
Master thesis
April 19, 2011

SmellTagger
Augmenting Design and Code Reviews with

Multi-Touch Technology

Sebastian Müller
of Vaduz, Liechtenstein (05-707-948)

supervised by

Prof. Dr. Harald C. Gall
Michael Würsch and Emanuel Giger

Department of Informatics software evolution & architecture lab





Master thesis

SmellTagger
Augmenting Design and Code Reviews with

Multi-Touch Technology

Sebastian Müller

Department of Informatics software evolution & architecture lab



Master thesis

Author: Sebastian Müller, mail@sebastian-mueller.li

Project period: 11.10.2010 - 20.4.2011

Software Evolution & Architecture Lab
Department of Informatics, University of Zurich



Acknowledgements

At this point I would like to thank all the people who were involved in this thesis. First of all,
I thank professor Harald Gall for giving me the opportunity to write this thesis at his software
evolution and architecture lab. Many thanks also go to Michael Würsch and Emanuel Giger for
providing the idea of this application and for their great support.





Abstract

The new multi-touch technology that is used on devices such as the Microsoft Surface has the po-
tential to fundamentally change the way how people interact with digital content. It provides the
users with an intuitive and very natural user interface. This new interaction principle is widely
used in various domains such as customer servicing. But very little research has been performed
on how it can be used beneficially in the context of software engineering.

In order to contribute to overcome this issue we developed a Microsoft Surface application
called SmellTagger. This application uses well-defined heuristics to automatically detect code
smells in a software project. These code smells can provide the starting point for a collabora-
tive design and code review. Therefore our prototype application demonstrates how multi-touch
interfaces can be used advantageously in the field of software engineering. Additionally, our
SmellTagger application can also be used to verify that multi-touch interfaces can foster the collab-
oration between software engineers.

The subsequent evaluation of the prototype application has shown that multi-touch interfaces
are generally well accepted and intuitively easy to handle. It also became evident that our Smell-
Tagger application fulfills the necessary requirements to be used beneficially in a code and design
review process.





Zusammenfassung

Multi-touch Bildschirme werden in den letzten Jahren immer häufiger verwendet. Beispiele dafür
sind das iPhone oder der Microsoft Surface. Diese neue Technologie hat das Potential, die Art
und Weise wie Menschen mit digitalen Inhalten interagieren, grundlegend zu verändern. In vie-
len verschiedenen Bereichen, wie zum Beispiel kundenorientierten Dienstleistungen, wird diese
neue Technologie bereits häufig eingesetzt. Allerdings gibt es bisher noch wenige Kenntnisse
darüber, wie auch die Softwareentwicklung von diesem technologischen Fortschritt profitieren
könnte.

Um dazu beizutragen diese neue Technologie auch in der Softwareentwicklung zu etablieren,
haben wir SmellTagger, eine Applikation für den Microsoft Surface, entwickelt. Diese Applika-
tion benutzt Heuristiken um ein Software Projekt automatisch zu analysieren und Code Smells
zu finden. Diese gefundenen Code Smells können anschliessend als Ausgangslage für ein Design
und Code Review benutzt werden. Dadurch kann mit Hilfe unserer Applikation erklärt wer-
den, wie Multitouch Interfaces im Bereich der Softwareentwicklung vorteilhaft genutzt werden
können. Zudem wird durch unsere SmellTagger Applikation ersichtlich, dass Multitouch Inter-
faces die Zusammenarbeit zwischen Softwareentwicklern fördern können.

Die anschliessende Evaluation unserer Applikation hat gezeigt, dass Multitouch Interfaces im
Allgemeinen von den Benutzern akzeptiert werden und auch leicht zu bedienen sind. Ausserdem
wurde ersichtlich, dass unsere SmellTagger Applikation die notwendigen Anforderungen erfüllt,
um gewinnbringend in einem Design und Code Review verwendet werden zu können.





Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Related Work 3
2.1 Information Visualization Techniques and Principles . . . . . . . . . . . . . . . . . . 3
2.2 Multi-touch User Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Design & Code Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Background 9
3.1 The History of Multi-touch User Interfaces . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Microsoft Surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 Using Software Metrics to Detect Code Smells . . . . . . . . . . . . . . . . . . . . . 11
3.4 Retrieving Information from the SOFAS Web Service . . . . . . . . . . . . . . . . . . 16

4 Augmenting Design and Code Reviews with Multi-Touch Technology 19
4.1 Use Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.2.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2.2 Start-up Screen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2.3 Main Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2.4 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2.5 User Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.3 Lesson Learned . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5 Implementation Details 43
5.1 Gestures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.2 Rule-based Detection Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.2.1 God Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.2.2 Refused Parent Bequest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.2.3 Shotgun Surgery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.2.4 Brain Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.3 Syntax Highlighting and Code Folding . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.4 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.4.1 Unit Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.4.2 Interface Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53



viii CONTENTS

5.5 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6 Evaluation 57
6.1 Study Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.2.1 Functionalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.2.2 Review Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.2.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.2.4 Open Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.3 Limitations and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

7 Final Remarks 71
7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

7.2.1 Tutorial and Interactive Help . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
7.2.2 Display Dynamic Content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
7.2.3 Extend Structural Information . . . . . . . . . . . . . . . . . . . . . . . . . . 73
7.2.4 Review Report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
7.2.5 Speech-to-Text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
7.2.6 Microsoft Surface 2.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
7.2.7 Filtering Classes Based on Various Characteristics . . . . . . . . . . . . . . . 75
7.2.8 Enhancing Web Service with Rule-based Detection Strategies . . . . . . . . 75

A Questionnaire 77

B Results of the Evaluation 85

C Contents of the CD-ROM 89

D Used Libraries and Tools 91



CONTENTS ix

List of Figures
3.1 Schematic overview of a Microsoft Surface unit . . . . . . . . . . . . . . . . . . . . . 11
3.2 Schematic Overview Pyramid for object-oriented software systems . . . . . . . . . . 13
3.3 Overview Pyramid with actual values . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.4 Schematic illustration of a detection strategy with two rules . . . . . . . . . . . . . 14
3.5 God Class detection strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.1 Start-up screen of our SmellTagger application . . . . . . . . . . . . . . . . . . . . . . 21
4.2 Main user interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.3 Methods View of class Translator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.4 Methods View of Translator#init(String) with detailed information . . . . . 24
4.5 Dependencies View of class ProjectBrowser . . . . . . . . . . . . . . . . . . . . . . 25
4.6 Class Detail View for class ActionNew . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.7 User interface that allows to capture audio . . . . . . . . . . . . . . . . . . . . . . . 26
4.8 Hierarchy View of class ActionNewAction . . . . . . . . . . . . . . . . . . . . . . . 27
4.9 Package View with circular layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.10 Kiviat diagram with one data series . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.11 Filled kiviat diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.12 Kiviat diagram with two data series . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.13 Package View with house layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.14 Package View with Archview-based layout . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.15 Code smell candidate TargetManager is marked as false positive. . . . . . . . . . 31
4.16 Overview Pyramid of ArgoUML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.17 Packages Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.18 Packages Overview with enable name filter . . . . . . . . . . . . . . . . . . . . . . . . 33
4.19 Overview List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.20 Overview List customization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.21 First page of a review report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.22 Search Function View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.23 Search Function View with enabled name filter . . . . . . . . . . . . . . . . . . . . . . 35
4.24 Marked and annotated source code snippet . . . . . . . . . . . . . . . . . . . . . . . 36
4.25 Example of a tag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.26 Tag 0xC6 (198) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.27 The actual tagged objects for our SmellTagger application . . . . . . . . . . . . . . . 37
4.28 Class Detail View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.29 Class Detail View with two separate code views . . . . . . . . . . . . . . . . . . . . . 39

5.1 Delete gesture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.2 OK gesture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.3 Settings gesture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.4 Manipulatable interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.5 UML diagram of the specification pattern . . . . . . . . . . . . . . . . . . . . . . . . 46
5.6 XML schema for customizable detection strategies . . . . . . . . . . . . . . . . . . . 47
5.7 Detection strategy for a Refused Parent Bequest code smell . . . . . . . . . . . . . . . 49
5.8 Detection strategy for a Brain Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.1 Histogram of statement 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.2 Histogram of statement 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.3 Histogram for the the statement ”I am not experienced in using MS Surface appli-

cations” (1 = ”I strongly disagree” / 5 = ”I strongly agree”) . . . . . . . . . . . . . . 69



x CONTENTS

6.4 Histogram for the the statement ”I am not experienced in using other multi-touch
devices” (1 = ”I strongly disagree” / 5 = ”I strongly agree”) . . . . . . . . . . . . . . 69

7.1 Microsoft Surface 2.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

List of Tables
3.1 God Class symptoms and their mapping to appropriate metrics . . . . . . . . . . . . 15
3.2 Metrics provided by the SOFAS webservice . . . . . . . . . . . . . . . . . . . . . . . 17

4.1 Tagged objects that can be used in our SmellTagger application . . . . . . . . . . . . 38

5.1 God Class’ main characteristics and code metrics to measure them . . . . . . . . . . 49
5.2 Refused Parent Bequest symptoms and code metrics to measure them . . . . . . . . . 50
5.3 Shotgun Surgery symptoms and code metrics to measure these symptoms . . . . . . 51
5.4 Brain Class symptoms and code metrics to measure these symptoms . . . . . . . . . 52

6.1 Results of the evaluation for question 3 . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.2 Results of the evaluation for question 8 . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.3 Results of the evaluation for question 6 . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.4 Results of the evaluation for task 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.5 Results of the evaluation for question 4 . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.6 Results of the evaluation for question 5 . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.7 Results of the evaluation for task 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.8 Results of the evaluation for question 7 . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.9 Results of the evaluation for question 9 . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.10 Results of the evaluation for question 1 . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.11 Results of the evaluation for task 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.12 Results of the evaluation for task 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.13 Results of the evaluation for task 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.14 Results for the third part of the questionnaire . . . . . . . . . . . . . . . . . . . . . . 63
6.15 Results for the fourth part of the questionnaire . . . . . . . . . . . . . . . . . . . . . 65
6.16 Correlation matrix between the two additional questions in the questionnaire that

measure the previous experience of each participant and the nine questions about
tasks the participants had to solve . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

List of Listings
3.1 SPARQL query to retrieve the names of each package in a software project . . . . . 16
5.1 XML schema for gestures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.2 XML detection strategy for a God Class . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.3 XML detection strategy for a Shotgun Surgery . . . . . . . . . . . . . . . . . . . . . . 50
5.4 Method that connects the test environment to the Surface Simulator . . . . . . . . . 54



Chapter 1

Introduction

1.1 Motivation
User interfaces are one of the fastest changing fields in software engineering. Not long ago Com-
mand Line Interfaces (CLI) were the only available input method. Graphical User Interfaces (GUI)
changed the interaction between humans and computers dramatically by introducing a new
paradigm: the use of graphical symbols to display the interface elements the user can interact
with. This paradigm shift improved the usability of user interfaces as a more intuitive interaction
was possible. Today, this development towards more natural and intuitive user interfaces has re-
sulted in the development of so-called Natural User Interfaces (NUI) that allow users to use natural
and habitual finger and hand movements while interacting with multi-touch devices.

Multi-touch devices are devices with a touchscreen that is able to simultaneously handle at
least three distinct touch points [Sys]. Today, multi-touch interfaces are particularly used on mo-
bile devices, such as the iPhone,1 and tables, such as the Microsoft Surface.2 These devices have
the capability to fundamentally change the way people interact with digital content. They pro-
vide intuitive possibilities to handle digital information similar to how we interact with real world
content today. In combination with suitable applications, multi-touch interfaces can alleviate the
exploration and analysis of complex data and situations. Since multi-touch devices can be used
collaboratively they are perfectly suited for discussing complex facts in a group of experts.

While this new technology is being adapted in various domains, for example customer servic-
ing ([Relc] and [Mic]), very little research has been performed on how it can be used beneficially
in the context of software engineering.

1.2 Goal
The goal of this thesis is to explore the potential of multi-touch interfaces in the context of soft-
ware engineering. Therefore this thesis will examine how multi-touch interfaces can be used
beneficially in design and code reviews. In order to achieve this, traditional reviewing methods
and visualization principles are analyzed and new interaction paradigms that follow well-known
design principles are developed. These new interaction paradigms facilitate the interaction with
complex, abstract and difficult to understand data during a review process.

1http://www.apple.com/iphone
2http://www.microsoft.com/surface



2 Chapter 1. Introduction

In order to assess these paradigms, we developed an application called SmellTagger, that demon-
strates how multi-touch technology can be used to collaboratively find and tag code smells in a
software project during a design and code review. Afterwards, an empirical evaluation will show
that the prototype application can meet these requirements.

1.3 Structure
Chapter 1: Introduction explains the motivation and goal of this thesis. In Chapter 2: Related
Work selective research work in the field of visualization techniques, design principles and de-
sign and code review techniques are presented. Chapter 3: Background provides an overview
about the history of multi-touch interfaces with the focus on the Microsoft Surface as well as the
services, techniques and principles used to implement our SmellTagger application. This proto-
type application is explained in detail in Chapter 4: Augmenting Design and Code Reviews with
Multi-Touch Technology. Chapter 5: Implementation Details presents interesting implementa-
tion details of our SmellTagger application and explains how the implementation was validated.
In Chapter 6: Evaluation the evaluation that was performed after the successful implementation
of the prototype application is described and its results are discussed. Finally in Chapter 7: Fi-
nal Remarks the results of this thesis are reiterated and ideas how to improve our SmellTagger
application are presented.



Chapter 2

Related Work

This chapter presents related work in the field of design and code reviews, information visualiza-
tion techniques and approaches, as well as multi-touch user interfaces. First, an overview about
information visualization techniques and principles is presented. The second part covers multi-
touch interfaces and their influence on collaborative programming. In the last part, principles in
a design and code review process are described.

2.1 Information Visualization Techniques and Principles
Chen [Che10] defines the term Information Visualization as ”computer generated interactive graphi-
cal representations of information”. These graphical representations are used to transform complex,
abstract and difficult to understand data into meaningful visual representations that can be ana-
lyzed much easier. Therefore, visualizations are powerful means to simplify complex structures:
”Visualization has been accepted as an useful means to understand complex data, because visual displays
allow the human brain to study multiple aspects of complex problems in parallel’’ [PGFL05]. That is why
visualizations are often used to display large amounts of data in order to simplify data evaluation.

Stasko et al. localize the advantage of using visualizations in the ”use of the crafts of typography,
graphic design, animation, and cinematography with modern human-computer interaction and computer
graphics technology to facilitate both the human understanding and effective use of computer software”
[SDBP98]. Therefore, visualizations have big advantages in displaying large data sets compared
to other more traditional approaches such as lists or tables. Ware [War00] sums up the three most
important advantages of information visualizations:

• Visualizations allow the viewer to see and comprehend huge amounts of data at the same
time.

• Reoccurring patterns in visualizations can be recognized very fast.

• Visualizations facilitate the analysis of both large-scale and small-scale features of the data.

Although, visualizations are very helpful to simplify complex and abstract data, it is not a trivial
task to develop an useful visualization, as Tufte [Tuf86] states. Therefore, in order to alleviate this
task, he lists six basic principles that should be fulfilled by every feasible visualization:

• Tell the truth: It is important that graphical displays preserve their graphical integrity. This
means that it is fundamental that a graphical display accurately represent the data. In or-
der to achieve this, it is necessary to follow simple principles. For example it is important



4 Chapter 2. Related Work

that visualizations represent data variation and not design variation. In that way it can be
avoided that the viewer’s eye mixes up changes in the design with changes in the data.
By using clear, detailed, and thorough labeling, graphical distortion and ambiguity can be
avoided.

• Show the data: The single purpose of a visualization is to display quantitative information.
An artful design is nice, but it should not be an essential part of the graphic. That is why all
unnecessary non-data information should be reduced to a minimum so that the viewer can
focus on the data itself.

• Present many numbers in a small space: Since visualizations are often used to display large
amounts of data, it is necessary to present a lot of information in a finite space. By using
”multi-functioning graphical elements” it is possible to display complex and multivariate data
in a small space. Multi-functioning graphical elements are single graphical elements that
hold more than one piece of information. But it is important to use them carefully. If not
designed well, they can lead to graphical confusion that can only be understood by the
designer itself.

• Help the viewer think about the information rather than about the methodology and the
design: ”Data graphics should draw the viewer’s attention to the sense and substance of the data,
not something else” [Tuf86]. The design of a visualization should help the user to find the
necessary information and facilitate the navigation through large and complex data sets.
Additionally, it should help to draw conclusions about the information represented by the
visualization. But the visualization itself should not be the focal point. By removing redun-
dant data and unnecessary design elements, it is possible to help the viewer to concentrate
on the most important information.

• Encourage the eye to compare the data: By comparing one piece of data in a complex set
of information with another piece of data from the same set, it is possible to gain more
information about the data set. That is why a visualization should encourage the viewer to
compare data and therefore visualizations should provide possibilities to compare different
aspects of data to each other.

• Make large data sets coherent: Frequently it is necessary to simplify large and complex
data sets to make them comprehensible. But nevertheless the emerging data have to be
coherent. This can be achieved by using multiple layers of information. Tufte proposes
to use ”multiple viewing depths” to create multiple layers of information. This means each
visualization can be designed in a way so that at least three different viewing depths are
available. Typically these three viewing depths are: the overall structure, detail information
and the implicit context.

Tufte’s six basic principles are very general rules. Shneiderman [Shn96] approaches the problem
of creating a feasible visualization from a more practical viewpoint. Therefore he mentions seven
concrete design hints that should be implemented in any feasible visualization:

• Overview: The visualization should provide the viewer with a general overview about the
data that is represented.

• Zoom: The viewer should have the possibility to examine interesting elements of the data
set in detail.

• Details-on-demand: Not all details should be displayed in the first place in order to avoid
that too much information is presented at the same time. Instead the viewer should have
the possibility to request detailed information about interesting objects.



2.2 Multi-touch User Interfaces 5

• Relate: If there are any relationships between elements in the visualization, these relation-
ships should be represented somehow.

• History: Especially in very large and complex visualizations, it is necessary that user actions
are recorded in a way so that everyone can see what has been changed. Optimally it is also
possible to undo these changes.

• Extract: It should be possible to extract information displayed in the visualization in some
way. For example it could be possible to store interesting information in a file.

From these principles Shneiderman deduced a general pattern how a potential user interacts with
visualizations. First, the user tries to get a general overview. If he finds an interesting detail, he
sets the focus to this part of the visualization (zoom) and tries to get more information about that
element (details-on-demand). However, as others have mentioned, this simple interaction scheme
is not always true in reality [War00]. Instead, Ware suggests that a feasible visualization should
support all of these principles mentioned by Shneiderman in any order.

