
5-9 September 2011
ATHeNS-GReeCe
www.ecmlpkdd2011.org

european Conference on Machine Learning
and Principles and PRACTICe

of Knowledge Discovery in Databases

eCML PKDD 2011

Athens University
of Economics
& Business

PLATINUM Sponsor GOLD Sponsor

TechNical Support

SILVeR Sponsors BRONZe SponsorS

Organizing Institutions

National and Kapodistrian
UNIVERSITY OF ATHENS

Marathon
Data Systems

PASCAL 2
Φ
Ω
ΤΟ

ΓΡ
Α
Φ
ΙΑ
: Π

αν
τα

ζή
ς

Π
ορ

φ
ύρ

ιο
ς

Α
μβ

ρό
σι

ος

POSTER EMCLPK2011final.indd 1 6/27/11 11:32 AM

Planning to Learn and

Service-Oriented Knowledge Discovery

WORKSHOP NOTES

Editors:

Jörg-Uwe Kietz

Simon Fischer

Nada Lavrač

Vid Podpečan

ECML PKDD 2011

EUROPEAN CONFERENCE ON MACHINE LEARNING
AND

PRINCIPLES AND PRACTICE OF KNOWLEDGE DISCOVERY IN
DATABASES

Planning to Learn and

Service-Oriented Knowledge

Discovery

PlanSoKD’11

September 9, 2011

Athens, Greece

Editors:

Jörg-Uwe Kietz

University of Zurich, Switzerland
Simon Fischer

Rapid-I, Germany
Nada Lavrač

Jožef Stefan Institute, Ljubljana, Slovenia
Vid Podpečan

Jožef Stefan Institute, Ljubljana, Slovenia

Preface

As the name suggests, service-oriented computing utilizes services as the basic con-
structs to enable composition of applications from software and other resources dis-
tributed across heterogeneous computing environments and communication networks.
The service-oriented paradigm has induced a radical shift in our definition of third-
generation data mining. The 1990’s vision of a data mining tool suite encapsulated in
a domain-specific shell gives way to a service-oriented ar- chitecture with functionality
for identifying, accessing and orchestrating local and remote data/information resources
and mining tools into a task-specific workflow.

Thus the major challenge facing third-generation DM systems is the integration of
these distributed and heterogeneous resources and software into a coherent and effec-
tive knowledge discovery process. Semantic Web research provides the key technolo-
gies needed to ensure interoperability of these services; for instance, the availability
of widely accepted task and domain ontologies ensures common semantics for the an-
notation, search and retrieval of the relevant data/knowledge/software resources, thus
enabling the construction of shareable and reusable knowledge discovery workflows.
Another important feature is advanced support to the user. Composing effective knowl-
edge discovery processes to solve a given application problem out of the available ser-
vices is still more an art than a well-understood science. Formal planning can help a
user to build such processes, but an important requirement for that is the acquisition
of much more control-knowledge of what should or should not be composed together.
Meta-Learning has so far been mostly applied to choose single modeling tools. Learn-
ing which services should be composed together has just been started.

The Planning to Learn and Service-Oriented Knowledge Discovery Workshop (Plan-
SoKD 2011) was held in Athens, Greece, on September 9th 2011 in conjunction with
the The European Conference on Machine Learning and Principles and Practice of
Knowledge Discovery in Databases (ECML PKDD 2011). The PlanSoKD workshop
resulted from the merge of the Planning to Learn Workshop series (at ECML/PKDD-
2007, ICML/COLT/UAI 2008 and ECAI 2010) and the Service-Oriented Knowledge
Discovery workshop series (ECML/PKDD-2008, 2009 and 2010). More information
about this workshop and its predecessors can be found at
http://www.ifi.uzh.ch/ddis/events/plansokd2011/.

Acknowledgements

We would like to thank the invited speaker, all the authors who submitted papers and all
the workshop participants. We are also grateful to members of the program committee
members and external referees for their thorough work in reviewing submitted contri-
butions with expertise and patience. A special thank is due to both the ECML PKDD
Workshop Chairs and the members of ECML PKDD Organizing Committee who made
this event possible.

http://www.ifi.uzh.ch/ddis/events/plansokd2011/

The organization of this workshop is partially supported by the European Commu-
nity 7th framework program ICT-2007.4.4 under grant number 231519 e-Lico: An
e-Laboratory for Interdisciplinary Collaborative Research in Data Mining and Data-
Intensive Science.

Zurich, August 2011

Jörg-Uwe Kietz
Simon Fischer

Nada Lavrač
Vid Podpečan

Workshop Organization

Workshop Chairs

Jörg-Uwe Kietz University of Zurich, Switzerland
Simon Fischer Rapid-I, Germany
Nada Lavrač Jožef Stefan Institute, Ljubljana, Slovenia
Vid Podpečan Jožef Stefan Institute, Ljubljana, Slovenia

Program Committee

Abraham Bernstein University of Zurich, Switzerland
Alexandros Kalousis University of Geneva, Switzerland
Carlos Soares LIAAD & University of Porto, Portugal
Christophe Giraud-Carrier Brigham Young University, USA
Hendrik Blockeel Leuven University, Belgium
Joaquin Vanschoren Leiden University, Netherlands
Jörg-Uwe Kietz University of Zurich, Switzerland
Katharina Morik University of Dortmund, Germany
Michael Berthold Konstanz University, Germany
Nada Lavrač Jožef Stefan Institute, Ljubljana, Slovenia
Pavel Brazdil University of Porto, Portugal
Sašo Džeroski Jožef Stefan Institute - Slovenia
Simon Fisher Rapid-I GmbH, Germany
Stefan Rüping FhG-IAIS, Germany
Filip Železný Czech Technical University, Czech Republic

Additional Reviewers

Panče Panov Jožef Stefan Institute, Slovenia
Floarea Serban University of Zurich, Switzerland

Table of Contents

A meta-mining infrastructure to support KD workflow optimization 1
Phong Nguyen, Alexandros Kalousis and Melanie Hilario

RMonto - towards KDD workflows for ontology-based data mining 11
Jedrzej Potoniec and Agnieszka Ławrynowicz

Semantic Data Mining System g-SEGS . 17
Anže Vavpetič, Igor Trajkovski, Petra Kralj Novak and Nada Lavrač

A Browser-based Platform for Service-Oriented Knowledge Discovery 30
Janez Kranjc, Vid Podpečan and Nada Lavrač

Web Services for Stream Mining: A Stream-Based Active Learning Use Case 36
Martin Saveski and Miha Grčar

A meta-mining infrastructure to support KD
workflow optimization

Phong Nguyen, Alexandros Kalousis, and Melanie Hilario

Artificial Intelligence Laboratory, University of Geneva

Abstract. Knowledge Discovery in Databases (KDD) is a complex pro-
cess that involves many different data processing and learning opera-
tors. Today’s Knowledge Discovery Support Systems (KDSS) contain
several hundreds of those operators. A major challenge of third genera-
tion KDSS is to assist the user in his/her choice of different operators
in order to build workflows that are not only valid but also – ideally –
optimize some performance measure associated with the user goal. The
ideal KDSS should be able to select those workflows that are most likely
to optimize the performance measure associated with the given user goal.
In this paper we present such a system. Our system is built on top of a
workflow planner that can compose valid and applicable workflows given
some input data and a goal description. However the planner has no way
of comparing the relative merits of the different valid operators choices
– a fact which leads to an explosion of the workflow search space. We
present a meta-mining infrastructure which analyses previous mining ex-
periments, i.e. applications of different workflows on different datasets, in
order to extract a model that will be used by the planner during workflow
construction to guide operator selection.

1 Introduction

Knowledge Discovery in Databases (KDD) is a complex process that typically
involves many different data processing and learning operators (i.e. algorithm im-
plementations). Today’s Knowledge Discovery Support Systems (KDSS) contain
several hundreds of those operators. For instance, the RapidMiner1 platform, in
its extended version with Weka2 and R3, proposes more than 500 operators.
Whenever the analyst is faced with a new knowledge discovery problem he/she
has to select among the available operators the ones that can be meaningfully
combined in order to build a valid knowledge discovery workflow which can ad-
dress his/her goal. With the advance of third generation KDSS, one of the main
challenges for these systems is to intelligently assist the user in the design of data
mining workflows. The e-LICO project4 virtual data mining laboratory features

1 http://www.rapid-i.com
2 http://www.cs.waikato.ac.nz/ml/weka/
3 http://cran.r-project.org/
4 http://www.e-lico.eu

1

an Intelligent Discovery Assistant (IDA) that supports users in the construc-
tion of mining workflows which match their data analytical goals and the input
data. The IDA is built upon a cooperative AI-planner [6] which constructs data
mining plans following the hierarchical task networks (HTN) planning approach.
Initially, the AI-planner can only identify operators whose preconditions are met
at a given planning step, but is unable to determine which of these will proba-
bly attain better performance than the others. Consequently the AI-planner can
produce an extremely high number of candidate plans and leave the user at a
loss as to which is most appropriate for his problem. One way to address this
problem is to guide operator selection5 using some cost function related to the
goal addressed by the user. For example, if the current goal is the construction
of a classification model, an appropriate cost function is the expected predictive
accuracy of the model that will be produced by the final workflow. At each step,
the planner will then select those operators that are expected to result in models
of high predictive power.

The selection of the appropriate operator (or algorithm) and parameter set-
tings for a given inductive task has been a predominant focus of meta-learning
research for the past few decades. Meta-learning is the application of machine
learning techniques to improve the performance or efficiency of base-level learn-
ers. The e-LICO approach can be more aptly called meta-mining, roughly de-
fined as process-oriented meta-learning; more precisely, it extends meta-learning
to the full knowledge discovery process [4]. In the same way that meta-learning
is aimed at optimizing the results of learning, meta-mining optimizes the results
of data mining processes by taking into account the interdependencies and in-
teractions between the different process operations, and in particular between
learning and the different pre/post-processing steps. In this paper, we present
the e-LICO architecture with the meta-mining infrastructure for the IDA. The
meta-mined model ranks data mining operators according to their potential to
maximize the cost function for the given input data. Meta-mining relies on a
collection of past mining experiments, applications of data mining workflows on
different datasets, and the produced results, which it then analyses to produce
a meta-mined model that associates good workflow performance with specific
dataset characteristics and workflow patterns. Thus the e-LICO IDA combines
planning with meta-mining in order to provide intelligent user support in the
design of data mining workflows.

In section 2, we present the differents components of the e-LICO architec-
ture, what they do and how they are related, and in section 3, we describe in
more detail the meta-mining infrastructure, its probabilistic transition model
and meta-mining analysis. We finally conclude in section 4.

5 We use the words ”operator selection” and ”operator ranking” synonymously since
the first can be achieved through the second.

2

2 The e-LICO architecture

Figure 1 gives an overview of the e-LICO architecture. The three (blue) shaded
boxes depict the system’s main components: the user interface, the Data Min-
ing Experiment Repository (DMER), and the IDA. The user interacts with the
e-LICO system by selecting from two front-ends – one provided by Taverna6,
its e-science infrastructure, and the other by RapidMiner, its main DM software
package. The DMER, built on the RapidAnalytics platform, stores all the re-
sources used and produced by the system during a user session. Finally, the IDA
provides the user with data mining support through the collaboration of the
AI-planner (supported by DMWF, the Data Mining Worklow Ontology [6]) and
the meta-miner (supported by DMOP, the Data Mining Optimization Ontology
[3]).

 data flow

meta−mined

input MD

Intelligent Discovery Assistant (IDA)

training MDplans

Meta−Miner

input MD
goal

mode
operator ranking

current plan + app. ops offlineonline
mode

Planner
AI

DM Workflow
Ontology (DMWF)

DMERUser Interface (Taverna/RM) Metadata (MD) service
input data

RapidAnalytics

DM Optimization
Ontology (DMOP)

model

datasoftware

Fig. 1: The e-LICO infrastructure and its components.

The user initiates a DM experiment by selecting a data mining goal (e.g.
classification) and providing an application dataset, from which RapidAnalytics
Meta-data Service extracts input metadata. The MD service has been extended
with the e-LICO Data Characterization Tool (DCT), which computes several
types of data characteristics: 1. statistical measures (e.g. number of instances,
proportion of missing values); 2. information-theoretic measures (e.g. class en-
tropy, mutual information)7; 3. geometrical and topological measures (e.g. non-
linearity, volume of overlap region) [5]; and 4. model-based measures (error rates
obtained by landmarkers such as 1NN or DecisionStump [7], weights learned

6 http://www.taverna.org.uk/
7 http://www.metal-kdd.org/

3

by Relief or SVM). The AI-planner uses simple statistical measures to identify
applicable operators for a given task, whereas the meta-miner exploits the more
advanced measures to correlate workflow performance with dataset and workflow
characteristics.

