of data is described by Meyer et al. [MGL06]. Instead of
using a specific data format that can be a visualized by the tool, an interface has been created that
allows the programmer to script the visualization.

To best way to understand Mondrian is to start with a script example (Listing 3.1) that visualizes
a data set. The basic element in Mondrian is the view element which allows the programmer to
paint on it. The next step is to add the nodes to the view. The example is built on a model of a
source code with 38 classes, and the goal is to create a simple overview of the classes and show
their relationships. The model object is the source of the classes. Each class is represented in the
view as a node with the form of a rectangle with border. To give the rectangles different shapes,
and therefore more meaning to the visualized parts: The methods of the object, representing a
class, are used to set the width and the height and color of the object. In the example, the method
NOM (Number of Methods) returns the number of methods the class has, and its value is used
as the width for the rectangle. To show inheritance relationships in the view, the example uses
edges.

Listing 3.1: Mondrian example script

1 view := ViewRenderer new.

2 view nodes: model classes

3 using: (Rectangle withBorder width: #NOA;

4 height: #NOM; linearColor: #LOC

5 within: model classes).

6 view edges: model inheritances

7 using: (Line from: #superclass to: #subclass).

8 view open.

3.3 Visualisation Frameworks 11

Other features of Mondrian, to further enhance the graph, are Layouting, Nesting, Adding inter-
edges and Decorating Shapes. Layouting is used to the rearrange the nodes in another form than in
a horizontal line, for example a tree. Nesting is used to show more details for a class, like “What
are the methods in the class?”, as a result, the rectangle of a class representation, has now additional
inner nodes to indicate the methods for the class. Another possibility is to add the inter-edges to
show the invocation interaction between the classes and their methods. The last feature is used to
add some decorations to the shape e.g. adding arrows to the edges to show the inheritance path.
The result with the additonal features is shown in Figure 3.1.

Figure 3.1: Visualized model with Mondrian [MGL06].

Mondrian shows a powerful approach that allows a programmer to quickly draft rich visual-
izations of a data model. But it does not provide real-time interaction with the visualized data or
cannot provide on-demand information about the displayed elements via the user interface. To
change the visualization, one needs to change the script. In contrast to Mondrian, the presented
framework in this thesis will provide a basic user interface that allows the interaction with the
displayed elements, but also allows the creation of specific scripts to improve the visualization of
information.

3.3 Visualisation Frameworks
In this section some generic visualization frameworks are presented that can be used to visualize
information in the form of graphs.

3.3.1 Jung - Java Universal Network/Graph Framework
Jung [MFN03] is a framework for the modeling, analysis, and visualization of graphs. The frame-
work simplifies the creation of a graph, allows annotating of graph elements with any type of
data, has its own drawing system and provides several layout algorithms. It is designed to be
easy extendible for any kind of graph. The framework can handle dynamic graphs and also has a
filter mechanism integrated.

The framework allows several ways to create a graph. The developer can load a graph from
specified file types. The graph can also be built from scratch by specifying all nodes and edges.
Another possibility is to use the graph generator. User defined data can be added through key-
value pair association with graphs, edges, and nodes.

12 Chapter 3. Background

Jung also comes with set of implemented layout algorithms, like Spring, Fruchterman-Rheingold,
and others. The provided rendering engine is based on Java Swing and has different implemented
renderers that draw the nodes and edges. Jung also comes with a couple of functions for statistical
analysis: Average shortest path, clustering coefficients and others. It is an ideally suited frame-
work for building tools/applications related to network exploration and data mining [MFS+05].

Although it is a very powerful and advanced framework, it does not perform well, when the
amount of nodes increases. An early prototype of the ONTOX framework was implemented in
Jung, but a couple of hundred nodes already slowed the rendering process considerably down.
Some part may be caused by Java Swing, which still does not perform as well as a native im-
plemented graphics engine. Another problem is that Jung renders always the entire graph. If
something changes the entire graph is redrawn, it is not possible to create a partial refresh of a
couple of elements.

3.3.2 Prefuse
Prefuse [pre06] is a Java user interface toolkit for constructing interactive information visualiza-
tion applications. It provides support for visualization, animation, and interaction. The toolkit is
built in Java using the Java2D graphics library.

The visualization process of Prefuse starts with abstract data set that needs to be visualized. The
abstract data can represent a node, edge, tree node, graph or tree. The abstract data is the complete
data set. Prefuse also has some functionality implemented to save or load such graph data sets.
The next step, after the abstract data has been prepared, is to select which part of the data should
be visualized. This process is called filtering in Prefuse. The toolkit creates visual analogues from
the abstract data set. These visual analogues are then the subjects of all subsequent processing
(e.g. layout, rendering). The last part of the visualization process is the view component which
takes control of the screen drawing and interaction with the visualized data set. The implemented
renders take care of painting the visual analogues [HCL05].

Prefuse is powerful toolkit to visualize different sorts of data sets, and also comes with a couple
of already implemented layout algorithms. It allows configuration of the system on different
levels. But Prefuse does not seem to be further developed, the last release was made in 2007.

Chapter 4

Technological Foundations

This chapter is intended to give an overview of the fundamental frameworks that are used to
build ONTOX. It will give some basic knowledge about the platform where ONTOX is build on
top of it. Also the core process and components of the drawing framework are explained here.
The chapter concludes with a presentation of the programming language Groovy and introduces
the core elements that are necessary to create a domain specific language.

4.1 Eclipse
Eclipse1 is an Integrated Development Environment (IDE) that is mostly written in Java. It can
be used to develop applications in Java and other programming languages. But Eclipse is also a
general tools integration platform and provides the Eclipse Rich Client Platform (RCP) for devel-
oping general purpose applications.

Eclipse provides the basic functionality to run or create additional modules that extend the
Eclipse platform. These modules, called plug-ins, represent the smallest unit of an Eclipse func-
tion that can be developed and delivered separately. Plug-ins are coded in Java, therefore a plug-
in consist of Java classes, libraries, and other resources (e.g. images). All plug-ins have a manifest
file declaring its interconnections to other plug-ins. An interconnection to a plug-in is defined
through a named extension point, which can be extended by other plug-ins, otherwise an extension
is a connection to an extension point in another plug-in [BdR06].

Eclipse provides a useful basis for implementing the ONTOX framework, through its plug-in
architecture, the ONTOX framework can be built as an extension to the Eclipse environment or to
create a standalone RCP application.

Standard Widget Toolkit (SWT)

The Standard Widget Toolkit (SWT) provides a common OS-independent API for widgets and
graphics implementation. All information that is presented to the user, through the user interface
on the Eclipse platform, is implemented on top of SWT. SWT uses native widgets to create buttons,
lists, menus, etc., when they are available, otherwise SWT emulates these widgets. Through the
tight interaction with the native window system, SWT gets an authentic native look and feel, has
good performance, portability, and is a robust basis for GUIs [BdR06].

1Eclipse - http://www.eclipse.org/

14 Chapter 4. Technological Foundations

4.2 Jena
Jena1 is a Java framework for building Semantic Web applications. The framework was initially
created by the HP Labs Semantic Web Programme and is open source. Jena comes with an API for
RDF, RDFS, OWL, and the query engine SPARQL. It can read and write RDF in RDF/XML, N3
and n-Triples form. The framework also includes an in-memory and a persistent storage system.
It is one of the most widely used Java APIs for RDF and OWL.

Jena provides helper methods to read an RDF or OWL file. The data is then stored in a Jena
Model or OntModel object, from where the data can be queried. A basis type, to represent a RDF
resource or literal, is the RDFNode. Important extended classes of RDFNode are therefore Resource
and Literal. RDF statements are presented through objects of type Statement. Jena has different
methods and classes implemented to query the model. All this methods return a RDFNodes or
Statements, either as single object or as a list [jen].

4.3 Graphical Editing Framework (GEF)
The Eclipse Graphical Editing Framework (GEF) supports the creation of rich graphical editors
and views as part of the Eclipse platform. It consists of three frameworks Draw2D, Zest and GEF.
The last framework shares the same name as the Eclipse project name. In the rest of this work the
name GEF will be used for the framework and not as the project name. The next sections will give
a more detailed overview over these three frameworks and show what their main functionalities
are.

4.3.1 Draw2D
Draw2D is a lightweight drawing framework for displaying graphical information on a Standard
Widget Toolkit (SWT) canvas. The term lightweight means that all graphical components, which
are called figures, are simply Java objects, with no corresponding resource in the operating sys-
tem. On the other hand the SWT canvas is heavyweight because each SWT widget has an OS
specific resource associated with it. The basic purpose of the framework is to render figures onto
the canvas and to coordinate all aspects of displaying and interaction for a particular Draw2D
diagram. Figures can be “nested” or “composed” of other figures in such a way that complex
figures can emerge from simple geometric shapes and images. One important component of the
Draw2D framework is the UpdateManager. It tracks which areas of the diagram have changed and
need to be refreshed. Therefore the UpdateManager notifies only those figures in the diagram that
need to be redrawn. This makes Draw2D more efficient and scalable for interacting with large
graphs. Another framework component is the EventDispatcher which routes SWT events, such as
mouse and keyboard events, to the appropriate figures on the canvas. Whenever a figure receives
an event from the EventDispatcher, it redirects that event to any listeners attached to the figure
which processes the event.

Figures

As mentioned before the Draw2D canvas contains figures, which are the basis elements and can
contain additional figures. The z-order and the nesting of each figures determines what part of a
figure is visible to the user and need to be rendered and painted. The painting process for each

1Jena - A Semantic Web Framework for Java - http://jena.sourceforge.net/

4.3 Graphical Editing Framework (GEF) 15

figure is split into several steps: painting the client area, the children, and the border. Draw2D
comes with set of common figures such as line, rectangle, polygon and ellipse that can be used.

Connections

Connections are specialized figures that draw a line between two locations on the canvas. They
are normally used to connect two figures. Since it is important to distinguish between the start
and the end of a line, in a directed graph, the beginning is called the source and the end is called
the target. Both the source and the target have their own anchors. The anchor is responsible
for computing the location where the connection starts or ends. This means that each figure, to
which a connection connects to, needs a specialized anchor to compute the correct intersection
point between the connection figure and the node figure. Each connection can have a decoration
associated with it. The decoration is a rotatable figure that is used to add an arrowhead or some
other figure to the connection figure.

Standard connections normally draw a straight line form the source anchor to the target anchor,
through using the default connection router. The connection router determines the path a con-
nections takes from the source to the target anchor. Each connection can have its own connection
router associated with it. For example the FanRouter is useful if there are connections that have
the same source and target anchor. As soon as the router detects an additional connection with
the same source and target anchor, it adds a bendpoint so that the connections to not overlap
(FanRouter example in Figure 4.1.

Figure 4.1: FanRouter example [RWC11]

Layers and Viewports

Draw2D uses different layers for different content. All layers are stacked on top of each other.
The layer on the lowest level, the primary layer, contains the figures representing the content. On
top of the primary layer is the connection layer, containing all the connections in the application.
The order of the layers can be switched, for example to hide the connections behind the content
figures, otherwise straight line connections would draw over other figures that are in between.

Draw2D creates automatically a viewport for showing only a portion of the underlying layer. If
the figure is bigger than the user’s interaction window, the viewport automatically adds scrollbars
to the window. The FreeformLayer with its FreeformLayeredPane is a special primary layer that
allows the expansion of space in any direction. An enhanced version of the FreeformLayeredPane,
the ScalableFreeformLayerdPane add scaling capabilities to he layer, e.g. to zoom in and out of the
layer.

16 Chapter 4. Technological Foundations

4.3.2 Zest
The previous section showed the Draw2D framework, which provides the basic drawing func-
tions to create advanced graphical items. Zest is another framework that is implemented as a
layer on top of Draw2D. It provides an easier way to present the model information in diagram
form than just using Draw2D. It can be used to paint a graph based on nodes and edges. On
one side Zest facilitates the presentation of model, but on the other side it limits the presentation
format and the ability to edit that information.

Zest also comes with its own set of layout algorithms, like a Tree or Spring layout algorithm
for arranging the nodes in a graph. The layout algorithms are not bound to Zest and come in
a separate package, therefore they can be used in other implementations that don’t need Zest’s
graphical layer. It also comes with a couple of layout algorithms that can be used in combination
with another layout algorithm.

Zest has the following layout algorithms implemented in release version 1.1.0 [RWC11]:

• CompositeLayoutAlgorithm: Used to combine multiple layout algorithms in sequence.

• DirectedGraphLayoutAlgorithm: Positions nodes in a single vertical column with root
nodes on top of one another in the first row, child nodes on top of one another in the second
row, and so on.

• GridLayoutAlgorithm: Positions nodes in a grid filled left to right, then top to bottom.

• HorizontalShift: Repositions nodes horizontally so that they do not overlap and take up
the least amount of horizontal space. This algorithm is normally used in combination with
other layout algorithms.

• HorizontalLayoutAlgorithm: Positions all nodes in a single row, evenly spaced within the
current width of the diagram.

• TreeLayoutAlgorithm: Positions root nodes in the first row, child nodes in the second row,
grandchild nodes in the third row, and so on.

• HorizontalTreeLayoutAlgorithm: Similar to a TreeLayoutAlgorithm but positions root nodes
in the first column, child nodes in the second, grandchild nodes in the third, and so on.

• RadialLayoutAlgorithm: Positions nodes similarly to the TreeLayoutAlgorithm except with
the roots at the center, child nodes in a circular fashion around the root nodes, grandchild
nodes in a circular fashion around the child nodes, and so on.

• SpringLayoutAlgorithm: positions nodes having more connections toward the center of
the diagram and nodes having fewer connections around the edges.

• VerticalLayoutAlgorithm: Positions all nodes in a single column.

It is also possible to implement custom layout algorithms or extend the existing ones. The next
version of the Zest Layout Package will come with additional layout algorithms, that can be easily
integrated into the ONTOX framework through their modular implementation.

4.4 Groovy 17

4.3.3 GEF
This section will have a look at the Graphical Editing Framework (GEF) plug-in. Both Zest and
GEF are built on top of Draw2D whereas Zest is a simpler framework that requires fewer lines of
code than GEF. If Zest provides all functionality one needs then there is no reason to use GEF. But
GEF provides more customization and flexibility for both rendering a model and interacting with
a model. It enables developers to design a visual representation of a model component, using
Draw2D figures. Trough GEF a developer can easily add editing rules, listeners and business
logic to a GEF diagram.

The framework is based on the Model-View-Controller (MVC) architecture. The MCV archi-
tecture has three main components: the model, view, and controller. The model manages the be-
havior and data of the application domain. It responds to request for information about its state
(normally from the view), and responds to instructions to change the state (normally from the
controller). The model contains the business logic and information that persists among appli-
cation sessions. Listeners attached to model objects are notified when state changes occur, sent
by the controller. GEF can display man different types of models from Plain Old Java Objects
(POJO) model to Eclipse Modeling Framework (EMF) models. The view renders the model into a
visual interactive representation, the user interface. It is responsible for drawing the diagram and
passing user events to any attached listeners. View elements are normally built out of Draw2D
figures. The controller receives user input from the view and initiates a response by making calls
on model objects. In the other direction, the controller updates the view when the underlying
model changes. Implemented objects of the controller are in GEF called EditParts.