Stephen Few also contributes to the research of general design principles. In his work [Few04]
he mentions the Gestalt principles. The Gestalt principles describe how the human brain perceives
”pattern, form and organization in what we see” [Few04]. These principles are relevant to the design
of visualizations, since they explain how a potential viewer will perceive and organize different
elements of the visualization. In the context of visualizations, the six most important Gestalt
principles are:

• Principle of proximity: Elements that are close to each other are seen as belonging to one
group.

• Principle of similarity: Elements that are similar in color, size, shape or orientation are often
grouped together.

• Principle of enclosure: Elements that are enclosed by a visual border are often seen as
belonging together.

• Principle of closure: Whenever possible the viewer tends to see complete figures, even if a
part of that figure is missing.

• Principle of continuity: Humans have a preference for continuing figures. If elements are
aligned with one another, they are perceived as belonging together.

• Principle of connection: Elements that are connected together, for example by a line, are
received as being part of the same group.

While designing a feasible visualization it is important to keep these principles in mind since
they explain how a future user will perceive various elements of the visualization. A part of these
principles also explain how users interact with a visualization. Therefore such design principles
can be used as a good starting point when developing a new visualization.

2.2 Multi-touch User Interfaces
Studies have shown that when working collaboratively programmers can produce higher-quality
software in a shorter amount of time compared to situations when they are working alone [Nos98].
Additionally, a lot of programmers are thinking that programming collaboratively is more enjoy-
ing than working alone [WKCJ00]. However, collaborative programming is not a new invention



6 Chapter 2. Related Work

and was already widely used years ago, for example in the form of Pair Programming or Extreme
Programming [WKCJ00]. But until today collaborative programming has had a major drawback:
the traditional input devices programmers are working with, namely mouse and keyboard, nor-
mally can not be used by multiple users at the same time. That is why in most cases of collab-
orative programming one of the programmers is actively working in the front of a traditional
computer while the others are supporting him, for example by observing the actual work, think-
ing of better alternatives, looking up resources or watching for defects [WKCJ00].

Since a multi-touch interface allows developers to work on the same device at the same time
without interfering each others, researchers have high expectations how multi-touch interfaces
could change the way developers work together in a software project. There are various studies
available that have tried to measure the influence of multi-touch interfaces on collaborative work.
Peltonen et al. [PKS+08] installed a large multi-touch display in the center of Helsinki and ob-
served how people interact with each other while viewing pictures. They noticed that strangers
work mostly separately, but in conflict situations, the problems were most often solved collabora-
tively. Another key observation was that newly arriving users were able to learn how to interact
with the display from earlier users.

Izadi et al. [IBR+03] used a multi-touch interface during a group discussion. The goal of
this group discussion was to create an interactive poster on the multi-touch surface. The study
showed that the participants had not any problem to learn the new interaction paradigms. But it
also became evident that simultaneous interactions can lead to problems. Users are able to ma-
nipulate other user’s data without their permission or destroy their work by removing it. In order
to overcome these issues the study participants rapidly established social protocols of interaction
to avoid such behavior.

Akerman et al. [APH+10] contributed to the research by connecting two night clubs in Fin-
land together using two interactive tables. On both ends the users were able to communicate to
each others using free-hand drawings. The study showed that almost no interaction between the
users took place. Most users drew their own images while preserving the others. Only on very
rare occasions users worked together drawing one image. Nevertheless most participants were
positively surprised by this form of collaboration.

Frisch et al. [FHD09] performed a study that examined how people use multi-touch and pen
input on interactive surfaces. For that purpose the study participants were asked to perform
spontaneous gestures for creating, moving and deleting diagram elements. The results showed
that one-handed gestures and pen interaction were preferred compared to two-handed gestures.
Another interesting point of the study was that ”most of the participants often stuck to the desktop
paradigm” [FHD09]. They were not able to perform a spontaneous gesture for specific tasks but
rather mentioned that a button would do the work better. Some participants also suggested very
unusual gestures like drawing ”X” or ”d” on the surface when trying to delete a node. Other
participants dragged elements off the canvas in order to delete them. These behaviors are very
interesting since most current devices do not support such interaction. Therefore these principles
are suggestions for new interaction paradigms on multi-touch interfaces.

Wang et al. [WM08] developed a prototype application for a tabletop that can be used to ”sup-
port collocated and distributed agile planning meetings” [WM08]. Various forms of interaction like
finger touch, handwriting, gestures and voice control are supported. An evaluation of this pro-
totype application examined if the prototype application does facilitate agile planning meetings
and how the prototype application changes the behavior in agile planning meetings compared to



2.3 Design & Code Review 7

a traditional pen&paper approach. The results showed that the participants described the interac-
tion with the tabletop as very natural and easy to learn. Gestures were considered as more useful
than traditional buttons, although some participants had difficulties to remember all the gestures.
Voice control was classified as not very useful, particularly because it was not reliable enough
and because the headset that was necessary for accurate voice recognition was not as intuitive as
using finger gestures. Another interesting result was that handwriting text was not well accepted.
A lot of the participants preferred to use the keyboard for text input because it was considered
faster, more accurate and more readable.

All of the studies mentioned in this chapter have proven that multi-touch devices provide an
easy to learn and natural interface that allows new forms of interaction with other users. Nev-
ertheless some users seem to have difficulties to forget the desktop paradigm and switch to a
new form of interaction. Therefore an important task when developing new multi-touch inter-
faces will be to facilitate the transition from traditional computer interfaces to sophisticated and
natural multi-touch interfaces.

2.3 Design & Code Review
Among others, code reviews are a part in the software developing process that is suitable to be
performed in a collaborative environment. A code review is the systematic examination of source
code. Its goal is to find errors that have not been found during the development process [HK].
That is why it is an important part of the quality assurance of software.

Practically, the various forms of code reviews can be classified into three main categories: self
code reviews, peer code reviews and tutor code reviews. Self code reviews require a software
developer to perform a self-critical reflection of his own work. Tutor code reviews use ”the tradi-
tional hierarchical approach in which the expert considers the work of the novice” [FC01]. But most often
code reviews are performed as peer reviews, since it is generally accepted as the most practical
form [WYCL08]. During a peer review ”a work product (such as requirements specification, design doc-
ument, or source code) is examined by its designer (author) and one or more colleagues in order to evaluate
its technical content and quality” [Gar10].

In some cases a code review is already implemented in the software development process. For
example the Extreme Programming paradigm supports the use of Pair Programming that is a special
version of peer review. But the various review approaches do not vary only on the procedure
but also on the degree of formality. For formal code reviews, the IEEE (Institute of Electrical and
Electronics Engineers) [IEE08] provides a standard that defines structures, roles and procedures
for various forms of code reviews. In less formal code reviews, the process is very similar to Pair
Programming: two developers are working together and both of them are monitoring the work
of each other.

But independent of the form of a code review it is necessary that the reviewers work collabo-
ratively in order to reach their goal. In that point a multi-touch interface can provide advantages
compared to traditional technologies since a multi-touch interface provides the users with a very
natural and intuitive way to interact simultaneously with digital content.

Design reviews are very similar to code reviews. The same techniques can be used but the
scope is a different one. As Parnas and Weiss state, ”the purpose of all design reviews is to find errors
in the design and its representation” [PW85]. Therefore multi-touch interfaces can support design



8 Chapter 2. Related Work

reviews in the same way as they support code reviews.

2.4 Conclusion
Various studies have shown that multi-touch interfaces have the ability to foster the collabora-
tion between the users. Most of the new interaction paradigms that are required to interact with
multi-touch interfaces are easy to learn if the transition from the traditional desktop paradigm to
new natural multi-touch interfaces works successfully.

Design and code review processes are suited to be supported by multi-touch interfaces since
most review approaches require a high amount of collaboration between the reviewers. In order
to design such an application that supports reviewers it is necessary to adhere basic design guide-
lines such as Tufte’s design principles or Shneiderman’s design hints. These guidelines are used
as a staring point for our SmellTagger application.



Chapter 3

Background

In this chapter all the necessary background information to fully understand our SmellTagger ap-
plication is presented. First, a short overview about the history of multi-touch interfaces is pro-
vided. Particular attention is paid to the Microsoft Surface that was used to develop this applica-
tion. The Chapter Using Software Metrics to Detect Code Smells explains how code metrics can be
used to detect code smells in a software project. Finally this chapter addresses how the necessary
structural information and code metrics of a software project were retrieved from a web service
in order to perform a code smell analysis.

3.1 The History of Multi-touch User Interfaces
The user interface is the place where the interaction between humans and machines takes place.
Most user interfaces allow bidirectional interactions. This means the user has the possibility to
enter input in order to manipulate and control the system and the machine has the possibility to
create output in order to inform the user about the effects of the user’s inputs. The basic goal of
all user interfaces is to require minimal input in order to produce the desired output while simul-
taneously minimizing undesired output.

One of the first user interfaces used by computers was the Command Line Interface (CLI). Us-
ing this interface, the user is able to use the keyboard to write commands that are interpreted by
a command-line interpreter. This has major disadvantages: The user has to remember a lot of
different commands that are not always intuitive. Additionally complex operations can be very
difficult to remember. The output from the user interface is limited to basic text output that often
includes error codes that are difficult to decode [RO09]. In order to overcome these issues, a new
user interface paradigm, the Graphical User Interface (GUI) was developed. GUIs use graphical
symbols to display the elements the user can interact with. These elements can be selected with a
mouse or a similar input device. Since GUIs use metaphors for specific functions, for example a
rubbish bin symbol to delete files, the operation of such a user interface is easy to learn. Generally
their learning curve is not as flat as the learning curve for command line interfaces. This renders
them interesting especially for less experienced users. Today, most user interfaces are based on a
GUI. In some cases (for example Matlab) a CLI is integrated into the GUI in order to profit from
the advantages of both interfaces. The next step in the development of user interfaces are Natural
User Interfaces (NUI). NUIs are interfaces which can be directly controlled by one or more senses.
This covers a wide range of interface such as voice recognition interfaces, motion sensors or touch
interfaces. This thesis focus on multi-touch interfaces that react on movements. Traditional input



10 Chapter 3. Background

devices such as the mouse or keyboard are no longer necessary because the user can directly in-
teract with the touch-sensitive surface of the user interface. This leads to a very intuitive handling
since natural and habitual movements can be used to interact with the device.

Due to the increasing proliferation of touchscreens, NUIs became more and more important
during the past few years. However, touch technologies have a much longer history than people
realize, with development beginning in the 1970’s [Sai10]. Development started with PLATO IV,1

the first touch screen, developed in 1972. Ten years later, the first multi-touch system was devel-
oped. A frosted-glass panel and a camera were used to capture the shadows of fingers and other
shapes [Meh82]. During the following years, multi-touch technologies were enhanced and im-
plemented in a lot of different systems varying from large-scale screens to small mobile devices.
However, prior to 2007, multi-touch technology was primarily used by researchers and in the ed-
ucation field. With the release of Apple’s iPhone2 multi-touch technology became widely known
from a broader consumer perspective. In the same year, Microsoft presented their Microsoft Sur-
face which was ”a key indication of this technology making the transition from research, development and
demo to mainstream commercial applications” [Sai10].

Most recent developments in the multi-touch area are combined in Microsoft’s Surface 2.0.3

This device is based on the Microsoft Surface 1.0 and ThinSight [HIB+07] but has major enhance-
ments. As a result, the Surface 2.0 is ”more than just a multi-touch surface. Since pixels have integrated
optical sensors, the whole display is also an imager”, that can ”see what is placed on it, including shapes,
bar codes, text, drawings, etc.” [Bux11]. The examples mentioned in this chapter indicate that
”touch technologies are going to continue to evolve in terms of what they can sense and how they are used”
[Bux10]. However, not only technology developments are important. Of equal or perhaps greater
importance is the progress of the conceptual models. That is to say, the way the user interface is
used, and appropriate applications that exploit the possibilities the new technologies offer.

3.2 Microsoft Surface
The Microsoft Surface is a multi-touch device that allows users to interact with natural hand and
finger gestures. It has a table-like form and its 360 degree interface allows user to interact from
any side. The vision system consists of five cameras and it is responsible to ”sense objects, hand
gestures, and touch on the screen and then it processes that input” [Liba]. Based on concepts from
2001, the development process of the Microsoft Surface started in 2003 [Mic07]. Four years later,
on May 30, 2007, Steve Ballmer, the CEO of Microsoft, unveiled Microsoft Surface at the D: All
things digital conference in Carlsbad, California [Relb]. Since 2008 the Microsoft Surface unit can
be purchased by customers. Until now, it is most commonly used in the commercial domain of
customer servicing, namely in hotels, restaurants and casinos.

Figure 3.1 shows a schematic illustration of a Microsoft Surface unit. It consists of an acrylic
surface with a diffuser (1). The diffuser is mainly responsibly for turning the surface into a multi-
touch surface. The vision system (2) uses a near-infrared light spectrum (850 nanometer wave-
length) to recognize the light that is reflected back when hands, fingers or other objects touch the
screen. Microsoft Surface uses a more or less common desktop computer (3) with a slightly cus-
tomized version of Microsoft Vista. A projector (4) is responsible to project the output image to
the screen. The projector works on a resolution of 1024 x 768 pixels. For a 30 inch (76.2 centime-

1Programmed Logic for Automated Teaching Operations
2http://www.apple.com/iphone/
3http://www.microsoft.com/surface/



3.3 Using Software Metrics to Detect Code Smells 11

Figure 3.1: Schematic overview of a Microsoft Surface unit [New07]

ters) wide screen this resolution sometimes results in blurred images.

Normally, developing applications for Microsoft Surface is performed using the .NET frame-
work and the Microsoft Surface SDK which enhances the .NET framework to provide access to
the specific features of Microsoft Surface. It also includes a simulator that replicates the Microsoft
Surface user interface on a workstation and allows developers to run their applications on their
development machines.

Therefore is is not necessary to use a Surface unit during development. On the other hand,
simulating special inputs on the Surface simulator, for example drag and drop operations, is not
easy. For the development of our SmellTagger application both the Surface simulator and the
Surface unit were used. More background information about the basic approach this application
is built on is presented in the next chapter.

3.3 Using Software Metrics to Detect Code Smells
Refactoring is an important method in object-oriented software engineering to facilitate further
development and maintainability [MT04]. The key idea is to change ”a software system in such a



12 Chapter 3. Background

way that it does not alter the external behavior of the code, yet improves its internal structure” [Fow00].
Therefore, the goal is to improve the nonfunctional attributes of the software, for example im-
proved quality, better readability or less complexity. A critical point in the refactoring process
is to decide when and what to refactor. To address this issue, Fowler introduced the term Code
Smell [Fow00]. A code smell is any indication in the source code that may be caused by a deeper
problem. Thus whenever a software engineer encounters a code smell, he should see it as a hint
that something is wrong with this part of the code and he should consider to refactor it. In order
to classify code smells, researchers have published a collection of code smells. Typically these col-
lections consist of a description of a code smell, an example and suggestions how the code smell
can be resolved. Examples of well known code smells are Feature Envy, Shotgun Surgery [Fow00]
or Combinatorial Explosion [Ker01].

In order to find code smells in a software project, Fowler [Fow00] suggests to look for them
manually by doing code inspections. Inspections are the most common kind of review practice
in the field of software engineering. When following a well defined process, code inspections are
very reliable approaches to find defects in code. On the other hand, Marinescu [Mar01] states that
finding code smells manually is very time consuming, unrepeatable and non-scalable. For these
reasons Marinescu proposed another approach that uses software metrics to detect code smells.

From a very general point of view, a metric is ”the mapping of a particular characteristic of a mea-
sured entity to a numerical value” [LM10]. Metrics are used in almost all engineering disciplines,
since most manufacturing outputs of an engineering process have to fulfill precise specifications.
Metrics can be used to determine if those specifications are achieved. In other words, metrics can
be used to control quality. That is why, ”accurate measurement is a prerequisite for all engineering
disciplines, and software engineering is not an exception” [LLL08]. In software projects, there are a lot
of different metrics available. They vary from metrics that measure the size of a whole software
project to metrics that are only available in the scope of a single operation like for example the
Nesting Depth4 of an operation. In particular, code metrics can be used to measure the size, the
complexity and the quality of a software project. By using reference points, for example statistical
thresholds, it is possible to interpret the measured values and to determine if they are in an ac-
ceptable range. From this, statements about the complexity, quality and size of a software project
can be derived.

Although Fowler [Fow00] states that there is not a set of precise metrics that can be used to
identify the need for refactoring, there are various approaches to use code metrics to detect design
flaws in a software project. Basically, the detection can be done manually as suggested by Fowler
[Fow00] or by applying automated heuristics. Others suggest alternatives, for example Emden
and Moonen [vEM02] or Moha et al. [MGDM10]. Rosenberg et al. [RSG99] present an approach to
automatically detect possible Code Smells. They suggest to thoroughly analyze every class that
meets at least two of the following five criteria:

• Weighted methods per class (WMC)5 > 100

• Coupling between object classes (CBO)6 > 5

• Response for class (RFC)7 > 100

• Number of methods (NOM)8 > 40
4The metric Nesting Depth measures the maximum number of encapsulated scopes inside the body of a method [NDe]
5Sum of the McCabe Cyclomatic Complexity for all methods in a class
6Number of classes coupled to a given class
7Number of methods that can potentially be executed in response to a message received by an object of that class
8Total number of methods defined in the selected code



3.3 Using Software Metrics to Detect Code Smells 13

• Response for class (RFC) > 5 * Number of methods (NOM)

This is a very general approach that does not say anything in particular about the design flaw
itself, but gives hints where a problem in a software project could be found. Lanza et al. addressed
this issue and defined a more specific approach that uses various code metrics to identify code
smells in a software project [LM10].

Lanza et al. introduced a method to ”both describe and characterize the structure of an object-
oriented system by quantifying its complexity, coupling and usage of inheritance” [LM10]. The basic idea
of this so called Overview Pyramid is to ”put together in one place the most significant measurements
about an object-oriented system, so that an engineer can see and interpret in one shot everything that
is needed to get a first impression about the system” [LM10]. The Overview Pyramid is the graphical
representation of these significant measurements. Figure 3.2 shows a schematic illustration of this
Overview Pyramid. Figure 3.3 shows an Overview Pyramid with actual values. As one can see
these values are colored in blue, green and red. This color scheme indicates if the measurements
are close to a low, medium or high statistical averages. For example one can see that the project
displayed in Figure 3.3 has only one metric that is in an average statistical range (Number Of
Methods). All the other values are either lower or higher than the average values of similar
projects.