As mentioned in Section 1, the initially näıve planner generates a large num-
ber of candidate workflows, from which one is selected either at random or based
on simple usage frequencies. All experimental metadata — descriptions of input
and intermediate data; selected operators, algorithms and workflows; learned
models and performance results — are recorded and stored in the DM exper-
iment repository. These are then structured and organized in a Data Mining
Experiment Database (DMEX-DB). After a sufficiently large number of exper-
iments, the meta-miner analyses DMEX-DB meta-data to build a model that
will be used for operator selection during the planning process. The meta-mining
process takes place offline; the mined model is then deployed in subsequent ex-
periments, where it is matched with the current user goal and input metadata
to build a task-specific probabilistic transition model. At each planning step,
the transition model ranks candidate workflows based on its estimate of a pre-
selected cost function for each applicable operator, given the current partial
workflow. The next section describes in detail one among many possible meta-
mining approaches to workflow assessment and ranking.

3 The Meta-Miner

The AI-planner builds mining workflows following an HTN decomposition of the
CRISP-DM process model [2]. Although useful for understanding the mining
processes specifications, this model is not addressed for the task of operator se-
lection. In recent work [3, 4], a Data Mining Optimization Ontology (DMOP) has
been proposed which extends the Rice framework and pries open the black box of
algorithms to address the meta-mining problem. This conceptual framework has
been used for characterizing the interdependencies and interactions between the
different process operations of a data mining experiment by extracting frequent
patterns of annotated workflows following an apriori-like algorithm [1, 4]. Figure
2 shows two examples of workflow patterns: on the top, we have a very gen-
eral pattern expressing that a feature selection algorithm composed of a feature
weighting algorithm and a feature weights cut-off is followed by a classification
algorithm. On the bottom, we have a more specific pattern expressing that a
multivariate feature selection algorithm can be followed by a decision tree algo-
rithm. Thus, these workflow patterns assess similarities between workflows and
allow to addresse the task of operator selection by reflecting knowledge extracted
from past experiments.

In order to understand the interaction between the meta-miner and the AI-
planner, we present first a simple probabilistic transition model for operator
selection based on those frequent workflow patterns. Then we present a more
elaborate model which conditions these patterns on the input dataset charac-
teristics and the specific cost function that the user would like to optimize, e.g.

4

accuracy in the case of classification, in order to improve the operator selection
task in a manner that will result to workflows that will potentially optimize the
given cost function for the specific input data.

X-Validation

FeatureSelection
Algorithm

FeatureWeighting
Algorithm

Select by
Weights

ClassificationModelling
Algorithm

X-Validation

FeatureSelection
Algorithm

Multivariate
FeatureSelectionAlgorithm

Decision
Tree

Fig. 2: Two workflow patterns
Thin edges depict workflow decomposition; double lines depict subsumption.

3.1 Basic Operator Selection

As we already mentioned in the basic operator selection scenario we follow a
simple frequent pattern approach. The basic idea here is to extract frequent pat-
terns from previously executed worflows. These patterns capture how different
operators have been used together in the past to achieve a given task, however
they provide no means to determine whether the specific operator combination
given by them is the one that best fits the given task and the input data. In
a sense the operator selection based solely on these workflow patterns is done
on the basis of how often the different operators have been used in the past to-
gether. The description of the frequent pattern extraction from the data mining
workflows has already been given in [4].

During the planning process the meta-miner and the AI-planner interact
each time the planner has to make a choice on which is the operator that should
be applied in the next step. Concretely at step i the meta-miner is given a
set O of applicable operators that have been determined by the planner, based
on syntactic constraints and how they contribute towards the goal, and the

5

plan, o1:i−1, that has been assembled so far. The meta-miner has to provide a
probability for each operator o ∈ O of being the one that should be chosen in the
ith step based on the workflow patterns. The planner will select that operator ô
that maximizes this probability, i.e.:

ô = arg max
o∈O

p(oi = o|o1:i−1) (1)

A frequent pattern mining approach based on ground operators is not able to
discover relations between higher-level families of operators, e.g. relations such
as the one given in figure 2. The approach that we took in extracting the frequent
workflow patterns uses the DMOP taxonomy and is able to discover such abstract
patterns which are used then to suggest what the next operator should be, as we
will describe soon. This can deal with scenarios in which for example it would
be better to apply an operator from some given family, say a J4.8 decision tree,
but for some reason, e.g. a syntactical constraint, this operator is not applicable
thus is not included in O, however there is another operator of the same family,
e.g. CART, which is not used very frequently but can perform exactly the same
task. Using this type of abstract workflow patterns we are able to suggest an
operator from the appropriate family, even if this operator has not been used
often in the past in the context of the plan that has been constructed so far.

We will now describe how to use the abstract workflows to support oper-
ator selection. Given the set of workflow patterns W extracted from the set
of workflows WF stored in the DMEX-DB, we can rewrite equation 1 so that
it considers the current plan and its possible solutions at the abstract level of
workflow patterns as:

ô = argmax
o∈O

(arg max
wo

i∈W
p(wo

i |wi−1)) (2)

where wi−1 ∈ W is a workflow pattern that matches the current plan, and wo
i ∈

W is some specialization of wi−1, denoted by wo
i ≺ wi−1, with the constraint

that wo
i matches the operators o ∈ O. One can notice that all possible patterns

wo
i have the same common pattern prefix wi−1. Solving equation 2 is equivalent

to determining the association rule wi−1 ⇒ wo
i with the highest confidence as

this is given by:

p(wo
i |wi−1) =

s(wo
i)

s(wi−1)
(3)

where s(w) is the support function of a pattern w counting how many times a
pattern appears within the different workflows:

s(w) =
1

|WF |
�

wf∈WF

Iw(wf) (4)

where Iw(wf) returns 1 if the pattern w matches the workflow wf and zero oth-
erwise. There can be many different wi−1 workflow patterns that match the plan

6

that has been constructed so far. To select among them we rely on the trade-off
of the support and confidence of the association rule wi−1 ⇒ wo

i corresponding
to each one of them according to:

ô = arg max
o∈O

(arg max
wo

i∈W
((1− λ)

s(wo
i)

s(wi−1)
+ λs(wi−1))) (5)

where λ ∈ [0, 1] controls the trade-off between the support and the confidence.
As λ approaches one we favor high support over confidence.

As already mentioned this way of selecting operators does not consider the
characteristics of the input dataset nor the cost function that the user would
like to optimize with the workflow under construction. In the next sections, we
present a more elaborated approach to operator selection that takes into account
both of them.

3.2 Conditional Operator Selection

We want to condition operator selection on the user goal g, the input metadata x
extracted by the DCT as described in the section 2, and the cost function c that
the user wants to optimize. More precisely given some dataset d and its metadata
x, we would like to favor the use of workflow patterns that have been found to
relate to good workflow performance for the goal g under the cost function c
when they have been applied in the past to datasets that are similar to d, N(d).
In other words prefer workflow patterns that are often found in workflows that
have achieved good performance when applied on N(d). More precisely let:

N(d) = { di| dataset di is is similar to d}
WF �(x, g, c) = {wf |wf ∈WF and wf performs well in N(d) for g under c}

s(w|x, g, c) =
1

|WF �(x, g, c)|
�

wf∈WF �(x,g)

Iw(wf) (6)

We will see in the next section how good workflows can be defined. Note that now
we define support in a different manner by considering only the good workflows,
equation 6. In order to have a confidence measure that reflects the quality of the
good workflow patterns, we use:

conf(w|x, g, c) =
s(w|x, g, c)

s(w)
(7)

We can now use equation 7 to identify what is the operator that has the most
chances achieving good performance according to the c cost function when given
the d dataset described by the x metadata by:

p(wo
i |wi−1, x, g, c) =

conf(wo
i |x, g, c)

conf(wi−1,c|x, g)
(8)

7

Similar to equation 5, we will strive for a trade-off between the support of the
prefix pattern and the confidence of the association rule as:

ô = arg max
o∈O

(arg max
wo

i∈W
(

conf(wo
i |x, g)

conf(wi−1|x, g)
+ λconf(wi−1|x, g))) (9)

With equation 9, the meta-miner is now able to provide probability transitions
to the AI-planner such that at each specialization step of the current plan the
selected operator is the one that has most chances to optimize c given x.

In the next section, we present the offline meta-mining analysis which com-
pletes this section. The meta-mining analysis builds a meta-mined model that
allows to compute the conditioned support.

3.3 The Meta-Mining Analysis

As mentioned in section 2, the meta-mining analysis is made offline, before the
planning process starts. The goal of this component is to analyse past exper-
iments in order to provide operator suggestions to the AI-planner through a
meta-mined model. One of the key components of the meta-mining analysis is
to determine the set of datasets N(d) that are in some sense similar to the input
dataset d. We will briefly describe how we can do so when the goal is to con-
struct classification workflows that maximize the predictive accuracy. In order
to do so we analyse a collection of datasets by applying on them a number of dif-
ferent classification algorithms and estimate their predictive performance. Each
dataset is now described by a vector of accuracies of the classification algorithms
that we have use: one-nearest-neighbor (1NN), decision tree algorithms J48 and
CART, Naive Bayes (NB), logistic regression algorithm (LR), and SVMs with
linear (SVM-L) and Gaussian (SVM-R) kernels. For J48 the C (pruning con-
fidence) and M (minimum number of instances per leaf) parameters were set
to 0.25 and 2 respectively; for CART the M and N (number of folds for the
minimal cost-complexity pruning) parameters were set to 2 and 5 respectively.
The C parameter was set to 1 for both SVM-L and SVM-R, and SVM-R’s γ
parameter was set to 0.1. We used the implementations of these algorithms in
the RapidMiner data mining suite. These algorithms represent quite distinct
learning biases. We measure the similarity of datasets using Spearman’s rank
correlation coefficient on the performance ranking of the different algorithms
applied to them. The main idea here is that datasets will be similar for what
we want to do, i.e. workflow construction for classification, if the performance
order of different algorithms is similar. Then we cluster the space of datasets us-
ing agglomerative clustering with Ward’s method in order to determine clusters
of datasets on which we have similar profiles of algorithm performance. These
clusters are used to define the neighborhood N(d) of a new dataset. Since it is
clear that we cannot apply the classification algorithms every time we have a
new dataset, since these is computationally expensive, we need a different way
to locate the cluster to which d belongs. We do so by defining a classification
problem in which datasets are described in terms of the metadata description

8

and the class is the cluster to which the dataset belongs. Additionally for each
cluster we separate the workflows to ”good” and ”bad” workflows with respect
to their relative performance on the datasets that belong in the cluster. We then
score the different workflow patterns according to their conditional support as
this is given in equation 6. So whenever we need to plan classification workflow
for some new dataset we first need to situate the new dataset in the appropriate
cluster of datasets using its metadata description and then use workflow patterns
to suggest what the next operator should be according to the estimated quality
of these workflow patterns in the dataset cluster.

4 Conclusion and Future Work

We have very briefly sketched the main points of an infrastructure that allows
us to plan data mining workflows by exploiting patterns of good workflow per-
formance in past experiments. The infrastructure combines traditional planning
and meta-mining in order to associate workflow patterns that are expected to
lead to good performance for a selected user goal under some cost function. We
are currently fine-tuning the different parts of the infrastructure. Especially chal-
lenging is the construction of the appropriate classification model that will allow
us to situate a new dataset in the correct cluster with respect to the expected
relative performance of the different classification algorithms on it. Additionally
we want to determine the performance improvement that meta-mining brings
into the process of workflow planning. Finally we would like to experiment with
different ways of combining workflow patterns and dataset characteristics that
build on work from the area of recommender systems.

Acknowledgments This work is partially supported by the European Commu-
nity 7th framework program ICT-2007.4.4 under grant number 231519 ”e- Lico:
An e-Laboratory for Interdisciplinary Collaborative Research in Data Mining
and Data-Intensive Science”. The meta-mining infrastructure described in this
paper is the result of ongoing collaborative work within the e-LICO project of
Jörg-Uwe Kietz, Floarea Serban, Simon Fischer, Agnieszka �Lawrynowicz and the
authors. For ease of presentation we made some simplications with respect to
the full meta-mining infrastructure.