GEF provides the developer with additional functions to easily create a graphical editor. One
example is commands. A command encapsulates a single change to the model, like create or
delete a visual element. After a command is executed, it is placed on the command stack. This
allows the user choose an undo or redo operation at a later time. To control a particularly type
of behavior, that can be performed on a model element, GEF uses EditPolicies. An EditPolicy con-
trols the commands that can be performed on a model, defines the feedback a user sees, and can
delegate/forward the defined behavior to other EditParts and EditPolicies. GEF also provides the
developer with a series of predefined actions for creating some basic menu items and associating
them with their appropriate commands e.g. Undo, Redo, Edit, and Delete.

Another useful feature of GEF is the creation of a palette and tools. A palette can contain several
toolbars and each toolbar can hold several tools. In an implemented toolbar a user can select a
tool to perform an operation on the editor. A palette can contain serveral different types of tools,
useful for the selection of existing elements, and creation of new elements and connections, and
other needed tools [RWC11].

4.4 Groovy
Groovy1 is an agile dynamic language for the Java Platform with many features that are inspired
by languages such as Python, Ruby and Smalltalk. Groovy is often referred as a scripting lan-
guage, but it also can be precompiled into Java bytecode and be integrated into Java applications.
The language is closely tied to the Java platform, because a part of its basis is implemented in
Java whereas the rest is programmed in Groovy itself. Groovy allows harnessing the power of the
Java platform with all its available libraries. The integration of Groovy in Java is easy since every
Groovy type is a subtype of java.lang.Object and every Groovy object is an instance of a type in a

18 Chapter 4. Technological Foundations

normal way. Using Groovy in Java is also easy: If the Groovy class files are in the same classpath
then the Groovy classes can be used in a normal fashion [KGK+07].

4.4.1 Features of Groovy
Groovy comes with a set of features that distinguish this language from Java and allows a de-
veloper to code at a higher level. This section explains some of these features with examples
presented by Dearle [Dea10]. Only those features are considered here that are important in con-
nection with the creation a domain specific language.

Static and optional typing

In statically-typed languages, variables must first be declared with a type before they can have a
value assigned to them. In Groovy is assigning a type optional. The type can be left out and will
then be determined at the time of value assignment:

String str1 = "I’m a String" //with type definition
str2 = "I’m also a String" //without type definition

Native support for lists and maps

Groovy adds a native support for all of the Java collection types:

authors = [’Shakespeare’, ’Beckett’, ’Joyce’, ’Poe’] //List
book = [fileUnder: "Software Development",title: //Map

"Groovy for DSL" , author: "Fergal Dearle"]

Closures

One of the most powerful language features of Groovy are closures. Closures are anonymous
code fragments that can be assigned to a variable and reused whenever needed. They also can
contain as many statements as needed, and optionally may specify a list of identifiers in order to
name the parameters passed to it, the “->” arrow marks the end of the identifiers list.

//Example 1

biggest = { number1, number2 -> number1<number2?number2:number1 }
// The method can be invoked through the call method of the Closure class
result = biggest.call(7, 1)

// The closure reference can be used as if it was a method
result = biggest(3, 5)

// And with optional parenthesis
result = biggest 13, 1

1Groovy - http://groovy.codehaus.org/

4.4 Groovy 19

//Example 2

def evenClosure = {element -> //closure that prints even numbers
Number number = Integer.parseInt(element)
if (number%2 == 0){

print number + " "
}

}
numbers = ["1", "2", "3", "4", "5", "6", "7", "8"]
print ("Even Numbers-->")
numbers.each(evenClosure) //closure can be passed as arguments

Optional syntax

Groovy comes with a couple of syntax simplifications. As already mentioned before, variable
type annotations are optional. The type will be determined at runtime:

int a = 3
b = 2 //determined at runtime
String t = "hello"
s = ’there’ //determined at runtime

The trailing semicolon at the end of a statement is also optional. As long as every statement is on
a separate code line, then semicolons are not needed:

int a = 3; int b = 4;
c = 2
d = 5; e = 6

The parentheses in method calls are also optional when the called method has some parameters
that are passed on. The same works also for closures, they dont need parentheses when they are
called.

println(a);
c = 2
print c
printit = { println it }
printit c

All the optional syntax creates a much looser programming style and is a big benefit when
Groovy is used to build a Domain Specific Language (DSL). Through dropping the semicolons
and parentheses the code gets more legible for a non-technical audience.

with full syntax:
Account account = getAccountById(234);
creditAccount(account, 100.00);

with removed optional syntax:
account = getAccountById 234
creditAccount account, 100.00

20 Chapter 4. Technological Foundations

Scripting Support

Groovy provides a GroovyShell class for loading and executing Groovy code at runtime. The
GroovyShell can evaluate any expression or script in Groovy. Through the Binding class, variables
can be altered from outside the script, or created outside of a script and passed into it.

// call groovy expressions from Java code
Binding binding = new Binding(); //Init Binding object
binding.setVariable("foo", new Integer(2)); //’foo’ = Integer(2)
GroovyShell shell = new GroovyShell(binding); //Init Groovy shell

Object value = shell.evaluate(
"return foo * 10"

);

print value; //prints 20

4.4.2 Groovy Builders
Design patterns are in general reusable solutions to commonly occurring problems in software
engineering. One type is called “creational patterns”. The creational design patterns hide the
instantiation process and therefore help make a system independent of how its objects are created,
composed, and represented. One example for the creational pattern is the “Builder” pattern. The
builder pattern is central element in Groovy for creating a domain specific language and therefore
also used in this thesis for implementing the ONTOX DSL (section 6.4).

Gamma et al. [GHJ94] states the intent of the builder pattern as followed: “Separate the construc-
tion of a complex object from its representation so that the same construction process can create different
representations.” The builder pattern can be applied when the building process of a complex object
should be independent of the parts that create the object, or when the construction process must
allow different representations for the object that is being constructed

The builder pattern has four participants:

• Builder: The Builder is an abstract interface which specifies methods that are used to create
parts of the of a product object.

• ConcreteBuilder: This is the concrete implementation of the builder interface that con-
structs a specific product.

• Director: The Director constructs an object using the builder interface methods.

• Product: The Product is the result of the building process. It represents the complex object
that is under construction.

These four participations work in the following way: The client instantiates the director object
and configures it with a builder object. Next, the director informs the builder whenever a part
of the product should be built. The Builder handles the request from the director through the
interface methods and adds parts to the product. When the product is ready, the client retrieves
the finished product object from the builder ([GHJ94]).

4.4 Groovy 21

The builder pattern is also implemented in Groovy which is a powerful part of this language.
Normally one would expect a director component that is implemented through a director class,
but Groovy takes this a step further by providing the GroovyMarkup, as a mini DSL, that is di-
rectly embedded in the building process, right into the language (Example in Listing 4.1). The
GroovyMarkup is nothing more than a method call syntax combined with closures and named
parameters. Groovy provides various native support for different markup languages from XML,
HTML, SAX, W3C DOM, Ant tasks, Swing user interfaces and so forth. The GroovyMarkup scripts,
have an unusual syntax, but are still just plain Groovy scripts and can therefore combined with
regular program logic.

Listing 4.1: Example of MarkupBuilder for building HTML pages.

1 def html = new groovy.xml.MarkupBuilder()

2 html.html {

3 head {

4 title "HTML Example Page"

5 }

6 body {

7 h1 "Example heading for HTML page."

8 }

9 }

The GroovyMarkups are implementations of the MarkupBuilder, which is derived from the Builder-
Support class. The BuilderSupport class is basis for building the own custom builder. According to
[Dea10], it is not necessary to understand how the builder is implemented, but it is important to
understand how the builder pattern relies on just a few important Groovy language features:

• Closure method calls: Methods in Groovy can accept closures as parameter. Groovy allows
the developer to define the body of the closure after the method call and after the other
parameters. Therefore the closure block in a builder, looks like a named block of code.

• Closure method resolution. When a method is invoked with the body of a closure and that
method does not exists, then Groovy tries to locate the missing method in another object.

• Pretended methods: Groovys Meta Object Protocol (MOP) allows the developer to respond
to method calls that do not exist in a class. One can therefore “pretend” that a method exists.

• Named parameters: Individual map elements can be passed alongside other method pa-
rameters, giving the effect of a named parameter list.

• Closure delegate: The owner of a closure can be changes through the delegate property,
which allows another class to handle its method calls. A builder can therefore manipulate
by whom the methods are handled.

To implement a builder, one has to create a new class that extends the BuilderSupport class,
which provides an interface that implements a node based construction process, the createNode(
Object name, Map attributes, Objects value) method. This method is called when-
ever a pretended method is encountered, a method that does not really exist but has been entered
in the code block. The name parameter contains the name of the pretended method call. The
createNode method catches all method invocations in the closure code block that are pretended

22 Chapter 4. Technological Foundations

method calls. The attributes parameter is a map that contains all passed key-value parameters
to the prevented method. The value represents a single object, that was also passed to the pre-
tended method. The createNode method can return any type of object, which then can be used
in the next code block, if it is a nested structure. With this node based construction process, the
BuilderSupport takes therefore care of pretended methods and also delegation. A developer has
just to implement the createNode method and can take care of the call hierarchy of all closure
code blocks in there. Another important method is the nodeCompleted(Object parent,
Object node) method, that is called after all children of a node have been created, or in other
words: It is called when the last line of a closure code block has been executed. The nodeCompleted
function can, for example, be used to do some finish or cleanup operation [Dea10].

4.5 Domain Specific Language
A Domain Specific Language (DSL) is a programming language, designed for a particular appli-
cation domain. The benefit of a DSL is, that it is more concise and therefore quicker to write. It
is also easier to maintain and can often be written by non-programmers. The development of a
DSL, on the other hand, is not easy because the developer needs both, domain knowledge and
language development expertise [MHS05].

A DSLs offer the following advantages over general-purpose programming languages:

• Allow established domain specific notations

• Allow to map domain-specific constructs and abstraction into the DSL

• The DSL offers possibilities for analysis, verification, optimization, parallelization, and trans-
formation

• DSLs need not be executable (e.g. domain-specific data structure representations)

The first phase in DSL development, is the identification of the problem domain and the gather-
ing of domain knowledge. The domain model is the result of the formal domain analysis. There
are several domain analysis methodologies available. An overview can be found in Mernik et
al. [MHS05]. The next step is to design the DSL. The easiest way to design a DSL is to base it
on an existing language, because this makes the development easier. The last phase is the actual
implementation of the DSL, if it is executable.

Chapter 5

OntoX Framework

This chapter explains the components of the ONTOX framework. First, the prototype application
will be presented with all its main features. In the second part, the implemented DSL is explained
with some actual examples that show the capabilities of the framework.

5.1 OntoX Application
The current prototype of the application can be used under Eclipse as plugin or as standalone Rich
Client Platform (RCP) application. This section gives a short overview about the functionality and
the current available user interface of the prototype. The data set that is used in the in this section,
is the Geography ontology presented in [Zel95].

A basic overview of the application is given in Figure 5.1 with its main components of the user
interface:

• Graphical Editor: The editor area shows the current visible part of the graph. It also allows
user interaction, like moving nodes to new positions, scrolling to other parts of the graph
and expanding/collapsing of node elements.

• Script Views: Currently there are two different views available that show all the imple-
mented scripts. The Filter View lists all implemented filter scripts that are used to filter
unwanted nodes and edges from the application model. The Script View lists all the other
scripts that are not used for filtering purposes, but for changing the design and structure of
the graph. Both Views have three buttons that are used to create, edit or delete scripts. All
scripts can simply be activated and deactivated by clicking on the checkbox that is visible
before the script name.

• Satellite View: The satellite view is used to give an overview of the entire graph, not just
the part that is currently visible in the editor area. The user can also interact with this view
and move the viewport to a different location.

The Filter View has a filter CoreEdgeFilter that is always present in this view. It is a hard coded
filter into the system that filters out some unneeded edges (RDF statements) that normally would
only overload the visualized graph and are most of the time not needed. The following predicates
(properties) are filtered by the CoreEdgeFilter including its connected nodes (if they are not furher
connected to other nodes):

24 Chapter 5. OntoX Framework

Figure 5.1: Overview of the application components

• owl:differentFrom: An owl:differentFrom statement indicates that two URI references refer
to different individuals.

• owl:disjointWith: Used to express the disjointness of a set of classes. It guarantees that an
individual that is a member of one class cannot simultaneously be an instance of a specified
other class.

• owl:topObjectProperty: The object property connects all possible pairs of individuals.

• owl:topDataProperty: The data property connects all possible individuals with all literals.

• owl:propertyDisjointWith: Used to specify that two properties are disjoint properties.

• rdfs:comment: A description of the subject resource. The comment is already included in
the tooltip and therefore it is not necessary to visualize it in the graph.

• rdfs:label: This predicate represents human-readable name for the subject. If it is available,
then the label is used in the visualized node name. Therefore there is no need to create an
extra node and edge for the label statement.

5.1 OntoX Application 25

Figure 5.2: Wizard to enter new scripts into the application.

Wizard

To make it as easy as possible for the user to enter new scripts, a wizard dialog box (Figure 5.2)
has been implemented into the application. The user can create new scripts or edit the existing
ones through the wizard. As soon as a user has entered a new script, the Groovy parser will check
the syntax of the script and display a failure message, if the parser throws an error. It there is no
problem with the script, the wizard stores the script in the integrated persistent storage system.

Components of the wizard dialog box:

• Name input field: In this field the user needs to enter a unique name for the script. The
wizard will display an error message, if the field is empty or if the name does not match the
regular expression that evaluates the script name. The name is important because it will be
used throughout the system to uniquely identify the script by name.

• Description input field: A user can enter a description for the script to give a more detailed
explanation what the script does or what its purpose is. The field just has an informational
purpose to the user.

• Script input field: This is multiline input field that allows the user to enter the script code
(the ONTOX DSL).

• Parser error field: This is a read only text field. Its purpose is to display error message that
the Groovy script parser detectes when it examines the script code. The user receives some

26 Chapter 5. OntoX Framework

information where a syntax failure is and can correct it. This helps to prevent exceptions
during runtime.

• Type (only filter wizard): The type defines that it is a script for filtering nodes or a script for
filtering edges.

(a) (b)

Figure 5.3: Node and edge labels

Label

The labels of nodes and edges are automatically computed according to the following system
(Example in Figure 5.3): If the ontology has a rdfs:label defined for the nodes, then the rdfs:label
will be used as the label otherwise the local name (fragment identifier), which is defined in the
URI, will be used. Since some nodes have different namespaces but may have the same name
(label or local name), the namespace also has to be taken into consideration when creation the
node label. For example the URI

http://www.w3.org/1999/02/22-rdf-syntax-ns#Resource

of the node Resource will be shortened to namespace and local name:

rdf:Resource

If the node has the basic namespace in its URI, then no URI prefix will be added to the label. A
similar implementation is used for all edges: The system computes the edge label according to
the predicate local name and adds its namespace. To display a literal, the system uses the value
of the literal as node label.

Context Menu

Through pressing the right mouse button the user can activate a context menu (Figure 5.4). The
context menu presents additional tools that help to explore the graph.

• Zoom: A Zoom In and a Zoom Out action that allows the user to enlarge or to scale down the
graph.