Figure 3.2: Schematic Overview Pyramid for
object-oriented software systems

Figure 3.3: Overview Pyramid with actual
values

The Size & Complexity part of the Overview Pyramid is used to describe how big and complex
a software system is. Metrics in this part are well-known and widely used and can be directly
calculated from the source code. In the example shown in Figure 3.3 one can see that the intrinsic
complexity of the methods of the system is rather low (0.15). The size of the methods is in an
average range (9.72 statements per method) but with 9.42 methods per class and 20.21 classes per
package, the system is large. In the second part of the Overview Pyramid, the level of coupling in
the software system is represented. ”Coupling is the measure of the strength of association established
by a connection from one module to another. Strong coupling complicates a system since a module is harder
to understand, change, or correct by itself if it is highly interrelated with other modules” [SMC99]. That
is why it is important that engineers have a close look at the coupling metrics of a system. In
the Overview Pyramid coupling is measured by two direct metrics, CALLS and FANOUT. The
CALLS metric measures the total number of distinct operation calls in the whole software project.
The FANOUT metric counts the number of classes that are referenced by a class. An analysis of
the example in Figure 3.3 shows that the components of the system are intensively coupled (4.18
calls per method). But this coupling is rather localized since the methods particularly call many
methods from few different classes.

The top part of the Overview Pyramid uses two direct code metrics to provide an overview
about the usage of inheritance in the software project. Lanza et al. argue that these metrics will
help to detect how much usage of class hierarchies and polymorphism is present in the system.
The ANDC metric measures the average number of derived classes and the AHH metric measures
the average hierarchy height. Therefore, ANDC shows the amount of usage of inheritance rela-
tions, while AHH measures how deep these relationships are. In the example presented in Figure



14 Chapter 3. Background

3.3 one can see that each class has 0.31 subclasses on average. This value is rather low so that
one can conclude that there is no broad hierarchy in the system. Additionally the hierarchy is not
either deep since the average hierarchy height is only 0.12.

With an appropriate reference point, for example statistical thresholds, it is possible to inter-
pret the Overview Pyramid. This allows an engineer to compare the actual system with a statis-
tical base and analyze if the values are in the same range. But like the approach of Rosenberg et
al., this Overview Pyramid provides only a very general overview, and it only indicates in which
part of the software system a problem may be located. To overcome this issue, Lanza et al. sug-
gested a second approach that uses ”a composed logical condition, based on metrics, that identifies those
design fragments that are failing the condition” [LM10]. This composed logical condition is called a
detection strategy since it can be used to detect code smells in a software project. Thus with the
help of a detection strategy it is possible to make design rules quantifiable and therefore design
problems detectable.

Figure 3.4: Schematic illustration of a detection strategy with two rules [LM10]

Figure 3.4 shows the basic design of a detection strategy. A detection strategy consists of rules
and one or more logical gates. A rule is fulfilled if the corresponding equation is true. Afterwards
the logical function can be analyzed and if it evaluates to true, a quality problem is detected.
The example in Figure 3.4 consists of two rules that both have to be fulfilled in order to identify
the quality problem. For a more practical example the code smell God Class is described by Riel
[Rie96] and Fowler [Fow00] as follows:

• Classes that have many accessor methods defined in their public interface. This may imply
that data and behavior is not being kept at the same place.

• Classes having methods that only operate on a proper subset of the instance variables.

• Classes that are large and complex. This may imply that these classes implements more
than one responsibility.

In order to define rules that allow one to build a detection strategy to identify a God Class, these
properties have to be mapped to proper code metrics that can be used to measure these charac-



3.3 Using Software Metrics to Detect Code Smells 15

teristics. The mapping of God Class properties to the appropriate code metrics is shown in Table
5.1.

Symptom Metric
Class that has many accessor methods and accesses a lot of external
data ATFD is more than a few

Class that is large and complex WMC is high
Class that has a lot of methods that only operate on a proper subset
of the instance variable set TCC is low

Table 3.1: God Class symptoms and their mapping to appropriate metrics

Finally, these metrics have to be correlated into a composed logical condition. From the descrip-
tion of Fowler and Riel, it can be assumed that all these symptoms have to coexist. Therefore it is
necessary to use a logical AND gate to connect the individual rules. From this information, the
final detection strategy, shown in Figure 3.5, can be inferred.

Figure 3.5: God Class detection strategy [LM10]

In order to find all God Classes in an object-oriented software system, this detection strategy has
to be applied to all classes in the system. The result is a list of code smell candidates that have
to be further analyzed in detail to rule out false positive results. This approach of Lanza et al. is
used in our SmellTagger application. In Chapter 5.2 the implemented detection strategies and the
further analysis are discussed in detail.



16 Chapter 3. Background

3.4 Retrieving Information from the SOFAS Web Service
In order to analyze a software project, it is necessary to have information about it. For exam-
ple information about the structure of the software project (packages, classes and methods), the
relationship between different entities of the software project or the plain source code of code en-
tities. Additionally, in order to use the automatic detection strategies described in Chapter 3.3 it
is also necessary to have software metrics about the classes and methods in the project. For these
reasons, our SmellTagger application uses the SOFAS web service [Ghe10], to retrieve this informa-
tion. This web service in particular allows one to analyze software projects online and then offers
information about the structure, the metrics and the source code of these projects. This informa-
tion is available in the form of a FAMIX model [TDDN00] and as an example can be accessed by
sending SPARQL (SPARQL Protocol and RDF Query Language)9 queries to the RESTful interface
of SOFAS. A RESTful interface is an interface that complies with the REST (Representational State
Transfer) constraints. Listing 3.1 shows an exemplary SPARQL query that retrieves the names of
all packages of a software project from the web services.

Listing 3.1: SPARQL query to retrieve the names of each package in a software project

PREFIX java: <http://evolizer.org/ontologies/seon/2009/06/java.owl#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
SELECT ?url ?name

WHERE {

?url rdf:type java:Package .

?url rdfs:label ?name

}

Using such SPARQL queries, the following information about the analyzed software project are
retrieved during the startup phase of our SmellTagger application:

• Every package of the software project

• Every class and interface of each package

• All implementation-relationships between interfaces and classes

• All invocation-relationships between classes

• All inheritance-relationships between ancestors and descendants

• All the methods that are defined in classes or interfaces

• All call-relationships between methods

• The metrics defined in Table 3.2 for all interfaces and classes

• The source code for all interfaces, classes and methods

Table 3.2 provides an overview about those code metrics that can be retrieved from the SOFAS
web service. As one can see there are three levels of scope available: metrics on class level, metrics
on package level and metrics that represent values for the whole project.

9http://www.w3.org/TR/rdf-sparql-query/



3.4 Retrieving Information from the SOFAS Web Service 17

Class Package Project
FANIN CALLS CALLS
FANOUT NOM AHH
CALLS NOP ANDC
HIT (only root classes) NOC
NDC NOP
NOA
NOM
NOPAR

Table 3.2: Metrics provided by the SOFAS webservice

In the next chapter it is described how the approaches and principles presented in this chapter
are used to actually implement our SmellTagger application.





Chapter 4

Augmenting Design and Code
Reviews with Multi-Touch

Technology

This chapter describes our SmellTagger application. This description covers a presentation of a
typical use case of the application, the user interface, as well as the mechanisms that are used to
interact with the application. Additionally, the design of our SmellTagger application is compared
with the design principles described in Chapter 2.1.

4.1 Use Case

Our SmellTagger application supports software engineers when they have to find code smells in a
software project. Since code smells are indicators for a deeper problem in the source code, they
can be used as hints for software developers to decide if it is necessary to refactor part of the
software in order to improve its quality. Therefore our application will mostly be used during the
development phase.

In order to use the application beneficially it is necessary to first define a set of individual code
smells that should be searched for. For each of these code smells a detection strategy has to be de-
fined. It is possible to use well-known code smells such as God Class or Feature Envy as well as to
define individual code smells. After the definition, the software project can be analyzed and the
reviewers will get a set of code smell candidates. These candidates have to be further analyzed
in detail to ensure that false positive results are ruled out. It is the responsibility of the reviewers
to assess the findings and define strategies how the located design flaws can be resolved. Our
SmellTagger application provides means to facilitate this task.

The review report (described in Chapter 4.2.4) that is generated after a review session can be
used as a starting point for software developers which want to perform a refactoring after the re-
view in order to resolve the detected design flaws. Ideally the resulting design is examined again
for further code smells that indicate the need of further refactoring. Therefore our SmellTagger
application is well fitted into a development process with a short feedback cycle.



20 Chapter 4. Augmenting Design and Code Reviews with Multi-Touch Technology

4.2 Application
In this chapter, our SmellTagger application is described. First the requirements for this prototype
application are presented. Afterwards the prototype itself is explained in detail. This covers the
user interface as well as the way the user interacts with our application.

4.2.1 Requirements
Our SmellTagger application enables users to perform a code or design review session on a multi-
touch user interface. For this purpose six key features are necessary:

• Choosing input: It is necessary that the user can choose a software project that should be
analyzed during the review session.

• Generate output: The user has to be provided with a possibility to store the results of a
review session.

• Code smells analysis: A heuristic is used to automatically detect code smells. These code
smells are later manually inspected by the user to verify the automatic results. In order to
be able to do that the user needs appropriate features to analyze potential code smells.

• Exploit the features of Microsoft Surface: The features of Microsoft Surface such as drag
and drop, multi-touch or object-recognition are used to provide the user with a natural and
intuitive user interface.

• Collaboration: The design and code review process takes place in a collaborative environ-
ment. Therefore the user interface has to foster the collaboration between different review-
ers.

• Design principles: The user interface of the application follows the design principles pre-
sented in Chapter 2.1.

In summary it can be said that our SmellTagger application provides reviewers with the possi-
bility to choose a project that should be analyzed. During this analysis, heuristics are used to
automatically detect code smells. These code smells can be examined in detail with a new multi-
touch enabled interface the design of which follows well-known design principles and supports
reviewers to solve tasks collaboratively. As soon as the review is completed, it is possible to
generate a report that summarize the insights of the review session.

4.2.2 Start-up Screen
During the start-up phase of the application the user has to choose a software project that he
wants to analyze. Generally, there are two possibilities. First, it is possible to load a project from
the SOFAS webservice described in Chapter 3.4. The second possibility is to load a project that is
locally stored on the Surface unit. Figure 4.1 shows an example of this user interface. Here the
user can choose to load one of the three remote projects (argouml, findbugs or lucene) or to
load a project that was previously stored on the Surface unit (argouml, eclipse or findbugs).
It is important to note that it is possible that projects are still locally stored but no longer avail-
able on the web service. This is the case if the user has eventually stored a project locally and it
was afterwards removed from the web service. The project eclipse is an example for that. The
projects findbugs and argouml are available both remotely and locally. This does not imply



4.2 Application 21

that both projects are exactly the same. For example a user could store a project locally and after-
wards update the project on the web service. Therefore it is important to choose carefully which
project should be loaded.

In either case, after choosing a project, the application loads the necessary data. This includes
loading all the code elements such as packages, classes and methods, calculating respectively
retrieving a predefined set of code metrics and source code, and calculating the relationship be-
tween different classes and methods. As soon as this is done, the user can start using our SmellT-
agger application.

Figure 4.1: Start-up screen of our SmellTagger application

4.2.3 Main Window
After the loading process described in Chapter 4.2.2 is finished, the user can start to work with the
application. From the Main Window, shown in Figure 4.2, it is possible to reach all the available
functionalities of the application. The Main Window provides the user with a clearly arranged
overview about the detected code smell candidates. For example the class UndoableAction
(point 1 in Figure 4.2) is a class of the imported project that is a possible Shotgun Surgery. By
selecting one of this code smell candidates, a small menu pops up that allows the user to choose
which further information about the currently selected code smell candidate is displayed (point 2



22 Chapter 4. Augmenting Design and Code Reviews with Multi-Touch Technology

in Figure 4.2). These features are described in the Chapter 4.2.4. While all these features are only
available for a single class, it is also possible to get more information about the whole software
project that is analyzed. By selecting the icon in the middle of the screen (point 3 in Figure 4.2) a
similar menu is displayed that provides further possibilities to get information about the project.
These possibilities are also described in Chapter 4.2.4. The buttons near each code smell logo
(point 4 in Figure 4.2) can be used to zoom in or out if there are so many code smells detected that
not all of them can be displayed in a reasonable size. Finally each code smell category has a small
description (point 5 in Figure 4.2) that can be displayed by demand.

Figure 4.2: Main user interface. It is important to note that the numbers and frames colored in
red are not part of the interface but are used to indicate different parts of the UI.

4.2.4 Features
In this chapter all the features of our SmellTagger application are described in detail. Basically there
are two different kind of features: one that is available for each class and one that is only available
for the whole project. The features that are available for each class are Methods, Dependencies,
Capture audio, Hierarchy, Package and False Positive. The functionalities Overview Pyramid, Packages
Overview and Metrics Overview are only available for the scope of the whole project. In order to
explain these functionalities a lot of examples are used in this chapter. All these examples use



4.2 Application 23

data retrieved from an analysis of ArgoUML,1 an open source tool for UML modeling.

Methods

In order to provide the user with an overview about the methods that are contained in a detected
code smell or any other class, it is possible to list and explore all the methods of a class. As an
example Figure 4.3 shows all methods defined in the Shotgun Surgery candidate Translator.
The methods are sorted by the number of Changing Classes respectively the number of Changing
Methods. The term Changing Methods subsumes those methods that call the actual method. The
term Changing Classes subsumes the classes in which the methods that call the actual method
are defined in. This allows for example to recognize at first glance which methods are responsi-
ble for triggering the cascading changes in a Shotgun Surgery. These are those methods that have
a lot of Changing Methods. In the example shown in Figure 4.3 one can see that the method
localize(java.lang.String) is affected by 311 other methods that are defined in 243 dif-
ferent classes. This is almost one-sixth of all classes in the whole project. Therefore it is obvious
that this method is responsible for triggering the cascading changes in a Shotgun Surgery.

By selecting on of these methods it is also possible to get more information about the method
itself. This information includes the method’s source code, a list of methods that are defined in the
same class, as well as a list of all Changing Methods and Changing Classes. Figure 4.4 shows the
method init(java.lang.String) of the class Translator. One can see that this method
has two Changing Classes. The class Translator in which this method is defined itself, and the
class Main where the method initTranslator() is located. In order to increase the usability,
the view in which the source code is displayed supports syntax highlighting and code folding.
These two features and their implementation are explained in detail in Chapter 5.3.

Figure 4.3: Methods View of class Translator

1http://argouml.tigris.org/



24 Chapter 4. Augmenting Design and Code Reviews with Multi-Touch Technology

Figure 4.4: Methods View of Translator#init(String) with detailed information

Dependencies

Often during a review session it is necessary to examine classes that are invoked by a specified
class or classes that invoke the specified class. Using the view displayed in Figure 4.5 it is possi-
ble to see these dependencies for the next two hierarchy levels directly above or below the actual
class. In this example the class ProjectBrowser is examined. In the right part of the screen in
the first list one can see all the classes that are called by the class ProjectBrowser. The second
list on the right part shows the invoked classes of class ProjectManager. In a similar way the
left part of the screen displays the classes that are calling the class ProjectBrowser. By drag-
ging class elements and dropping them on the appropriate place the focus can be switched to the
dropped class so that the dependencies of this class are displayed. In the same way it is possible
to display additional details of a class (Figure 4.6). These details include the source code, written
notes, code notes and a selected set of metrics that are compared to the project average.

In Figure 4.5, all classes are colored in different colors. These colors represent the packages
the classes belong to. That means if two classes are colored in the same color, they both be-
long to the same package. Additionally it is also possible to examine the relationship between
two classes by selecting the arrow that represents this relationship. By selecting one of the ar-
rows displayed in Figure 4.5 a new element is displayed that contains information about the call



4.2 Application 25

relationship between these two classes. In the example shown in Figure 4.5, the relationship
between the classes GenericArgoMenuBar and ProjectBrowser is illustrated. One can see
that there is just one call between these two classes. As an additional information it is apparent
that the class GenericArgoMenuBar calls another 22 classes (FanOut of Caller) and that the class
ProjectBrowser is called by another 23 classes (FanIn of Callee).

Figure 4.5: Dependencies View of class ProjectBrowser

Figure 4.6: Class Detail View for class ActionNew



26 Chapter 4. Augmenting Design and Code Reviews with Multi-Touch Technology

Capture audio

The Microsoft Surface provides the user with the possibility to use a virtual keyboard to enter
text input. But a lot of people do not like to use virtual keyboards for various reasons. The most
common ones are:

• Ergonomic issues since typing on a virtual keyboard requires to keep the wrists in an incon-
venient angle.

• Space screen limitations since a full-size QWERTY virtual keyboard consumes a lot of space
on the screen.

• A lot of virtual keyboards do not provide tactical feedback when pushing keys down.

• Very often it is more difficult to accurately hit a key on a virtual keyboard than on a tradi-
tional hardware keyboard.

• Virtual keyboards do not match with the Surface concept, except if it would be possible to
use multiple mini keyboards.

In order to overcome these issues, our SmellTagger application provides a feature to record audio
notes for each class. Figure 4.7 shows an example with two different audio notes for the class
FigNodeModelElement. These audio notes are recorded in the WAVE format using the open
source audio library NAudio.2 In order to save memory the audio files are converted into the
MP3 format after recording. To do this the MP3 encoder LAME3 is used.

Figure 4.7: User interface that allows to capture audio

With these audio notes it is possible to record notes much faster than using traditional approaches
as for example typing or handwritten notes. Unfortunately the Microsoft Surface does not have a
built-in audio recorder. That is why in order to use this feature it is necessary to use an external
microphone. As an additional feature the audio notes are linked to the appropriate class when
the user decides to generate a review report (Chapter 4.2.4). In Chapter 7.2.5 it is described how
audio notes could be converted automatically to text to make this feature even more useful.

2http://naudio.codeplex.com/
3http://lame.sourceforge.net/



4.2 Application 27

Hierarchy

In order to analyze a code smell candidate it is important to know its relationship to other classes.
There are various kind of relationships between classes but one of the most significant is inher-
itance. It is important to know if a class implements an interface, extends a super class or is a
base class for a lot of subclasses. Especially when analyzing code smells that suffer from ”classifi-
cation disharmonies” [LM10], that is classes that are not in harmony with their ancestors and their
descendants, it is important to have the possibility to take a closer look at the inheritance status
of a class. The code smell Refused Parent Bequest presented in Chapter 5.2.2 is an example of a
classification disharmony.

A view that addresses this requirement is shown in Figure 4.8. In this example, the class
ActionNewAction is located in the center. On top of this class one can see its super class called
AbstractActionNewModelElement. The six direct descendants are shown at the bottom of
the view. The class ActionNewAction implements one interface called ModalAction. It is lo-
cated on the left side of the view. Each rectangle that represents a class is colored in a specific
color that represents the package the class belongs to. Therefore classes that are in the same pack-
age have the same color. In this example one can see that the class ActionNewAction and its
descendants are in the same package while its ancestor and the interface ModalAction are in
different packages.