References

1. Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., Verkamo, A.I.: Fast discovery of
association rules. In: Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P., Uthurusamy,
R. (eds.) Advances in knowledge discovery and data mining, pp. 307–328. American
Association for Artificial Intelligence, Menlo Park, CA, USA (1996)

2. Chapman, P., Clinton, J., Kerber, R., Khabaza, T., Reinartz, T., Shearer, C., Wirth,
R.: Crisp-dm 1.0 step-by-step data mining guide. Tech. rep., The CRISP-DM con-
sortium (August 2000), http://www.crisp-dm.org/CRISPWP-0800.pdf

9

3. Hilario, M., Kalousis, A., Nguyen, P., Woznica, A.: A data mining ontology for
algorithm selection and meta-learning. In: Proc of the ECML/PKDD09 Workshop
on Third Generation Data Mining: Towards Service-oriented Knowledge Discovery
(2009)

4. Hilario, M., Nguyen, P., Do, H., Woznica, A., Kalousis, A.: Ontology-based
meta-mining of knowledge discovery workflows. In: Jankowski, N., Duch, W.,
Grabczewski, K. (eds.) Meta-Learning in Computational Intelligence. Springer
(2011)

5. Ho, T.K., Basu, M.: Data complexity in pattern recognition. Springer (2006)
6. Kietz, J.U., Serban, F., Bernstein, A., Fischer, S.: Towards Cooperative Planning

of Data Mining Workflows. In: Proc of the ECML/PKDD09 Workshop on Third
Generation Data Mining: Towards Service-oriented Knowledge Discovery (SoKD-
09) (2009)

7. Pfahringer, B., Bensusan, H., Giraud-Carrier., C.: Meta-learning by landmarking
various learning algorithms. Proc. 17th International Conference on Machine Learn-
ing pp. 743–750 (2000)

10

RMonto - towards KDD workflows for
ontology-based data mining

Jedrzej Potoniec, Agnieszka �Lawrynowicz
Institute of Computing Science,

Poznań University of Technology, Poznań, Poland,
email: {jpotoniec,alawrynowicz}@cs.put.poznan.pl

Abstract. We present a tool, implemented as an extension to the pop-
ular data mining framework RapidMiner, that supports modeling and
execution of KDD workflows involving data mining methods that exploit
ontologies as background knowledge. In order to support the state-of-the
art in ontology related technologies, in particular Semantic Web tech-
nologies, our tool offers acquisition of data from local files as well as
from SPARQL endpoints. The latter feature enables easy consumption
of various distributed Semantic Web data such as Linked Open Data as
input for data mining experiments. The tool is presented on the example
of currently implemented clustering algorithms together with a set of
operators for measuring similarity by exploitation of ontologies.

1 Introduction

The “first generation data mining systems“ provided a small set of algorithms
operating on attribute-valued data. Currently available “second generation sys-
tems“ address scalability, functionality and flexibility issues, by providing among
others an access to data warehouses, and supporting data mining schemas and
query languages. It is claimed that a major challenge for emerging “third genera-
tion data mining systems“ is then in the integration of distributed, and possibly
heterogeneuous data and knowledge resources and tools. The systems should
hence support data mining tasks that deal with distributed data, found e.g. on
intranets or on the Web, and also integrate with tools for managing knowledge.
An important feature of such systems is also an advanced support for the user
in performing KDD tasks. To achieve its goals, third generation data mining re-
quires modularized, and composable implementations of data mining algorithms,
that would support easier construction, and execution of KDD workflows.

Following this direction of research on data mining systems we introduce
a tool to support design and execution of knowledge discovery processes ex-
ploiting ontologies as background, domain knowledge, and operating on possibly
distributed Semantic Web [2] data.

The tool, an extension of RapidMiner1 [11] we named RMonto, is being
designed, and developed to support data mining approaches that despite having
various names, we think often have many commonalities. They may be called
Semantic Web mining [14], in particular data mining from the Semantic Web,
or alternatively also ontology mining [5] that is activities that allow to discover
1 http://rapid-i.com/

11

hidden knowledge from ontological knowledge bases. Since ontological knowledge
bases are commonly represented in description logics [1] hence we may also
refer to the name description logic learning (or DL-learning in short) [9], where
DL-learning is a kind of Inductive Logic Programming approach that assumes
description logics as a logical language to represent data and hypotheses. A data
mining approach where domain ontologies are used as background knowledge
has been also recently named semantic data mining [12].

In the next sections, we discuss the related work, the design issues, and
present the current status of the implementation of the tool.

2 Related work

With growing adoption of the Semantic Web technologies, and increasing avail-
ability of large amounts of data annotated by ontologies, ontology–based data
mining approaches become an important line of research. However, there are
very few tools publicly available to support such tasks.

A tool which is the most related to ours is DL-learner [10], which provides
a framework for learning in description logics and OWL2. DL-Learner provides
machine learning algorithms exploiting OWL, it supports different knowledge
base formats, an OWL library, and reasoner interfaces. It uses a component-
based model, with four types of components: knowledge source, reasoning ser-
vice, learning problem, and learning algorithm. Current DL-Learner algorithms
mostly address the concept learning task. A feature distinguishing our approach
from DL-Learner is that by exploiting the framework of RapidMiner, we go fur-
ther with a modularized, and compositional approach, and allow for designing a
data mining workflows that ultimately may be more arbitrary, and fine-grained
than what is currently available to be done with DL-Learner.

Relevant to our work is already existing RapidMiner extension: rapidminer–
semweb3 [7]. This extension provides operators for extracting an RDF graph from
a repository and transforming it into a feature vector, preprocessing methods for
resolving set-valued features occurring when creating feature-vectors from RDF
data, and visualization of the transformation process. As such, the extension does
not tackle the problem of learning directly from expresssive and semantically rich
representations such as description logic knowledge bases.

A proposal for a data mining extension to SPARQL4, a standard Semantic
Web query language, named SPARQL-ML [8], may also be considered as rel-
evant to our work. That extension introduces new keywords to the SPARQL
syntax that serve for the induction of models, and their further use for predic-
tion/classification. There have been also tools, such as g-SEGS5, that support
lightweight ontologies in the form of taxonomies in the data mining algorithm.

Despite of the availability of the abovementioned tools, we have found that
none of them gathers all of the characteristcs that we find important, such as
availability of algorithms supporting certain types of tasks (e.g., algorithms ex-
ploiting ontologies in a manner of DL-learning, such as clustering involving se-
mantic similarity measures), or a possibility to model data mining workflows.
RMonto was developed in order to address these shortcomings.
2 http://www.w3.org/TR/owl-features/
3 http://code.google.com/p/rapidminer-semweb/
4 http://www.w3.org/TR/rdf-sparql-query/
5 http://kt.ijs.si/anze_vavpetic/SDM/index.html

12

3 A tool for ontology-based data mining

3.1 Design of a framework

While designing a tool to support data mining tasks exploiting ontologies and
Semantic Web data, one needs to consider several issues such as possible dis-
tributed nature of the data, and the state-of-art in the tools supporting manip-
ulation and reasoning with ontologies. In case of developing an extension to an
existing framework such as RapidMiner, one also needs to take its characteristics
into account. For example, the most typical data format handled by RapidMiner
is a tabular data, while the data we deal with in our extension is relational.

In particular, we have identified the following requirements:

1. Ability to flexibly, and on-demand replace a reasoning tool. Reasoning tools
differ in their capabilities, and performance, e.g. semantic stores (such as
e.g., OWLim6) are optimized towards scalable, and fast querying and data
retrieval, while OWL reasoners (such as e.g. Pellet7 or HermiT8) support
advanced reasoning on very expressive ontologies [3,13].

2. Support for loading data from multiple different sources, such as local files
stored in different formats (e.g. RDF/XML, N3), files available on the Web,
triple stores queried with SPARQL language to harvest data for data mining
experiments, relational databases treated as triple-stores and queried with
SQL. Subsequently, integration of the harvested data into a one knowledge
base, which later can be queried with conjunctive queries, such as formulated
in SPARQL to select examples.

During software development, those requirements can be addressed in the
following way:

1. Plugin oriented architecture, moving dependency resolving from build time
to run-time. The only thing that has to be available during software build-
ing process is a set of common abstract interfaces, used as facades to the
reasoning tools and implemented by the plug-ins. In Java, this could be im-
plemented for example with Open Services Gateway initiative framework9

or by hand-made solution based on JAR files and their manifest files.
2. Data downloading, loading and integration can generally be addressed by

adequate reasoning software parts, optionally extended with additional tools
and libraries, such as JDBC for querying relational databases.

In order to support flexibility in using different semantic reasoners, and avoid
dependency of our implementations on particular reasoners or APIs, we have
developed our internal API, called PutOntoAPI (where “Put“ stands for Poznan
University of Technology), which acts as a bridge between our implementations
of data mining algorithms and reasoning/storing/etc. software that is called to
invoke relevant reasoning services via APIs used by popular semantic reasoners
such as Jena API, OWL API or Sesame API.

6 http://www.ontotext.com/owlim
7 http://clarkparsia.com/pellet/
8 http://www.hermit-reasoner.com/
9 http://www.osgi.org/

13

RapidMiner

I/O SeSiL proxy Clustering API

SeSiL

PutOntoAPI

Fig. 1: Architecture of current rmonto extension.

3.2 Extending RM by New Operators

The currently implemented components of RMonto are organized with three
core libraries:

PutOntoAPI which works as a facade between the higher level libraries and
reasoning software with plug-in architecture;

SeSiL implementing different kernel methods for Semantic Web data;
RMonto gathering functions provided by PutOntoAPI and SeSiL into Rapid-

Miner operators.

The overall architecture of our software is presented in Fig. 1.
During development, we created several new operators for RapidMiner. Be-

low, they are grouped with respect to the RapidMiner operators tree sections.

Loading We have developed three operators for loading data: Load from file,
Load from SPARQL endpoint and Build knowledge base. As one can expect,
Load from file defines access to files accessible with normal file-system op-
erations (i.e. stored locally or on the mounted network share). Load from
SPARQL endpoint makes possible to download part of remote data from
some SPARQL endpoint in the form of a subgraph. Those graphs are con-
structed with SPARQL language, namely with a CONSTRUCT query.
The reason for Load. . . operators to exist is to supply the third one with
parameters of data sources. It is to avoid situation, in which the whole
data loading logic is hidden in one operator, what would happen if those
parameters were given as Build knowledge base’s. Data loading is invoked
inside Build knowledge base, as callback methods of objects received from
the Load. . . operators.

ABox SPARQL selector and ABox extractor operators both provide list of URI
identifying objects to be used in the learning process. Those URIs must be
valid identifiers of individuals in the KB built by Build knowledge base. The
first operator uses a SPARQL query to extract data and the second one
simply extracts a list of URIs of the whole ABox.

TBox Operators All known classes and Features selector work in the similar
way as those in the ABox section, but they build a list of classes instead.
Both generate the list of classes in the internal RMonto format. We resigned

14

Fig. 2: A screenshot of the RapidMiner RMonto workflow.

from URI-list representation in favor of our internal format to provide more
complex language, enabling usage of complex classes not defined in the KB
(i.e. intersection of two defined classes). This is the way the Features selector
operator works, providing an editor to edit list of classes by hand. All known
classes extracts information about all named classes in the KB.

Kernels This section contains operators implementing kernel functions. They
compute dissimilarity matrix, that is pairwise dissimilarities between objects.
For instance, the implementation includes Identity and Common classes ker-
nels [4] and Epistemic kernel [6].

Clustering Currently, there are implementations of two algorithms. The first
one, Semantic k–Medoids is a simple k–Medoids algorithm implemented to
be able to work with dissimilarity matrix computed by a kernel. Agglomer-
ative hierarchical clustering is extended to produce semantic description of
computed clusters. If the cluster has only one element, conjunction of all its
related classes is adopted. When clusters are joined, their descriptions are
joined with union and simplified by removing duplicates.

Fig. 2 presents a screenshot of RapidMiner with an RMonto workflow.
RMonto software as well as a short tutorial introducing a tool can be found

at http://semantic.cs.put.poznan.pl/RMonto/

4 Conclusions and Future Work

In this paper, we present RMonto, a RapidMiner extension that supports de-
signing and execution of KDD workflows addressing tasks of data mining ex-
ploiting ontologies as background knowledge. The tool is under development,
but already supports a set of features such as data harvesting from distributed
Semantic Web sources, data integration, and a set of operators suitable for sim-
ilarity based data mining methods.

Ongoing and future work includes extending RMonto by new algorithm
implementations, in particular the ones addressing (frequent) pattern mining.

Acknowledgements. We acknowledge the support from European Community
7th framework program ICT-2007.4.4 (grant 231519 ”e-LICO: An e-Laboratory for
Interdisciplinary Collaborative Research in Data Mining and Data-Intensive Science”)
and from the Polish Ministry of Science and Higher Education (grant N N516 186437).