• Collapse: This action collapses the current selected node. All of its connected edges (in-
coming and outgoing) will be removed from the graph. If one of the edges is connected to
another node that has no further connections, then that node will also be removed. The col-
lapse action is a useful implementation to reduce the amount of edges currently displayed
in the graph, and allows the user the keep a better overview of the entire graph.

5.1 OntoX Application 27

Figure 5.4: Context menu

• Expand: This action, fully expands all edges (predicates) for the current selected node. It
queries the RDF model and retrieves the additional RDF nodes and statements.

• Expand on: The Expand on action is similar to the Expand action, it adds new edges and
nodes to the graph, but it does not expand all edges at once. The user can selected which
predicates he likes to see as edge in the editor. The content of this action is dynamically
computed every time the user activates the context menu, since different nodes have differ-
ent edges. Behind the label, in brackets, there is always the indication whether this node is
the subject or the object of the expanding statement.

Tooltips

The Tooltips (Figure 5.5) provide additional information about nodes and edges in the system.
They appear automatically as soon as the user hovers with the mouse pointer over one graph
element (node or edge). When hovering over a node, the tooltip shows additional information
like the full URI of the RDF resource or the type of the node. In an ontology, a RDF node can be
a Literal or a Resource, and if it is a resource, then it can additionally be a Class or an Individual in
the context of the ontology. The tooltip also shows a description text, if the RDF node has one.
For literal nodes the tooltip displays the datatype, if there is one set in the ontology, otherwise the
datatype is set to plain literal. The edge tooltip shows the current RDF statement that is represented

28 Chapter 5. OntoX Framework

(a) (b)

Figure 5.5: Node and edge tooltips

with the selected edge. It shows the full URI of the statement elements: subject, predicate and
object.

5.2 OntoX DSL
The ONTOX framework comes with its own implemented DSL that is based on Groovy. Groovy is
the ideal choice, because it is implemented on top of Java and provides the necessary functionality
to create a DSL, as described in section 4.4. The simplified syntax of Groovy, the ability to name
parameters, and the implementation of builders, are the basic foundation elements to create a
DSL in Groovy [Dea10].

The ONTOX DSL is designed to change the design and structure of the shown graph in the
editor part, or to filter out elements that are not needed. The ONTOX framework is not designed
to visualize only a specific ontology, it is designed to handle any ontology. Therefore the imple-
mented editor only provides the basis for user interaction and ontology visualization. The editor
has no further knowledge about the context where this ontology is used: What information is the
user searching for, and how could the framework assist him to reach his goal. This is the part
where the ONTOX DSL comes to help. With this simple programming language, the user can
give the visualized graph elements more meaning.

ONTOX DSL splits the scripts into two categories, the Graph Scripts (used to modify the graph)
and the Filter Scripts, used to filter elements from the graph. The graph scripts are only used to
change the graph and search the model that represents the graph. The filter scripts are used to
make elements in the graph invisible by updating the ONTOX model. The ONTOX model is the
model that represents the data source of the visualized items. Additionally these filter scripts are
also used for the Jena model, preventing the system from adding new nodes or edges to the graph.
It is faster to filter elements directly at the data source, then later on, when the elements have been
added to the graph. Since the user can decide when to activate a filter, the script needs to filter
both models. The filtered elements in the graph model are not deleted, only set to invisible, to
make them reappear at the same position when the user decides to deactivate the script.

The following section will give an overview over the complete ONTOX DSL syntax than can be
used to interact with the framework.

5.2 OntoX DSL 29

5.2.1 Graph Scripts
Normally the user uses this script type to change the design or the structure of the graph. Such
scripts are initialized with a script block statement (see line 1 in Listing 5.1), it instantiates the
internal structure that is needed to run the script.

Selection Statement

The select statement (see line 2 in Listing 5.1) is used inside the script block. Its purpose is to search
the graph for specific nodes or edges. The return value is a select object that contains the result of
the query. The select code block has one parameter that specifies the search type. The parameter is
of type String and can be node, edge, or root. In Listing 5.1 the parameter value is ’node’, this means
the select statement iterates through all nodes in the graph, when performing the search. If the
parameter has the value ’edge’, then the selection process iterates trough all edges. Parameter
value ’root’ represents the root model of the graph that is not visible to the user. Every other node,
that is visible, is a direct or indirect child of the root node (the model of the graph is implemented
as tree and will be explainted in more detail in section 6.2). The parameter node is not necessary
when looking for nodes, select and select(’node’) instantiate the same select object).

Listing 5.1: Basic structure of a select script

1 script {

2 select(’node’) {

3 has predicate:’road’

4 set color:’green’

5 }

6 }

The script in Listing 5.1 has the following meaning: “Find all nodes that have a predicate named
’road’ and color these nodes ’green’.” The has statements in the select code block, is used to set the
search attribute. The user can enter several has statements in the select block to refine the search
attributes. A full list for all has statements when looking for a node can be found in Table 5.1. The
set statement (see Table 5.2) is used to change the style attributes of the nodes that are part of the
current result.

30 Chapter 5. OntoX Framework

has
Syntax Value(s) Description
has name:<value> String Search for the specified name.
has uri:<value> String Search for the specified resource URI.
has predicate:<value> String Search for a node that matches the en-

tered predicate name.
has predicate:<value>, as:<value> ’subject’

’object’
Same as “has predicate” statement
with addtional parameter “as”, to de-
fine if the node is subject or object in
the corresponding RDF statement

has type:<value> ’literal’
’resource’
’class’
’individual’

Look for a specific type of node.

Table 5.1: All possible values for “has” in a node selection statement.

set
Syntax Value(s) Description
set name:<value> String Sets a new name for the selected node.
set color:<value> [r,g,b]

’blue’
’black’
’cyan’
’darkblue’
’darkgrey’
’darkgreen’
’grey’
’green’
’darkred’
’darkyellow’
’red’
’white’
’yellow’

Sets a new color for the selected node. It
is possible to create a color by specifing an
array [red,green,blue] or to enter a textual
representation of a color.

set fontColor:<value> [r,g,b]
’blue’
. . .

Sets a new color for the font of the selected
node.

set figure:<value> ’standard’
’circle’
’roundedRectangle’
’rect’

Sets a new simple figure for the selected
node.

set width:<value> int Sets the width of the node.
set height:<value> int Sets the height of the node.

Table 5.2: All possible values for “set” in a node selection statement.

5.2 OntoX DSL 31

As mentioned earlier the select code block returns a select object that contains the result of the
query. To access this list, the user can use the result property of the select object (returns a Groovy
List with objects of type Node.groovy or Edge.groovy). The select object has a property size than
can be used to get the size of the List (see Listing 5.2).

Listing 5.2: Properites of the select object

1 script {

2 s = select(’node’) { }

3 s.result //returns a list of nodes (Node.groovy)

4 s.size //returns the size of the result list

5 }

If the select statement is used to query the graph for edges, then a slightly different has and set
statements (with different attributes) need to be used (ses Table 5.3 and 5.4). The options for the
root select statement are listed in Table 5.5. The root select only allows the user to change some
global graph settings; a has statement in a root select has no functionality.

has
Syntax Value(s) Description
has name:<value> String Search for the specified name.
has uri:<value> String Search for the specified predicate URI.
has predicate:<value> String Search for a node that matches the entered predi-

cate name.

Table 5.3: All possible values for “has” in an edge selection statement.

set
Syntax Value(s) Description
set lineStyle:<value> ’solid’

’dot’
’dash’
’dashdot’
’dashdotdot’

Sets a new line style for the selected edge(s).

set lineWidth:<value> int Sets the width of a line.
set color:<value> [r,g,b]

’blue’
. . .

Sets a new color for the selected edge. It is
possible to create a color by specifing an array
[red,green,blue] or to enter a textual representa-
tion of a color.

Table 5.4: All possible values for “set” in an edge selection statement.

The select statement can have an additional eval code block (see Listing 5.3). The eval statement
can be used to enter plain Groovy code inside the select code block. This allows the user define
new and more precise selection properties. The selection process will take the eval code block and
iterate through all nodes or edges (depending on the select script type) in the system. Every item
(node or edge) is then tested against this script. An eval code block needs always to evaluate to

32 Chapter 5. OntoX Framework

set
Syntax Value(s) Description
set algorithm:<value> ’spring’

’radial’
’tree’

Sets an alogrithm for the entire graph.

Table 5.5: All possible values for changing settings of the graph (root node).

true or false. If the result is true, then the item will be added to the result set, otherwise it will
be ignored. The eval block is necessary to tell the builder that the statements inside the eval block
should be processed at the end, after all has and set attributes have been collected and analyzed.

Listing 5.3: Select statement with eval code block

1 script {

2 select(’node’) {

3 has predicate:’city’

4 eval {

5 name.contains(’new’) //or name.contains ’new’

6 }

7 set color:’green’

8 }

9 }

The eval block comes with some predefined variables that can be used inside the evaluation
script block. In a select(’node’) block are the following variables in the eval code block available:

• Variable “name” is a String object that contains the name of the current node under evalua-
tion.

• Variable “uri” is also a String object that contains the URI of the node under evaluation.

• Variable “node” represents the node object of type “Node.groovy”. The detailed implemen-
tation of the class with all available fields and methods is given in Appendix B.

• If the node is a literal, then the variable “value” is additionally available in the script block.

In a select(’edge’) statement are the following variables in the eval code block available:

• Variable “name” is a String object that contains the name of the current edge under evalua-
tion.

• Variable “uri” is also a String object that contains the URI of the edge (URI of the predicate
in a RDF statement).

• Variable “statement” is an object of type RDF statement (Jena Statement).

• Variable “edge” represent the edge object of type “Edge.groovy”. The detailed implemen-
tation of the class with all available fields and methods is given in Appendix C.

5.2 OntoX DSL 33

Inside the select block, it is also possible to define closures for the set and has values. For example
the statement set width:80 sets the width of the figure to 80 pixels. This is a constant entry that
is used for all nodes that have been found by the select statement. Has and set are methods and
width:80 is the parameter of the method. In more detail: width:80 is a single map entry, where
width is the key and 80 the value. Instead of using constant values, it is also possible (only inside
the select code block) to use a closure as the value of the map entry. The same objects, that were
defined previously for the eval code block, are also available in the closure blocks of map values.

Subgraph Statement

The subgraph statement (see example in Listing 5.4) can be used to create a new subgraph in
the graph. A subgraph is represented as a new node in the editor with a specified amount of
child nodes. The user specifies the children of the subgraph through the select statements that are
defined inside the subgraph code block. The subgraph statement can have one or several select
statements in its code block, but can only be used to query nodes and not edges. Nesting of
subgraph statements is also possible. All available set statements for the subgraph are listed in
Table 5.6.

Listing 5.4: Example for a ’subgraph’ statement

1 script {

2 subgraph {

3 select {

4 has predicate:’road’

5 }

6 select {

7 has predicate:’city’

8 }

9 set algorithm:’radial’

10 }

11 }

34 Chapter 5. OntoX Framework

set
Syntax Value(s) Description
set name:<value> String Sets a new name for the selected subgraph

node.
set color:<value> [r,g,b]

’blue’
. . .

Sets a new color for the selected subgraph
node. It is possible to create a color by
specifing an array [red,green,blue] or to
enter a textual representation of a color.

set fontColor:<value> [r,g,b]
’blue’
. . .

Sets a new color for the font of the selected
node.

set figure:<value> ’standard’
’circle’
’roundedRectangle’
’rect’

Sets a new simple figure for the collapsed
subgraph node.

set algorithm:<value> ’spring’
’radial’
’tree’

Sets an alogrithm for the subgraph node.

set width:<value> int Sets the width of the collapsed subgraph
node.

set height:<value> int Sets the height of the collapsed subgraph
node.

set expWidth:<value> int Sets the width of the expanded subgraph
node.

set expHeight:<value> int Sets the height of the expanded subgraph
node.

Table 5.6: All possible values for “set” in a subgraph statement.

5.2 OntoX DSL 35

5.2.2 Filter Scripts
Filter scripts have their own basic code block (see line 1 in Listing 5.5). The filter statement initial-
izes a new filter object. The filter code block allows several has statements as seen before in the
select statement. All the statements for has can be found in Table 5.7. The setting, that a filter script
should be used to filter nodes or edges of the graph, is not set in the script itself. The user has to
select the filter type in the wizard, which is used to enter a script of type filter.

Listing 5.5: Example for a ’filter’ code block

1 filter {

2 has predicate:’isCityOf’

3 }

has
Syntax Value(s) Description
has name:<value> String Search for the specified name.
has uri:<value> String Search for the specified resource URI.
has predicate:<value> String Search for a node that matches the entered predi-

cate name.
has subject:<value> String This statement can be used in the context of an

edge search. It specifies the subject name of the
RDF statement.

has object:<value> String This statement can be used in the context of an
edge search. It specifies the object name of the
RDF statement.

has type:<value> ’literal’
’resource’
’class’
’individual’

Look for a specific type of node.

Table 5.7: All possible values for “has” in a filter code block.

5.2.3 OntoX DSL in Action
So far an overview of the application components has been given. Also the ONTOX DSL was
described in detail. Now it is time to look at some examples. All examples use the Geography
ontology presented in [Zel95].

Example 1

Figure 5.6 shows a graph that has some expanded nodes. The ontology displayed, just uses the
standard layouts and figures of the ONTOX framework, without any modifications via ONTOX
DSL scripts. The standard settings uses rounded rectangles nodes for resources and normal rect-
angles for literals. All edges have the same style and same color. The graph gives enough infor-
mation to answer a question like “What are the cities of the state of New York?” However additional
help in form of other figures and colors would be helpful. Therefore a script (Listing 5.6) has been
implemented that aids the user in solving such a task.

36 Chapter 5. OntoX Framework

Figure 5.6: Standard visualization example of nodes and edges

5.2 OntoX DSL 37

Listing 5.6: Example script for changing the design of the graph

1 script {

2 select{

3 has name:’new york’

4 has predicate:’isCityOf’, as:’object’

5 set color:[135,206,250]

6 set fontColor:’white’

7 set width:80

8 set height:80

9 }

10 select(’edge’) {

11 has name:’passesThrough’

12 set lineStyle:’dot’

13 set lineWidth:2

14 set color:’red’

15 }

16 select{

17 has predicate:’isCityOf’, as:’subject’

18 set figure:’circle’

19 set color:’green’

20 }

21 }

The implemented script makes it easy for the user to spot the correct nodes and edges in the
graph (Figure 5.7):

• All cities of the state New York have now a green background color and a circle as figure.

• The state of New York is now colored in light blue with a new increased node size

• All predicates (edges) that define a road, that passes through the state of New York, are now
colored in red with a dotted line style.

38 Chapter 5. OntoX Framework

Figure 5.7: Graph with adapted design

5.2 OntoX DSL 39

Example 2

The previous example just changed the design of the graph by coloring all cities green and replac-
ing their standard node figure with a circle figure. The size of the circle figures was automatically
computed by the figure class, so that the label fits into the figure. But it would be better to com-
bine the dimension of a node, representing a city, with a literal that has as value the population
of the city. Instead of setting the height and width values of a node by using a constant, it is also
possible to use a closure (Listing 5.7), that computes the size according to individual properties of
each node. Therefore it is possible to visualize the answer to the question “Which capital city has
the largest population?” (Figure 5.8).