Using drag and drop it is possible to change the class that should be in the focus of this view.
When dropping the dragged class on the marker called Focus the view is redrawn and the descen-
dants and ancestor of the dropped class are displayed. Additionally it is also possible to view the
details of a class as described in Chapter 4.2.4 by dropping a class or interface over the marker
called Detail. For interfaces there is also a third option. When placed on the marker Implementa-
tions it is possible to browse through all classes that also implement this interface.

Figure 4.8: Hierarchy View of class ActionNewAction



28 Chapter 4. Augmenting Design and Code Reviews with Multi-Touch Technology

Package

According to Lanza & Marinescu [LM10] design entities of a software project such as classes,
methods or interfaces can be described by three elements. The first element, the Having element
describes the scope of a design entity. For example a class belongs to a package and a method
is defined in a class. The Using element describes the relationship between the measured entity
and other entities. A class that is communicating with another class would be an example for
that element. The last element, the Being element describes the properties of a design entity. The
size of a class or the visibility of a method are examples for that element. While the features and
views described so far address only one or two of these aspects, the Package View combines all
three elements.

The example in Figure 4.9 shows the scope of the class ProfileConfiguration in the pack-
age org.argouml.kernel. The scope represents the Having element and it includes all other
classes that also belong to the package org.argouml.kernel. In this view, classes are visual-
ized using circles. These circles can be used to address the Being element: various metrics of the
displayed class can be used to define the size of the circle and the color of the font. In this exam-
ple the number of lines of code of a class is used to calculate the radius of a circle and McCabe’s
cyclomatic complexity is used to calculate the font color of a circle. The lines between the circles
are used to visualize the Using element. If two classes communicate with each other, they are con-
nected with a line. The line color indicates the communication intensity. Therefore the number of
calls between two classes is mapped to a finite number of colors between black and white. The
brighter a line is, the more communications take place between the two involved classes.

Figure 4.9: Package View with circular layout. The individual classes are visualized as circles. The
lines that connect the circles indicate call relationships.



4.2 Application 29

In order to make the application more customizable and provide the user with already well-
known metaphors, our SmellTagger application uses supplementary visualization approaches for
this feature. The first approach shown in Figure 4.13 uses a house metaphor that was described
in a three-dimensional variation by Gall and Boccuzzo [BG07]. ”The idea of this metaphor is to
represent software entities such as classes as houses. A well-designed class then looks like a well-shaped
house, whereas a problematic class results in a miss-shaped house” [BG07]. Our SmellTagger application
uses three different metrics to create a house. Two define the width and the height of the body
of the house and one is used to calculate the height of the roof. In the example shown in Figure
4.13, McCabe’s cyclomatic complexity is used to define the height of the roof and the number of
lines of code and the number of methods are used to calculate the width respectively the height
of the house’s body. The reference house that represents a well-shaped house is calculated by
using average metrics from all classes that are located in the displayed package. It is obvious at
first glance that in this example there is not a class that is problematic. All houses are more or
less well-shaped. The houses of the classes ProjectSettings and ProjectImpl are a little bit
too wide, indicating that these two classes contain a lot of code. On the other hand the houses
of classes Command, ProjectFactory or NonUndoableCommand are relatively high. This is a
hint that these classes implement a lot of methods that are not very long.

The second approach uses kiviat diagrams [vM77] to visualize code metrics. Kiviat diagrams
are suited to visualize multivariate data, since in contrast to other polymetric views the number
of attributes that can be represented is theoretically not limited. However it is not a good choice
to display more than ten attributes at the same time. Figure 4.10 shows an example of a kiviat
diagram. The six metrics metric1, metric2, ... , metric6 are mapped on circular axis. For each metric
the value is plotted on the corresponding axis. These points are then connected to the adjacent
points with a straight line. Sometimes the resulting polygon is filled with a color as shown in
Figure 4.11. It is also possible to map more than one data series into the same diagram. Figure
4.12 shows a kiviat diagram where two data series are mapped.

Pinzger [Pin05] describes an approach called ArchView that uses kiviat diagrams to visualize
and compare code metrics of different releases of the same project. A similar approach is shown
in Figure 4.14. In that example kiviat diagrams are used to represent classes. Each kiviat diagram
visualizes two data series with five metrics. The first series, shown in dark-green, visualizes the
averages for the whole project. The second series, shown in light-green, represents the values for
the actual class. Thereby this visualization provides a possibility to compare the properties of a
class directly with other classes as well as with the average values for the whole project.

Figure 4.10: Kiviat diagram
with one data series

Figure 4.11: Filled kiviat
diagram

Figure 4.12: Kiviat diagram
with two data series



30 Chapter 4. Augmenting Design and Code Reviews with Multi-Touch Technology

Figure 4.13: Package View with house layout

Figure 4.14: Package View with Archview-based layout



4.2 Application 31

False Positive

The code smell classes presented in our SmellTagger application are found by detection strategies
based on code metrics. How these detection strategies are working in general is described in
Chapter 3.3. A more detailed description about the detection strategies used for this application
can be found in Chapter 5.2. It is important to note that each detected code smell is only a candi-
date. Each candidate has to be inspected manually to verify if it is a code smell or a false positive
result of the detection strategy. In order to provide the user with a possibility to dismiss false
positive results, it is possible for each code smell to set a flag that indicates a false positive result.
In this case the visual representation of that code smell is faded out, as shown in Figure 4.15 for
the class TargetManager. Code smells that are marked as false positive results are nevertheless
mentioned in the review report (Chapter 4.2.4) so that it stays traceable which code smells were
sorted out.

Figure 4.15: Code smell candidate TargetManager is marked as false positive.

Overview Pyramid

In Chapter 3.3 it is explained how the Overview Pyramid, developed by Lanza and Marinescu
[LM10], provides means to both visualize and compare the properties of a software system. For
example from the Overview Pyramid shown in Figure 4.16 one can conclude that ArgoUML is
intensely using inheritance. With a value of 0.54, the average number of derived classes (ANDC)
is far above the average value (0.41) for a Java project as noticed by Lanza and Marinescu [LM10].
Also the average hierarchy height (AHH) is explicitly higher than the statistical average (0.21).
This allows to draw the conclusion that ArgoUML has both a broad and deep hierarchy. Classes
tend to have a lot of descendants and the inheritance relationship spans many hierarchy levels.
Additionally it is also possible to draw conclusions about the size and complexity of a software
project. In the ArgoUML project each class defines 6.08 methods on average. This is a hint that Ar-
goUML has an average complexity since this value is very close to the statistical average [LM10].
On the other hand each method contains 13.47 lines of code on average. Compared to the statis-
tical average this is a hint for a rather high complexity.

Cohesion and coupling are the two fundamental attributes that have a major impact on the
quality of a software project [Alg07]. ”Coupling refers to the degree of interdependence between soft-
ware system components” [Alg07]. Class cohesion measures how closely the methods in a class are
related to each other. The general goal is to achieve high cohesion and low coupling. A class
with high cohesion follows the Single Responsibility Principle that states that each class should do
one thing well but nothing else. Therefore it is important that a software engineer is aware of the
cohesion and coupling in a system. The two ratios Calls/NOM and FANOUT/Calls are indica-
tors for the system coupling. The coupling intensity (Calls/NOM) shows that each method calls



32 Chapter 4. Augmenting Design and Code Reviews with Multi-Touch Technology

2.88 other methods on average. The coupling dispersion (FANOUT/Calls) indicates that 86% of
all calls are not calls between methods that are in the same class. These two ratios indicate that
ArgoUML is intensively coupled. To make it even worse the calls causing this intensive coupling
are mostly not local calls, but involve methods from a lot of different classes.

Figure 4.16: Overview Pyramid of ArgoUML. Green values indicate metrics that are close to the
low statistical threshold. Blue values indicate that the metric is close to the average statistical

threshold and red indicates that the value is close to the high statistical threshold.

Packages Overview

In Chapter 4.2.4 it is described that the Package View is particularly used to visualize the scope of
a class. This is done by displaying all classes that are in the same package as the actual class. In
a similar way the Packages Overview can be used to provide the user with an overview about the
whole project. In Figure 4.17 on the left side one can see all the packages of the actual project. In
this example there are 86 packages. The packages are visualized using circles and as in the exam-
ple of a single package, the number of lines of code of a package defines the radius of the circle
that is used to visualize the package. McCabe’s cyclomatic complexity defines the font color of
the text in the circle. The hierarchical relationship between the packages are modeled by lines.4 In
Figure 4.17 one can see that the package org.argouml.uml.diagram.ui is highlighted. Ac-
cordingly all relationships of this package are also highlighted (yellow lines). On the right side of
the figure the classes that belong to the highlighted package are visualized. In this example there
are 126 classes defined in the package org.argouml.uml.diagram.ui.

4It is important to note that according to the Java specifications there is no hierarchical relationship between packages
[GJSB05]. But since a lot of developers use packages in that way, we decided to follow this principle.



4.2 Application 33

Similar to selecting and highlighting a package it is also possible to set the focus on a class.
In Figure 4.17 the focus concentrates on the class FigNodeModelElement. Accordingly all its
relationships to other classes are also highlighted. In order to provide consistent functionality it
is not only possible to use circles to visualize packages and classes but also the previously men-
tioned house metaphor and a kiviat based diagram. If it is necessary to display a lot of classes
in this view, it can become difficult to differentiate individual classes. For example the package
org.argouml.uml.ui.foundation.core contains 146 classes that have to be displayed. But
to overcome this issue, it is possible to filter out classes and packages by name. For example in
Figure 4.18 one can see how all classes that do not contain me in their names are filtered out. In
that way the view becomes way more perspicuous.

Figure 4.17: Packages Overview

Figure 4.18: Packages Overview with enable name filter



34 Chapter 4. Augmenting Design and Code Reviews with Multi-Touch Technology

Metrics Overview

The Package View does not provide a possibility to find for example the class with the highest
cyclomatic complexity. In order to overcome this issue our SmellTagger application offers another
feature to browse trough all classes and interfaces in the form of a traditional list. This list can
be sorted by the name of the entity, the type of the entity or by various code metrics. In the
example shown in Figure 4.19 the list is sorted by the names of the entities. In this example the six
code metrics LOC, McCabe, FANIN, FANOUT, CALLS and WMC are displayed, but it is possible
to customize this view so that other code metrics can be seen as well. This customization tool is
shown in Figure 4.20. For each column the user can choose the metric that should be displayed.

Figure 4.19: Overview List Figure 4.20: Overview List customization

Review Report

Figure 4.21: First page of a review report



4.2 Application 35

In order to provide the user with a possibility to store the insights of a review session, our Smell-
Tagger application allows users to generate a review report. This review report can be generated
at any time during the review session by placing a specific tagged object on the screen of the Sur-
face unit (Chapter 4.2.5). The information that is contained in a review report covers the detected
code smells including its notes, audio notes, tags and annotated code snippets as well as a list of
metrics. Additionally, the code smells that were flagged false positive by the reviewers are men-
tioned in the report too, in order to keep the process traceable. Figure 4.21 shows the first page of
a review report. One can see that the Overview Pyramid defined by Lanza and Marinescu is also
included in the review report.

The review report can be used as a starting point for a refactoring that is performed after the
review session in order to resolve the design flaws that are listed in the review report.

Search Function

During the evaluation described in Chapter 6, one-fifth of all participants suggested to imple-
ment a search feature. Therefore we implemented this feature after the evaluation. It offers a
search functionality that allows the users of the application to browse trough a list of all classes in
the project and filter this list by class names. In that way it is possible to search for a specific class
by its name. Figure 4.22 shows this class list. In this example no name filter is enabled and that is
why all of the 1685 classes of the ArgoUML project are displayed. In Figure 4.23 one can see that
the name filter is enabled and only classes with the keyword GUI in their names are displayed. In
this example this specification is fulfilled by only seven classes.

This feature improves the usability of our SmellTagger application to a great extent. In order to
find a specific class it is no longer necessary to know the package in which the class is defined in
and then use the Package Overview to navigate to this package and search the specific class in the
list of all classes that are defined in this package. Instead, it is now possible to directly navigate
to the search function and use the class name as the search keyword.

Figure 4.22: Search Function View Figure 4.23: Search Function View with
enabled name filter

Tag Source Code

Another suggestion of improvement that was frequently mentioned by the participants of the
evaluation (Chapter 6) was the idea to not only allow to add a note for a class or a method but



36 Chapter 4. Augmenting Design and Code Reviews with Multi-Touch Technology

also for a code snippet. In order to enable this feature it is necessary that the user can mark a
part of the source code. We implemented this function after the evaluation. An example is shown
in Figure 4.24 where the method TreeModelComposite#getChild(Object parent, int
index) is marked. An example of a note is also shown in this figure. It is possible to store those
notes and add them with the corresponding source code snippet to the review report. But not
only whole methods can be marked and annotated, rather it is possible to mark each single line
of the source code.

Figure 4.24: Marked and annotated source code snippet

4.2.5 User Interaction
There are various ways how the user can interact with our SmellTagger application. The most
common way is to use the fingers to manipulate elements of the user interface. But there are also
other possibilities that can be used. Tagged objects are used to enable special features that do
not have to be available all the time. Gestures are particularly used to navigate between different
windows.

Tagged Objects

The Microsoft Surface SDK provides the possibility to create so called Tag Visualizations.5 TagVisu-
alizations are user interfaces that appear on the Microsoft Surface screen whenever a user places
a tagged object on the screen. Tagged objects are special objects that are ”marked with a special
pattern of dots called tags. A tag consists of a geometric arrangement of infrared reflective and absorbing

5http://msdn.microsoft.com/en-us/library/ee804826%28Surface.10%29.aspx



4.2 Application 37

areas” [Libb]. Each of these byte tags stores a unique binary code so that they are distinguishable.
Since byte tags store 1 byte of data there are 256 unique tags available.

Figure 4.25 shows an example of a byte tag. The black background is infrared-absorbing so
that the white (infrared-reflecting) circles can be recognized by the Microsoft Surface vision sys-
tem. The big circle in the middle of the tag is used to define the center of the tag and the small
three white circles are used to define the orientation of the tag. Additionally each tag can have up
to eight data bits that are represented by small white circles that are located around the center of
the tag. Figure 4.26 shows an exemplary tag with data bits for the value 0xC6 (198).

Figure 4.25: Example of a tag Figure 4.26: Tag 0xC6 (198)

Figure 4.27: The actual tagged objects for our SmellTagger application

Tag Visualizations are used in our SmellTagger application to provide the user with additional fea-
tures that have not to be always available but can be used in any situation. Tag Visualizations are
most suitable for that since tagged objects are recognized as soon as they are placed on the Mi-
crosoft Surface screen, independent of the state of the application or of the user interface elements
that are currently visible on the screen. The six tagged objects shown in Table 4.1 are implemented
in our SmellTagger application. The real tagged objects are shown in Figure 4.27.



38 Chapter 4. Augmenting Design and Code Reviews with Multi-Touch Technology

Whenever the user adds a new note (either a written or an audio note)
to an entity or tags a class or a method with a keyword, these actions are
recorded. Therefore it is possible to undo them. By placing this tagged
object on the screen, an user interface appears where all recent actions are
listed. From these actions the user can choose which ones he wants to re-
voke.

In Chapter 5.5 it is described that loading a project from the SOFAS web
services can require a lot of time. In order to overcome this issue it is pos-
sible to store a project locally. Whenever this tagged object is placed on the
screen, the user is asked where he wants to store the actual project. After
providing this information the project is stored locally. This feature can also
be used to pause and resume a review session.

Whenever this tagged object is placed on the Microsoft Surface screen, a
screenshot is taken and stored as an image file in the local file system.

This tagged object can be used to associate a keyword or a value with a
collection of classes and methods. Whenever it is placed on the screen, a
container is displayed. This container holds all the classes and methods
that are currently associated with this tagged object. By using drag and
drop it is possible to add or remove items from this container.

In order to provide the user with a possibility to store the results of a re-
view process it is possible to generate a review report that lists all findings
of the current review session. These findings include a list of the detected
code smells with notes, audio notes, code notes, keywords and metrics. It
also mentions those code smells that were identified as false positive re-
sults. Whenever this tagged object is placed on the screen such a report is
generated and stored as a PDF file. If the users wants, he can examine the
report directly on the Microsoft Surface.

Gestures can be used to control the application. If this tagged object is
placed on the screen, the application switches to a special mode that allows
to use gestures. How this exactly works is explained in Chapter 5.1.

Table 4.1: Tagged objects that can be used in our SmellTagger application



4.3 Lesson Learned 39

Gestures

Gestures are particularly used to manipulate views. It is possible to use gestures to close windows
or to display the settings options of a window. But the scope of operation is not limited to this
two examples. In Chapter 5.1 it is described in detail how these gestures are implemented in our
SmellTagger application and how it is possible to add auxiliary gestures.

Other Remarks about the Interaction with the Application

Interaction with our SmellTagger application is straight forward. Almost every element of the user
interface supports the three most common manipulations: scaling, rotating and translating. In
that way it is possible to freely arrange the UI so that it is best suited for the actual task. In order
to support collaborative behavior it is also possible to duplicate interesting content, so that more
than one user can view and manipulate it concurrently. For example Figure 4.28 and Figure 4.29
show how this is done when viewing source code. It is possible to duplicate the views so that
each reviewer has its own code view to work with. These duplicated views can also be resized,
rotated and moved.

Figure 4.28: Class Detail View Figure 4.29: Class Detail View with two
separate code views

4.3 Lesson Learned
Designing a nice looking user interface that is both intuitively easy to learn and offers all func-
tionality the user needs is a hard job. Following well-known design principles mentioned for
example by Tufte [Tuf86] or Shneiderman [Shn96] can definitively help. But especially when
developing an user interface for a new technology, such as multi-touch interfaces, it is also impor-
tant to sometimes get rid of established paradigms. For example it is not practical to just rely on
buttons and clickable icons as in a traditional desktop application and port this to fit into a multi-
touch environment. Instead new ways have to be found to provide the user with the possibility
to use natural and habitual finger and hand movements while interacting with the user interface.
Ideally the user should be able to interact with digital content in the same way as he is used to
interact with real world content.

Some approaches to achieve this were presented in this chapter. The possibility to capture au-
dio notes provides the user with the ability to interact very naturally with the application, since



40 Chapter 4. Augmenting Design and Code Reviews with Multi-Touch Technology

speaking is one of the most common communication forms. Additionally it is possible to rotate,
scale and translate almost every element of the user interface. Thereby the user can always adjust
every element so that it optimally fits into his field of vision. Using tagged objects to add classes
or methods to a list reminds of using a stamp to mark an object with a unique imprint. Even
though not all gestures may follow a real world example (for example the ’X’ to close windows),
it is a very common behavior to manipulate objects using fingers. This assumption is even more
obvious when talking about drag and drop operations. The concept to use fingers to move objects
(drag) and place (drop) them somewhere else is widely used in the real world.