15

References

1. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.
(eds.): The Description Logic Handbook: Theory, Implementation, and Applica-
tions. Cambridge University Press (2003)

2. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American
284(5), 34–43 (May 2001), http://www.scientificamerican.com/article.cfm?
id=the-semantic-web

3. Bishop, B., Kiryakov, A., Ognyanoff, D., Peikov, I., Tashev, Z., Velkov, R.:
OWLIM: A family of scalable semantic repositories. Semantic Web 2(1), 33–42
(2011)

4. Bloehdorn, S., Sure, Y.: Kernel methods for mining instance data in ontologies.
In: Aberer, K., Choi, K.S., Noy, N.F., Allemang, D., Lee, K.I., Nixon, L.J.B.,
Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudr-Mauroux,
P. (eds.) The Semantic Web — Proceedings of the 6th International Semantic Web
Conference and the 2nd Asian Semantic Web Conference (ISWC 2007 + ASWC
2007), November 11-15, 2007, Busan, Korea. Lecture Notes in Computer Science,
vol. 4825, pp. 58–71. Springer, Berlin–Heidelberg, Germany (2007)

5. d’Amato, C., Fanizzi, N., Esposito, F.: Inductive learning for the Semantic Web:
What does it buy? Semantic Web 1(1-2), 53–59 (2010)

6. Fanizzi, N., D’Amato, C., Esposito, F.: Learning with kernels in description
logics. In: Proceedings of the 18th international conference on Inductive Logic
Programming. pp. 210–225. ILP ’08, Springer-Verlag, Berlin, Heidelberg (2008),
http://dx.doi.org/10.1007/978-3-540-85928-4_18

7. Khan, M.A., Grimnes, G.A., Dengel, A.: Two pre-processing operators for im-
proved learning from Semantic Web data http://www.cs.jyu.fi/ai/papers/
IJIIT-2005.pdf

8. Kiefer, C., Bernstein, A., Locher, A.: Adding data mining support to SPARQL via
statistical relational learning methods. In: Bechhofer, S., Hauswirth, M., Hoffmann,
J., Koubarakis, M. (eds.) ESWC. Lecture Notes in Computer Science, vol. 5021,
pp. 478–492. Springer (2008)

9. Kietz, J.U., Morik, K.: A polynomial approach to the constructive induction of
structural knowledge. Machine Learning 14(1), 193–217 (1994)

10. Lehmann, J.: DL-Learner: Learning concepts in description logics. Journal of Ma-
chine Learning Research 10, 2639–2642 (2009)

11. Mierswa, I., Scholz, M., Klinkenberg, R., Wurst, M., Euler, T.: Yale: Rapid pro-
totyping for complex data mining tasks. In: In Proceedings of the 12th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining. pp.
935–940. ACM Press (2006)

12. Novak, P.K., Vavpetič, A., Trajkovski, I., Lavrač, N.: Towards semantic data min-
ing with g-SEGS. In: Proceedings of the 11th International Multiconference Infor-
mation Society IS 2009 (2009)

13. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: A practical
OWL-DL reasoner. J. Web Sem. 5(2), 51–53 (2007)

14. Stumme, G., Hotho, A., Berendt, B.: Semantic Web Mining: State of the art and
future directions. J. Web Sem. 4(2), 124–143 (2006)

16

Semantic Data Mining System g-SEGS

Anže Vavpetič1, Igor Trajkovski2,
Petra Kralj Novak1, Nada Lavrač1,3

1 Department of Knowledge Technologies, Jožef Stefan Institute, Ljubljana, Slovenia
2 Faculty of Electrical Engineering and Information Technologies, Ss. Cyril and

Methodius University, Skopje, Macedonia
3 University of Nova Gorica, Nova Gorica, Slovenia
{anze.vavpetic,petra.kralj.novak,nada.lavrac}@ijs.si

Abstract. With the expanding of the Semantic Web and the availabil-
ity of numerous ontologies which provide domain background knowledge
and semantic descriptors to the data, the amount of semantic data is
rapidly growing. The data mining community is faced with a paradigm
shift: instead of mining the abundance of empirical data supported by
the background knowledge, the new challenge is to mine the abundance
of knowledge encoded in domain ontologies, constrained by the heuristics
computed from the empirical data collection. We address this challenge
by an approach, named semantic data mining, where domain ontologies
define the hypothesis search space, and the data is used as means of con-
straining and guiding the process of hypothesis search and evaluation.
The use of prototype semantic data mining system g-SEGS is demon-
strated in a simple semantic data mining scenario and in two real-life
functional genomics scenarios of mining biological ontologies with the
support of experimental microarray data.

Keywords. semantic data mining, ontologies, background knowledge,
relational data mining

1 Introduction

The knowledge discovery process can significantly benefit from the domain (back-
ground) knowledge, as successfully exploited in relational data mining and Induc-
tive Logic Programming (ILP). Additional means of providing more information
to the learner is by providing semantic descriptors to the data.

Usually, there is abundant empirical data, while the background knowledge is
scarce. However, with the expanding of the Semantic Web and the availability of
numerous ontologies which provide domain background knowledge and semantic
descriptors to the data, the amount of semantic data (e.g., ontologies and anno-
tated data collections) is rapidly growing1. The data mining community is now
faced with a paradigm shift: instead of mining the abundance of empirical data
1 See the Linked Data site http://linkeddata.org/

17

supported by the background knowledge, the new challenge is to mine the abun-
dance of knowledge encoded in domain ontologies, constrained by the heuristics
computed from the empirical data collection. This paper uses the term semantic
data mining to denote this new data mining challenge and approaches in which
semantic data are mined.

We present g-SEGS, a prototype semantic data mining system implemented
in the novel service-oriented data mining environment Orange4WS [16] which
supports knowledge discovery workflow construction from distributed data min-
ing services. System g-SEGS is a successor of SEGS, a system for Searching
of Enriched Gene Sets [20] designed specifically for functional genomics tasks.
While SEGS is a special purpose system for analyzing microarray data with
biological ontologies as background knowledge, g-SEGS is a general purpose se-
mantic data mining system. It takes as input (1) domain ontologies in the OWL
format, used to construct a version space of hypotheses (patterns) to be mined,
and (2) an empirical data collection, annotated by domain ontology terms, used
to constrain and guide the top-down search of hierarchically structured space of
hypotheses, as well as for hypotheses quality evaluation.

After presenting the related work in Section 2, the paper presents the g-SEGS
system, its implementation in Orange4WS, and its applications. Sections 3 first
introduces the semantic data mining task and presents the proposed semantic
data mining methodology, together with the g-SEGS algorithm implementation.
Section 4 presents an illustrative example of using g-SEGS in a simple hand-
crafted semantic data mining scenario, followed by the presentation of selected
results of using g-SEGS in real-life functional genomics use cases in Section 5.
In Section 6 we conclude and propose directions for further work.

2 Related work

The idea of using hierarchies as background knowledge to generalize terms in
inductive rule learning has been proposed already in [13]. More recent usage of
ontologies in data mining includes [7, 2, 19, 3, 12] as well as domain specific
systems which use ontologies as background knowledge for data mining [9, 20].

In [7], the use of taxonomies (where the leaves of the taxonomy correspond
to attributes of the input data) on paleontological data is studied. The problem
addressed was to predict the age of a fossil site on the basis of the taxa that
have been found in it – the challenge was to consider taxa at a suitable level of
aggregation. Motivated by this application, the authors studied the problem of
selecting an antichain from a taxonomy that improves the prediction accuracy.
In [2], background knowledge is in the standard inheritance network notation
and the KBRL2 algorithm performs a general-to-specific heuristic search for
a set of conjunctive rules that satisfy user-defined rule evaluation criteria. In
[19], ontology-enhanced association mining is discussed and four stages of the
(4ft-Miner-based) KDD process are identified that are likely to benefit from

2 KBRL is based on the RL learning program of [5]

18

ontology application: data understanding, task design, result interpretation and
result dissemination over the semantic web. The work of [3] first focuses on pre-
processing steps of business and data understanding in order to build an ontology
driven information system (ODIS), and then the knowledge base is used for the
post-processing step of model interpretation. Liu et al. [12] propose a learning-
based semantic search algorithm to suggest appropriate Semantic Web terms
and ontologies for the given data.

An ontology driven approach to knowledge discovery in biomedicine is de-
scribed in [9], where efforts to bridge knowledge discovery in biomedicine and
ontology learning for successful data mining in large databases are presented. A
domain specific system that uses ontologies and other hierarchies as background
knowledge for data mining is SEGS [20]. The SEGS system finds groups of dif-
ferentially expressed genes, called enriched gene sets3. Compared to earlier work
[18, 10], the novelty of SEGS is that it does not only test existing gene sets (ex-
isting ontology terms) for differential expression but it generates also new gene
set descriptions that represent novel biological hypotheses.

The main differences of system g-SEGS compared to the related approaches
is that these either (1) use non-standard ontology formats [7, 20], (2) are domain
specific [7, 20], (3) are not implemented as web services [2, 7], or (4) perform
non-symbolic classification [7].

3 Semantic Data Mining with g-SEGS

In this paper we use the term semantic data mining to denote a data mining task
in which semantic data are mined. This section first introduces this task, followed
by the methodology of semantic data mining as implemented in g-SEGS.

3.1 Semantic data mining

A semantic data mining task, illustrated in Figure 1, is defined as follows.

Given: a set of domain ontologies and an empirical data collection, annotated
by domain ontology terms,

Find: a hypothesis (a predictive model or a set of descriptive patterns) by min-
ing the abundance of information in ontologies, constrained by the informa-
tion in the empirical data collection.

Successful approaches to solving the semantic data mining task may result
in a paradigm shift in which the abundance of domain ontologies will be mined,
and the empirical training data will be used mainly to constrain the hypothesis
search space by the heuristics computed from the training data collection4.
3 A gene set is enriched if the genes that are members of this gene set are statistically

significantly differentially expressed compared to the rest of the genes.
4 A similar challenge is faced in pattern mining research where the original problem

of mining the abundance of data was recently transformed into a problem of mining
the abundance of induced patterns, constrained by the heuristics computed from the
training data.

19

Fig. 1. Schema of a semantic data mining process, with ontologies and annotated data
as inputs.

Motivated by the successful applications of SEGS [20, 14], we have decided to
generalize SEGS to become domain independent, and developed a new system
named g-SEGS (generalized SEGS).The methodology, implemented in the g-
SEGS system, assumes that the hypothesis language are logical rules, where
rule conditions are conjunctions of ontology terms. While statistical significance
of rules could be measured on the fly in the process of rule construction, we
have decided to construct all the rules satisfying the support constraint, and to
eliminate insignificant rules in rule postprocessing, using a heuristic known from
subgroup discovery. As shown in Section 4, semantic data mining results in more
general and semantically more meaningful rules, if compared to standard rule
learning. From the four main components of SEGS, only the SEGS hypothesis
language and the generation and pruning procedure are used unchanged in the
new semantic data mining system g-SEGS.

The proposed semantic data mining methodology, implemented in g-SEGS, is
described in terms of its four main components: the hypothesis language, the in-
put (domain ontologies and training data), the hypothesis generation procedure
and the hypothesis (pattern) evaluation and filtering procedure.

3.2 Hypothesis language

The hypothesis language are descriptive patterns in the form of rules Class ←
Conditions, where Conditions is a logical conjunction of ontology terms. For
example, a rule whose antecedent is a conjunction of three terms, has the form
Class← X ∧ Y ∧ Z, where X stands for all x ∈ X, Y stands for all y ∈ Y , and
Z stands for all z ∈ Z, and where e.g., X ∈ Ont1 , Y ∈ Ont2 , and Z ∈ Ont3 .

3.3 Input

g-SEGS requires two types of inputs: the ontological background knowledge and
the training data.

Background knowledge consists of domain ontologies, typically in the OWL
format.5 Ontologies are used to construct the hypothesis search space.

5 In addition to OWL ontologies, we allow for other formats of annotated hierarchically
structured data sources, such as the ENTREZ and KEGG hierarchies, which were
used in one of the two real-life functional genomics use cases in Section 5.

20

Training data are class-labeled vectors of attribute values, annotated by the
terms in domain ontologies. The data are used to constrain the hypothesis
search, and for rule quality evaluation in rule postprocessing.

3.4 Rule construction

Rule construction results in a set of rules satisfying the minimal support crite-
rion. As a rule antecedent is a conjunction of ontology terms, all possible con-
junctions of ontology terms can be generated and evaluated for small ontologies.
In case of large ontologies, however, the search space needs to be pruned. To do
so, we use the subsumption property of a relation which forms the hierarchical
backbone of the ontology (e.g. is-a). Suppose that rule C ← X � ∧ Y � ∧ Z �

has been constructed by the specialization of rule C ← X ∧ Y ∧ Z, where
X � � X, Y � � Y, Z � � Z (� denotes more or equally specific relation). If rule C
← X � ∧ Y � ∧ Z � covers m objects where m < N (m is lower than the support
threshold N which determines the minimal number of objects to be covered by
each rule), it is pruned and none of its specialization will be constructed. This
results in a significant reduction of the hypothesis search space.