Listing 5.7: Script that dynamically computes the node sizes

1 script {

2 select {

3 has predicate:’isCityOf’, as:’subject’

4 set color:’red’

5 set figure:’circle’

6 c1 = {

7 temp = node.getLiteralValue(’cityPopulation’)

8 temp = temp.toInteger() / 5000

9 temp.intValue()

10 }

11 set width:c1

12 set height:c1

13 }

14 }

In Listing 5.7 is a closure used as value for the map entries width and height, instead of an int)
values. The content of the closure c1 is explained as follows:

• The object node represents a single instance of a node of type Node.groovy.

• The Node class has a method getLiteralValue that takes as parameter the name of a predicate.
The method tries to find a predicate with the specified name and returns the literal value
of the object in the RDF statement. If the literal has a datatype assigned, then the method
returns the correct datatype, otherwise it returns a String value. The used ontology in the
example has no datatypes defined; therefore the return value is of type String and needs
to be converted to an integer. In Groovy one can simply use the method toInteger to turn
the String value into an integer. The value is then divided trough 5000, to get a useful
size representation. This is necessary because the values are too big and would be directly
interpreted as Integer values for width and height. The method intValue() is used to turn
any type of number into an int, which is expected as parameter by the set width and set height
satements.

40 Chapter 5. OntoX Framework

Figure 5.8: Graph with node (city) sizes computed from the population value

5.2 OntoX DSL 41

Example 3

The last example tries to answer the following question: “How many roads pass through the state of
New York?” To solve this question, a new script will be created that collects these target nodes and
displays them as children in a new subgraph node. The script in Listing 5.8 uses a select statement
to collect all target nodes. Because the select statement is inside the subgraph code block, the
nodes will be added to the subgraph node. Additionally, the result of the select block will be used
to the set the name of the new subgraph node, therefore it is not necessary to count the nodes
of the result set manually (Result is displayed in Figure 5.9 and the collapsed subgraph state is
displayed in Figure 5.10).

Listing 5.8: Script collects the nodes that represent a road

1 script {

2 subgraph {

3 selection = select {

4 has predicate:’passesThrough’

5 }

6 set name:’Roads (’ + selection.size + ’)’

7 set algorithm:’radial’

8 }

9 }

Figure 5.9: Subgraph containing the target nodes

42 Chapter 5. OntoX Framework

Figure 5.10: Collapsed subgraph node

Chapter 6

Implementation Details

In this chapter, implementation details of the ONTOX framework are described. First, an overview
of the application components is presented, then they are described in more detail to show how
they are interconnected and to highlight some important features.

6.1 Architecture Overview
The ONTOX framework consists of several main components which are shown in Figure 6.1. With
abstraction and programming against interfaces, the system is designed to reduce coupling and
to allow the easy exchange of existing components through new implementations.

Figure 6.1: Overview of the application components

44 Chapter 6. Implementation Details

Main components of the framework:

• Eclipse Platform: Eclipse provides the basis for the ONTOX framework. ONTOX can there-
fore be deployed as Eclipse plug-in or as standalone RCP application.

• Jena: Jena framework is used to read and query RDF data sets.

• GUI: The top module of the framework that allows user interaction with the underlying
components:

– Eclipse Views are used to present the available ONTOX DSL scripts to the user and
also to create a small overview over the entire graph.

– The Eclipse Editor is the main component for interacting with the graph. The editor is
the basic workplace for exploring an RDF data set.

• OntoX Model: It is the internal model that defines the structure of the graph.

• GEF: The Graphical Editing Framework takes care of drawing the graph, listening to user
input, and modifying the ONTOX model if necessary.

• Groovy: The Groovy component consists of several parts:

– Groovy Shell instance which takes care of parsing and running scripts

– Groovy scripts and classes that provide the basis for the ONTOX DSL.

• Graph Builder: As the name already says the Graph Builder takes care of all processes that
build and modify the graph.

– The builder reads data from the Jena model and creates new nodes and edges in the
ONTOX model.

– The building events, the creation of nodes and edges, are triggered by user input or by
Groovy scripts.

– The builder initializes the script managers which handle the user entered scripts.

– The builder loads and runs filter scripts to filter out unwanted nodes and edges.

• Persistent Storage System: The persistent storage system takes care of storing all user en-
tered scripts, so they wont be lost when the user closes the application.

6.2 OntoX Model
GEF is built after the Model-View-Controller software architecture, so GEF needs an internal
model to represent the data that the framework should visualize. The data to be displayed comes
from a Jena model, but directly using the Jena model is not efficient, because such an model can
get very large and the ONTOX framework also needs to be able to add new data fields to the
model. Therefore a new internal model for the ONTOX framework was needed.

6.2 OntoX Model 45

Node

The implemented ONTOX Model has a tree structured model that represents the parent-child
relationship of the nodes (Figure 6.2). Every element in the tree is a child of the abstract base class
AbstractNode. The AbstractNode class contains a list field that contains all child nodes, also of type
AbstractNode. Another field contains the reference to the parent node, if the node is the highest
node in the tree hierarchy then the field would be null. The AbstractNode also manages a set of
node attributes that define the design (color, font color, name of figure, selection status, name and
URI) of the node.

Important fields of AbstractNode;

• layout: The layout object defines the node’s position and size on the screen.

• backgroundColor: This field defines the current color of the node.

• fontColor: The font color of the node.

• isVisible: Boolean attribute to hide or display the node.

• figureName: The name of the figure that should be used by GEF to draw the node.

• isSelected: Boolean attribute that defines if the node is currently selected node.

• layoutAlgorithm: If the node has some children, then it also should have a layout algorithm
assigned.

• name: The name of the node that is used in the label of the drawn figure.

• uri: The unique identifier of the node.

The AbstractNode implements two additional lists that contain the connected edges to the node.
One list for the source connections, where this node is the source of the directed graph connec-
tion, and one list for the target connections, where this node is the target of the directed graph
connection. All edges are implementations of the AbstractEdge class.

The AbstractNode class implements an object of type PropertyChangeSupport to add a prop-
erty change listeners to the node. Listeners are used to signal the controller that the model has
changed, and needs to be redrawn on the screen. A repaint event can easily be triggered through
the OntoXNode interface.

The AbstractNode class implements two interfaces, OntoxNode and LayoutEntity. Every module
interacts with node elements trough the OntoxNode interface. Since the model is coupled to the
GEF implementation part, the remaining components should access model elements trough in-
terfaces to make them independent of the graphics implementation. The LayoutEntity interface is
used by the layout algorithm. The layout algorithm uses the interface, first, to retrieve the size
and some specified constraints for the node, and second, to set the new coordinate values as soon
as the layout algorithm has finished its position calculations.

46 Chapter 6. Implementation Details

Every node type has to extend the AbstractNode class. There are three different types of node
implementations available:

• OntoxGraph: Only one instance of the OntoxGraph exists at runtime, because it represents
the root node of the tree. Every additional node is a direct or indirect child of this root node.
Te root node always has a layout algorithm assigned to it and is not visualized in the graph,
because it represents the container, where all its children are drawn.

• OntoxNodeImpl: The OntoxNodeImpl represents a common node in the graph and is imple-
mented using the decorator pattern as a wrapper around an RDFNode object.

• OntoxSubgraphImpl: The subgraph node is an element in the tree that has children. It has
two different states implemented, the collapsed and the expanded state, so the node model
can be visualized as single node element (collapsed state) or as container object that has
some child nodes in its figure boundaries (expanded state). For the two states, the model
needs to manage two dimension values of the node.

Figure 6.2: OntoX Model

Edge

All edges in the system are child classes of AbstractEdge. An edge object is always shared by
two AbstractNode objects, one represent the source node and the other the target node in a di-
rected graph edge. The AbstractEdge is the model implementation of an edge that is visualized
in the graph. As the AbstractNode class, the AbstractEdge class also implements two interfaces:
OntoxEdge and LayoutEntity. OntoxEdge is the interface, all other modules use to interact with an
edge element. The LayoutEntity is the interface that is used by the layout algorithm to include
edge information into layout computation.

Important fields of class AbstractEdge:

• sourceNode: A reference to the source node.

• targetNode: A reference to the target node.

6.2 OntoX Model 47

• connectionStyle: Sets the style that is used when the edge is drawn on the screen (e.g. straight
line, dotted line, etc.).

• color: Color of the line.

• lineWidth: The edge line width.

• isLabelVisible: A Boolean value that indicates if the edge label should be painted or not.

• isVisible: Boolean value that defines if this element should be rendered or not by Draw2D.

There is currently only one implementation of the AbstractEdge in the system: Class On-
toxEdgeImpl represents the only available type of edges. It is designed as a wrapper object around
a Jena RDF statement.

6.2.1 History Tracker
With the help of the ONTOX DSL the graph can be changed at runtime. The ONTOX scripts
allow a user to change the shape, color, size and many other properties of nodes and edges in
the graph. But sometimes it is necessary to undo the modification the executed scripts made. For
example, if the user enters a wrong script, and instead of coloring some groups of nodes green,
they are red. Or the selection formula of the script was not correct and now the wrong nodes are
grouped together. To solve this problem, one could enter a new script that fixes these problems,
but this would be too complex solution. The framework needs therefore a way to undo all the
modifications that have been made with a script. This is the point where the History Tracker
comes into place.

The History Tracker records all changes made to a node or edge, so that a change can be undone
when needed. To do that, the History Tracker manages a list with all the previous node/edge
setting values. For example: When a script changes the color of a node from yellow to green, then
the History Tracker stores the old color value in its history list. The history list stores objects of
class HistoryObject. Every HistoryObject has an event name, an object type and the object to be
stored. The event name is the name of the event that caused the creation of this history instance.
Normally the event name is the name of the script that did run, because the script names are
already unique in the system, and therefore we can easily keep track which script changed what
in the graph. The object type is an indicator what type of objects is stored in the history element,
e.g. color object, etc. The object is the old value that was replaced, e.g. for a color change, this
would be the old Java color object. When the user now wants to do an undo operation on a
executed script, the History Tracker searches all HistoryObjects where their event name matches
the script name, and runs the correct undo operation for that every HistoryObject type.

All methods, that create a history object, are part of the OntoxNode or OntoxEode interface and
start with the name “update”. They all have as the first parameter the event name. To trigger an
undo operation on a node or edge, one needs to use the undo method which takes the event name
that should be undone as a parameter. Every node and edge has implemented the undo method.
The undo method collects the history element that correspond to the specified event name and
passes them on to an instance of the UndoHandler, which then performs the undo operations.

When using ONTOX DSL, every set operation triggers the creation of a history object. Also the
subgraph statement has an undo operation, but in contrast to the set, it does not set some previous
node or edge properties, but deletes the created subgraph element in the graph.

48 Chapter 6. Implementation Details

6.3 Graph Builder
The main purpose of the Graph Builder is the creation of the displayed graph. It is a mediator class
between the Jena model and the ONTOX model and creates new nodes and edges in the ONTOX
model. The abstract class called AbstractGraphBuilder it the base class, which implements the basic
functions that are available to build the graph via the ONTOX DSL. It also acts as the interface
for all other modules of the framework when they need to change the graph the structure of the
graph. For the current implementation there is a class named GEFGraphBuilder which extends
the AbstractGraphBuilder. The GEFGraphBuilder is graph builder implementation for the GEF
framework. This way it is easier to change the graphical system (in this case GEF) with another
suitable framework, when desired.

The Graph Builder provides methods to build the graph. For example to add a new Jena RDFN-
ode to the graph, there is a method named addNodeToGraph(RDFNode node) which creates a graphi-
cal representation of the Jena RDFNode, by initializing a new node object (of type OntoxNodeImpl)
and adding it to the graph.

Other features of the Graph Builder:

• The expand function is used to expand a certain node (to show all connected nodes). It
queries the Jena model and adds the result set as new objects to the graph.

• When adding a new node or edge the builder first checks if the node or edge is already in
the system. If the element already exists, the process will abort.

• The Graph Builder manages two hash sets: One for the all the nodes and one for all the
edges. These sets are used for easy access to all nodes and edges in the system. They are
used for the duplicate check of nodes and edges, because the system should not draw the
same node or edge more than once.

• On instantiation the Graph Builder also creates an object of class ModelInterrogator. The Mod-
elInterrogator provides some helper methods to query the Jena Model, e.g. to get a collection
of Jena statements for a specific RDFNode object, and other useful methods.

• It also has a method to clear the graph, to delete all edges and nodes. This is necessary if the
user chooses to load a different ontology.

The builder also implements the PropertyChangeListener interface and listens to the activation
of Groovy DSL scripts. As soon as the builder gets an activation or deactivation of a filter script
by the user, it initializes the filter process, according to the type of the filter script (node or edge
filter). If the filter is deactivated, the builder restores the filtered elements in the graph. A similar
functionality is implemented for the graph scripts. The builder receives activation or deactivation
events and modifies the design of the graph, or starts an undo operation and restores a previous
design state of the graph.

6.4 OntoX DSL
An example script of the ONTOX DSL is shown in Listing 6.1 and has the following meaning:
“Locate all nodes in the graph that have a predicate named ’isCityOf’ and set their color to green.”
One advantage of Groovy, that helps to create a more readable and less complex DSL, is all the

6.4 OntoX DSL 49

optional syntax. Syntax elements like parentheses, semicolon, and others are not mandatory. If
one had to use the full syntax in Groovy, the script would look as shown in Listing 6.2, which
would make the syntax clearer, from a developers point of view, but more complex to use for an
application user. All statements script, select, has, and set are now recognizable as methods with
parameters.

Listing 6.1: OntoX DSL example script

1 script {

2 select (’node’) {

3 has predicate:’isCityOf’

4 set color:’green’

5 }

6 }

To fully understand the structure of the DSL, a more detailed look is necessary. Let’s start at the
first line, the script statement. The script method (see Listing 6.3) is defined in the Groovy script
file CommonBaseScript which defines basic code collection for all scripts that are entered by users.
On runtime an instance of the class GroovyShell, which is in charge of parsing and compiling all
user entered scripts, adds the CommonBaseScript as base class to all user scripts and therefore
the script method is available to every entered script. This way there is a simple common start
method that starts the entire script building process, but hides the initialization process of the
Groovy builder object from the user.

Listing 6.2: Example script with full syntax

1 script ({

2 select (’node’) {

3 has(predicate:’isCityOf’);

4 set(color:’green’);

5 }

6 })

The script method (Listing 6.3) takes the inner code of the script (code block in Listing 6.1)
as closure parameter, named “content”. Then it initializes a Groovy builder, which is specially
designed for graph querying and manipulation actions, and sets some initial parameters through
methods getCurrentGraphBuilder and getCurrentScriptName, which are Java objects that are passed
on to Groovy trough a binding object at runtime. After initialization, the builder becomes the new
owner of the closure code block, assigned through the delegate method. The last line, the build
method, initializes the actual building process of the builder and starts evaluating the content of
the closure parameter. The build method is a pretended method and has thus not a real method
body. The builder object will take care of this method call and pass the closure ont to the createNode
method, which signals the builder that its initialization is completed, and can now start to process
the closure code block.