In Chapter 2.1 design guidelines for a feasible visualization are described. By comparing our
SmellTagger application with the design hints mentioned by Shneiderman [Shn96] it becomes evi-
dent, that all of them are fulfilled.

• Overview: Shneiderman states that every visualization should provide the user with a gen-
eral overview about the data it represents. Our SmellTagger application offers a general
overview about all detected code smells. In Chapter 4.2.3 the Main Window is described that
visualizes all code smells that were found in the analyzed project. From there the user can
use various features to examine those code smells in detail.

• Zoom: It should be possible to examine interesting data in detail. In this application, a lot
of views described in Chapter 4.2.4 provide the user with the possibility to examine a class
or a method in detail. For example the Dependency View or the Hierarchy View implement a
function that allows users to use drag and drop operations to place a class or a method on a
specially marked area on the screen in order to display a lot of detail information about the
entity.

• Details on demand: Shneiderman states that not all details should be displayed in the first
place to avoid confusing because too much information is presented at the same time. There-
fore our SmellTagger application uses a clean user interface with no information overload. In
the first place, when the application is started, the user sees the set of detected code smells
and nothing else. Details about those code smells are only displayed if the user explicitly
requests it.

• Relate: According to Shneiderman, relationships between elements should be represented
in the visualization. Our SmellTagger application obeys this principle and visualizes the hi-
erarchical relationships between packages as well as the call dependencies between classes.

• History: Sneiderman states that it should be possible to record user actions and ideally
implement a possibility to undo them. In our SmellTagger application, important events
such as adding a note to a class or method, or recording an audio note are stored. Using a
special tagged object described in Chapter 4.2.5 it is possible to examine the recent history
of those events. But it is not only possible to browse through these events but also to undo
them.

• Extract: According to Shneiderman, it should be possible to extract information from the
visualization in some way. There are generally two possibilities to extract information out
of our SmellTagger application. First, it is possible to store the whole project locally in a XML
file. In that way it is not necessary to download all the information from the web service,
if the analysis is started again another time. This functionality can also be used to pause
and resume a review session. Second, it is possible to generate a review report as described
in Chapter 4.2.4. This review report summarizes the most important information about the
findings during a review session.



4.3 Lesson Learned 41

But not only Shneiderman’s design hints are fulfilled by our SmellTagger application, but also
Tufte’s design guidelines. As described in Chapter 2.1, Tufte states that a visualization should
help the viewer to think about the information rather than about the methodology and the de-
sign. This can be achieved by removing redundant data and unnecessary design elements. The
evaluation of our SmellTagger application, described in Chapter 6, has shown that the application
provides a clear user interface with no information overload. As a consequence the important
data and features are generally easy to find.

As another advice, Tufte suggests to use ”multi-functioning graphical elements” to display mul-
tivariate data in a small space. Using kiviat diagrams to display multiple code metrics from two
or more different data sources obeys this principle. The Package View described in Chapter 4.2.4 is
another example of a component of our SmellTagger application that is directly influenced by one
of Tufte’s design principles. The Package View encourages the viewer’s eye to directly compare
classes respectively packages with each other.

In the next chapter it is described how some of the features presented in this chapter are
actually implemented in our SmellTagger application.





Chapter 5

Implementation Details

In this chapter, three implementation details are described. First the algorithm that is used to
recognize gestures is presented, second the rule-based detection strategies used to detect code
smells are described in detail. Third, it is described how syntax highlighting and code folding are
implemented into the application’s code viewer.

5.1 Gestures
Multi-touch interfaces provide a lot of possibilities for various kinds of user interactions. Built-in
gestures allow users to manipulate elements of the user interface and to control the application.
Therefore we also implemented gestures in our SmellTagger application. Currently the three ges-
tures defined in Figure 5.1, Figure 5.2 and Figure 5.3 are supported. White these gestures it is
possible to navigate and control the application. The Delete gesture (Figure 5.1) can be used to
close windows. With the OK gesture (Figure 5.2) it is possible to leave the mode in which gestures
can be used and switch back to the application. The Settings gesture shown in Figure 5.3 is used
to access the settings menu of a window if there is one available. In order to make the gestures
more customizable, it is possible to define auxiliary gesture templates in XML files. For that pur-
pose a XML schema (Listing 5.1) is defined that can be used to implement additional user-defined
gestures.

Figure 5.1: Delete gesture Figure 5.2: OK gesture Figure 5.3: Settings gesture

Each element of the user interface that has to be manipulatable by gestures has to implement the
interface Manipulatable shown in Figure 5.4. In that way it can be assured that only those
elements of the user interface are affected by gestures that were capable of handling such events.
Additionally the interface defines the methods that have to be implemented by every element of
the user interface that is affected by gestures.



44 Chapter 5. Implementation Details

Listing 5.1: XML schema for gestures

<?xml version="1.0" encoding="utf-8"?>

<xs:schema attributeFormDefault="unqualified"

elementFormDefault="qualified"

xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="points">

<xs:complexType>

<xs:sequence>

<xs:element maxOccurs="unbounded" name="point">

<xs:complexType>

<xs:attribute name="x" type="xs:unsignedShort"

use="required" />

<xs:attribute name="y" type="xs:unsignedShort"

use="required" />

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:schema>

Figure 5.4: Manipulatable interface

In order to use custom gestures in an application it is necessary to implement a component that
is able to recognize gestures. Implementing a gesture recognizer is not a trivial task. Wobbrock et
al. discover a substantial problem: ”Although mobile, table, large display, and tabletop computers in-
creasingly present opportunities for using pen, finger and wand gestures in user interfaces, implementing
gesture recognition largely has been the privilege of pattern matching experts, not user interface proto-
typers” [WWL07]. To overcome this issue Wobbrock et al. presented a simple gesture recognition
algorithm [WWL07]. This algorithm assumes that a list of points, the so-called point path, that
contains all points that build a gesture, is available. Then the algorithm consists of four simple
steps:

1. Resample the point path
Since the moving speed of a gesture has a substantial influence on the number of sam-
ple points, it is necessary to first resample the point path to achieve an evenly distributed
sample. Otherwise it would not be possible to compare gestures with different movement
speeds. For that reason the M original path points are sampled into N new points that have
the same distance to each other.



5.2 Rule-based Detection Strategies 45

2. Rotate sample around a indicative angle
”Template matching techniques are sensitive to orientation. Therefore, for rotation invariant recog-
nition it is necessary to first rotate the patterns into the same orientation” [Kar04]. To find this
rotation angle that rotates the patterns into the same orientation one could use a brute force
method and rotating the gestures by 1◦ for 360◦. In order to save time, Wobbrock et al. rotate
the candidate gestures before trying to match them with a template gesture. The rotation
angle that is used in Wobbrock’s approach, the so-called indicative angle, is the angle be-
tween the center of the gesture and the gesture’s first point. The gesture is rotated in a way
that this angle is set to 0◦. Wobbrock et al. argue that this approximates finding the best
angular match between a template and a candidate gesture and will therefore speed-up the
posterior matching process described in step 4.

3. Scale and translate
In order to facilitate the matching process it is also necessary that both the gesture template
and the gesture candidate have approximately the same size and position. For that rea-
son, the gesture is scaled to a predefined reference square and translated to a predefined
reference point.

4. Find the optimal angle for the best match
In this step the actual recognition is done. Using the average distance di, defined in Equation
5.1, it is possible to compare a candidate gesture C to each stored template gesture Ti.

di =

∑N
k=1

√
(C[k]x − Ti[k]x)2 + (C[k]y − Ti[k]y)2

N
(5.1)

This comparison has to be done using the best angular match between the candidate gesture
and the template gesture. In step 2, the indicative angle was used to find an approximation,
but nevertheless it is necessary to search the whole angle space. The indicative angle just
provides a good starting point. As soon as this best match is found, the minimum average
path distance can be calculated. Afterwards this value is mapped into the [0,1] range. In
that way the minimum average path distance for each gesture template is calculated. The
template with the smallest average path distance matches best with the candidate gesture.
Using statistical thresholds it can be verified if the best match is good enough to be a valid
recognition.

In order to find the best angular match between a candidate and a template gesture various
search algorithms, for example hill-climbing, can be used. However, for performance rea-
sons, Wobbrock et al. use a Golden Section Search algorithm, initially described by Press et al.
[PTVF92].

The implementation in our SmellTagger application is based on the source code of Marshall [Mar]
who has already implemented the approach of Wobbrock et al. on a Windows 7 based HP TouchS-
mart. Although studies [WWL07] have shown that this approach is working correctly, it has limi-
tations. For example the algorithm does not support interactive correction or multistroke gestures
[AW10].

5.2 Rule-based Detection Strategies
Lanza and Marinescu [LM10] proposed an approach that uses detection strategies to find code
smells in a software project. This approach is used in our SmellTagger application to detect four



46 Chapter 5. Implementation Details

well-known code smells in an arbitrary software project: God Class, Refused Parent Bequest, Shot-
gun Surgery, and Brain Class. In order to make the application more customizable the rules in a
detection strategy can be defined using XML files. In that way it is easy to add new rules, manip-
ulate already existing rules or delete rules. The XML schema that has to be used for these XML
rule files is shown in Figure 5.6.

Figure 5.5: UML class diagram of the Specification Pattern

All XML rule files are parsed during the start-up phase of the application. In order to verify if a
class of the analyzed project fulfills the specifications defined in the XML rule files and is therefore
a code smell candidate, it is necessary to check each rule against each class in the project. In order
to solve this task the Specification pattern, first presented by Evans and Fowler [EF97], is used. This
design pattern allows to specify complex boolean logic conditions and making them explicit in
the model. Berther states that ”its primary use is to select a subset of objects based on some criteria”
[Ber]. In the same way it is used in our SmellTagger application. Based on the criteria defined in
the XML rule files, a subset of classes is selected that are possible code smells. Figure 5.5 shows
an UML class diagram of that part of the code that is responsible for parsing the XML rule files
and verifying if a source code file meets the specifications in these rule files.

The class RuleParser parses the XML file that contains all the detection strategies and cre-
ates XMLGate and XMLStrategy objects. The class XMLStrategy holds all the information
that was parsed out of the XML file for one detection strategy. A XMLGate object is created
for each composed logical condition in a detection strategy. These two objects are used to cre-



5.2 Rule-based Detection Strategies 47

Figure 5.6: XML schema for customizable detection strategies

ate a DetectionStrategy object that has a reference to an ISpecification object. This
ISpecification contains all the rules that have to be fulfilled by the corresponding detection
strategy. A rule is defined in the class Rule and consists of a metric, a threshold and a comparison
symbol. Whenever is is necessary to check if a class of the analyzed project fulfills a specific detec-
tion strategy, it can be checked by using the method DetectionStrategy#IsFullFilledBy(
SourceFile candidate). This method checks if all rules that are contained in this detection
strategy are fulfilled by the candidate class. During the start-up phase of the application each
class is checked against each detection strategy. The detected code smell candidates are then pre-
sented to the user as described in Chapter 4.2.3.

The advantages in using the specification pattern are the high flexibility even though there
are not a lot of classes necessary to implement the pattern. Adding new conditions is very easy,
because it does not require to modify the object that is checked itself. As an additional benefit the
specification pattern supports logical conditions so that it is very easy to map a detection strategy
that consists of composed logical conditions to objects in a specification pattern.

The following section describes how the detection strategies for the four code smells that are
predefined in our SmellTagger application (God Class, Refused Parent Bequest, Shotgun Surgery and
Brain Class) are implemented.



48 Chapter 5. Implementation Details

5.2.1 God Class
A God Class is a class that knows too much and does too much. This violates the object-oriented
design principle that every class should only have one responsibility (Single Responsibility Princi-
ple [Mar02]). Often, a God Class is also surrounded by a Data Class1 whose data containers are
used by the God Class. In most cases, a God Class is created accidentally by adding more and
more functionality to a class while the software project evolves. However, not all big classes that
have a lot of functionalities are bad per se. In some cases, for example a parser, it is very difficult
to decompose a big class into smaller units [Tri05]. In any cases, God Classes have some ma-
jor drawbacks. Because of their size, they tend to be very difficult to understand. Additionally,
because of their complexity and the amount of functionality they provide, God Classes will be
changed more frequently than other classes during maintenance and refactoring processes. This
increases the likelihood of implementing defects in the code. For these reasons it is important to
find potential God Classes in a software system and try to refactor them.

According to Lanza and Marinescu [LM10] a God Class has typically three main characteristics
that can be easily measured by using code metrics. These main characteristics are shown in Table
5.1. From these characteristics and the metrics that are able to measure them, a detection strategy
can be inferred and implemented in a XML structure. From the description of the symptoms of a
God Class it can be assumed that all three characteristics apply at the same time. The XML code
of this detection strategy is shown in Listing 5.2. As one can see in the listing, each class that
access more than eight attributes from unrelated classes and that has a weighted method count
above 397 and that has a tight class cohesion below 0.33 is a God Class candidate. These values
are the default thresholds that are used in our SmellTagger application. The thresholds have to be
adapted before every review session.

Listing 5.2: XML detection strategy for a God Class

<strategy name="God Class" ...>

<gate type="AND">

<rule>

<metric>ATFD</metric>

<comparison>greater than</comparison>

<value>8</value>

</rule>

<rule>

<metric>WMC</metric>

<comparison>greater than</comparison>

<value>397</value>

</rule>

<rule>

<metric>TCC</metric>

<comparison>smaller than</comparison>

<value>0.33</value>

</rule>

</gate>

</strategy>

1Data Classes are classes that passively store data and no behavior.



5.2 Rule-based Detection Strategies 49

Main characteristic Code metric

God Classes heavily access data of other sim-
pler classes, either directly or using accessor
methods.

ATFD (Access To Foreign Data): The num-
ber of attributes from unrelated classes that
are accessed directly or by invoking accessor
methods.

God Classes are large and complex.

WMC (Weighted Method Count): The sum
of the statical complexity of all methods of a
class. McCabe’s cyclomatic complexity (CY-
CLO) metric is used to quantify the method’s
complexity.

God Classes have a lot of non-communicative
behavior, i.e., there is low cohesion between
the methods belonging to that class.

TCC (Tight Class Cohesion:) The relative
number of method pairs of a class that access
in common at least one attribute of the mea-
sured class.

Table 5.1: God Class’ main characteristics and code metrics to measure them

5.2.2 Refused Parent Bequest
The Refused Parent Bequest code smell addresses wrong inheritance relationships in a software
project. In a well designed hierarchy, subclasses implement functionality and data of their base
classes. Lanza and Marinescu summarize this problem: ”But if a child class refuses to use this special
bequest prepared by its parent then this is a sign that something is wrong within that classification relation”
[LM10].

Figure 5.7: Detection strategy for a Refused Parent Bequest code smell

Trifu describes two different types of this code smell: ”the one that concerns inherited functionality
and the more critical case of refused interface, when a subclass privately inherits interface methods, or over-
rides them with empty methods” [Tri05]. The main problem of this code smell is that it introduces
code duplications and causes incoherent and non-cohesive class interfaces. According to Lanza
and Marinescu, this code smell has two main characteristics that can be detected by analyzing
the metrics shown in Table 5.2 [LM10]. It is possible to infer a detection strategy from this de-



50 Chapter 5. Implementation Details

scription. But it is important to note that, in contrast to the God Class detection strategy, not all
characteristics have to be fulfilled at the same time. The result of this observation is that not all
rules are conjuncted using logical AND-conjunction. For example, as one can see in Figure 5.7 the
rules AMW > average and WMC > average are conjuncted using an OR-conjunction.

Main characteristic Code metric
Child class ignores bequest

Parent class provides more than a few pro-
tected members.

NProtM (Number of Protected Members):
The number of protected methods and at-
tributes of a class.

Child class uses only little of parent’s bequest.

BUR (Base Class Usage Ratio): The number
of inheritance-specific members used by the
measured class, divided by the total number
of inheritance-specific members from the base
class.

Overriding methods are rare in child class.

BOvR (Base Class Overriding Ratio): The
number of methods of the measured class that
override methods from the base class, divided
by the total number of methods in the mea-
sured class.

Child class is not too small and simple

Functional complexity is above average.

AMW (Average Method Weight): The aver-
age static complexity of all methods in a class.
McCabe’s cyclomatic number is used to quan-
tify the method’s complexity.

Class complexity is not lower than average.

WMC (Weighted Method Count): The sum
of the statical complexity of all methods of a
class. McCabe’s cyclomatic complexity metric
is used to quantify the method’s complexity.

Class size is above average. NOM (Number of Methods): The number of
methods of a class.

Table 5.2: Refused Parent Bequest symptoms and code metrics to measure them

5.2.3 Shotgun Surgery
A Shotgun Surgery is a typical anti-pattern in object-oriented software design. A method that
is affected by a Shotgun Surgery has many other classes and methods depending on it. This
causes the major problem that a change on that method requires many other changes in a lot of
different classes and methods. That is why this code smell is ”an indicator of excessive low-level
couplings, in the sense of strong afferent (incoming) coupling” [OCBZ09]. As a result this code smell
can cause maintenance problems, since when changing a method affected by Shotgun Surgery, it
is necessary to check thoroughly if all affected operations and classes are changed correctly. But
fortunately, a Shotgun Surgery is relatively easy to detect. Lanza and Marinescu [LM10] suggest
to first search all methods that have a strong change impact and then from these methods those
with a high dispersion of changes are probably affected by Shotgun Surgery. This approach can be
implemented by using the characteristics and metrics described in Table 5.3. The XML detection
strategy that is build based on these metrics is shown in Listing 5.3.



5.2 Rule-based Detection Strategies 51

Main characteristic Code metric

Operation is called by too many other opera-
tions.

CM (Changing Methods): The number
of distinct methods that call the measured
method.

Incoming calls are from many different
classes.

CC (Changing Classes): The number of
classes in which the methods that call the
measured method are defined in.

Table 5.3: Shotgun Surgery symptoms and code metrics to measure these symptoms

Listing 5.3: XML detection strategy for a Shotgun Surgery

<strategy name="Shotgun Surgery" ... >

<gate type="AND">

<rule>

<metric>CM</metric>

<comparison>greater than</comparison>

<value>10</value>

</rule>

<rule>

<metric>CC</metric>

<comparison>greater than</comparison>

<value>100</value>

</rule>

</gate>

</strategy>

5.2.4 Brain Class
Brain Classes and God Classes have some very similar characteristics. Similar to God Classes, a
Brain Class tends to be very complex and combine a lot of different functionalities. But since Brain
Classes do not use as much data from foreign classes as a God Class, Brain Classes are slightly
more cohesive [OCS10]. Nevertheless the impact of a Brain Class on a software system can be
significant. For example, Brain Classes tend to ignore the basic object-oriented principle that ev-
ery class should have one single responsibility. Additionally Brain Classes tend to violate the Law
of Demeter [LHR88] which states that a class should not be coupled to closely with other classes.
However this violation is less pronounced compared to God Classes since Brain Classes typically
access less foreign data directly.