In a simplified case, where three ontologies Ont1, Ont2 and Ont3 are given,
hypothesis generation consists of creating the conjunctions of individual ontol-
ogy terms, one from each ontology. Hypothesis construction is performed in a
top-down manner, starting from the most general terms in each of the three
ontologies, and specializing the rule antecedent as long as the stopping criterion
is satisfied (ensuring sufficient coverage of data instances)6. If one conjunct does
not satisfy the constraint, then its descendents will also not satisfy it, because
they cover a subset of instances covered by the conjunction. Therefore, we first
construct conjuncts from the top nodes of Ont1, Ont2 and Ont3, and if the
conjunction fails to satisfy the given constraint, g-SEGS will not refine the last
added term. Note that the efficiency of the algorithm comes from the usage of
the hierarchical structure of ontologies.

In addition to is-a or instance-of subsumption relations there may be
other links (relations) among ontology terms, e.g, the interacts relation. Con-
sider a simple rule class(A)← is-a(A,B), and suppose that ontology term B is
linked with term C through interacts(B,C). In this case, the rule’s antecedent
can be refined to form a conjunction is-a(A,B) ∧ interacts(B,C). This illus-
trates a situation which is common to ILP, as one can also make statements
about B or C, not only about term A which appears in the rule head class(A).
Hence a simple top-down refinement approach to rule construction is insufficient,
as will be shown in an example of Section 5.

6 If the ontology is simply a hierarchy (a tree), with the root of the graph being the
most general term, this means that substantial pruning of the search space can be
achieved in rule construction.

21

3.5 Rule filtering and evaluation

As the number of generated rules can be large, uninteresting and overlapping
rules have to be filtered. In g-SEGS, rule filtering is performed using the wWRAcc
(Weighted Relative Accuray heuristic with example weigths) heuristic [11], which
uses example weights to provide the means for considering different parts of
the example space when selecting the best rules in rules postprocessing. In the
wWRAcc heuristic defined below, N � denotes the sum of weights of all examples,
n�(C) is the sum of weigths of examples of concept C, n�(Cnd) is the sum of
weights of all covered examples, and n�(Cnd ∧ C) is the sum of weights of all
correctly covered examples of concept C.

wWRAcc(C ← Cnd) =
n�(Cnd)

N � ·
�

n�(Cnd ∧ C)
n�(Cnd)

− n�(C)
N �

�

Rule filtering, using the weighted covering approach, proceeds as follows. It
starts with a set of generated rules, a set of examples with weights equal to 1
and parameter k, which denotes how many times an example can be covered
before being removed form the example set. In each iteration, we select the rule
with the highest wWRAcc value, add it to the final rule set, and remove it from
the set of generated rules. Then counter m is increased to m + 1 and weigths
of examples covered by this rule decreased to 1

m+1 , where example weight 1
m

means that the example has already been covered by m < k rules. These steps
are repeated until the algorithm runs out of examples or rules or if no rule has
a score above 0. Once the learning process is finished and the rules have been
generated and filtered, they are evaluated and sorted using the Fisher’s exact
test or the original WRAcc (Weighted Relative Accuray) measure known from
CN2-SD subgroup discovery, which trades-off the generality of a rule and its
precision. The WRAcc heuristic is defined as

WRAcc(C ← Cnd) =
n(Cnd)

N
·
�

n(Cnd ∧ C)
n(Cnd)

− n(C)
N

�

where N is the number of all examples, n(C) is the number of examples of
concept C, n(Cnd) is the number of all covered examples, and n(Cnd ∧ C) is
the number of all correctly covered examples of concept C.

3.6 g-SEGS implementation

The g-SEGS system takes as input the ontologies in the OWL format and data
in the Orange [15] format, uses the hierarchical structure of the is-a relation of
ontologies for efficient search and pruning of the rule search space, generates rules
by forming conjunctions of terms from different ontologies, and uses the wWRAcc
(Weighted Relative Accuray heuristic with example weigths) for rule pruning
by iteratively selecting the rules and Fischer exact test or WRAcc (Weighted
Relative Accuray) to sort/rank the selected rules.

g-SEGS is implemented in the Orange4WS [16] environment which upgrades
the freely available Orange [15] data mining environment with several additional

22

Fig. 2. An Orange4WS workflow with g-SEGS.

features: simple creation of new visual programming units (widgets) from dis-
tributed web services, composition of workflows from both local and distributed
data processing/mining algorithms and data sources, and implementation of a
toolkit for creating new web services. By using these tools, we were able to give
g-SEGS a user-friendly interface and the ability to be executed remotely as a
web service. By mapping the g-SEGS input to the SEGS input we were able to
fully reuse the already implemented SEGS system. We defined the g-SEGS web
service using WSDL (Web Service Definition Language). Using the web service
definition and the set of tools provided by Orange4WS, we created a web service
for our system. Finally, also using Orange4WS, we imported the web service into
the Orange visual programming environment, thus allowing g-SEGS to be used
in various workflows together with other Orange widgets.

A screenshot of an Orange4WS workflow with g-SEGS is shown in Figure 2.
The workflow is composed of one widget for loading the dataset (File), three
widgets for loading the three ontologies (Read Ontology), and one widget for
specifying top-level ontology terms that are too general to appear in the final
rules (General terms). These five widgets act as the input to the g-SEGS wid-
get, which generates rules, displayed in the g-SEGS Rule set browser widget.

4 An illustrative example

As a proof-of-concept semantic data mining example, consider a bank which
has the following data about its customers: place of living, employment, bank
services used, which includes the account type, possible credits and insurance
policies and so on. The bank also categorized the clients as ‘big spenders’ or not
and wants to find patterns describing big spenders. Table 1 presents the training
data.

The application of standard classification rule learning algorithm CN2 (we
chose the Orange [15] implementation of CN2) to these data generates the rules
presented in the top part of Table 2, and the middle part of this table presents
the results obtained by using the CN2-SD subgroup discovery algorithm [11].

While CN2 generates a set of dependent and very specific classification rules,
CN2-SD produces rules representing individual subgroup descriptions which are
better suited for the comparison with the results obtained with g-SEGS. Note
that both sets of rules are rather specific, due to the specificity of the attribute-
value data representation. Standard data mining does not provide automated

23

Table 1. Table of bank customers described by different attributes and class ‘big
spender’.

id occupation location account loan deposit inv fund insur. big spender
1 Doctor Milan Classic No No TechShare Family YES
2 Doctor Krakow Gold Car ShortTerm No No YES
3 Military Munich Gold No No No Regular YES
4 Doctor Catanzaro Classic Car LongTerm TechShare Senior YES
5 Energy Poznan Gold Apart. LongTerm No No YES

. .
25 Transport Cosenza Classic Car ShortTerm No Family NO
26 Police Tarnow Gold Apart. No No No NO
27 Nurse Radom Classic No No No Senior NO
28 Education Catanzaro Classic Apart. No No No NO
29 Transport Warsaw Gold Car ShortTerm TechShare Regular NO
30 Police Cosenza Classic Car No No No NO

means for rule generalization; if more general rules were desired, the data should
have been manually preprocessed and attribute-values generalized to obtain more
general rules and therefore more valuable results.

Table 2. Rules generated by CN2, CN2-SD and g-SEGS from the data in Table 1.
Coverage, confidence and WRAcc were computed in postprocessing.

CN2 rules for class big spender=’YES’ Coverage Confid. WRAcc
occupation=’Doctor’ 20.00% 83.33% 0.067
loan=’No’ ∧ account=’Gold’ 10.00% 100.00% 0.050
occupation=’Health-care’ 6.67% 100.00% 0.033
occupation=’Education’ ∧ account=’Gold’ 6.67% 100.00% 0.033

CN2-SD rules for class big spender=’YES’ Coverage Confid. WRAcc
account=’Gold’ ∧ investment fund=’No’ 33.33% 80.00% 0.100
account=’Gold’ 46.67% 64.29% 0.067
occupation=’Doctor’ 20.00% 83.33% 0.067
occupation=’Health-care’ 6.67% 100.00% 0.033
investment fund=’TechnologyShare’ ∧ account=’Classic’ 13.33% 75.00% 0.033

g-SEGS rules for class big spender=’YES’ Coverage Confid. WRAcc
occupation(Public) ∧ bankingService(Gold) 26.67% 87.50% 0.100
bankingService(Gold) 46.67% 64.29% 0.067
occupation(Doctor) 20.00% 83.33% 0.067
occupation(Public) ∧ bankingService(Deposit) 26.67% 75.00% 0.067
occupation(Health) 23.33% 71.43% 0.050
occupation(Doctor) ∧ bankingService(Deposit) 16.67% 80.00% 0.050
location(Bavaria) 16.67% 80.00% 0.050
location(Germany) ∧ occupation(Service) 16.67% 80.00% 0.050

∧ bankingService(investmentFund)

24



 





















































































































 

  



Fig. 3. Ontologies for data in Table 1. Note that these are not the full ontologies, but
only the parts needed to interpret the rules presented in this paper. Concepts with
omitted subconcepts are drawn with a dashed line.

In semantic data mining using g-SEGS, in addition to the data in Table 1,
three ontologies shown in Figure 3 are used as input to introduce semantics into
the discovery process. The result of applying g-SEGS to these ontologies and the
given training data is presented in the bottom part of Table 2.7

The result illustrates the following characteristics of semantic data mining
by g-SEGS: (a) Conditions of g-SEGS rules are conjunctions of literals, hav-
ing ontology terms as arguments of predicates bearing the ontology name (and
therefore logically defined semantic meaning), while the conditions of CN2 and
CN2-SD rules are conjunctions of attribute-value pairs, (b) g-SEGS rules are
more general compared to rules constructed by CN2, CN2-SD or other non-
semantic data mining algorithms, and (c) automated and therefore repeatable
data preprocessing of data and rules can be performed, less prone to human
preprocessing errors.

7 The same data and background knowledge could also be used for describing credit
holders or clients that have closed their account in a bank.

25

5 Functional genomics use cases

We tested g-SEGS on biological microarray datasets: acute lymphoblastic leukemia
(ALL) [4] and human scenescence mesenchymal stem cells (hMSC) [21]. Both
publicly available datasets8 encode gene expression data for two classes and the
challenge is to produce descriptions of differentially expressed genes involved in
the process of each domain.

To show the form of rules produced, recall the results of the SEGS system,
the ancestor of g-SEGS, on the same dataset from a clinical trial in acute lym-
phoblastic leukemia (ALL). The ALL dataset was chosen as it is typical for
medical research and has a reference role for such evaluations as it has been a
model dataset for other microarray data analysis tools as well. The analysis of
differences in gene expression between two lymphocyte subtypes (lymphocyte B
and lymphocite T) was performed as follows. Genes were first ranked accord-
ing to their expression value, and differentially expressed genes were selected by
gene filtering according to logFC cut-off value |0.3|. Three semantic knowledge
sources were used as background knowledge to SEGS and g-SEGS: GO, KEGG
and Entrez. As, except for GO, these hierarchies are not available in the OWL
format, in SEGS a dedicated algorithm for merging these three sources was used
to form the joint input database format, which can be chosen as a parameter
in g-SEGS, in addition to the default OWL format. Discovered rules, describing
subgroups of differentially expressed genes, are formed as conjuctions of terms,
e.g., receptor-binding(G) ∧ T-cell-activation(G). Similar to previous re-
search, the results show that one of the main differences between differentially
expressed and non-differentially expressed gene groups is the expression of major
histocompatibility complex (HLA) related genes.

In the experiments with g-SEGS, we used the same preprocessing steps.
Genes were first ranked using the ReliefF [17] algorithm and then filtered using
the logarithm of expression fold change (logFC). All genes with |logFC| < 0.3
were removed from the set, resulting in 9,001 genes in the ALL domain and
20,326 genes in the hMSC domain. The top 300 genes were used as the posi-
tive class both in SEGS and g-SEGS, while g-SEGS treats all other examples as
negative.

Table 3 present the quality measurements of g-SEGS on the two domains.
The discovered rule sets were evaluated using the descriptive measures of rule
interestingness as proposed in [11]: AvgCov - the average rule coverage, AvgSup -
the overall support, AvgSig - the average significance, AvgWRAcc - the average
unusualness and AUC - the area under the convex hull (method 1). Additionally
we also measured the execution time t.

The results show that g-SEGS produces more significant rules in the ALL
dataset, and that the other results are comparable. Of course we need to take
into account that it is not necessary that these measures well reflect the quality
of the rule set, i.e. whether they provide novel and interesting knowledge for

8 http://segmine.ijs.si

26

g-SEGS
Domain AvgCov AvgSup AvgSig AvgWRAcc AUC t[min]

ALL 0.024 0.770 15.214 0.0012 0.573 11.25
hMSC 0.023 0.700 10.427 0.0005 0.563 10.75

Table 3. Experimental results.

the domain expert. Such an analysis with a domain expert is planned for future
work.