50 Chapter 6. Implementation Details

Listing 6.3: Implementation of the ’script’ method

1 def script(Closure content) {

2 def builder = new GraphBuilder();

3 builder.gBuilder = getCurrentGraphBuilder();

4 builder.scriptName = getCurrentScriptName();

5 content.delegate = builder;

6 builder.build(content);

7 }

The select statement, in the second line (Listing 6.2), is also only a pretended method. It is
intended to hide the more complex initialization of a “select” object. The select object can be
an object of class EdgeSelect, NodeSelect or RootSelect. The builder takes care of instantiating the
correct object according to the String parameter value that has been passed to the select method.
In the example the parameter value is “node”, therefore the builder creates an object of type
NodeSelection. The NodeSelect object is used to query the current nodes in the ONTOX Model
and change their attributes. The EdgeSelect is for querying edges and changing their attributes.
The RootSelect is used to target global system settings, changing attributes of the root model, like
replacing the current active layout algorithm in the graph.

After the builder has created the correct select object, the builder evaluates the code block that
is passed to the select method (lines 3 and 4 in Listing 6.1), parses the has and set methods, and
adds their parameter values to the current active select object. All values of these methods are
added as configuration attributes to the select object. Since a user can enter multiple set and has
statements in its script block, it is necessary that the execution of the select process is started at
the end, when all parameters have been parsed and added to the configuration attributes list of
the select object. Therefore the method run, that all select objects implement, is called at the end
of the code block, when line 5 is reached.

Listing 6.4: A more complex script example

1 script {

2 subgraph {

3 selection = select {

4 has predicate:’passesThrough’

5 }

6 set name:’Roads (’ + selection.size + ’)’

7 set algorithm:’radial’

8 }

9 }

Another example is shown in Listing 6.4, that has a more complex nested code block structure.
Here the subgraph method takes a closure as parameter that has two set statements and one select
block. This method initiates a new subgrap object that adds the result of the select block as its
child nodes (visible to the user through the nested code blocks). Also, the return value of the
select statement, which is an object of type NodeSelect, is stored in the selection variable. Groovy
does not need any type declarations; which is a useful feature that helps to facilitate the ONTOX
DSL. The NodeSelect object implements a field named size, where the size of the query result is

6.5 GEF Implementation 51

stored. This size information can then later on used in the name method of the subgraph code block
to display the number of child nodes in the label of the subgraph node.

6.5 GEF Implementation
GEF is an important component of the ONTOX framework, it takes care of drawing the OntoX
model and takes care of the user interaction with the graph. This section will explain some im-
portant aspects of the GEF implementation in ONTOX.

6.5.1 Controller (EditPart)
As mentioned before the controller elements in the GEF frameworks are called EditParts. For
every model object GEF creates an EditPart object. This is done automatically through GEF via the
EditPartFactory. This factory method creates for every type of model a corresponding controller
part. GEF takes automatically care of the creation and deletion of EditParts as soon as GEF detects
a change in the model. In the presented version of the ONTOX framework are four different
types of EditParts for four different types of model implementations. On instantiation an EditPart
initializes its own EditPolicies. The EditParts also takes care of creating the correct figure for its
assigned model. Every EditPart implements the PropertyChangeListener interface which is used
to trigger any kind of model updates to the visual representation of the model. When a update
event is received, the method refreshVisuals performs the visual update by reading the current
state values from the model and updating the figure with the new data. For every type of model
in the ONTOX framework, there exits a different EditPart (see Table 6.1).

Model EditPart Description
OntoxGraph OntoxGraphEditPart This EditPart is for managing the pri-

mary container that is holding the en-
tire graph. Therefore only one instance
of this controller should exist.

OntoxNodeImpl OntoxNodeEditPart Controller part for nodes. Every node
model is linked with its own instance
of OntoxNodeEditPart.

OntoxEdgeImpl OntoxEdgeEditPart Controller part for edges. Every edge
model is linked with its own instance
of OntoxEdgeEditPart.

SubgraphNode SubgraphEditPart Controller part for subgraphs. Every
subgraph model is linked with its own
instance of SubgraphEditPart.

Table 6.1: Overview over all controller (EditPart) classes.

OntoxGraphEditPart

This OntoxGraphEditPart is for managing the basic canvas element, on which the entire graph is
painted on. Therefore only one instance of this controller part exists. When an update of the
graph model ist triggered, this controller initializes the layout computations for the new nodes
and edges. As soon as the layout algorithm has completed, it refreshes all elements in the graph,
so the user can see the positions of the new elements. The OntoxGraphEditPart controller creates a

52 Chapter 6. Implementation Details

special kind of figure on instantiation. It creates a FreeformLayer figure with a free form layout. The
FreeformLayer is a figure that can expand its current area in any direction and is therefore the basic
figure for the dynamic expanding graph of the ONTOX framework. The controller automatically
resizes the figure area and computes the new x and y values for its child elements (nodes and
edges), and manages the size of the viewport that shows the current visible area to the user. The
controller also takes care of repositioning the viewport when a layout computation occurs, since
some layout algorithm may reposition all nodes and edges when a user chooses to expand/col-
lapse a certain node in the graph. Therefore the viewport needs to refocus on the current selected
node.

OntoxNodeEditPart

The OntoxNodeEditPart is the controller for a normal node. On its creation it takes care of creating
the node figure for corresponding model object, e.g. if the model specifies a circle as figure for
this node, then the controller creates an instance of the correct figure via the NodeFigureFactory.
When an update occurs the controller refreshes the figure according to the model properties. The
controller is triggered by four different types of events (Table 6.2). It also takes care of creating the
necessary connection anchors that are always specific to the node figure. When the figure of the
node changes, then the controller erases the old figure and creates the new one.

Event name Description
Node layout changed Updates the figure values according to the model state. It

always repaints the entire figure and its children.
Refresh source connections Event to repaint all source connections of the node.
Refresh target connections Event to repaint all target connections of the node.
Selection changed When the uses selects or deselects a node, then this event

is triggered. It updates the selection status of the figure
and repaints the figure’s border.

Table 6.2: Events to trigger the controller

SubgraphEditPart

The SubgraphEditPart is similar to the OntoxNodeEditPart. It is a EditPart for managing the nodes
figures that have children (the subgraph nodes). A subgraph node model in contrast to the normal
node model, has a collapsed and expanded state. Therefore the controller needs to manage two
figures: one for the expanded state and one for the collapsed state, but always only one figure is
active. The SubgraphEditPart is therefore in charge of updating only the visuals of the current
active figure.

OntoxEdgeEditPart

The OntoxEdgeEditPart is the controller implementation for the connection figures. The controller
listens to changes in the connection model (edges) and updates the visual representation of the
connection. For all connections, the controller always uses the same figure class, but changes only
the properties of the figure to give the edges a new design.

6.5 GEF Implementation 53

6.5.2 Figures and their layouts
In Draw2D every visual representation of a model object is called a figure. A figure is a class that
implements the interface IFigure or extends the abstract class Figure. Every node or edge in the
ONTOX framework is also an extended child of the class Figure. GEF comes already with a set
of basic figures, but for the ONTOX framework some more advanced figures were needed. The
current ONTOX implementation comes with one figure for the edges and several different figures
for the nodes.

A basic figure in the ONTOX framework, has normally one child figure of class Label for dis-
playing the name of the node or edge, and one simple layout algorithm that defines the positions
of all the child figures. Normally, the used layout is the StackLayout, which just places each child
figure on top of each other; they are stacked inside the bounds of the parent figure. ONTOX uses
nested figures for displaying graphical elements: One base figure that defines basic design of the
node or edge, and one figure on top (label figure) for displaying the name.

Every figure has a method named paintFigure(Graphics graphics). This method does the actual
drawing of the object via the passed on graphics parameter. Every figure has a rectangle bounding
box, therefore to make the figure look like, for example a circle, is job of the paintFigure method.
To make the system more modular and prevent the implementation from having duplicate code,
the code of the paintFigure was moved to a new painter class. There are several different painter
implementations in the framework for drawing circular, rectangle and rounded rectangle figures.
The default node and the subgraph node have different functionality on the figure implementa-
tion level, but share the same painter implementations.

Default Node

A node in the ONTOX framework is represented normally with a rounded rectangle. For that
ONTOX uses the extended figure class named DefaultNodeFigure. But there are additional figures
to create a ellipse, circle and rectangle figure. One Problem of GEF is, that the controller is thightly
coupled to its figure and does not allow the exchange of a figure after it has been initialized. To
circumvent this problem and make the system more flexible, a container figure was implemented.
The container figure is the wrapper around the actual figure that represents the node, or in other
words: the visual node figure is the child of the container figure. With this improvement the
controller is always bound to the same figure, but it allows one to easily exchange the child figure
on runtime.

Default Edge

Currently there is only one figure (EdgeFigure) that is used to represent an edge. The figure rep-
resents a straight line in the framework. It uses an additional figure of type PolygonDecoration to
implement the arrow head to visualize a directed graph.

Subgraph

A subgraph node is a special kind of node. It is a visual container that can have several different
default nodes as children, or another subgraph node. Another difference to the default node is
that it has two different states, a collapsed and an expanded state. In collapsed form the node just
looks like a normal node of the ONTOX framework, but in expanded state it is a rectangle figure

54 Chapter 6. Implementation Details

that has a couple of default nodes as children. One subgraph node consists of three different fig-
ure implementations. The basis is the class SubgraphFigure, again this is the wrapper figure that is
linked with its controller figure. The SubgraphFigure has two child figures the ExpandedSubgraph-
Figure and the CollapsedSubgraphFigure. Only one at a time can be active of these two figures, the
other is always set to invisible. The two figures represent the collapsed and expanded state of the
node. The expanded figure is a fixed figure in the system that cannot be exchanged with another
figure, e.g. turned into a circle or another form. On the other hand the collapsed figure is dynamic
and can be replaced at runtime.

When collapsing a subgraph node, the collapse function has to analyze the edges of the sub-
graph and its children. All edges that are between two child nodes can just set to invisible, but all
other edges that are connected to a node outside of the subgraph node, need to be reconnected to
the collapsed figure, and no longer being connected to the child nodes. When the state switches
back to expanded state, the edges need to be reassigned to the correct child node. Therefore the
edge model always has to remember its orginal node connection.

Tooltips

Tooltips are a special type of figures in Draw2D. Every figure can have a Tooltip figure assigned
to it which is standard implementation in Draw2D. In the ONTOX framework are two different
tooltip figures: one for the nodes and one for the edges. These two tooltip figures are composed
in the same way. Both are painted as a rectangle with white background. If a user hovers over
a node or edge the tooltip figure is activated, painted on the screen for a couple of seconds, and
then deactivated again. Tooltips are used in the ONTOX framework to give some additional in-
formation about the edges and nodes that would not fit onto the graph or would give the graph
a crowded look.

6.5.3 Layout Algorithms
To draw all the nodes and edges in visual well arranged manner, some layout algorithms are
needed. The Zest framework comes with an entire package of layout algorithms that are not
bound to Zest and can therefore easily be integrated into the ONTOX framework. From the Zest
framework, the following algorithms have been integrated into ONTOX:

• Spring Layout Algorithm

• Tree Layout Algorithm

• Radial Layout Algorithm

• Grid Layout Algorithm

The Zest layout framework also allows the easy creation of custom algorithms, and the com-
bination of two algorithms. By using the two interfaces LayoutEntity for the nodes and the Lay-
outRelationship for the edges, it was not so difficult to add the layout algorithms to the ONTOX
framework.

Every node in the ONTOX framwork implements the LayoutEntity interface and every edge
implements the LayoutRelationship interface. Through this interfaces the layout algorithms get the
current information about all the node and edges in the graph, e.g. position, height and width,
etc. The Zest layout framework uses the method applyLayout() to start the computation and set the

6.6 Persistent Storage System 55

positions of the nodes through the LayoutEntity interface. The applyLayout() method needs some
additional information (passed as parameters to the method) to begin the calculations: An array
of all edges and nodes that take part in the layout computation, and additionally the applyLayout()
needs the height and the width of the available layout area.

To deal with layout computations, the ONTOX framework uses the implemented LayoutAlgo-
rithmContainer class that handles all necessary tasks related to the layout computation. The class
manages two lists, one for the nodes and one for the edges that should be considered during
the layout calculation. It also has some improvements implemented to stabilize the layout algo-
rithms. For example if there is a node in the graph with no connected edges, the Spring algorithm
breaks down and clusters all the other remaining nodes in a corner of the graph area that a user
no longer can distinguish the individual nodes.

Another problem is that the ONTOX framework is intended to expand the graph dynamically
through user interaction in any direction, but the layout area of the graph is not tied to the view-
port area. The layout area can expand beyond the visible area the user can see. Therefore it is not
possible to use the window size for the height and width parameter for the applyLayout() method,
that is a necessary parameter of the layout implementation. Therefore the system needs a dy-
namically calculation graph area, based on the number of nodes and edges shown in the graph.
The layout algorithms in such away that they automatically increase the layout space when it is
necessary, but unfortunately the graph looked still very compressed. Therefore a simple algo-
rithm needed to be implemented for ONTOX, that computes the necessary width and height of
the desired layout area.

The algorithm computes the new area for the graph by counting the number of displayed nodes
and edges, and multiplying it with an average node and edge size. This gives the minimum area
that is needed to present the graph. The minimum area is then multiplied with a constant graph
growth factor to add some extra space. From the new area, one can retrieve the width and height
that the layout algorihtms needs. The width and height are always the same, because the layout
algorithms compute a more balanced graph layout if it is a square area. This simple algorithm
gives an good approximation how the maximal width and height for the layout algorithm should
be. As a result the graph looks less compressed and the extra space prevents too much overlap-
ping of nodes and edges.

6.6 Persistent Storage System
Early tests of the ONTOX framework made clear, that some sort of a persistent storage system
was needed to store all the scripts. Although the implemented DSL makes the scripting rather
easy, but is rather annoying when the program loses all its scripts when the application shuts
down. Also some of the scripts are implemented only for the current active ontology, whereas
other scripts can be used in multiple ontologies. It makes work much easier, if all the script are
stored in a persistent storage unit.

The current version of the ONTOX prototype is only intended to store the user entered scripts,
but future versions may also store additional information, like the current state of the graph. This
means that it is more suitable, to use a more powerful storage system than just writing the data
to a file. Another idea could be to use a remote storage location rather than a local one. So the
best approach would be to use a database system that can easily be embedded into the ONTOX

56 Chapter 6. Implementation Details

framework, and a helper framework that facilitated the storage and retrieval of Java domain
objects via object-relational mapping (ORM). For this purpose Apache Derby [db.] was chosen
as the embedded database and the Hibernate framework as the mediator between ONTOX and
Derby.

Derby

Apache Derby [db.] is an open source relational database that is entirely implemented in Java
and is based on SQL standards. One advantage is, that Derby comes with a small footprint; only
2.6 megabytes are needed for the base engine and the embedded Java Database Connectivity
(JDBC) driver. With this embedded driver, Derby can be easily integrated into any existing Java
application. There is also a plug-in available, that allows the easy use of Derby in the Eclipse
environment.

Hibernate

Hibernate [hib] is an object-relational mapping library, a framework that provides mapping of an
object-oriented domain model to a traditional relational database. Its primary feature is mapping
from Java classes to database tables. One of its design goals it to relieve the developer from 95%
of common data persistence-related programming task by eliminating the need to implement the
own data processing using SQL and JDBC.

Hibernate uses a configuration file to define the driver class for the JDBC connection, to set
the user name and password for the database, and other connection properties. Given that every
connection information about the database system is in that file, the database system can easily
be replaced without the need to change some source code in the Java application. An additional
very helpful feature is the automatic generation of database schemes, so there is no need to set up
all the tables in the database. The last thing the configuration file needs, is a list of all the classes
that need to be mapped to the database.