From these observations a detection strategy for Brain Classes can be derived. Lanza and
Marinescu use another code smell, called Brain Method in order to detect Brain Classes. A Brain
Method is a method that ”tend to centralize the functionality of a class, in the same way as a God Class
centralizes the functionality of an entire subsystem, or sometimes even a whole system” [LM10]. This
leads to the assumption that a Brain Class can be detected by examining all classes that are very
complex and not cohesive and that contain either one Brain Method and are extremely large and
complex, or contain more than one Brain Method and are just very large. The metrics used to mea-
sure the complexity, size and cohesion of a potential Brain Class are described in further details in



52 Chapter 5. Implementation Details

Table 5.4. Based on this description, our SmellTagger application implements a specific detection
strategy that is shown in Figure 5.8.

Main characteristic Code metric
Class contains more than one Brain Method and is very large

Class contains more than one Brain Method. BM (Brain Methods): The number of de-
tected Brain Methods in a class.

The total size of methods in class is very high. LOC (Lines of Code): The number of lines of
code of an operation.

Class contains only one Brain Method but is extremely large and complex.

Class contains only one Brain Method. BM (Brain Methods): The number of de-
tected Brain Methods in a class.

The total size of methods in class is extremely
high.

LOC (Lines of Code): The number of lines of
code of an operation.

The functional complexity of a class is ex-
tremely high.

WMC (Weighted Method Count): The sum
of the statical complexity of all methods of a
class.

Class is very complex and non-cohesive

The functional complexity of a class is very
high.

WMC (Weighted Method Count): The sum
of the statical complexity of all methods of a
class.

Class cohesion is low.

TCC (Tight Class Cohesion): The relative
number of method pairs of a class that access
in common at least one attribute of the mea-
sured class.

Table 5.4: Brain Class symptoms and code metrics to measure these symptoms

Figure 5.8: Detection strategy for a Brain Class



5.3 Syntax Highlighting and Code Folding 53

5.3 Syntax Highlighting and Code Folding
Chapter 4.2.4 describes that the views in our SmellTagger application that display source code are
able to support syntax highlighting and code folding. It is also possible to select and mark a part
of the source code using finger touches. In order to enable these features, we modified Avalon
Edit,2 the WPF-based text editor of SharpDevelop 4,3 so that it can also be used in a multi-touch
environment. These modifications particularly include changing the event handling in order to
enable recognizing events from a multi-touch surface. Therefore the original event handlers that
register mouse clicks or keyboard inputs are removed and new event handlers that react on touch
input are added. But it is also necessary to adapt other parts of the text editor. The original scroll-
bars are removed and replaced by Surface-enabled scrollbars in order to allow the user to scroll
through the source code using a finger gesture. The default code folding strategy that is opti-
mized for displaying XML file is changed so that the code is folded at curly braces. In that way
the code folding feature is more useful for displaying Java source code.

Particularly syntax highlighting improves the usability of the source code view because syntax
highlighting has the following positive effects:

• Improved readability of source code

• Simpler recognition of structures

• Faster identification of typing errors

• Simpler differentiation between source code and comments

5.4 Validation
In order to ensure the quality of our SmellTagger application some tests are implemented and
performed on a regular basis. Basically two different kind of tests are implemented. Unit tests
to verify the correctness of important and complex functions and tests that verify that the user
interface is working correctly.

5.4.1 Unit Testing
The Visual Studio Unit Testing Framework is used to generate unit tests for each class of the appli-
cation’s model component. The model component is responsible for representing the real state
content [Mar02]. Other components, for example the view component that is responsible for rep-
resenting the user interface, are tested using different test techniques described in Chapter 5.4.2.
With these unit tests it is possible to ensure that the tested operations and classes behave as in-
tended. Per definition unit tests are independent from each other. Therefore it is only possible to
show the correctness of individual parts of the whole application.

5.4.2 Interface Testing
In Chapter 3.2 it is mentioned in passing that the Microsoft Surface SDK contains a simulator that
replicates the Surface user interface on a workstation. With the help of the Surface Simulator Au-

2http://wiki.sharpdevelop.net/AvalonEdit.ashx
3http://www.icsharpcode.net/OpenSource/SD/



54 Chapter 5. Implementation Details

tomation API4 it is possible to programatically simulate contact input for the Surface. This allows
to test an application that is running on the Surface Simulator by using a Windows Forms5 project.
In order to successfully connect the test project to an application that is running on the Surface
Simulator, it is necessary that the application is started using the Launcher from the Surface Shell.
Listing 5.4 shows how the test project can be connected to the Surface Simulator.

Listing 5.4: Method that connects the test environment to the Surface Simulator

private void StartTestButton_Click(object sender, EventArgs e) {

try {

/// Gets the active group of SimulatedContact objects.

/// If this group is null, the tests can not be executed.

if (SimulatorAutomation.PrimarySimulatedContactGroup == null) {

throw new CommunicationException();

}

/// Blocks until communcation with the Simulator is available.

if (!SimulatorAutomation.WaitUntilReady()) {

throw new CommunicationException("Communication Error");

}

/// Creates test cases with the active SimulatedContact objects.

using (PrimarySimulatedContactGroup simulator =

SimulatorAutomation.PrimarySimulatedContactGroup) {

SimulatorAutomationAPI apiComm

= new SimulatorAutomationAPI(simulator);

/// Executes all test cases.

StartTest(apiComm);

}

}

/// Informs user about exceptions.

catch (SystemException se) {

MessageBox.Show(se.Message, "Simulator Problem",

MessageBoxButtons.OK);

this.Close();

}

}

This approach is used to test the main functionalities of the user interface graphically. In that way
it is possible to decrease the probability of an error in the user interface.

4http://msdn.microsoft.com/en-us/library/ee804820(v=surface.10).aspx
5http://msdn.microsoft.com/en-en/library/dd30h2yb.aspx



5.5 Limitations 55

5.5 Limitations
Chapter 3.4 describes how the SOFAS web service is used to retrieve the necessary information
about a software project that should be analyzed. For that purpose SPARQL queries are sent
to the RESTful interface of the web service and the response is parsed appropriately. But this
kind of information retrieval causes problems. For example in big software projects thousands of
SPARQL queries are necessary to just retrieve the project structure. Additional queries are used
to get the source code, the relationships between the entities and the code metrics. This leads to
the problem that loading the application takes a lot of time. Unfortunately it is not a solution to
load part of the information on demand, since almost all of the information is needed during the
start-up phase to decide whether a source file is affected by a code smell detection strategy or not.
In order to temper this issue it is only required to load this information once. As it is described
in Chapter 4.2.5 it is possible to store a project locally. During the next startup, loading a project
from a local storage will decrease the time needed to load the project dramatically.





Chapter 6

Evaluation

This chapter describes the evaluation that was performed to show that it is possible to operate
our SmellTagger application intuitively. Additionally, the evaluation was used to verify that the
application can foster the collaboration between reviewers during a code and design review pro-
cess. First the study settings are described. In the next part the results of the study are presented
and its limitations are discussed.

6.1 Study Settings
We performed an evaluation of our SmellTagger application to find answers to the following key
questions:

• Is the user interface intuitive and easy to use?

• Are users able to solve tasks without a detailed explanation of the functionalities the appli-
cation provides?

• Can the application be used beneficially to find code smells in a software project?

• Can multi-touch interfaces be used beneficially for doing code reviews?

• Do multi-touch interfaces facilitate collaborative work during a code review?

• Which interaction possibilities with the application are well-accepted by the users?

In order to find answers to these questions, a questionnaire was designed that consists of six
parts. In the first part the participants had to solve typical tasks that occur in a review session
such as finding the subclasses of a code smell or examining the relationship between a code smell
and other classes. After each task the participants had to answer two questions concerning the
easiness to find the necessary information and the amount of navigation through different user
interface elements that was necessary to solve this task. The second part of the questionnaire
consists of some tasks that each participants had to solve. In contrast to the first part, it was
not necessary to explicitly answer a question during the task. But at the end of each task the
participants were asked again how easy it was to find the necessary functionality to solve the
task. The third part consists of ten questions concerning the general impression the participant
had when working with the application and his opinion about multi-touch interfaces in general.
The participant’s opinion about the features of the prototype was addressed in the fourth part.
There it was necessary to answer seven questions about different features and functionalities the



58 Chapter 6. Evaluation

prototype provides. In the fifth part the participants were asked about their previous experience
with multi-touch devices in order to examine if the results of the questionnaire are biased. In a
final step during the sixth part, the participants had the possibility to share any other remarks. In
particular they were asked about their likes and dislikes while working with the prototype. Each
of the questions during the first five parts could be answered on a Likert scale [Lik32]. Therefore
the participants had to rate each statement respectively question with values from 1 (”I strongly
disagree”) to 5 (”I strongly agree”). The questionnaire can be found in Appendix A.

The evaluation was performed with 15 participants. All the participants were graduates with
a background in computer science. On average it took 25 minutes to perform the evaluation with
one participant, varying from 18 to 40 minutes.

6.2 Results
An overview about all the results of the evaluation can be found in Appendix B. In the following
chapters these results are presented in more detail.

6.2.1 Functionalities
The first two parts of the questionnaire address the features of our SmellTagger application (Chap-
ter 4.2.4). For each of its main features, the participants had to solve at least one task. In total the
participants had to answer 135 questions. All but one participants were able to solve all the tasks
so that there are 134 valid answers that can be examined.

Methods

In order to evaluate this feature the participant has to answer two questions. The first question
(Table 6.1) addresses the comparison of method definitions for various code smells. Most partic-
ipants found the information that was necessary to answer this question. But the relatively high
standard deviation (0.95) indicates that there were also some participants that had difficulties to
answer the question. The same is true for the second statement of the first question. While most
participants think that it was not necessary to navigate trough a lot of different windows, the
standard deviation (0.91) is still high compared to other questions. On the other hand the results
for the second question (Table 6.2) are very clear. Almost all participants found the information
very easily and had not any problems while navigating to the appropriate user interface element.
From these results one can conclude that this feature is in general easy to understand and intu-
itive. This conclusion is supported by the fact that no participant had any suggestions to improve
this feature (Chapter 6.2.4).

First Question: Does the Shotgun Surgery smell occur in the code? If yes, which class that triggers the
cascading changes defines the most methods?

Statement Mean Median STDV
The necessary information was easy to find 4.14 4.00 0.95
To find this information it was necessary to navigate through a lot
of different menus 1.71 1.50 0.91

Table 6.1: Results for question 3. (1 = ”I strongly disagree” / 5 = ”I strongly agree”)



6.2 Results 59

Second Question: How many methods are defined in class FigNodeModelElement?

Statement Mean Median STDV
The necessary information was easy to find 4.93 5.00 0.26
To find this information it was necessary to navigate through a lot
of different menus 1.00 1.00 0.00

Table 6.2: Results for question 8. (1 = ”I strongly disagree” / 5 = ”I strongly agree”)

Dependencies

The Dependencies feature is used to visualize the relationship between various classes. In order
to evaluate this feature the participants of the evaluation had to detect how many calls are there
between the classes TargetManager and ProjectManager. The results in Table 6.3 indicate
that most participants had no problems to find the appropriate functionality and view to solve
this task. But the relatively low average value (2.80) and high standard deviation (1.21) for the
first statement show that some users had problem to find the necessary information in the view
itself.

Question: How strong (number of calls) is the relationship between class TargetManager and class Pro-
jectManager?

Statement Mean Median STDV
The necessary information was easy to find 2.80 3.00 1.21
To find this information it was necessary to navigate through a lot
of different menus 2.07 2.00 0.80

Table 6.3: Results for question 6. (1 = ”I strongly disagree” / 5 = ”I strongly agree”)

Capture Audio

In order to evaluate the feature to record an audio note, the participants had to solve a simple
task. They had to record an audio note for a specific class in the project. As the results in Table 6.4
indicate this functionality seems to be very intuitive and easy to handle. All but one participants
rated the questions related to this task with 4 (”I agree”) or 5 (”I strongly agree”). This observation
is supported by the relatively low standard deviation (0.59).

Task: Record an audio note for code smell PerspectiveSupport.

Statement Mean Median STDV
The necessary functionalities to solve this task were easy to find 4.73 5.00 0.59

Table 6.4: Results for task 2. (1 = ”I strongly disagree” / 5 = ”I strongly agree’)’

Hierarchy

The Hierachy feature is used to visualize the hierarchy relationship between various classes. In
order to evaluate it, the participants had to find the only subclass of a code smell. All participants



60 Chapter 6. Evaluation

were able to solve this question and most of them had no problems to find the required infor-
mation. Although the mean (4.07) and median (5.00) for the first statement in Table 6.5 are high,
the standard deviation (1.28) indicates that there were also some participants that answered the
question with 2 (”I disagree”) or 3 (”I neither agree nor disagree”). A closer look at the results
shows that two participants rated the statement with 3 and three participants rated the statement
with 2. On the other hand all participants more or less agreed on the fact that it was not necessary
to navigate trough a lot of different menus to find the appropriate feature to answer this question.

Question: Name the direct subclasses of class PerspectiveSupport

Statement Mean Median STDV
The necessary information was easy to find 4.07 5.00 1.28
To find this information it was necessary to navigate through a lot
of different menus 1.80 2.00 0.94

Table 6.5: Results for question 4. (1 = ”I strongly disagree” / 5 = ”I strongly agree”)

Package

Sometimes during a review process it is important to investigate the package in which a code
smell is located. That is why the participants had to detect in which package a class is defined in.
This can be done using the Package feature. Almost all participants had no problems to find the
information that is necessary to answer this question. Twelve participants agreed on the fact that
it is easy to find the required information. The remaining three participants could not decide if
they should agree or not. A very similar pattern can be recognized for the second statement in Ta-
ble 6.6. Twelve participants disagreed and stated that is is not necessary to navigate through a lot
of different menus. Another two participants could not decide and only one participant thought
that it was difficult to find the appropriate view to answer this question.

Question: In which package is class ProjectBrowser located?

Statement Mean Median STDV
The necessary information was easy to find 4.33 5.00 0.82
To find this information it was necessary to navigate through a lot
of different menus 1.67 1.00 0.98

Table 6.6: Results for question 5. (1 = ”I strongly disagree” / 5 = ”I strongly agree”)

False Positive

It can be necessary to mark a code smell candidate as a false positive result of the automatic de-
tection strategies. In order to evaluate this feature, the participants had to mark a code smell as
false positive and then judge how difficult it was to solve this task. All but one participants rated
the statement in Table 6.7 with 4 (”I agree”) or 5 (”I strongly agree”) so that on average there is
a high agreement (4.27) on this statement. However it is worth mentioning that one-fifth of all
participants mentioned suggestions for improvements. In Chapter 6.2.4 this is discussed in detail,
but in summary it can be said that the participants suggested a more active feedback if an user
marks a code smell as a false positive result.



6.2 Results 61

Task: Mark code smell UndoableAction as false positive.

Statement Mean Median STDV
The necessary functionalities to solve this task were easy to find 4.27 5.00 1.22

Table 6.7: Results for task 1. (1 = ”I strongly disagree” / 5 = ”I strongly agree”)

Overview Pyramid

The Overview Pyramid can be used to compare various code metrics in the scope of the whole
project. Therefore the participants had to find two different metrics that indicate how inheritance
is used in the project. All participants were able to answer this question. The high average value
(4.33) for the first statement in Table 6.8 and the low average value (1.47) for the second statement
indicate that most participants had no problems neither to navigate through the menus nor to
find the necessary information.

Question: What are the values for AHH (Average Hierarchy Height) and ANDC (Average Number of
Derived Classes) metric over the whole project?

Statement Mean Median STDV
The necessary information was easy to find 4.33 5.00 1.11
To find this information it was necessary to navigate through a lot
of different menus 1.47 1.00 0.92

Table 6.8: Results for question 7. (1 = ”I strongly disagree” / 5 = ”I strongly agree”)

Package Overview

In order to evaluate this feature, the participants had to find the number of classes that are de-
fined in a specified package. All participants answered the question shown in Table 6.9 without
any problems. But one participant complained that it was difficult to find the necessary informa-
tion since the visualization of class interrelations consists of too much lines so that they viewer’s
eye gets confused. The exemplary package that the participants had to examine includes 115
classes. That is why it is possible that the visual representation of classes overlap so that it is hard
to find a specific class. The participant suggested to use graph layout algorithms (GLA) to reduce
the impact of this problem.

Question: How many classes are located in the package org.argouml.uml.cognitive.critics?

Statement Mean Median STDV
The necessary information was easy to find 4.47 5.00 0.74
To find this information it was necessary to navigate through a lot
of different menus 1.67 2.00 0.82

Table 6.9: Results for question 9. (1 = ”I strongly disagree” / 5 = ”I strongly agree”)



62 Chapter 6. Evaluation

Metrics Overview

The feature Metrics Overview can be used to compare all the classes in the analyzed project against
each other by comparing their metrics. In order to evaluate this feature, the participants had to
find the largest class (by lines of code) in the whole project. As the results in Table 6.10 show,
all participants were able to find the information easily. In the open questions part of the ques-
tionnaire (Chapter 6.2.4) two participants mentioned suggestions to improve this feature. In sum-
mary both suggestions propose to implement the possibility to filter the list for a subset of all
classes. This subset of classes can be defined by the user either by using a name filter or by using
drag&drop operations to choose interesting classes that should be compared against each other
in this view.

Question: What is the largest (LOC) class in the project?

Statement Mean Median STDV
The necessary information was easy to find 4.60 5.00 0.63
To find this information it was necessary to navigate through a lot
of different menus 1.47 1.00 0.92

Table 6.10: Results for question 1. (1 = ”I strongly disagree” / 5 = ”I strongly agree”)

Tagged Objects

In our SmellTagger application, it is possible to use tagged objects to access special features by
placing these tagged objects on the Surface screen. This interaction paradigm is described in de-
tail in Chapter 4.2.5. In order to evaluate if tagged objects are an intuitive way to interact with our
SmellTagger application, the participants had to solve three tasks involving tagged objects. In the
first task (Table 6.11) it was necessary to associated a tagged object with a code smell. The second
task (Table 6.12) requires to use a tagged object to generate a review report (Chapter 4.2.4) about
the current review session. In the last task (Table 6.13) tagged objects were used to manipulate
views using gestures (Chapter 5.1). All three tasks could be solved by every participant. Because
of the high ratings for each task it is possible to conclude that tagged objects are intuitive possi-
bilities to interact with our SmellTagger application.

First task: Tag class Translator with tag TODO. Then undo the changes.