6 Conclusions

This paper discusses semantic data mining as an adequate approach to face a
potential paradigm shift in data mining, addressing the new challenge of min-
ing the knowledge in ontologies, constrained by the empirical evidence in the
collected data. In our approach, domain ontologies define the hypothesis search
space, and the data is used as means of guiding and constraining the hypothesis
search and evaluation.

Prototype semantic data mining system g-SEGS is used to illustrate the
approach in a simple semantic data mining scenario and in two real-life functional
genomics scenarios. The g-SEGS system takes ontologies in the OWL format and
data in a standard attribute-value format as its input, and takes advantage of
the hierarchical relationships in ontologies for efficient search and pruning of the
hypothesis search sapce. A user friendlly interface is also one of the key features
of the g-SEGS system.

There are many possible fields of application of semantic data mining. It
can be directly applied to domains where data are characterized by sparsity
and taxonomies are available, like market basket analysis, to give an example.
We have demonstrated the usefulness of semantic data mining in two real-life
functional genomics scenarios where biological ontologies are mined with the
support of experimental microarray data. The prototype semantic data mining
system g-SEGS shows major advantages compared to non-semantic systems, as
more general rules and automated data preprocessing are performed. There are
also advantages compared to ILP and other related approaches since our system
uses a standardized encoding of knowledge.

A systematic comparison of g-SEGS to the state of the art relational data
mining systems is planned in our further work. The first results of comparing
g-SEGS to the state of the art ILP system Aleph indicate that using the ontolo-
gies in their native format substantially simplifies the system’s use in real life
scenarios, by reducing the encoding time and ensuring the system’s reusability.

Acknowledgments

The research presented in this paper was supported by the Slovenian Ministry
of Higher Education, Science and Technology (grant no. P-103) and the EU-FP7
projects e-LICO and BISON.

27

References

[1] C.C. Aggarwal and H. Wang, editors. Managing and Mining Graph Data.
Springer US, 2010.

[2] J.M. Aronis, F.J. Provost, and B.G. Buchanan. Exploiting background knowl-
edge in automated discovery. In Proc. of the 2nd International Conference on
Knowledge Discovery and Data Mining, pages 355–358, 1996.

[3] L. Brisson and M. Collard. How to semantically enhance a data mining pro-
cess? In Proc. of the 10th International Conference on Enterprise Information
Systems, ICEIS 2008, pages 103–116, 2008.

[4] S. Chiaretti, X. Li, R. Gentleman, A. Vitale, M. Vignetti, F. Mandelli, J. Ritz
and R. Foa. Gene expression profile of adult T-cell acute lymphocytic leukemia
identifies distinct subsets of patients with different response to therapy and
survival. Blood, 103, 2771–2778, 2004.

[5] S.H. Clearwater and F.J. Provost. Rl4: A tool for knowledge-based induction.
In Proc. of the 2nd International IEEE Conference on Tools for Artificial
Intelligence, pages 24–30, November 1990.

[6] L. De Raedt. Logical and Relational Learning. Springer Berlin Heidelberg,
2008.

[7] G.C. Garriga, A. Ukkonen, and H. Mannila. Feature selection in taxonomies
with applications to paleontology. In Proc. of the 11th International Confer-
ence on Discovery Science, DS ’08, pages 112–123. Springer-Verlag, 2008.

[8] T. Golub, D. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J. Mesirov,
H. Coller, M. Loh, J. Downing, M. Caligiuri, C. Bloomfield, and E. Lander.
Molecular classification of cancer: Class discovery and class prediction by gene
expression monitoringt. Science, 286:531–537, 1999.

[9] P. Gottgtroy, N. Kasabov, and S. MacDonell. An ontology driven approach
for knowledge discovery in biomedicine. In Proc. of the VIII Pacific Rim
International Conferences on Artificial Intelligence (PRICAI), 2004.

[10] S.Y. Kim and D.J. Volsky. Page: Parametric analysis of gene set enrichment.
BMC Bioinformatics, 6(144), 2005.

[11] N. Lavrač, B. Kavšek, P.A. Flach, and L. Todorovski. Subgroup discovery
with CN2-SD. Journal of Machine Learning Research, 5:153–188, 2004.

[12] H. Liu. Towards semantic data mining. In Proc. of the 9th International Se-
mantic Web Conference (ISWC2010), November 2010.

[13] R.S. Michalski. A theory and methodology of inductive learning. In R.S.
Michalski, J.G. Carbonell, and T.M. Mitchell, editors, Machine Learning:
An artificial intelligence approach, pages 83–129. Palo Alto: Tioga Publishing
Company, 1983.

[14] I. Mozetič, N. Lavrač, V. Podpečan, P. Kralj Novak, et al. Bisociative knowl-
edge discovery for microarray data analysis. in Proc. of the First Intl. Conf.
on Computational Creativity, 190–199, Springer, 2010.

[15] J. Demšar, B. Zupan, and G. Leban. Orange: From experimental machine
learning to interactive data mining, white paper (www.ailab.si/orange). Fac-
ulty of Computer and Information Science, University of Ljubljana, 2004.

[16] V. Podpečcan, M. Juršič, M. Žakova, and N. Lavrač. Towards a service-
oriented knowledge discovery platform. In Proc. of the ECML/PKDD Work-
shop on Third-generation data mining: Towards service-oriented knowledge
discovery, 25-36, 2009.

28

[17] M. Robnik-Šikonja and I. Kononenko. Theoretical and Empirical Analysis of
ReliefF and RReliefF. Machine Learning, 53 (1-2), 23–69, 2003.

[18] P. Subramanian, P. Tamayo, V.K. Mootha, S. Mukherjee, B.L. Ebert, and
M.A. Gillette. Gene set enrichment analysis: A knowledge based approach for
interpreting genome-wide expression profiles. Proc. of the National Academy
of Science, USA, 102(43):15545–15550, 2005.

[19] V. Svátek, J. Rauch, and M. Ralbovský. Ontology-enhanced association min-
ing. In Semantics, Web and Mining, Joint International Workshops, EWMF
2005 and KDO 2005, pages 163–179, 2005.

[20] I. Trajkovski, N. Lavrač, and J. Tolar. SEGS: Search for enriched gene sets
in microarray data. Journal of Biomedical Informatics, 41(4):588–601, 2008.

[21] W. Wagner, P. Horn, M. Castoldi, A. Diehlmann, S. Bork, R. Saffrich, V.
Benes, J. Blake, S. Pfister, V. Eckstein and A.D. Ho. PLoS ONE, 3 (5),
e2213, 2008.

29

A Browser-based Platform for Service-Oriented
Knowledge Discovery

Janez Kranjc, Vid Podpečan, and Nada Lavrač

Jožef Stefan Institute,
Jamova cesta 39, 1000 Ljubljana, Slovenia

{janez.kranjc,vid.podpecan,nada.lavrac}@ijs.si
http://kt.ijs.si

Abstract. The paper proposes a novel platform for knowledge discov-
ery which is based on modern web technologies, and is implemented as a
web application. It is based on the principles of service-oriented knowl-
edge discovery, and features interactive scientific workflows. In contrast
with existing comparable platforms, ours is suitable for any knowledge
discovery task, offers advanced workflow construction including meta-
workflows, can use any existing web service as a workflow processing
component, and runs in all major web browsers and platforms, including
mobile devices.

Keywords: knowledge discovery, service-oriented architecture, web ap-
plication, web services, scientific workflows

1 Introduction

This paper presents a platform for designign and running data mining workflows
which was designed to overcome recognized deficiencies of existing solutions while
retaining all of their important features. As such, the proposed platform benefits
from service-oriented technologies, a visual programming paradigm, as well as
platform and software independent technologies.

First, the visual programming paradigm simplifies the construction of com-
plex knowledge discovery scenarios by providing basic building blocks (widgets)
which can be connected and executed, enables repeatability of experiments by
saving constructed workflows and parameters, provides an intuitive structur-
ing of complex parts of workflows by introducing the notion of meta-workflow
(workflow of workflows), and makes the platform suitable also for non-experts
due to the representation of complex procedures as sequences of simple process-
ing steps. Along with the presented platform, notable application that employ
the visual programming paradigm include Weka [1], Orange [2], KNIME [3] and
RapidMiner [4]. The most important common feature is the implementation of
a workflow canvas where workflows can be constructed using drag, drop and
connect operations on the available components.

Secondly, service-oriented architecture featuring web services as processing
components enables parallelization, remote execution, and high availability by

30

2 A Browser-based Platform for Service-Oriented Knowledge Discovery

default, provides access to large public (and proprietary) databases, enables
easy integration of third party components (as services) and loose coupling,
and supports not only distributed processing but also distributed development.
Platforms such as Weka4WS [5], Orange4WS [6], Web Extension for RapidMiner
and Taverna [7] allow the integration of web services as workflow components.
With the exception of Orange4WS and Web Extension for RapidMiner, these
applications are mostly specialized for domains like systems biology, chemistry,
medical imaging, ecology and geology. None of these applications are browser
based and still require specific hardware and software.

Finally, as the platform and software independence can be achieved by using
web technologies only, our platform relies on standards such as HTML, CSS,
Ajax and Javascript, and widely supported and accepted software solutions such
as Apache and PHP.

To summarize, the presented platform offers a complete service-oriented
workflow environment, suitable for any knowledge discovery task. The platform
is truly independent as it is implemented in the form of a web application which
is accessible from any modern web browser. The functionalities and the design
of the platform are presented in this paper along with an illustrative use case.
A detalied description of two additional practical use cases may be found on the
authors’ website1.

2 Platform design and functionalities

The presented platform consists of three layers as shown in Figure 1(a). The
uppermost layer presents the parts of the platform which run at the client side.
The middle layer is located on the server where the platform is hosted. The
bottom layer consists of the remote resources which provide web services.

The graphical user interface was implemented in HTML and JavaScript.
Two JavaScript libraries were used to implement the interactivity of the GUI.
The jQuery UI library2 provided dragging and dropping functionalities used for
manipulating the canvas. The jQuery library3 was used to handle mouse and
keyboard events, and asynchronous invocation of server side scripts. The GUI
consists of three main parts: the toolbar, the widget repository, and the canvas.
A sample screenshot of the user interface is shown in Figure 1(b).

The toolbar is used to start, execute, save and load workflows or parts of
workflows. The primary function of the toolbar is to start, execute, save, and
load workflows, and to separate parts of the workflow.

The widget repository provides a clickable list of available widgets. By click-
ing on a widget, its instance appears on the canvas hosting the currently active
workflow. The repository can be expanded by the user by saving parts of a
workflow as a new widget or importing new widgets from web services.

1 http://kt.ijs.si/janez kranjc/usecases.html
2 http://jqueryui.com/
3 http://jquery.com/

31

A Browser-based Platform for Service-Oriented Knowledge Discovery 3

(a) (b)

Fig. 1. The three layered design of the platform (a) and a screenshot of the environment
in the Mozilla Firefox browser (b).

The workflow canvas is used for connecting widgets into a workflow. Widgets
can be connected by clicking on their inputs and outputs. When both an input
and an output are selected, an event is triggered which checks for cycles in the
workflow graph using the depth first search algorithm. If no cycles are detected,
a connection is drawn and the corresponding widgets become connected.

The execution of the entire workflow is realized by a special JavaScript func-
tion, which iteratively searches for widgets whose predecessors have finished their
execution, and executes them.

To execute a widget, the platform passes all inputs of a widget to the cor-
responding server side script using asynchronous HTTP POST requests. When
the results are available (or when an error occurs), a call-back function is called
which stores the results of the execution of the widget into the output variables
in the underlying document object model. The script may either return the data
in a serialized form or issue a special command which instructs the user interface
to open a pop-up window for displaying the results (data visualization widgets
utilize this functionality). The execution of multiple independent widgets simul-
taneously is assured by the asynchronous nature of POST requests.

Workflow components of the presented platform may be implemented as
remote web services provided by a third party, or as PHP scripts located on the
server hosting the platform.

Since web services are completely defined by their WSDL descriptions, the
functionality to import web services was implemented in PHP by parsing the
corresponding WSDL document. For every operation provided by a web service
the PHP script returns an HTML description of the corresponding widget. In
the user interface, this procedure is accessible through a button whose event

32

4 A Browser-based Platform for Service-Oriented Knowledge Discovery

handler queries the user for the location of a WSDL file which is then imported
and parsed, and a list of available widgets is added to the repository.

3 An illustrative use case

In order to demonstrate some of the abilities of the service oriented browser
based platform a simple use case is presented. The workflow in this use case is
based on a simple workflow available on the myExperiment website4.