The configuration file has only basic connection information, so how can Hibernate now map
Java objects to the correct table, and fields to the correct column. Through Java Persistence API
(JPA) annotations, the necessary metadata for the mapping process ,is added directly to the Java
class itself, therefore no additional configuration file is needed (Example in Listing 6.5).

Listing 6.5: JPA entity example.

@Entity

@Table(name = "GROOVYSCRIPTS")

@NamedQuery(

name="GroovyScriptCode.getGroovyScriptByName",

query = "FROM GroovyScriptCode code WHERE

code.scriptName = :targetScriptName"

)

public class GroovyScriptCode {

@Id

@GeneratedValue(generator="increment")

@GenericGenerator(name="increment", strategy = "increment")

6.6 Persistent Storage System 57

@Column(name="SCRIPT_ID")

private Long scriptId;

@Column(name="SCRIPT_NAME")

private String scriptName;

@Lob

@Column(name="SCRIPT_TEXT")

private String scriptText;

}

The @Entity annotation is used to mark a class as an entity, a class that should be persisted in the
database. The @Table annotation defines the Table in which an object of this class should be stored.
To map the fields to the column in the table the annotation @Column is used and the @Id defines
the identifier of the entity. Sometimes it is necessary to use additional queries to retrieve stored
Java objects. Predefined queries are called named queries and are added through the annotation
@NamedQuery. These queries can then be used throughout the framework by using their specified
names.

The ONTOX framework has currently three entities that need to be stored in a database. The
first is the GroovyScriptCode entity, which stores all the Groovy scripts that a user can enter via the
user interface. Every entity of GroovyScriptCode has a unique identifier of type Long, a script name
and the actual script text. The script text can be a large String, that’s why the variable is marked
as a large object (@Lob).

The next entity is the FilterEntity. This entity is used the store a ONTOX DSL based filter.
The FilterEntity has a foreign key that references the filter object with a GroovyScriptCode object
(Listing 6.6. The @OneToOne annotation defines a single-value association to another entity (in
the example in Listing Listing 6.6 to an object of class GroovyScriptCode). Another annotation
@JoinColumn defines the mapping for the composite foreign keys.

Listing 6.6: One to one reference example

@OneToOne(cascade = CascadeType.ALL)

@JoinColumn(name="SCRIPT_CODE_ID")

private GroovyScriptCode scriptCode;

The last entity GraphScriptEntity is used to store all the scripts related to the manipulation of
the displayed graph. Like the filter entity, it has a single-value association to a GroovyScriptCode
instance.

The entire storage module can be accessed through the OntoxPersistenceManager interface. This
allows the developer to implement any other storage system. Some of the methods may throw
a ScriptNameNotUniqueException this is because all the script names need to be unique, so the
framework can keep track of the active scripts and easily identify them by name.

Chapter 7

Evaluation

This chapter describes the evaluation that was performed to assess the implemented application.
First, an overview is given about the realized study, and then the results are presented and dis-
cussed.

7.1 Introduction
In order to evaluate serveral aspects of the implemented ONTOX application, an user study was
performed in the form of an online survey. The goal was to find answers to the following ques-
tions:

1. Is the application easy to install and to run?

2. Is the user interface understandable and easy to use?

3. Is the OntoX DSL understandable?

4. Can users easily create new scripts with the OntoX DSL?

5. Does the application provide useful help for the exploration of an ontology?

In order to answer these questions the participants had to solve some tasks and then rate then the
application.

7.2 Setup
The survey consisted out of six parts. The first part was the Information/Setup part. This part was
designed to give the participant some background information about RDF and what an ontology
is, so that participants had the basic knowledge to understand the purpose of the ONTOX applica-
tion. Also the necessary links for the software download and an install guide was included in the
first part. The second part was the Introduction part, where some basic information about the par-
ticipants were collected and to check their existing knowledge of this research area. In the third
part, the Tasks section, participants had to use the application to solve small tasks that tested the
functionality of the ONTOX application. The fourth part General Questions did consist of several
questions concerning the general impression of the application. In the fifth part Features, partici-
pants had to share their opinion about the features and functionalities of the application. The last
part, the Remarks part, offered the participants to give any other remarks about the prototype, e.g.
likes and dislikes, and ideas for future improvements. The survey can be found in Appendix A.

60 Chapter 7. Evaluation

7.3 Results
This section will summarize the results of the survey. The last part of the survey was composed
of open questions that allowed the participants to enter some comments about the application.
Whereas the rest of the questions had to be rated with a Likert scale [Lik32]:

1. Strongly disagree

2. Disagree

3. Neither agree nor disagree

4. Agree

5. Strongly agree

7.3.1 Tasks
The Tasks section confronted participants with simple assignments that allow the evaluation of the
functional aspects of the application. Also the participants learned to interact with the system, so
they were able answer the questions in the next sections of the survey.

Task 1

The purpose of the first task was to see, if the participants were able to load a data set into the
application and to select a specified start node. As the result in Table 7.1 shows, no one had any
noteworthy problems solving the first task.

Task: Load the Ontology “geography.owl” (file) into the application via menu entry “OntoX” ->“Load
File” and choose “newYorkNy” (the city) as the start node.

Question Mean Median STDV
Was the task easy to solve? 4.86 5 0.38

Table 7.1: Results of task 1

Task 2

The second task was designed to give some information about how easy it is for a user to interact
with the system, and to explore the loaded ontology (from task 1). The result (Table 7.2) is similar
to the result in task 1, participants didnt find it difficult to interact with the system and to retrieve
the correct answer to the question in this task.

Task: What is the population of New York (City)?

Question Mean Median STDV
Was the missing information easy to find? 4.86 5 0.38

Table 7.2: Results of task 2

7.3 Results 61

Task 3

A simple task designed to test the full expand functionality with the participants, and to locate
another specified node in the graph. As it is visible in Table 7.3, since the user already had experi-
ence in the process of exploring the graph from task 2, it is not difficult for the participant to solve
this task.

Task: Fully expand node “new york” (City) and node “new york”(State).

Question Mean Median STDV
Was this task easy to accomplish? 5 5 0

Table 7.3: Results of task 3

Task 4

In Task 4, participants had to create a filter that removes some unwanted nodes in the graph. The
purpose of this task was to see, how difficult it is for the participants to create a filter script with
the wizard, and subsequently to run the script. The script code, that the participants needed to
enter, was already included in the task description. The results are presented in Table 7.4, but will
be discussed in the next task, since they are related.

Task: Create a new filter named “FilterCities” for filtering all nodes from the graph that represent a city.

Question Mean Median STDV
Was the filter easy to create? 4.72 5 0.49

Table 7.4: Results of task 4

Task 5

In the previous task, users had to create a filter script; this was used to test the second type of
scripts, the scripts for modifying the graph design. Again the participants were given a script that
should help solving the question, posed in this task. At the end the participant had to comment
the usefulness of the script. The result is visible in Table 7.5.

The ONTOX application has two views for entering scripts, one Filter View for entering filter
scripts and a Script View for entering the rest of the scripts. Although all participants were able
to enter and to run the scripts from this task and task 4, for some participants it was not always
so obvious in which view to enter the script. One problem could be that the name Script View
is misleading, since a filter is also a script. Or two different views and two different wizards for
entering scripts are confusing. It would be better, if the user would have only one wizard for
entering their scripts to prevent confusion.

Task: Try to answer the question: “How many cities has the state of New York in the current ontology?”
Create a new script named “ColorAllCitiesGreen” for coloring all cities in the current graph green.

62 Chapter 7. Evaluation

Question Mean Median STDV
Was this script helpful in answering this question? 4.86 5 0.38

Table 7.5: Results of task 5

Task 6

So far the scripts were given in the description. Therefore task 6 tries to evaluate how easy it is
for users to implement their own script by looking at the examples in the previous.

The results in Table 7.6 indicate that it was a bit more difficult to create a script, but everyone
was able to implement it with the given information. This shows that the ONTOX DSL is under-
standable and not to difficult for the user to handle. Afterwards no one had any problems finding
the answer to the question posed in the task.

Task: Try to locate the Hudson River and then determine its length? Create a new script named “Hud-
sonRiver” that paints the node (representing the Hudson River) red, or changes the figure of the node in
such a way that it can be spotted more easily.

Statement Mean Median STDV
The script was easy to create 4.43 5 0.79
The information was easy to find 5 5 5

Table 7.6: Results of task 6

Task 7

For the last task, the participant was given a script that provided the answer to this task’s question.
So again, the participants hat to use the code and then rate the usefulness of the script and how
understandable it is, since the script is a little bit more complex.

The conclusion of this task is, that all participants thought that the script was extremely helpful,
providing the answer to the question. Therefore the ONTOX DSL really brings some advantages
that enrich the functionality of the application. The second statement in Table 7.7 shows that the
complex script is good understandable by most participants.

Task: Try to answer the question: How many roads pass through the state of New York?

Statement Mean Median STDV
The script helped a lot to solve this task 5 5 0
The above script is easy to unterstand 4.86 5 0.38

Table 7.7: Results of task 7

7.3.2 General Questions
The General Questions section consists of questions about the interaction with the ONTOX appli-
cation. All questions and the results are listed in Table 7.8.

7.3 Results 63

Statement Mean Median STDV
1 The application provides useful assistance for the task

of exploring an ontology.
5 5 0

2 The application is easy to operate with. 5 5 0
3 The domain specific language (DSL) to enter the

scripts, is easy to understand.
4.29 4 0.49

4 The domain specific language (DSL) to enter the
scripts, has a flat learning curve.

4.14 4 0.69

5 The graphical editor shows all nodes and edges in a
clear arranged layout.

4.57 5 0.53

6 The Satellite View provides help to keep a general view
of the entire graph.

4.57 5 0.53

7 The Filter View gives a detailed overview over all filter
scripts.

5 5 0

8 The Script View gives a detailed overview over all
scripts available to manipulate the graph.

5 5 0

9 The wizard windows for entering new scripts, clearly
describes what a user has to enter into the input fields.

3.14 3 0.69

Table 7.8: General Questions

Statements 3 and 4 indicate that the ONTOX DSL could use some minor improvements in mak-
ing it more understandable and easier to use. This is probably also related to statement 9: Most
participants find that the wizard does not provide enough help for entering the scripts.

7.3.3 Features
The fifth part Features consists of questions about the different features that the application offers.
The questions and the results can be found in Table 7.9.

Statement Mean Median STDV
1 Using the Groovy DSL script to filter and change the

design of the graph, is a useful way to interact with the
application.

4.57 5 0.54

2 The coloring of nodes/edges is a useful feature to give
more meaning to the elements in the graph.

5 5 0

3 The edge tooltip provides helpful information about
the selected edge.

5 5 0

4 The functionality to expand and collapse a single node
is a useful feature that helps to manage the amount of
nodes that are displayed in the graph.

5 5 0

Table 7.9: Features

Almost all features were rated with a strong agreement, so the participants liked these imple-
mentations. Only statement 1 falls a little bit behind the average rating. One can assume that this
has something to do with the fact that user are normally confronted with a complex user interface

64 Chapter 7. Evaluation

with buttons for a every action the user can make. The ONTOX application now comes with an-
other approach that is using a DSL to interact with the application. The DSL allows the creation of
ontology specific, complex actions, but in order to do that the user first has to learn the language
and understand how it works.

7.3.4 Remarks
The last part of the survey was a set of open questions, where the participants could comment the
application. This section gives a summary about the opinions/problems of the participants.

What did you like the most?

• Use of filters for hiding elements

• The “Expand on” feature

• The possibility to expand and collapse nodes

• Use of colors and different shapes to change the design

• The feature to enter custom scripts

• Creating a visual collection of nodes

What didn’t you like?

• Installation process is extremely slow

• Missing help for the script language

• The use of the “Expand” action repositions all elements in the graph

• The distinction between scripts and filters is confusing at the beginning

• Entering a script (filter or script) in the wrong view generates an error

Please share your suggestions how to improve the prototype

• Help window that explains the script language

• Using the built-in help system that is bound to the question mark button available in the
wizard pages for giving a quick overview of the language in the form of a cheat sheet

• New “Collapse on” function, similar to the “Expand on” function

• One wizard for entering the scripts, instead of two different versions

7.4 Discussion 65

7.4 Discussion
The idea behind the evaluation was to find answers to the questions listed in the Introduction
section of this chapter. The first question was related to the installation and running of the ap-
plication. No participant mentioned any errors during the installation of the plug-in in Eclipse
or any failures that prevented the application from running. But a problem was that the plug-in
took a long time to install. The long installation is caused by the dependency check that Eclipse
performs at the beginning of the installation. The ONTOX plug-in needs SWT, GEF, Zest, Jena,
Groovy and other libraries to run. All these libraries exists as separate plug-ins and are not inte-
grated into to the ONTOX plug-in, therefore Eclipse needs to perform a dependency check on all
libraries. Some of these libraries could also be directly included into the framework to speed up
the installation process.

The next question, that the evaluation needed to answer, was associated with the evaluation
of the interface considering usage and understandability. Some participants were a little bit con-
fused at the beginning, between the distinction of the two script types (filter and graph) and in
which wizard they had to enter them. But it turned out not to be an obstacle that prevented the
participants from solving all tasks. However, it would better to improve the script wizard in a
future version, to make it clearer for the user.

The next two questions were related to the ONTOX DSL and finding answers to how easy can
users understand and create scripts. The results of the tasks showed that users do not find it to
hard to understand the DSL. Also they can easily create new simple scripts out of some given
examples. But for more complex scripting, a help for the user is needed.

Although everything was given in the Survey description, including some script examples, the
participants suggested as main improvement to include help for the DSL. After the evaluation,
the prototype was extended with a simple help documentation that gives an overview over the
entire language. Also some further ideas for improving the use of the ONTOX DSL are mentioned
in the Future Work (section 8.2) of this thesis.

An additional improvement, that was suggested by the percipients, such as the Collapse on
function, which allows user to remove a single edge without the need to write a filter script, was
also included into the framework. Also the wizards inform the user now, if he enters the wrong
script in one of the wizards.

Statement Mean Median STDV
I have advanced knowledge about Eclipse 3.71 4 0.76
I have advanced knowledge about the Semantic Web and the
Resource Description Framework

3.14 3 1.57

Table 7.10: Results of the participants experience

All participants were between the age of 25 and 30, male, with a background in computer
science. The survey was performed with seven participants. As Table 7.10 shows all partici-
pants were familiar with Eclipse but the range of knowledge in Semantic Web/RDF goes from
no knowledge to professionals. Nevertheless all were able to solve the tasks. Also the evaluation

66 Chapter 7. Evaluation

shows that the prototype is not too difficult for users to understand and to control, and the proto-
type brings some helpful features for the exploration of ontologies. But there are still some points
that need to improve in future versions.

Chapter 8

Final Remarks

The last chapter recapitulates the work and draws some conclusions about the implemented ON-
TOX framework. In addition, some suggestions are presented how the ONTOX framework could
be improved.

8.1 Conclusion
In this thesis a new visualization framework for the Semantic Web was presented. A framework
that provides help in the exploration of Semantic Web data sets with a simple user interface. In
addition to the visualization part, a new domain specific language was developed that allows
users to interact with the visualized data in a new and advanced way.