Statement Mean Median STDV
The necessary functionalities to solve this task were easy to find 4.07 4.00 1.10

Table 6.11: Results for task 3. (1 = ”I strongly disagree” / 5 = ”I strongly agree”)

Second task: Generate a review report for the project.

Statement Mean Median STDV
The necessary functionalities to solve this task were easy to find 5.00 5.00 0.00

Table 6.12: Results for task 4. (1 = ”I strongly disagree” / 5 = ”I strongly agree”)



6.2 Results 63

Third task: Open the Hierarchy View of class FigNodeModelElement. Then use gestures to close this
window again.

Statement Mean Median STDV
The necessary functionalities to solve this task were easy to find 4.60 5.00 0.51

Table 6.13: Results for task 5. (1 = ”I strongly disagree” / 5 = ”I strongly agree”)

6.2.2 Review Process
The third part of the evaluation consists of questions about the interaction with our SmellTagger
application itself and questions about multi-touch interfaces in general. The results are shown in
Table 6.14.

# Statement Mean Median STDV

1 The prototype provides the user with all functionalities that
are necessary to solve tasks in a review process efficiently. 4.13 4.00 0.99

2 The prototype uses symbols, terms and abbreviations that
are easy to understand. 4.07 4.00 0.80

3 The prototype is qualified to be used in a review process. 4.27 5.00 0.96

4 The prototype provides the user with an useful overview
about its functionalities. 3.47 4.00 1.30

5 The prototype is easy to operate because of its consistent de-
sign. 4.27 4.00 0.70

6 The prototype has a flat learning curve. 2.67 2.00 1.76
7 The prototype does not require to remember a lot of details. 3.87 4.00 1.25

8 It is difficult to learn how to operate the prototype without
any help. 2.27 2.00 0.70

9 Multi-touch interfaces are more suitable in code review pro-
cess than traditional interfaces. 3.40 3.00 0.99

10 Collaboration with a multi-touch interface is easier than with
a traditional computer. 3.80 4.00 1.32

Table 6.14: Results for the third part of the questionnaire. (1 = ”I strongly disagree” / 5 = ”I
strongly agree”)

In summary it can be said that most participants think that our SmellTagger application can be
used in a review session. The high average agreement on statement 1 (4.13) and statement 3 (4.27)
support this argument. Additionally, it seems that for most participants it was easy to interact
with the prototype because of the usage of symbols, terms and abbreviations that are easy to
understand (statement 2), its consistent design (statement 5) and because it is not necessary to
remember a lot of details (statement 7).

On the other hand statement 4 shows that the participants did not agree on the question that
our SmellTagger application provides the user with an useful overview about its functionality. The
average answer (3.47) is between 3 (”I neither agree nor disagree”) and 4 (”I agree”) and the high
standard deviation (1.30) indicates that there were a lot of different answers. This impression is
fortified by the fact that some participants stated that they were not able to find a specific fea-
ture. One participants mentioned that ”some interesting features are hidden behind symbols without



64 Chapter 6. Evaluation

Figure 6.1: Histogram of statement 6. The x-axis shows the ratings and the y-axis the occurrence
of each rating.

any indication”. Another one complained that it was ”difficult to find out how to handle the various
functionalities”. This indicates that our SmellTagger application does not sufficiently inform the
users about its functionalities and possibilities.

Another problem that became evident during the evaluation is that our SmellTagger applica-
tion offers no explanation or help function. Although the average rating (2.27) of statement 8
indicates that it is not really difficult to learn how to operate the application without any help, a
lot of participants addressed this problem in the last part of the evaluation where they were asked
to write down their opinions (see Chapter 6.2.4 for details). More than one-third of all participants
stated that they would appreciate a help function in any form.

Statement 9 and 10 are used to evaluate the participants’ opinion about multi-touch interfaces
in general. While it is not really clear if the participants think that multi-touch interfaces are more
suitable in code review processes than traditional interfaces, it became evident that most partici-
pants think that multi-touch interfaces foster collaboration between users.

Statement 6 needs to be analyzed with caution. A lot of participants were not sure if a flat
learning curve indicates that something is difficult or easy to learn. These doubts are visible in
the histogram shown in Figure 6.1. The histogram shows that particularly the extreme ratings are
very frequent. This also explains the high standard deviation (1.76). Therefore it is possible that
the result for this statement is distorted.

6.2.3 Features
The fourth part of the evaluation consists of questions about the special features our SmellTagger
application offers. The results of these questions are shown in Table 6.15.

The first statement reveals that tagged objects are widely accepted as useful form of user input.
This result fits to the results presented in Chapter 6.2.1 where the participants were asked to solve
tasks using tagged objects. All tasks were solved without any problem and the ratings indicate
that tagged objects are easy to use. Surprisingly, one of the key feature of our SmellTagger applica-
tion, namely the possibility to freely rotate, scale and translate almost all user interface elements
is not accepted as an useful way to improve the interaction with the application. In statement 2



6.2 Results 65

# Statement Mean Median STDV
1 Tagged objects are useful forms of user input. 4.07 4.00 0.88

2 The ability to freely rotate, scale and translate all elements of
the user interface improves the user interaction. 3.73 4.00 1.28

3 Gestures are useful forms of user input. 3.13 3.00 1.36

4 Multi-touch interfaces foster collaboration during a review
process. 3.67 4.00 0.72

5 The possibility to records audio notes is an important feature. 3.13 3.00 1.06

6 The possibility to examine the source code of a class or
method is helpful. 4.20 5.00 1.37

7 The outcome of a review process (a written report) can be eas-
ily used in further development steps. 4.27 5.00 0.96

Table 6.15: Results for the fourth part of the questionnaire. (1 = ”I strongly disagree” / 5 = ”I
strongly agree”)

one can see that the average rating (3.73) is only slightly in the positive area of the rating scale.
One participant even stated explicitly that he did not like the ”scaling and transforming of screens”.

The possibility to use gestures to interact with the application is a controversial feature. The
histogram in Figure 6.2 shows that seven participants rated gestures negatively while another
seven users rated the feature positively. These oppositional opinions are also reflected in the last
part of the questionnaire where the user could share their opinions. While one participant noted
that gestures are not really useful and that it is too bothersome to activate them first through
tagged objects, another participant stated that it would be an improvement to ”increase the types
of gesture commands”. Another feature that was controversially discussed is the ability to record
audio notes. The median rating (3.00) shows that most of the participants do not think that it is
an important feature.

Figure 6.2: Histogram of statement 3. The x-axis shows the ratings and the y-axis the occurrence
of each rating.

Statement 6 evaluates if the participants think that it is helpful to browse through the source code
of a class or a method. 13 of 15 participants agree on that fact. Two participants also suggested to
enhance this feature and implement a possibility to mark or tag source code snippets. A similar



66 Chapter 6. Evaluation

positive result for statement 7 indicates that the review report is an useful outcome of a review
session performed with our SmellTagger application.

6.2.4 Open Questions
In the last part of the evaluation the participants had the possibility to share their opinions in
open questions. This part of the questionnaire consisted of four different open questions. Three
of them are presented in detail. The first question asked the participants what they did like the
most during the evaluation. The second question addressed the aspects that the participants did
not like. The third question asked the participants for suggestions to improve our SmellTagger
application. In order to evaluate the answers, all answers are thematically grouped and the most
frequently mentioned groups are presented.

What did you like the most?

Design & GUI

• ”Design and color choices.”

• ”Clear and clean design. No information overload.”

• ”Really nice user interface without information overload.”

• ”Clean user interface.”

• ”Graphical design, clear arrangement of features & functionalities.”

Navigation

• ”Quick navigation and information provided by the system.”

• ”Navigating is easy and very intuitive.”

• ”Easy access to all important info (not too much clicking required to get there).”

• ”The whole interface that lets you see the smells right away and then allows you to dig in and find
all the needed details.”

• ”Even though there is a lot of information, you never feel lost and can go back to the overview with
one click”.

Easiness

• ”Very intuitive and incredibly easy.”

• ”Very fast to solve questions.”

• ”Easy learning provides a rather deep insight into the code.”

• ”With a short introduction and a little bit of trail and error it is easy to learn.”

• ”Easy to understand.”

Technology

• ”Simple presentation of code in another format.”



6.2 Results 67

• ”Multi-touch technology.”

• ”Doing a code review on a multi-touch device is really great!”

Conclusion: Most participants liked the user interface. They thought that it is easy to learn and
offers a fast and intuitive navigation to solve typical problems in a review session. A lot of par-
ticipants were also impressed by the multi-touch technology and mentioned that it is a great
experience to do a code review in a non-traditional way. These results coincide with the results of
the questions the participants had to answer and the tasks they had to solve, presented in Chapter
6.2.1.

What did you not like?

Gestures

• ”Gestures are not so useful.”

• ”Gestures are sometimes hardly recognized (more of a problem of the device than the app I guess).”

• ”Gestures do not work good enough. I think it is too bothersome to activate them through the tagged
objects.”

Technology

• ”Infrared touch mechanism is very inaccurate.”

• ”The fans of the Surface are too loud.”

• ”The Surface is just too slow.”

• ”Most of the problems are related to the technology of MS Surface itself.”

• ”The reactivity of the MS Surface.”

GUI

• ”Scaling and transforming of screens.”

• ”Screens with class interrelations draws too much lines and classes overlap such that it is hard to
find them.”

• ”Graphical differentiation between GUI elements that just display something and those that allow
user input.”

• ”Probably the kiviats were a bit unclear.”

• ”Some interesting features are hidden behind symbols without any indication.”

Conclusion: A lot of participants complained about the Microsoft Surface. It became evident that
the touch recognition is not always working accurately. But this inaccuracy is caused by the vision
system of the Microsoft Surface and not by our implementation. Nevertheless it also influences
the evaluation of the gestures since the precise recognition of gestures primarily depends on ac-
curate touch points recognition. Suggestions to improve the graphical user interface were also
frequently mentioned.



68 Chapter 6. Evaluation

Suggestions to improve the prototype application

Help

• ”More help functions.”

• ”More explanations.”

• ”A simple ’HELP’ link would be useful in early stages.”

• ”Welcome / Splash screen with short tutorial.”

• ”Without your introduction a help system would be nice.”

• ”Some help info via ’?’ symbol.”

Search function

• ”Implement a searchable list for all classes.”

• ”Name filter / Search feature in ’Metrics Overview’.”

• ”Search function.”

Mark and annotate source code snippets

• ”The possibility to mark source code snippets.”

• ”Can you tag or mark source code?”

Conclusion: The suggestion to implement a help function was mentioned far more frequently
than any other idea for improvement. Nevertheless there were also other suggestions for im-
provement that were mentioned several times, for example the idea to implement a search box
that allows users to search all classes in the project by name or the idea to implement a feature
that allows users to mark a code snippet and add a note to it. Chapter 4.2.4 describes how the last
two ideas were implemented after the evaluation.

6.3 Limitations and Conclusion
The results of this evaluation could be biased due to the selection of participants. As shown in
Figure 6.3 most participants of the evaluation had no previous experience in working with Sur-
face applications. But a lot of them had already previous experience in using other multi-touch
devices, such as the iPhone, as shown in Figure 6.4.

There is the assumption that the experience in using multi-touch devices in general and Sur-
face applications in particular will influence the results of the questions the participants had to
answer in the first part of the evaluation. But the correlation matrix between those questions
and the experience of the participants shown in Table 6.16 does not indicate any dependencies.
Event though there are some correlations between single questions, it is not possible to detect a
dependency pattern that matches all questions. It is important to note that it was not possible to
calculate values for the second statement of the eight questions since the answers for this state-
ment do not vary at all.



6.3 Limitations and Conclusion 69

The evaluation has shown, that the participants are generally confident that multi-touch tech-
nology can be used beneficially in a code and design review process. In respect of our SmellTagger
application it can be said that most participants like the intuitive user interface that is very easy
to learn. Although there are a lot of suggestions for improvements, the participants are generally
positive that the prototype can be used beneficially in a review session.

Figure 6.3: Histogram for the the statement
”I am not experienced in using MS Surface
applications” (1 = ”I strongly disagree” / 5

= ”I strongly agree”)

Figure 6.4: Histogram for the the statement
”I am not experienced in using other
multi-touch devices” (1 = ”I strongly

disagree” / 5 = ”I strongly agree”)

Question / Statement Additional Question 1 Additional Question 2
Question 1 / Statement 1 -0.36 -0.11
Question 1 / Statement 2 0.10 0.20
Question 2 / Statement 1 -0.21 -0.44
Question 2 / Statement 2 0.21 -0.11
Question 3 / Statement 1 -0.56 -0.05
Question 3 / Statement 2 0.56 0.16
Question 4 / Statement 1 0.08 0.05
Question 4 / Statement 2 0.08 0.09
Question 5 / Statement 1 0.04 -0.06
Question 5 / Statement 2 0.36 0.34
Question 6 / Statement 1 -0.17 -0.13
Question 6 / Statement 2 0.78 0.38
Question 7 / Statement 1 -0.36 -0.77
Question 7 / Statement 2 0.31 0.72
Question 8 / Statement 1 -0.21 0.11
Question 8 / Statement 2 NA NA
Question 9 / Statement 1 0.06 -0.40
Question 9 / Statement 2 -0.15 0.23

Table 6.16: Correlation matrix between the two additional questions in the questionnaire that
measure the previous experience of each participant and the nine questions about tasks the

participants had to solve





Chapter 7

Final Remarks

This chapter subsumes the insights on how multi-touch technology can be beneficially used in a
design and code review. Additionally, suggestions how to improve our SmellTagger application
are presented.

7.1 Conclusion
While the new multi-touch technology is widely adapted in various domains such as customer
servicing, very little research has been performed on how this technology can be used benefi-
cially in the field of software engineering. Our SmellTagger application contributes to overcome
this issue. It is designed to exploit the features this new technology offers and to provide the user
with a new kind of user interface that allows intuitive and natural interaction. Our application
supports software engineers in finding code smells in a software project and provides means to
analyze those code smells thoroughly. Therefore our application can be used as a starting point
for a refactoring process. The design of the user interface follows established design principles
that are enhanced to fit into a multi-touch environment. Additionally, our application exploits the
features the Microsoft Surface offers in order to provide the users with a new kind of interaction.

The evaluation of our SmellTagger application has shown that the participants are generally
confident that multi-touch technology can be used beneficially in a review process. In respect
of our SmellTagger application it can be said that the participants are generally positive that the
application can be used advantageously in a code and design review. Although there are a lot of
suggestions for improvements, most participants liked the intuitive and easy to learn user inter-
face.

For future work we plan to implement an interactive help function so that it will become easier
for new users to get used with the application. In addition, we intend to not only analyze static
project snapshots, but also dynamic information extracted from a version control or bug tracking
system.

7.2 Future Work
There are many further features which could be implemented to extend our SmellTagger appli-
cation to improve its usability and functionality. In the following chapters, some extensions are
described as an example.



72 Chapter 7. Final Remarks

7.2.1 Tutorial and Interactive Help
The evaluation has shown that the users of our application are sometimes a little bit overex-
tended when they are first confronted with the application. For a lot of people working with a
multi-touch interface to such an extent was a new experience. That is why it was difficult for
them to get used to the application without further help. Consequently, a frequently mentioned
suggestion for improvement was to include a tutorial or interactive help function that explains
how to use the application. Compared to a more traditional application, well-known interactive
help functions, for example Tooltips, are difficult to implement in a multi-touch application. That
is why it is necessary to use other kind of help functions. Two ideas, tutorials and interactive help,
are described in the next two chapters.

Tutorial

This idea is based on the way modern video games help players to understand the control mech-
anisms and the story of a game. In these games the player often has to complete a short introduc-
tory mission that explains how the game works. The player learns how to control and handle the
game and very often he also learns facts about the story the game is based on. These principles
can also be used in our SmellTagger application. Before the first use, the user can optionally take
a guided virtual tour through an exemplary project. There he learns how to interact with the
application and how to solve typical tasks that have to be solved during a review session.

Interactive Help

The second idea is based on the principle that the user can request help if he needs assistance. In
contrast to the tutorial approach the user will only get an explanation for the feature or view he
is currently interacting with. The idea is that whenever the user does not know how to interact
with a view or how to use a feature, he places a special tagged object on the screen. This object is
recognized by the application and a help movie or a written explanation is shown that explains
how to use the feature or view the tagged object was placed on. In that way the user does not have
to remember all the information he got when doing the tutorial, but can request help whenever
he needs it.

7.2.2 Display Dynamic Content
At the moment our SmellTagger application displays static content. It is only possible to analyze a
project snapshot that was taken at a specific point in time. All modifications that were made later
are not regarded. Therefore the analysis of a project is always based on old data. As an additional
problem, the single data source used to detect code smells are code metrics. In order to enhance
the quality of a review session there are various approaches that allow to include actual data from
various sources:

• Information from a bug tracking system, for example Bugzilla,1 can be included. This infor-
mation help to differentiate between code smell candidates that are really code smells and
those that were just marked accidentally as code smells by the detection strategies. This
approach is valid since it can be assumed that code smell classes have a higher probability
to contain bugs than other classes. Emden supports this assumption with his statement that
”the fewer bugs (or defects) there are present in a piece of code, the higher the quality of that code”
[vEM02].

1http://www.bugzilla.org/



7.2 Future Work 73

• Version control systems, for example Subversion,2 can provide useful information. With this
information it is possible to see how many times a software entity was changed. This can
also help identifying code smells since software entities with code smells are more likely to
change [KDPG09].

• Using information from version control systems allows to display live information about
a system. For example it is possible to show which developer is currently working on a
class or an operation. This information is not truly useful when detecting code smells in
a software project but it could make sense to display such information in break rooms or
meeting rooms of a software development company.

7.2.3 Extend Structural Information
The structural information about a project is currently narrowed down to Packages, Classes, Inter-
faces and Methods. But in most object-oriented languages there are more software entities avail-
able such as Annotations, Enumerations, Exceptions or Anonymous Inner Classes. By including those
software entities in the analysis of a software project it is possible to infer more detailed and
meaningful information.

7.2.4 Review Report
The possibility to create a review report is well accepted by the users as the evaluation described
in Chapter 6 has shown. Nevertheless some participants of the evaluation suggested two in-
teresting ideas of improving. Currently it is only possible to have a look at the review report
on the Surface unit itself. Although it is possible to search the report file in the file system and
then distribute it to other devices, it would be a great improvement, if the review report could
be distributed to all reviewers and other interested people directly within the application. For
this purpose various possibilities are suitable. Sending the review report per email is only one of
them. Another even more interesting approach is offered by the possibility to connect Bluetooth-
enabled mobile devices to the Surface.3 This allows users to interact with data or the contacts of
the connected device. In that way it is possible to either directly send the data to a mobile device,
or to use the contacts that are stored on the mobile device to send the review report per email
to selected contacts. This feature can be used for example to send review reports directly to the
reviewers mobile phones or other interested persons.