The workflow utilizes a publicly avaiable web service for querying the KEGG
database (Kyoto Encyclopedia of Genes and Genomes) to retrieve definitions of
given database entries.

First, the KEGG API (a SOAP web service)5 was imported in our work-
flow nvironment by providing the location of the WSDL document. The import
operation resulted in a collection of widgets in the repository representing all
KEGG web service operations. Then, an instance of the btit widget representing
btit(string:str) operation of the KEGG API was created by clicking on its name
in the repository.

The btit() operation expects database entries as an input which we provided
by using a local widget for composing strings. The results of the operation (the
definitions of database entries) were displayed in a local widget for displaying
text. The workflow and examples of its input and output data are shown in
Figure 2.

Fig. 2. A simple workflow for querying the KEGG database using the btit() operation.
The input and output are handled by local string operations widgets. A sample query
and the result are also shown.

4 http://www.myexperiment.org/workflows/1099.html
5 http://soap.genome.jp/KEGG.wsdl

33

A Browser-based Platform for Service-Oriented Knowledge Discovery 5

4 Conclusions

The paper presents a browser-based platform for service oriented knowledge
discovery which relies on modern web standards and widely supported and ac-
cepted software solutions. Coupled with the extreme versatility and power of
web services, the platform presents a new generation tool, ready to be used by
researchers and students in any scenario or form of knowledge discovery, in-
cluding mining of web and data streams thus surpassing all currently available
knowledge discovery software tools. Moreover, the proposed environment is able
to run in all modern web browsers, including those available on mobile devices,
which presents great opportunities for its deployment and widespread use.

In future work we will explore adding means of mining data streams as well
as semi-automatic workflow construction based on planning algorithms, modern
knowledge discovery ontologies, and systems for semantic annotation of web ser-
vices. Moreover, additional built-in workflow components as well as web services,
specialized for data mining, text mining, and systems biology are also under de-
velopment. Finally, we plan to provide a public installation of the environment,
a workflow repository, a community web site, and release the sources under an
open-source license.

Acknowledgments. The research leading to these results has received funding
from the European Community’s Seventh Framework Programme (FP7/2007-
2013) within the context of the project FIRST, Large scale information ex-
traction and integration infrastructure for supporting financial decision making,
under grant agreement n. 257928.

References

1. Witten, I. H. and Frank, E. (2005) Data Mining: Practical machine learning tools
and techinques, 2nd edition. Morgan Kaufmann.

2. Demšar, J., Zupan, B., and Leban, G. (2004). Orange: From experimental machine
learning to interactive data mining. White Paper.

3. Berthold, M. R., Cebron, N., Dill, F., Gabriel, T. R., Ktter, T., Meinl, T., Ohl, P.,
Sieb, C., Thiel, K., and Wiswedel, B. (2007) KNIME: The Konstanz information
miner. Studies in Classification, Data Analysis, and Knowledge Organization (GfKL
2007). Springer.

4. Mierswa, I., Wurst, M., Klinkenberg, R., Scholz, M., and Euler, T. (2006) Yale:
Rapid prototyping for complex data mining tasks. In Ungar, L., Craven, M.,
Gunopulos, D., and Eliassi-Rad, T. (eds.), KDD ’06: Proceeding of the 12th ACMS
SIGKDD international conference on Knowledge discovery and data mining, New
York, NY, USA, August, pp. 935-940. ACM.

5. Talia, D., Trunfio, P., and Verta, O. (2005) Weka4WS: A WSRF-enabled Weka
toolkit for distirbuted data mining on grids. Proceedings of the 9th European Con-
ference on Principles and Practice of Knowledge Discovery in Databases, pp. 309-
320.

34

6 A Browser-based Platform for Service-Oriented Knowledge Discovery

6. Podpečan, V., Juršič, M., Žáková, M., Lavrač, N. (2009) Towards a service-oriented
knowledge discovery platform. In Podpečan, V., Lavrač, N., Kok, J. N., Bruin, J.
(eds.). Third generation data mining: towards service-oriented knowledge discovery,
SoKD’09 : September 7, 2009, Bled, Slovenia. [S. l.: s. n.], 2009, pp. 25-38

7. DeRoure, D., Goble, C., and Stevens, R. (2008) The design and realisation of the
myExperiment virtual research environment for social sharing of workflows. Future
Generation Computer Systems, 25, 561-567.

35

Web Services for Stream Mining: A Stream-­Based
Active Learning Use Case

Martin Saveski and Miha Gr ar

Jo ef Stefan Institute, Ljubljana, Slovenia
{Martin.Saveski, Miha.Grcar}@ijs.si

Abstract. The nature of data on the Web is becoming more and more stream-­
oriented and in this context, the idea of mining Web-­generated data streams is
becoming a hot topic. Web services, on the other hand, have become an
inevitable tool for the future development of the Web. While Web services have
been very successful in providing distributed computing environments, they
have not been exploited for building and executing stream mining workflows.
In this paper, we discuss a service-­based environment suitable for stream
mining and present a service-­oriented stream mining workflow for sentiment
classification through active learning. In the context of this use case, we present
the general idea of active learning as well as an empirical evaluation of several
active learning methods on a stream of opinionated Twitter posts.

Keywords: stream data mining, Web services, active learning, sentiment
analysis, Twitter.

1 Introduction and Motivation

Handling vast Web-­generated streams is a relatively new challenge emerging mainly
from the self-­publishing activities of Web users (e.g., blogging, twitting, and
participating in discussion forums and social networks). Furthermore, news streams
(e.g., Dow Jones, Business Wire, Bloomberg, Reuters) are growing in number and
rate, which makes it impossible for the users to systematically follow the topics of

Web, are expected to grow substantially in the upcoming decades. In accordance with
1 vision, many devices (such as wireless sensors and even

household appliances) are expected to be connected to the Web, producing data
streams for the purpose of surveillance (incl. alerting and visualization) and data
analysis (such as stock price prediction and monitoring, environmental and traffic
monitoring, and vital signs monitoring). From this perspective, we can talk about a

In the European project FIRST (Large-­scale information extraction and integration

infrastructure for supporting financial decision making), the goal is to provide an
infrastructure for analyzing vast streams of user-­generated Web content and news
feeds from the domain of financial markets. The integration infrastructure devised in

1 Web of Things, http://en.wikipedia.org/wiki/Web_of_Things

36

the project will be based on SOA2 principles. Service-­oriented architectures are more
and more often the technological choice for software integration and exposure of
public interfaces (e.g., Yahoo!, Google, Twitter, and eBay APIs). In a standardized
manner, SOA allows software interoperability across multiple, separate systems and
domain
implementations from the user, ensures the sufficient hardware resources, and allows
the (indirect) use of proprietary data. However, SOAs suffer from several drawbacks
in stream-­based real-­time scenarios, which have to be accounted for as further
discussed in Section 2.
In this paper, we present a use case of service-­oriented stream-­based active

learning for the purpose of sentiment analysis. The aim of sentiment classification is
to decide, given a fragment of text or full text, whether the sentiment attributed to the
object discussed in the text is positive or negative. The approaches to sentiment
classification are in general either rule-­based [1] or based on machine learning [2, 3].
We use a machine-­learning approach by training a classifier on a labeled dataset of
messages (i.e., tweets) posted on Twitter. One of the main problems in this setting is
the lack of labeled data, especially in the domain of financial markets. Creating
labeled datasets manually is an expensive and time-­consuming process as it requires
the active participation of domain experts. To reduce these costs, we employ active
learning, a machine-­learning technique designed to actively query the domain expert
for new labels by putting forward data instances that, upon being labeled, contribute
most to the model being built. In effect, after a certain relatively low amount of
carefully chosen instances were labeled, the model performs better than if the same
amount of instances were selected randomly. Our design of putting an active learning

-­based SOA is discussed in Sections 3 and 4.

2 Web Services for Stream Mining

Service-­oriented architectures suffer from several drawbacks in specific scenarios. In
their traditional form, they employ a request-­response protocol, such as REST3 or
SOAP4. If the requests and responses are large and frequent, the connection between
the client and the server most likely represents a bottleneck. In data mining
workflows, inputs to elementary services (e.g., a labeled dataset required by an
algorithm for building a classification model) and their outputs (e.g., the parameters
of a classification model) are often very large (thousands or millions of data instances
and model parameters). This situation is illustrated in Figure 1. In stream mining
workflows, the inputs and outputs are usually smaller because only the newly arrived
data instances and changes to the models can be passed around. However, the
frequency tends to be much higher and is in fact posed by the input stream speed. In
both of these two scenarios, a lot of (unnecessary) traffic happens between the client
and the server and can result in a bottleneck.

2 Service-­Oriented Architecture, http://en.wikipedia.org/wiki/Service-­oriented_architecture
3 Representational State Transfer, http://en.wikipedia.org/wiki/Restful
4 Simple Object Access Protocol, http://en.wikipedia.org/wiki/Soap

37

Two relatively simple techniques, pipelining and parallelization, can be employed
to increase the throughput of a stream mining workflow. Pipelining refers to the

another). Even though the services are executed one after another, the pipeline
maximizes the throughput by processing several data units at the same time.

implemented so that two or more elementary services, either processing the same data
unit or performing load balancing, are executed simultaneously. In the SOA
paradigm, these techniques need to be implemented on the client side which creates a
lot of (unnecessary) engineering overhead. Furthermore, as the server (or the service
provider) is unaware of the workflow which is defined on the client side, it is difficult
to optimize the workflow execution and workflow topology on the server side in order
to increase the quality of service (QOS).
Last but not least, because streams are infinite (i.e., continuously flowing into the

system) and the client is acting as a broker, the client is required to have constant
access to the services. This is highly unrealistic, especially if the client is not a server
machine (which is usually the case) and is eventually shut down or loses internet
connection.
The solution to the discussed problems is to employ a publish-­subscribe

mechanism (such as ZeroMQ5 and Java Messaging Service [14, 15, 17]) that allows
elementary services to communicate with each other directly without the client acting
as a broker. In this setting, the client first builds (instantiates) the workflow, which

outputs of services preceding them in the workflow. The client then uploads the data
(and other required parameters) to the first service in the workflow. When the request
is successfully processed by the first service, the results are passed directly to the next
service (or se
at any time query the services about the status of its request and eventually download

client-­server network traffic is thus limited to the upload of the data and parameters at
the beginning and the download of the results when the workflow finishes processing
the request.
When dealing with streams, there are two alternatives to how a data stream enters a

workflow. It can either be provided by the client (constantly sending updates to the
workflow) or it can be obtained from the Web by one of the services. Our use case
luckily falls into the second category: the data is obtained from the Twitter API6. This
means that after the client instantiates and configures the workflow, it can disconnect
from the server without shutting down the workflow. The data-­mining models built by
such stream-­based workflow are constantly being updated (to be up-­to-­date with the
stream) and can at any time be queried by the client. This is illustrated in Figure 2.
Apart from this clear advantage of the publish-­subscribe mechanism, pipelining and
parallelization come naturally with the way the inter-­service communication works.
Furthermore, a server is aware of the workflow fragments built by the users with the
services hosted by the server. It is also aware of the other servers to which the outputs

5 ZeroMQ, http://www.zeromq.org/
6 Twitter API, http://dev.twitter.com/doc

38

Fig. 1. The main shortcoming of Web services
in data mining workflows: a lot of data is
passed between the client and the server(s).

Fig. 2. The publish-­subscribe paradigm in the
stream-­based setting: severely reduced traffic
between the client and the server(s). Clearly
advantageous in stream-­based service-­
oriented environments.

are sent and from which the inputs are received in the case of a distributed
environment. This allows the service owners to analyze the workflows and optimize
either the elementary services that represent bottlenecks or the entire topology if, for
example, the bottleneck results from the communication between the servers.
In the following sections, we present a use case for such a service-­oriented publish-­

subscribe environment. We first present the individual services and then the workflow
for stream-­based active learning for building sentiment classification models.

3 Stream-­Based Active Learning Workflow

In this section, we present a particular use case based on the service-­oriented
principles discussed in the previous sections. Specifically, we present a service-­
oriented workflow which dynamically builds and applies a model for sentiment
classification of financial Twitter posts. To deal with the lack of manually labeled
data and the dynamic nature of the data stream, we include active learning as one of
the main components in the workflow. The concepts of active learning and sentiment
analysis are further discussed in Section 3. In addition, we present the workflow
components: Twitter API, language detector, near-­duplicate detector, and active
learner in more detail. Each component is implemented as a separate Web service and
directly communicates with the subsequent service without the client acting as a
broker. Thus, for instance, the output of the language detector component is provided
as an input to the near-­duplicate detector. In addition, each component provides an
interface through which the client can receive a status report or configure the service.