First, the basic technologies were presented, that were used as the basis for the framework im-
plementation, including some background knowledge about DSL development on the basis of
Groovy. Next, the application prototype was presented with all its features and the user inter-
face. Also the developed ONTOX DSL was described in full detail with some user examples that
showed the capabilities of the implemented language and how the language can assist the user.
In a following chapter further details about the implementation of the framework were explained,
which are necessary to understand how certain components work that are not visible to the user,
e.g. the History Tracker to undo script operations.

Finally, an evaluation was performed to see how the application prototype is accepted by users.
With simple tasks the user learned to interact with the application and to write scripts that would
assist users to look for specific information in the data set. In respect to the application it can be
said that the participants were generally positive towards the ONTOX prototype. There are still
improvements open, especially some assistance for the user that he can enter the ONTOX DSL
more easily. But the application shows potential for further development and some of these new
features are presented in the next chapter.

8.2 Future Work
The first version of the ONTOX framework worked quite well and was able to reach the goal of
this thesis. But there is still room for improvements and new features, which are presented in this
section.

68 Chapter 8. Final Remarks

8.2.1 SPARQL Query Language for RDF
SPARQL [PS08] is an RDF query language that is used for querying RDF graphs via pattern
matching. It is a syntactically SQL-like language. A SELECT query is used to extract value from
a SPARQL endpoint, and the result is returned in a table format. Listing 8.1 shows an example of
SPARQL query that is used to find the title of a book from a given data graph. The query consists
of two parts: The first part, the (SELECT clause, identifies the variables to appear in the query
results, and the second part, the WHERE clause, provides the basic search query. In this example
the query consists of a single triple pattern with a single variable (?title) in the object position.

Listing 8.1: SPARQL query example

SELECT ?title

WHERE {

<http://example.org/book/b1> <http://purl.org/elements/title> ?title.

}

SPARQL is a powerful language to query an RDF graph. Therefore it should be included into
the ONTOX framework: SPARQL could be used to specify the start node, instead of selecting the
start node from a list. The user could enter a query and use the result as the initial start node set.
Also dynamic highlighting or the selection of nodes via SPARQL query could integrated into the
framework. Another possibility would be to use the SPARQL statements directly in the ONTOX
DSL language, to query the Jena Model for certain elements (used in ONTOX select or subgraph
statements).

8.2.2 Layout Algorithms
This section will give some ideas about how to improve the layout algorithms used in the frame-
work.

Improved Layout Algorithms

The implemented layout algorithms are limited. When the number of nodes or edges changes
in the graph, then the algorithm has to recalculate the entire graph. The graph gets a complete
new structure, because every node gets a new position depending on their amount of connected
nodes through edges. Therefore a new algorithm should be implemented that can layout new
nodes and edges without changing the structure of the already existing nodes. Another idea
would be that the user has to choose the target position where the node should be expanded to,
and the algorithm tries to layout the nodes in the area that the user selected.

Another approach would be to include the layout algorithms from the Jung framework. Jung
comes with its own set of layout algorithms. One important aspect that all the algorithms in Jung
offer, is that the positions of the vertices can be locked. This means the algorithm takes existing
nodes into account when computing a new layout but does not change their position. Through
this approach the graph would become more stable, when expanding and collapsing nodes, then
it is in the current implementation. But it could also lead to new problems, since some graph
structures would now be rigid and do not reposition when their number of connected nodes
change.

8.2 Future Work 69

Extension Point

At the moment the layout algorithms are all included as direct implementations in the ONTOX
framework. Since these layout algorithms are a vital point when it comes to displaying the graph
elements in a well-arranged manner, it would be best if they could be easily exchanged in the
source code. Therefore the layout algorithms could be implemented in separate plug-in and inte-
grated via extension point into the ONTOX plug-in, which would make the system more modular
with respect to layout algorithms.

8.2.3 Persistent Graph State
The ONTOX framework stores only the user entered script in the persistent storage system. An
improvement would be, if the user also could store its current exploration state of the graph with
all the modifications he made. So the user could continue his work another time or send the graph
to someone else. Here is a short list of the important parts that should be stored:

• Nodes and edges: All elements in the graph need to be stored including their status, design,
and position information.

• History data: : The history data of all objects need to be stored to allow undo operations.

• Active status of scripts: Which ones where active when the user stored the state of the
graph.

8.2.4 Enhancing OntoX DSL
This section provides some ideas how to enhance the current ONTOX DSL by adding some graph-
ical and analytical features.

Analytical DSL

So far the user has the ability to enter scripts for filtering elements in the graph and changing
the design and structure of the graph. To add some analytical functionality to the ONTOX frame-
work, one could add a new script type that performs a statistical/analytical computation and
then displays the result value in the user interface.

In the Geography ontology [Gru93], such a computation could directly help to solve a question
like “How many cities has the state of New York?” To do this, the user would enter a new script, and
in that script he first defines the target node(s) for which this calcualtion is (node, edge, or a global
value). Then he enters the script for the actual calculation. When the user now hovers with the
mouse over the element (see Figure 8.1), for which the script was designed, then the computed
value appears in the toolip as a name-value entry. Instead of using a tooltip, the value could also
appear in a new view or the Eclipse property view. These calculations could also be used in other
scripts, e.g.connecting the result of the calculation with the size of the node.

Another example would be when using a code ontology, like the source code ontology SEON
[WGRG10], the user could compute some metric values: Aggregate the lines of codes, count the
number of methods a class has, etc. Or to create a textual representation of the answer to the
question “What are the callers of method add?”.

70 Chapter 8. Final Remarks

Figure 8.1: Tooltip example for an analytical script

Graphics DSL

The ONTOX framework used hard-coded figures to display nodes as circles, rectangles, etc. An
additional improvement of the ONTOX DSL could be the creation of an ONTOX Graphics DLS,
that extends the current DSL by allowing users to define new graphic elements. Groovy has
already a package named GraphicsBuilder [Alm] that can be used to create Java2D graphic objects
(see Listing 8.2 and Figure 8.2 [Alm] for an example). Maybe it is possible to integrate this builder
into the framework. If not the builder could be used as template for creating a new builder that
is based on SWT and Draw2D for drawing new node shapes.

Figure 8.2: GraphicsBuilder example shapes

Listing 8.2: Example scripts from GraphicsBuilder

rect(x: 10, y: 10, width: 50, height: 50, borderColor: ’black’, fill:’red’)

rect(x: 70, y: 10, width: 50, height: 50, arcWidth: 20, arcHeight: 20,

borderColor: ’black’, fill:’orange’)

circle(cx: 155, cy: 35, radius: 25, borderColor: ’black’, fill: ’darkGreen’)

ellipse(cx: 225, cy: 35, radiusx: 35, radiusy: 25, borderColor: ’black’,

fill: ’blue’)

8.2 Future Work 71

arc(x: -40, y: 70, width: 100, height: 100, start: 0, extent: 90,

borderColor: ’black’, fill: ’cyan’, close: ’pie’)

arc(x: 20, y: 70, width: 100, height: 100, start: 0, extent: 90,

borderColor: ’black’, fill: ’magenta’, close: ’chord’)

arc(x: 80, y: 70, width: 100, height: 100, start: 0, extent: 90,

borderColor: ’black’, fill: ’yellow’, close: ’open’)

polygon(points: [190,70,225,90,260,70,250,120,225,110,200,120],

borderColor: ’black’, fill: ’black’)

path(borderColor: ’black’, fill: ’purple’, winding: ’nonzero’){

moveTo(x: 40, y: 130)

lineTo(x: 20, y: 200)

lineTo(x: 70, y: 158)

lineTo(x: 10, y: 158)

lineTo(x: 60, y: 200)

close()

}

path(borderColor: ’black’, fill: ’lime’, winding: ’evenodd’){

moveTo(x: 120, y: 130)

lineTo(x: 100, y: 200)

lineTo(x: 150, y: 158)

lineTo(x: 90, y: 158)

lineTo(x: 140, y: 200)

close()

}

8.2.5 Enhanced Script Editor
When a user enters an incorrect script into the Script Wizard Window, he receives the error mes-
sages from the Groovy parser. This is enough to detect Groovy syntax errors in the script code, but
does not help if the user enters a wrong combination of the ONTOX DSL. Also the error message
from the Groovy parser can sometimes be cryptic to understand, when for example the parsers
reports the error on the wrong position in the code. Therefore an advanced text parser would
be helpful that understands the ONTOX DSL and can give helpful error information to the user.
Also a code completion function would be useful to make the input of the DSL easier, like Eclipse
posses when entering Java code.

8.2.6 Design
Another way of improving the framework can be done through enhancing the design of the
framework.

Additional Figures

ONTOX allows the user to create a rectangle, a rounded rectangle, a circle, a square, or an ellipse
figure for the nodes. This is a small set of figures that is included into the system. Therefore a fu-
ture improvement would be, to add more figures to the system and increase the set of figures the
user can choose from. The new figure don’t need to be simple shapes, they can also be more ad-
vanced implementations to represent, for example, a set of nodes as a tree or a treemap. Another
possibility would be, that the user can use images instead of computed figures.

72 Chapter 8. Final Remarks

Animation

The ONTOX framework can be used to incrementally explore any ontology. When new nodes are
added to the graph, the layout algorithm recalculates the positions for all nodes and therefore
changes the entire layout of the graph. This means that the user is suddenly confronted with a
complete new structured graph, what makes it is difficult for the user to keep track of the current
work context. At the moment, the ONTOX framework tries to refocus on the selected element,
so that the user doesn’t get completely lost. An additional help to the user would be, if the user
could follow the transition from one graph state to the other. An animation would visualize the
repositioning of the elements to the user, so he could keep track of the change. For example: When
the user decides to expand a selected node, the new nodes would emerge from the selected node
am move to their new positions in the graph, visualized with an animated sequence. Another
example would be the change of the layout algorithm, when the nodes slowly move away from
their old position to the new one, that is computed by the layout algorithm.

Friedrich et al. [FE02] presents some criteria for a good animation:

• The movement of nodes and edges should be easy to follow.

• The movements of the graph should be structured (uniform and symmetrical movement).

• The transition from source to destination should be smooth.

• The change should occur in an adequate speed.

Appendix A

Survey

Page 1

OntoX SurveyOntoX SurveyOntoX SurveyOntoX Survey

Thank you for participating in this survey. With your help, I will be able to improve the current prototype of my
visualization framework for the Semantic Web.

Resource Description Framework (RDF)
This is a short introduction to the Resource Description Framework (RDF). If you are already familiar with RDF, you can skip this section.

RDF is a language for representing information about resources in the World Wide Web. It is based on the idea of identifying resources using
Uniform Resource Identifiers (URI). Resources are described in triples (also called statements). A RDF triple consists of “Subject –Predicate –
Object”:
Subject: The Subject is the thing (the resource) we want to make a statement about.
Predicate: The predicate defines the kind of information we want to express about the subject.
Object: The object defines the value of the predicate. The object can be a literal or another resource.

Example: The sentence "Tolkien wrote Lord of the Rings." can be transformed into an RDF statement: Subject "Tolkien", predicate "wrote",
and object "Lord of the Rings".

Ontology
Ontologies are the structural frameworks for organizing information and are used in the Semantic Web and other areas as a form of knowledge
representation about the world or some part of it.

Common components of ontologies include:
 Individuals: instances or objects (the basic objects)
 Classes: sets, collections, concepts, classes in programming, types of objects, or kinds of things
 Attributes: aspects, properties, features, characteristics, or parameters that objects (and classes) can have
 Relations: ways in which classes and individuals can be related to one another

OWL (Web Ontology Language) is a language for making ontological statements, developed as a followon from RDF. It is intended to be
used over the World Wide Web, and all its elements (classes, properties and individuals) are defined as RDF resources, and identified by URIs.

Installation
Before we can begin with the survey, you need to set up the prototype. Please download the needed software and the necessary files, and use
the Installation Guide to install the software.

Download links:
 Eclipse Helios 3.6.2
 OntoX Eclipse Plugin
 Geography Ontology (geography.owl)
 Installation Guide

1. Information / Setup

Page 2

OntoX SurveyOntoX SurveyOntoX SurveyOntoX Survey

At the beginning some statistical questions.

1. Age?

2. Gender?

3. I have advanced knowledge about Eclipse (software development environment)?

4. I have advanced knowledge about the Semantic Web and the Resource Description
Framework?

2. Introduction

male

nmlkj female

nmlkj

nmlkj

nmlkj /+

nmlkj +

nmlkj ++

nmlkj

nmlkj

nmlkj /+

nmlkj +

nmlkj ++

nmlkj

Page 3

OntoX SurveyOntoX SurveyOntoX SurveyOntoX Survey

On this page are some simple tasks that will show the features of the current prototype. Some tasks are dependent
on each other, therefore they should be solved in the specified order.

1. Load the Ontology "geography.owl" (file) into the application via menu entry "OntoX"
> "Load File" and choose "newYorkNy" (the city) as the start node.

Was the task easy to solve?

2. Try to answer the following question: "What is the population of New York (City)?"
(Hint: The context menu (right mouse button on selected nodes) provides the
necessary tools to expand/collapse nodes in the graph. The answer can be entered in
the comment field.)

Was the missing information easy to find?

3. Fully expand node “new york” (City) and node “new york”(State).

Was this task easy to accomplish?

3. Tasks

nmlkj

nmlkj /+

nmlkj +

nmlkj ++

nmlkj

Problems/Comment

55

66

nmlkj

nmlkj /+

nmlkj +

nmlkj ++

nmlkj

Problems/Comment

55

66

nmlkj

nmlkj /+

nmlkj +

nmlkj ++

nmlkj

Problems/Comment

55

66

Page 4

OntoX SurveyOntoX SurveyOntoX SurveyOntoX Survey
4. Create a new filter named "FilterCities" for filtering all nodes from the graph that
represent a city. You can use the following script code (based on a implemented
Groovy domain specific language > DSL) to solve this task:

 filter {
 has predicate:'isCityOf'
 }

(Hint: Enter the script in the "Filter View". Scripts can be activated and deactivated by
clicking on their checkbox in the list.
The code block has the following meaning: Filter all nodes that have a predicate named
"isCityOf".)

Was the filter easy to create?

nmlkj

nmlkj /+

nmlkj +

nmlkj ++

nmlkj

Problems/Comment

55

66

Page 5

OntoX SurveyOntoX SurveyOntoX SurveyOntoX Survey
5. Try to answer the question: "How many cities has the state of New York in the
current ontology?”
Create a new script named “ColorAllCitiesGreen” for coloring all cities in the current
graph green. Use the given script code to solve this task (don't forget do deactivate the
filter created in step 4):

 script {
 select ('node') {
 has predicate:'isCityOf', as:'subject'
 set color:'green'
 }
 }

(Information: Enter all scripts, that are not filter scripts, in the "Script View".
The above script block has the following meaning: Select all nodes that have an
predicate named 'isCityOf' with the target node as the subject of the RDF statement.
Then change the color of all found nodes to green.
The keyword "script" defines the basic script block. The statement "select('node')"
defines a selection code block with a "has" and a "set" property.)