Another interesting idea of improvement that was suggested by the participants of the eval-
uation is the customization of the review report. At the moment, the user does not have any
possibility to choose or manipulate the content of the review report. It is automatically generated
by our SmellTagger application. But if the user would have the possibility to select the content
of the review report, he could choose individually what information is significant for the actual
review session. In that way the possibility to create a review report gets even more valuable.

7.2.5 Speech-to-Text
Our SmellTagger application already provides the users with the possibility to record audio notes.
This feature is primarily implemented because typing with a virtual keyboard can be cumber-
some and because speech is one of the most natural way to interact.

2http://subversion.apache.org/
3http://technet.microsoft.com/en-us/library/ee692087(Surface.10).aspx



74 Chapter 7. Final Remarks

Since .NET 3.0 speech recognition is supported and directly build into the .NET framework by
the namespace System.Speech.Recognition.4 Speech recognition converts spoken words to
written text. This possibility to convert speech into written words can be used to capture notes
more beneficially. The audio notes that are currently added as audio files to the review report
could be directly converted into text. In that way the notes are more useful when the review
report is analyzed, since finding information in text is easier than browsing through an audio file
to find the appropriate position.

7.2.6 Microsoft Surface 2.0
At the CES 2011 in Las Vegas, Microsoft announced the next generation of Microsoft Surface
[Rela]. This new Surface 2.0 will use ”PixelSense technology, which gives LCD panels the power to see
without the use of cameras” [Rela]. This will improve and accelerate the recognition of finger, hands
and objects that are placed on the screen. There are also other improvements such as the larger
screen that has now a 40 inch display with a resolution of 1920 x 1080 pixels, the improved pro-
cessing power or the refined Windows 7 operating system. Figure 7.1 shows that the Microsoft
Surface 2.0 is much thinner than its predecessor. Therefore it is also possible to mount it on a wall.
All these modifications do have impact on the way the Microsoft Surface can be used. That is why
it is important to revise already existing applications and adapt them to the new environment.

Figure 7.1: Microsoft Surface 2.0

4http://msdn.microsoft.com/en-us/library/system.speech.recognition(v=VS.85).aspx



7.2 Future Work 75

7.2.7 Filtering Classes Based on Various Characteristics
Our SmellTagger application allows to filter classes by name. For example if there is a view that
has to visualize a lot of classes, it is possible to filter out classes by class names. In a similar way
it is also possible to search for classes by names. But this filtering mechanism is not always good
enough. By implementing more filters, such as filters that sort out classes by code metrics, it is
possible to provide the users with additional selection criteria. Thereby the views become more
customizable and therefore useful.

7.2.8 Enhancing Web Service with Rule-based Detection Strategies
In Chapter 5.2 it is described how rule-based detection strategies are used to identify code smells
in a software project. The detection strategies need to use code metrics obtained from the web
service described in Chapter 3.4. Therefore it is necessary to first retrieve all necessary code met-
rics from the SOFAS web service and then perform an analysis with the detection strategies. In
order to improve and facilitate this process, the web service can be enhanced to provide a service
that merges this two subprocesses. As a consequence it will be possible to directly retrieve code
smell candidates from the web service without retrieving the code metrics first.





Appendix A

Questionnaire



78 Chapter A. Questionnaire



79



80 Chapter A. Questionnaire



81



82 Chapter A. Questionnaire



83





Appendix B

Results of the Evaluation



86 Chapter B. Results of the Evaluation



87





Appendix C

Contents of the CD-ROM

The following files are stored on the CD-ROM:

• Zusfsg.pdf
German version of the abstract of this thesis

• Abstract.pdf
English version of the abstract of this thesis

• Masterarbeit.pdf
Copy of this thesis

• Questionnaire.pdf
The questionnaire used for the evaluation of the prototype described in this thesis

• SmellTagger.rar
The application described in this thesis

• Documentation.rar
The documentation of the application described in this thesis

• Questionnaire Results.xlsx
The results of the questionnaire





Appendix D

Used Libraries and Tools

• iTextSharp - http://www.itextsharp.com/
Port of the open source Java library iText. Can be used to programmatically create and
manipulate Adobe compatible PDF documents on Microsoft’s .NET Framework.

• Lame MP3 Encoder - http://lame.sourceforge.net/
High quality MPEG Audio Layer III (MP3) encoder. Used in this thesis to encode WAVE
audio files into MP3 files.

• Ghostscript - http://www.ghostscript.com/
An interpreter for the PostScript language and for PDF. Used in this thesis to convert PDF
files into PNG images.

• Microsoft Surface SDK 1.0 SP 1
Enhances the .NET framework in order to provide access to the specific features of Microsoft
Surface

• AvalonEdit - http://www.avalonedit.com/
WPF-based text editor. Used in this thesis to display source code.

• Surface Simulator Automation API
Provides possibilities to programmatically simulate contact input for Microsoft Surface.
Used in this thesis to test the application visually.

• NAudio - http://naudio.codeplex.com/
An .NET audio and MIDI library. Used in this thesis to record audio notes in WAVE format.



92 Chapter D. Used Libraries and Tools



References

[Alg07] Jarallah S. Alghamdi. Measuring software coupling. In Proceedings of the 6th
WSEAS International Conference on Software Engineering, Parallel and Distributed Sys-
tems, pages 6–12, Stevens Point, Wisconsin, USA, 2007. World Scientific and Engi-
neering Academy and Society (WSEAS).

[APH+10] Panu Akerman, Arto Puikkonen, Pertti Huuskonen, Antti Virolainen, and Jonna
Häkkilä. Sketching with strangers: in the wild study of ad hoc social communica-
tion by drawing. In Proceedings of the 12th ACM international conference on Ubiquitous
computing, Ubicomp ’10, pages 193–202, New York, NY, USA, 2010. ACM.

[AW10] Lisa Anthony and Jacob O. Wobbrock. A lightweight multistroke recognizer for user
interface prototypes. In Proceedings of Graphics Interface 2010, GI ’10, pages 245–252,
Toronto, Ontario, Canada, 2010. Canadian Information Processing Society.

[Ber] Matt Berther. The specification pattern: A primer. http://mattberther.com/
2005/03/25/the-specification-pattern-a-primer, accessed March 2011.

[BG07] Sandro Boccuzzo and Harald Gall. Cocoviz: Towards cognitive software visualiza-
tions. In Visualizing Software for Understanding and Analysis, 2007. VISSOFT 2007. 4th
IEEE International Workshop on, pages 72 –79, 2007.

[Bux10] Bill Buxton. A touching story: A personal perspective on the history of touch in-
terfaces past and future. Society for Information Display (SID) Symposium Digest of
Technical Papers, 41:444–448, 2010.

[Bux11] Bill Buxton. Multi-touch systems that i have known and loved. Microsoft Research,
February 2011.

[Che10] Chaomei Chen. Information visualization. Wiley Interdisciplinary Reviews: Computa-
tional Statistics, 2(4):387–403, 2010.

[EF97] Eric Evans and Martin Fowler. Specifications. Proceedings of PLoP 97 Conference, 1997.

[FC01] Stephen Fallows and Balasubramanyan Chandramohan. Multiple approaches to as-
sessment: Reflections on use of tutor, peer and self-assessment. Teaching in Higher
Education, 6:229 – 246, 2001.

[Few04] Stephen Few. Show me the numbers: Designing Tables and Graphs to Enlighten. Analytics
Press, 2004.



94 REFERENCES

[FHD09] Mathias Frisch, Jens Heydekorn, and Raimund Dachselt. Investigating multi-touch
and pen gestures for diagram editing on interactive surfaces. In Proceedings of the
ACM International Conference on Interactive Tabletops and Surfaces, ITS ’09, pages 149–
156, New York, NY, USA, 2009. ACM.

[Fow00] Martin Fowler. Refactoring: Improving the Design of Existing Code. Addison-Wesley,
2000.

[Gar10] Vahid Garousi. Applying peer reviews in software engineering education: An ex-
periment and lessons learned. Education, IEEE Transactions on, 53(2):182 –193, May
2010.

[Ghe10] Giacomo Ghezzi. Sofas: software analysis services. volume 2. ACM, May 2010.

[GJSB05] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language Specification,
Third Edition. Addison-Wesley Professional, 2005.

[HIB+07] Steve Hodges, Shahram Izadi, Alex Butler, Alban Rrustemi, and Bill Buxton. Thin-
sight: versatile multi-touch sensing for thin form-factor displays. In Proceedings of the
20th annual ACM symposium on User interface software and technology, UIST ’07, pages
259–268, New York, NY, USA, 2007. ACM.

[HK] Dorota Huizinga and Adam Kolawa. Automated Defect Prevention: Best Practices in
Software Management.

[IBR+03] Shahram Izadi, Harry Brignull, Tom Rodden, Yvonne Rogers, and Mia Underwood.
Dynamo: a public interactive surface supporting the cooperative sharing and ex-
change of media. In Proceedings of the 16th annual ACM symposium on User interface
software and technology, UIST ’03, pages 159–168, New York, NY, USA, 2003. ACM.

[IEE08] Ieee standard for software reviews and audits. IEEE STD 1028-2008, pages 1 –52, 15
2008.

[Kar04] Levent Burak Kara. An image-based trainable symbol recognizer for sketch-based
interfaces. In in AAAI Fall Symposium Series 2004: Making Pen-Based Interaction Intel-
ligent and Natural, pages 99–105. AAAI Press, 2004.

[KDPG09] Foutse Khomh, Massimiliano Di Penta, and Yann-Gael Gueheneuc. An exploratory
study of the impact of code smells on software change-proneness. In Proceedings
of the 2009 16th Working Conference on Reverse Engineering, WCRE ’09, pages 75–84,
Washington, DC, USA, 2009. IEEE Computer Society.

[Ker01] Joshua Kerievsky. Refactoring to Patterns. Addison-Wesley, 2001.

[LHR88] Karl Lieberherr, Ian Holland, and Arthur Riel. Object-oriented programming: an
objective sense of style. SIGPLAN Not., 23:323–334, January 1988.

[Liba] Microsoft TechNet Library. Physical features of a microsoft surface unit. http://
technet.microsoft.com/en-us/library/ee692114(Surface.10).aspx,
accessed April 2011.

[Libb] MSDN Library. Tagged objects. http://msdn.microsoft.com/en-us/
library/ee804823%28v=Surface.10%29.aspx, accessed April 2011.

[Lik32] Rensis Likert. A technique for the measurement of attitudes. Archives of Psychology,
22(140):1–55, 1932.



REFERENCES 95

[LLL08] Rüdiger Lincke, Jonas Lundberg, and Welf Löwe. Comparing software metrics tools.
In ISSTA, pages 131–142. ACM, 2008.

[LM10] Michele Lanza and Radu Marinescu. Object-Oriented Metrics in Practice. Using Soft-
ware Metrics to Characterize, Evaluate, and Improve the Design of Object-oriented Systems.
Springer Verlag, 2010.

[Mar] Kevin Marshall. Beginning multi-touch on windows 7 & basic gesture recognition.
http://blogs.claritycon.com/kevinmarshall/, accessed February 2011.

[Mar01] Radu Marinescu. Detecting design flaws via metrics in object-oriented systems. In
Proceedings of the 39th International Conference and Exhibition on Technology of Object-
Oriented Languages and Systems (TOOLS39), TOOLS ’01, Washington, DC, USA, 2001.
IEEE Computer Society.

[Mar02] Robert C. Martin. Agile Software Development, Principles, Patterns, and Practices. Pren-
tice Hall, 1st edition, October 2002.

[Meh82] Nimish Mehta. A flexible machine interface. Master’s thesis, Department of Electri-
cal Engineering, University of Toronto, 1982.

[MGDM10] Naouel Moha, Yann G. Guéhéneuc, Laurence Duchien, and Anne F. Le Meur. Decor:
A method for the specification and detection of code and design smells. Software
Engineering, IEEE Transactions on, 36(1):20 –36, 2010.

[Mic] Microsoft. Microsoft surface case studies. http://www.microsoft.com/
surface/casestudies.aspx, accessed January 2011.

[Mic07] Microsoft. The history of microsoft surface. http://www.microsoft.com/
presspass/presskits/surfacecomputing/docs/SurfaceHistoryBG.
doc, accessed January 2011, May 2007.

[MT04] Tom Mens and Tom Tourwé. A survey of software refactoring. IEEE Transactions on
Software Engineering, 30:126–139, 2004.

[NDe] NDepend. Metrics definition. http://www.ndepend.com/Metrics.aspx\
#MetricsOnMethods, accessed February 2011.

[New07] Laptop News. Microsoft surface diagram: How it all works. http://www.
cheaplaptops.org.uk/20070601/, accessed March 2011, June 2007.

[Nos98] John T. Nosek. The case for collaborative programming. Commun. ACM, 41:105–108,
March 1998.

[OCBZ09] Steffen Olbrich, Daniela S. Cruzes, Victor Basili, and Nico Zazworka. The evolution
and impact of code smells: A case study of two open source systems. In Empirical
Software Engineering and Measurement, 2009. ESEM 2009. 3rd International Symposium
on, pages 390 –400, 2009.

[OCS10] Steffen Olbrich, Daniela S. Cruzes, and Dag I.K. Sjoberg. Are all code smells harmful?
a study of god classes and brain classes in the evolution of three open source systems.
In Software Maintenance (ICSM), 2010 IEEE International Conference on, pages 1 –10,
2010.



96 REFERENCES

[PGFL05] Martin Pinzger, Harald Gall, Michael Fischer, and Michele Lanza. Visualizing mul-
tiple evolution metrics. In Proceedings of the 2005 ACM symposium on Software visual-
ization, SoftVis ’05, pages 67–75, New York, NY, USA, 2005. ACM.

[Pin05] Martin Pinzger. ArchView - Analyzing Evolutionary Aspects of Complex Software Systems.
PhD thesis, Vienna University of Technology, May 2005.

[PKS+08] Peter Peltonen, Esko Kurvinen, Antti Salovaara, Giulio Jacucci, Tommi Ilmonen, John
Evans, Antti Oulasvirta, and Petri Saarikko. It’s mine, don’t touch!: interactions at
a large multi-touch display in a city centre. In Proceeding of the twenty-sixth annual
SIGCHI conference on Human factors in computing systems, CHI ’08, pages 1285–1294,
New York, NY, USA, 2008. ACM.

[PTVF92] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery.
Numerical Recipse in C: The Art of Scientific Computing. Cambridge University Press,
1992.

[PW85] David L. Parnas and David M. Weiss. Active design reviews: principles and prac-
tices. In ICSE ’85: Proceedings of the 8th international conference on Software engineering,
pages 132–136, Los Alamitos, CA, USA, 1985. IEEE Computer Society Press.

[Rela] Microsoft News Press Release. Microsoft and samsung unveil the next generation
of surface. http://www.microsoft.com/presspass/press/2011/jan11/
01-06mssurfacesamsungpr.mspx, accessed January 2011.

[Relb] Microsoft Press Release. Look what’s surfacing at microsoft. http://www.
microsoft.com/presspass/features/2007/may07/05-29surface.mspx,
accessed January 2011.

[Relc] Microsoft Press Release. Microsoft launches new product category: Surface
computing comes to life in restaurants, hotels, retail locations and casino re-
sorts. http://www.microsoft.com/presspass/press/2007/may07/
05-29mssurfacepr.mspx, accessed January 2011.

[Rie96] Arthur J. Riel. Object-Oriented Design Heuristics. Addison-Wesley, 1st edition, April
1996.

[RO09] Neil Roodyn and Maridee O’Day. Developing for Microsoft Surface. nsquared, 2009.

[RSG99] Linda Rosenberg, Ruth Stapko, and Albert Gallo. Object-oriented metrics for reliabil-
ity. In IEEE International Symposium on Software Metrics. Engineering Institute. Addison
Wesley, 1999.

[Sai10] Shiori Saito. History of touch interfaces. Creative Environment for Emerging Elec-
tronic Culture (CE3C), Alberta College of Art and Design, June 2010.

[SDBP98] John Stasko, John Domingue, Marc H. Brown, and Blaine A. Price. Software Visual-
ization: Programming as a Multimedia Experience. MIT Press, Cambridge, MA, 1998.

[Shn96] Ben Shneiderman. The eyes have it: A task by data type taxonomy for information
visualizations. In Proceedings of the 1996 IEEE Symposium on Visual Languages, Wash-
ington, DC, USA, 1996. IEEE Computer Society.

[SMC99] Wayne P. Stevens, Glenford J. Myers, and Larry L. Constantive. Structured design.
IBM Systems Journal, 38(2.3):231 –256, 1999.



REFERENCES 97

[Sys] 3M Touch Systems. What is multi-touch? http://solutions.
3m.com/wps/portal/3M/en_US/TouchTopics/Home/Terminology/
WhatIsMultitouch/, accessed April 2011.

[TDDN00] Sander Tichelaar, Stéphane Ducasse, Serge Demeyer, and Oscar Nierstrasz. A meta-
model for language-independent refactoring. In Principles of Software Evolution, 2000.
Proceedings. International Symposium on, pages 154 –164, 2000.

[Tri05] Adrian Trifu. Diagnosing design problems in object oriented systems. In In Pro-
ceedings of 12th Working Conference on Reverse Engineering (WCRE, pages 7–11. Society
Press, 2005.

[Tuf86] Edward R. Tufte. The visual display of quantitative information. Graphics Press,
Cheshire, CT, USA, 1986.

[vEM02] Eva van Emden and Leon Moonen. Java quality assurance by detecting code smells.
In Reverse Engineering, 2002. Proceedings. Ninth Working Conference on, pages 97 – 106,
2002.

[vM77] Georg von Mayr. Die Gesetzmäßigkeit im Gesellschaftsleben. 1877.

[War00] Colin Ware. Information visualization: perception for design. Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA, 2000.

[WKCJ00] Laurie Williams, Robert R. Kessler, Ward Cunningham, and Ron Jeffries. Strength-
ening the case for pair programming. IEEE Softw., 17:19–25, July 2000.

[WM08] Xin Wang and F. Maurer. Tabletop agileplanner: A tabletop-based project planning
tool for agile software development teams. In Horizontal Interactive Human Computer
Systems, 2008. TABLETOP 2008. 3rd IEEE International Workshop on, pages 121 –128,
2008.

[WWL07] Jacob O. Wobbrock, Andrew D. Wilson, and Yang Li. Gestures without libraries,
toolkits or training: a $1 recognizer for user interface prototypes. In Proceedings of the
20th annual ACM symposium on User interface software and technology, UIST ’07, pages
159–168, New York, NY, USA, 2007. ACM.

[WYCL08] Yanqing Wang, LI Yijun, Michael Collins, and Peijie Liu. Process improvement of
peer code review and behavior analysis of its participants. SIGCSE Bull., 40:107–111,
March 2008.