Was this script helpful in answering this question?

nmlkj

nmlkj /+

nmlkj +

nmlkj ++

nmlkj

Problems/Comment

55

66

Page 6

OntoX SurveyOntoX SurveyOntoX SurveyOntoX Survey
6. Try to locate the Hudson River and then determine its length?
Create a new script named “HudsonRiver” that paints the node (representing the
Hudson River) red, or changes the figure of the node in such a way that it can be
spotted more easily (to solve this task look at the script used in task 5).

l To look for a certain name use: has name:'hudson'
l To set a new figure use: set figure:'circle'
l To set a certain color use: set color:'red'
l or use: set color:[250,172,191]

7. Try to answer the question: How many roads pass through the state of New York?
Create a new script named “GroupAllRoads” that groups all roads together:

 script {
 create {
 selection = select {
 has predicate:'passesThrough'
 }
 set name:'Roads (' + selection.size + ')'
 set algorithm:'radial'
 }
 }

(Hint: This script will create a new subgraph node.)

 /+ + ++

The script was easy to
create

nmlkj nmlkj nmlkj nmlkj nmlkj

The information was easy
to find

nmlkj nmlkj nmlkj nmlkj nmlkj

 /+ + ++

The script helped a lot to
solve this task

nmlkj nmlkj nmlkj nmlkj nmlkj

The above script is easy to
unterstand

nmlkj nmlkj nmlkj nmlkj nmlkj

Problems/Comment

55

66

Problems/Comment

55

66

Page 7

OntoX SurveyOntoX SurveyOntoX SurveyOntoX Survey

1. General Questions

4. General Questions

 /+ + ++

The application provides
useful assistance for the
task of exploring an
ontology.

nmlkj nmlkj nmlkj nmlkj nmlkj

The application is easy to
operate with.

nmlkj nmlkj nmlkj nmlkj nmlkj

The domain specific
language (DSL) to enter
the scripts, is easy to
understand.

nmlkj nmlkj nmlkj nmlkj nmlkj

The domain specific
language (DSL) to enter
the scripts, has a flat
learning curve.

nmlkj nmlkj nmlkj nmlkj nmlkj

The graphical editor
shows all nodes and edges
in a clear arranged layout.

nmlkj nmlkj nmlkj nmlkj nmlkj

The Satellite View
provides help to keep a
general view of the entire
graph.

nmlkj nmlkj nmlkj nmlkj nmlkj

The Filter View gives a
detailed overview over all
filter scripts.

nmlkj nmlkj nmlkj nmlkj nmlkj

The Script View gives a
detailed overview over all
scripts available to
manipulate the graph.

nmlkj nmlkj nmlkj nmlkj nmlkj

The wizard windows for
entering new scripts,
clearly describes what a
user has to enter into the
input fields.

nmlkj nmlkj nmlkj nmlkj nmlkj

Page 8

OntoX SurveyOntoX SurveyOntoX SurveyOntoX Survey

1. Features

5. Features

 /+ + ++

Using the Groovy DSL
script to filter and change
the design of the graph, is
a useful way to interact
with the application.

nmlkj nmlkj nmlkj nmlkj nmlkj

The coloring of
nodes/edges is a useful
feature to give more
meaning to the elements
in the graph.

nmlkj nmlkj nmlkj nmlkj nmlkj

The edge tooltip provides
helpful information about
the selected edge.

nmlkj nmlkj nmlkj nmlkj nmlkj

The functionality to
expand and collapse a
single node is a useful
feature that helps to
manage the amount of
nodes that are displayed
in the graph.

nmlkj nmlkj nmlkj nmlkj nmlkj

Page 9

OntoX SurveyOntoX SurveyOntoX SurveyOntoX Survey

1. What did you like the most?

2. What didn’t you like?

3. Please share your suggestions how to improve the prototype.

4. Please share any other remarks.

6. Remarks

55

66

55

66

55

66

55

66

Appendix B

Class Node.groovy

/**

* This class represents a node in the OntoX DSL language and

* acts as a wrapper class for an OntoxNode object.

*/

class Node {

protected AbstractGraphBuilder graphBuilder = null; //graph builder

protected OntoxNode ontoxNode = null; //Node object

/**

* Fields that can be used from the OntoX DSL.

* They provide an easy access for important information.

*/

String fullURI = null; //full URI of the RDF resource

String uri = null; //URI with namespace prefix

String label = null; //Label of the node

String name = null; //Same value as label

boolean isLiteral = false; //Is this node a literal?

boolean isResource = false; //Is this node a resource?

boolean isAnon = false; //Is this node an anonymous node?

boolean isOntClass = false; //Represents this node an ontology class?

boolean isIndividual = false; //Represents this node an indiviudal class?

Object value = null; //If this node is a literal than it has a value.

RDFNode rdfNode = null; //The RDFNode that this object represents

def edges = { return this.getEdges(); } //returns all connected edges

def outEdges = { return this.getOutEdges(); }; //returns all outgoing edges

def inEdges = { return this.getInEdges(); }; //returns all incoming edges

/**

* Constructor

*/

public Node() {

}

/**

* Set the OntoxNode object and compute the fields values.

84 Chapter B. Class Node.groovy

* @param ontoxNode Node object

*/

public setOntoxNode(OntoxNode ontoxNode) {

this.ontoxNode = ontoxNode;

this.graphBuilder = ontoxNode.getGraphBuilder();

this.setFieldValues();

}

/**

* This method computes the field

* values for this object.

*/

private setFieldValues() {

this.fullURI = this.ontoxNode.getFullURI();

this.uri = this.ontoxNode.getURI();

this.label = this.ontoxNode.getNodeLabel();

this.name = this.label;

this.isLiteral = this.ontoxNode.getNode().isLiteral();

if (this.isLiteral) {

this.value = this.ontoxNode.getValue();

}

this.isResource = this.ontoxNode.getNode().isResource();

this.isAnon = this.ontoxNode.getNode().isAnon();

this.isIndividual = this.ontoxNode.isIndividual();

this.isOntClass = this.ontoxNode.isOntClass();

this.rdfNode = this.ontoxNode.getNode();

}

/**

* Returns the literal value of given edge that is connected to this node.

* @param predicateName Name of edge (= predicate name)

* @return Value of the literal as String, Integer, etc., or null on error.

*/

def getLiteralValue(predicateName) {

if (predicateName == null || predicateName == "") {

return null;

}

if (graphBuilder == null || ontoxNode == null) {

return null;

}

if (ontoxNode.isResource()) {

ModelInterrogator modelInterrogator = this.ontoxNode.getGraphBuilder().getModelInterrogator();

Collection <Statement> statements = modelInterrogator.getProperties(ontoxNode.getNode().asResource())

for (Iterator iterator = statements.iterator(); iterator.hasNext();) {

Statement statement = (Statement) iterator.next();

if (ModelHelper.computeEdgeLabel(statement).equals(predicateName)) {

RDFNode tempNode = statement.getObject();

if (tempNode.isLiteral()) {

Literal literal = (Literal) tempNode;

return literal.getValue();

}

}

}

}

85

else {

return null;

}

}

/**

* Returns a list with all connected edges.

*/

def getEdges() {

return this.convertToEdgeType(this.ontoxNode.getConnections());

}

/**

* Returns a list with all outgoing edges.

*/

def getOutEdges() {

return this.convertToEdgeType(this.ontoxNode.getSourceConnections())

}

/**

* Returns a list with all incoming edges.

*/

def getInEdges() {

return this.convertToEdgeType(this.ontoxNode.getTargetConnections())

}

/**

* Helper method that converts a list of OntoxEdge objects to Edge objects.

* @param listToConvert OntoxEdge list to convert

* @return New list with Edge objects

*/

def convertToEdgeType (List<OntoxEdge> listToConvert) {

ArrayList<Edge> resultList = new ArrayList<Edge>();

for(ontoxEdge in listToConvert) {

Edge edge = new Edge();

edge.setOntoxEdge(ontoxEdge);

resultList.add(edge);

}

return resultList;

}

}

Appendix C

Class Edge.groovy

/**

* This class represents an edge in the OntoX DSL language and

* acts as a wrapper class for an OntoxEdge object.

*/

class Edge {

protected AbstractGraphBuilder graphBuilder = null; //graph builder

protected OntoxEdge ontoxEdge = null; //Edge object

/**

* Fields that can be used from the OntoX DSL.

* They provide an easy access for important information.

*/

String fullURI = null; //full URI of the RDF Statement (predicate)

String uri = null; //URI with namespace prefix

String label = null; //Label of the node

String name = null; //Same value as label

Node sourceNode = null; //Source node of edge

Node targetNode = null; //Target node of edge

Statement statement = null; //The Statement that this object represents

/**

* Constructor

*/

public Edge() {

}

/**

* Set the OntoxEdge object and compute the fields values.

* @param ontoxEdge Edge object

*/

public setOntoxEdge(OntoxEdge ontoxEdge) {

this.ontoxEdge = ontoxEdge;

this.graphBuilder = ontoxEdge.getGraphBuilder();

this.setFieldValues();

88 Chapter C. Class Edge.groovy

}

/**

* This method computes the field

* values for this object.

*/

private setFieldValues() {

this.fullURI = this.ontoxEdge.getFullURI();

this.uri = this.ontoxEdge.getURI();

this.label = this.ontoxEdge.getEdgeLabel();

this.name = this.label;

this.statement = ontoxEdge.getStatement();

OntoxNode sourceOntoxNode = this.ontoxEdge.getSourceNode();

OntoxNode targetOntoxNode = this.ontoxEdge.getTargetNode();

this.sourceNode = new Node();

this.sourceNode.setOntoxNode(sourceOntoxNode);

this.targetNode = new Node();

this.targetNode.setOntoxNode(targetOntoxNode);

}

}

References

[Alm] Andres Almiray. GraphicsBuilder graphicsbuilder is a groovy builder for java 2d,
http://groovy.codehaus.org/graphicsbuilder.

[BdR06] W. Beaton and J. d. Rivieres. Eclipse platform technical overview. Technical report,
The Eclipse Foundation, 2006.

[BLHL01] Tim Berners-Lee, James Hendler, and Ora Lassila. The semantic web. Scientific Amer-
ican, 284(5):34–43, May 2001.

[Car06] Jorge Cardoso. Programming the semantic web. In Jorge Cardoso and Amit P. Sheth,
editors, Semantic Web Services, Processes and Applications, volume 3 of Semantic Web
And Beyond Computing for Human Experience, pages 351–380. Springer, 2006.

[Cui07] W. Cui. A survey on graph visualization. Technical report, Hong Kong University of
Science and Technology, 2007.

[db.] Apache derby: Java relational database, http://db.apache.org/derby/.

[Dea10] F. Dearle. Groovy for Domain-Specific Languages. PACKT PUB, 2010.

[FE02] Carsten Friedrich and Peter Eades. Graph drawing in motion. J. Graph Algorithms
Appl., 6(3):353–370, 2002.

[GHJ94] Erich Gamma, Richard Helm, and Ralph E. Johnson. Design Patterns. Elements of
Reusable Object-Oriented Software. Addison-Wesley Longman, Amsterdam, 1st ed.,
reprint. edition, 1994.

[Gru93] Thomas R. Gruber. A translation approach to portable ontology specifications. Knowl-
edge Acquisition, 5(2):199–220, 1993.

[GW04] Sunil Goyal and Rupert Westenthaler. Rdf gravity (rdf graph visualization tool), 2004.

[HCL05] Jeffrey Heer, Stuart K. Card, and James A. Landay. Prefuse: a toolkit for interactive
information visualization. http://prefuse.org/. In Proc. CHI 2005, Human Factors in
Computing Systems, 2005.

[hib] Hibernate relational persistence for java, http://www.hibernate.org/.

[jen] Jena semantic web framework, http://jena.sourceforge.net/.

[KGK+07] Dierk Knig, Andrew Glover, Paul King, Guillaume Laforge, and Jon Skeet. Groovy in
Action. Manning, 2007.

90 REFERENCES

[KWV07] S. Krivov, R. Williams, and F. Villa. GrOWL: a tool for visualization and editing of
OWL ontologies. Journal of Web Semantics, 5(2):54–57, 2007.

[Lik32] R. Likert. A technique for the measurement of attitudes. Archives of Psychology,
22(140):1–55, 1932.

[MFN03] J. Madadhain, D. Fisher, and T. Nelson. JUNG java universal network/graph frame-
work, http://jung.sourceforge.net/, 2003.

[MFS+05] J. Madadhain, D. Fisher, P. Smyth, S. White, and Y.B. Boey. Analysis and visualization
of network data using jung. Journal of Statistical Software, 10:1–35, 2005.

[MG03] Paul Mutton and Jennifer Golbeck. Visualization of semantic metadata and ontolo-
gies. In Proc. Information Visualization, 2003.

[MGL06] Michael Meyer, Tudor Grba, and Mircea Lungu. Mondrian: an agile information
visualization framework. In Eileen Kraemer, Margaret M. Burnett, and Stephan Diehl,
editors, SOFTVIS, pages 135–144. ACM, 2006.

[MHS05] M. Mernik, J. Heering, and A. M. Sloane. When and how to develop domain-specific
languages. ACM Computing Surveys (CSUR), 37(4):316–344, 2005.

[Nov02] Ondrej Novak. Visualization of large graphs. Postgraduate study report, Faculty of
Electrical Engineering, Czech Technical University in Prague, 2002.

[OWL04] Owl web ontology language overview. W3c recommendation, World Wide Web Con-
sortium, February 2004.

[Pow03] Shelley Powers. Practical RDF - solving problems with the resource description framework.
O’Reilly, 2003.

[pre06] Prefuse information visualization toolkit, http://prefuse.org/, 2006.

[pro] Ontograf - protege wiki, http://protegewiki.stanford.edu/wiki/ontograf.

[PS08] Eric Prud’hommeaux and Andy Seaborne. SPARQL query language for RDF. W3C
Recommendation, 15 Jan. 2008. Available at .

[RWC11] D. Rubel, J. Wren, and E. Clayberg. The Eclipse Graphical Editing Framework (Gef).
Eclipse Series. Pearson Education, Limited, 2011.

[Shn96] Ben Shneiderman. The eyes have it: A task by data type taxonomy for information
visualizations. In VL ’96: Proceedings of the 1996 IEEE Symposium on Visual Languages,
page 336. IEEE Computer Society, 1996.

[SNM+02] Margaret-Anne D. Storey, Natasha F. Noy, Mark A. Musen, Casey Best, Ray W. Fer-
gerson, and Neil A. Ernst. Jambalaya: an interactive environment for exploring on-
tologies. In IUI, pages 239–239, 2002.

[Tuf01] Edward R. Tufte. The Visual Display of Quantitative Information. Graphics Press,
Cheshire, CT, 2. edition, 2001.

[wc3a] Ontology vocabularies, http://www.w3.org/standards/semanticweb/ontology.

[wc3b] Semantic Web, http://www.w3.org/standards/semanticweb/.

REFERENCES 91

[WGRG10] Michael Wuersch, Giacomo Ghezzi, Gerald Reif, and Harald Gall. Supporting devel-
opers with natural language queries. In Jeff Kramer, Judith Bishop, Premkumar T.
Devanbu, and Sebastin Uchitel, editors, ICSE (1), pages 165–174. ACM, 2010.

[Zel95] John M. Zelle. Using Inductive Logic Programming to Automate the Construction of Nat-
ural Language Parsers. PhD thesis, Department of Computer Sciences, The University
of Texas at Austin, Austin, TX, 1995.