Twitter API. Since we are interested in analyzing financial Twitter posts (tweets), the
main data resource in our workflow is the Twitter API. By the informal Twitter
conventions, as a prefix to the stock symbol

tocks. This convention
makes it easy to retrieve financial tweets. Twitter provides three types of APIs: REST,

39

Streaming, and Search API. To collect as much tweets as possible, we combine the
Streaming and Search API. Through the Search API, we constantly poll for a
predefined set of stock symbols and through the Streaming API, we consume the
Spritzer tweet stream, approximately 1% of all public tweets, and we filter out the
non-­financial tweets.

Language Detection. We have observed that many of the collected tweets are not in
English. To ensure a better performance of the text processing components in our
workflow, we have constrained the workflow to process only English tweets.
Although the Twitter API provides the information about the language of a particular
Twitter user, this information is often incorrect (e.g., non-­English speakers often

. Therefore, we have developed a custom n-­grams-­based language
detection model [4]. N-­grams are n characters long sequences created by slicing up
the text tokens. Using several text corpora in the languages we want to be able to
detect, we developed a profile histogram of n-­gram frequencies for each language.
Thus, to detect the language of a tweet, we count the n-­gram occurrences and we find
the profile which makes the best match. Tweets that do not match the English
language profile are discarded.

Near-­duplicate Detector. We also noticed that tweets with very similar content occur
many times in the stream. We observe that this is mainly caused by re-­tweets and
spam. Twitter provides a feature with which users can re-­tweet the posts of other
users, i.e. tweet the same post, original user.
Spammers, on the other hand, flood the stream with tweets posted from different
accounts, but with very similar content. These tweets represent noise and may
negatively influence the performance of the subsequent components in the workflow.
Since using simple hashing of the tweets will not allow us to detect such tweets, we
have employed the near-­duplicate detection algorithm proposed in [18]. Specifically,
we represent each tweet as a set of 5-­shingles, i.e. set of all 5-­character sequences
contained in the tweet, and compute the Jaccard similarity of the shingle sets. If this
similarity is above a given threshold, we consider the tweets as near-­duplicates. By
default, this method would require that each new tweet in the stream is compared to
all the exiting tweets, which is unrealistic for the fast stream we have in this use case.
To minimize the number of comparisons, we constantly keep an inverted index,
which as keys has bi-­grams (two word sequences) and as values has a set of tweets
where the bi-­gram is contained. Thus, when a new tweet arrives, we use the inverted
index to retrieve a set of candidate near-­duplicates and we only compare those to the
tweet currently being processed.

Active Learning. This component implements the active learning principle and its
output is a model for sentiment classification of financial tweets. The component
keeps three pools of tweets: labeled, unlabeled, and query tweets. All tweets labeled
so far are placed in the pool of labeled tweets. The pool of unlabeled tweets contains
the most recent unlabeled tweets which are the candidates for the query pool. As the
stream flows into the system, this pool is updated: new tweets come in, old flow out.
The query pool, on the other hand, contains all unlabeled tweets which, according to
the current model, if labeled will improve the model the most. Every new tweet in the

40

Fig. 3. Our workflow for stream-­based active learning.

stream, based on the current model, is either placed into the query or unlabeled pool.
With every new labeled tweet, the model is updated and accordingly, the query pool
is changed. This component also exposes a Web interface through which the domain
experts can label tweets (depicted as Client in Figure 3). The tweets to be annotated
are taken from the query pool. The domain expert is shown one tweet at a time and
can either provide a label or ask for another tweet if he is unsure about the label. This
feedback is afterwards propagated to the model. As shown in the figure, many domain
experts can provide annotations simultaneously. More details about the idea of active
learning for sentiment analysis and the methods which we have considered for this
purpose are provided in the next sections. It is important to note that due to the
dynamic nature of the data, this component must include not only the application of a
previously trained model, but also the model building phase. The financial sentiment
indicators are constantly changing their polarity and the model must be at all times
updated and in line with the current evident from the stream in order to

due to the current financial crises in the country, it may be considered as a negative
financial indicator. However, before the crises, the same term was most likely a signal
of neutral or positive sentiment (e.g., history and culture, holidays).

4 Active Learning for Sentiment Analysis

4.1 Sentiment Analysis

Textual information can generally be of two main types: facts and opinions. While
facts consist of objective expressions, opinions are typically subjective expressions

or impressions towards different events,
entities, and their properties. Although factual information is very important, it is in
the human nature . Opinions are so
important to us that every time we need to make a decision, we seek the opinions of
others on the matter.
With the emergence of the Web 2.07, the amount of user-­generated content on the

Web has rapidly increased, resulting in large amounts of opinionated text. The social
networks such as Twitter, Facebook, MySpace, and

7 Web 2.0, http://oreilly.com/web2/archive/what-­is-­web-­20.html

41

track of research called sentiment analysis or opinion mining (in the remainder of the
text we use the first term). The main problem that sentiment analysis tries to solve is
to extract sentiment from text and to detect its polarity (positive or negative). Other,
more complex definitions may also involve detecting the object and the object feature
towards which the sentiment is expressed as well as the opinion holder.
In the literature, we generally observe two approaches to solving the problem of

sentiment analysis: (1) the natural language processing (NLP) and (2) the machine
learning (ML) approach. The NLP approach is mostly unsupervised and uses
advanced linguistic analysis (dependency parsing), rules, and knowledge resources
(WordNet) to analyze opinionated text [5, 6]. The ML approach, on the other hand,
takes a supervised learning approach and defines the problem as a classification task
where documents/sentences are classified into predefined categories (positive,
negative, and possibly neutral), based on their sentiment. However, in some studies,
these approaches are combined, for example, part-­of-­speech tagging can be used to
construct the features used for classification [7]. With the large availability of labeled
data from Web sites like Trip Advisor, IMDB, Epinions, etc., the number of studies
which successfully apply the ML techniques has grown significantly [8].
In this study, we perform sentiment analysis of Twitter posts (tweets). With 145

million users (reported in September 20108) and growing, Twitter is no doubtingly
one of the most popular sites on the Web. Moreover, it has promoted itself as a
platform where people express their personal opinions and sentiment towards
companies, products, events, etc. While tweets come with a lot of metadata (user
information, topic tags, references to other users), the nature of the data poses some
specific challenges. Tweets can be up to 140 letters long (1 2 sentences) and usually
contain informal language and expressions (slang). Consequently, this makes most of
the standard NLP techniques less applicable or not applicable at all. Therefore, we
apply the ML approach to sentiment analysis and we define the problem as a
document classification problem. However, the limited amount of manually annotated
tweets makes the classical supervised learning techniques less applicable and
demands the use of other more sophisticated techniques such as active learning.

4.2 Active Learning

Many of the supervised learning systems, especially in text mining, need hundreds or
even thousands of labeled examples to achieve good performance. Sometimes these
labels come at little or no cost at all, for example when we flag emails as spam or
when we rate movies on our favorite social networking Web site. But many times,
acquiring labeled instances for more complex learning tasks can be time-­consuming,
difficult, and expensive. On the other hand, acquiring large amounts of unlabeled
instances can be easy and without any costs. The key hypothesis of active learning is
that: if the learning algorithm is allowed to choose the data from which it learns to

 it will perform better with less training [9].

8 Twitter Statistics, http://blog.twitter.com/2010/09/evolving-­ecosystem.html

42

As mentioned in the previous section, in our particular use case, we are not able to
build an accurate sentiment classification model because we lack the availability of
tweets manually annotated with their sentiment polarity. On the other hand, we can
easily consume the Twitter stream of public tweets and acquire plenty of unlabeled
instances at no cost. Therefore, we use the unlabeled data and active learning to build
an accurate model while minimizing the number of labeled examples and thus the
associated annotation costs. We have looked at several active learning methods:
Active Learning with Support Vector Machines, Hierarchical Sampling for Active
Learning, and K-­Means Clustering and SVMs for Active Learning.
In [10], the authors propose an algorithm for Active Learning with Support Vector

Machines (SVM). In each iteration of the algorithm, an SVM is trained on the data
labeled so far and the instance whose feature vector is closest to the hyperplane is
queried next. The main idea behind the algorithm is that choosing the instance closest
to the hyperplane will maximally reduce the version space, the space of all possible
hyperplanes, thus making a more efficient search through this space to find the best
hyperplane. They empirically show that the algorithm significantly reduces the
number of instances needed to train an efficient SVM model.
However, in [11] the authors observe that in each iteration of a closest-­to-­the-­

boundary (boundary being a hyperplane in the previously discussed method)
algorithms, the selected instances increasingly diverge from the underlying data
distribution, resulting in sampling bias. Thus, the sampled subset of instances is
hardly representative. They propose a method which starts by building a hierarchical
clustering tree from the data and, given the labeled instances so far, tries to find the
best pruning of the tree.
The Active Learning with SVMs (AL-­SVM) algorithm starts by querying random

instances to set the initial hyperplane. In an attempt to combine the two approaches,
the efficient search through the hypothesis space and the exploitation of the clustering
structure of the data, we have augmented the AL-­SVM algorithm to include k-­means
clustering as the initial step. To make a better sampling of the space, instead of
selecting random data instances, we first cluster the data into k clusters, where k is the
number of samples we want to take, and take the medoids of the clusters as the first
set of instances to be labeled.

4.3 Experiments

To measure the performances of each of the active learning algorithms discussed in
the previous section, we developed a data set of noisy labeled tweets. We consumed
the Twitter Spritzer stream (~1% of all public tweets), from 23rd of February to 5th of
April, and collected 50 million tweets. We used the positive (:), :-­), :D, ;;), etc.) and
the negative (:(, :-­(
contained no emoticons or both positive and negative emoticons were ignored. The
idea of using emoticons for tweet sentiment annotation has already been used in
several other studies [12, 13]. To further process the tweets, we have used the
language detection and near-­duplicate removal workflow components (Section 3),
filtering out the non-­English and the near-­duplicate tweets. This resulted in a set of
703,584 positive and 189,695 negative tweets or 881,069 tweets in total. As it can be

43

Fig. 4. Comparison between the performances of the different active learning algorithms
(x-­axis: number of labeled instances, y-­axis: accuracy obtained with a10-­fold cross-­validation).

seen, the data set is highly unbalanced and the positive tweets dominate. Although
this may depict the real distribution of the sentiment polarity in the stream, in these
experiments we are more interested in measuring the ability of each algorithm to
predict the sentiment polarity according to the features and not the prior probabilities.
Thus, we balanced the data set so that it contains the same number of positive and
negative tweets. All negative tweets were retained, while the positive ones were
evenly sampled, resulting in a data set of 379,390 tweets. To carry out the
experiments, we used the temporal meta-­information provided with the tweets to
simulate a data stream. In this way, we ensured that the experimental setting is the
same as the one encountered in a real-­life application.
Figure 4 depicts the performance of each of the active learning methods. The x-­axis

shows the number of instances sampled, while the y-­axis shows the classification
accuracy of the algorithms obtained with a 10-­fold cross-­validation. For reference, we
have also the classification accuracy of the random selection policy which represents
passive learning.
In all the experiments, we employed SVM for the sentiment classification. It is

important to note that the model needs to be updated every time a new instance is
labeled. Using the standard SVM implementations, such as SVMlight or LIBSVM,
would require re-­training on all instances labeled so far, which is computationally too
expensive to handle the fast data stream in real time. Instead, we employed the
incremental SVM implementation proposed in [16], which incrementally trains the
model one instance at a time. In the case of hierarchical sampling (HS-­AL-­SVM), we
used the sampling method for choosing instances to be labeled and we used the
labeled instances to train an SVM model and test its performance. For this

44

experiment, we have used the open-­source implementation made publicly available by
the authors9.
As depicted in Figure 4, the HS-­AL-­SVM method shows poor performance and

fails to improve the random sampling. In our opinion, this is a result of the nature of
the Twitter data (short texts) which makes it hard for this method to find patterns. The
SVM-­AL, on the other hand, shows significant improvement, ranging from 3% to
7.5%, over the random sampling. It is also interesting to note that by performing
clustering instead of random sampling, as the initial step of SVM-­AL, the
classification performance in the first iterations is significantly improved. This also
further influences the performance in several next iterations, showing an improvement
over SVM-­AL. Finally, we observe that as the number of instances increases, the
differences in performance of all methods (incl. Random) decreases. Thus, in the case
when more than 1,000 tweets are labeled, employing active learning loses its
advantage over a passive learner.

5 Conclusions and Future Work

In this paper, we discussed service-­oriented stream mining workflows. We pointed
out several drawbacks of traditional SOAs when mining Web-­generated data streams
and explained how the publish-­subscribe mechanism counters these shortcomings.
Furthermore, we presented a use case on building a sentiment classification model
from tweets in the domain of financial markets. Since the required training data (i.e.,
sentiment-­labeled tweets about stocks and companies) is not available, we resorted to
active learning (AL) to reduce the cost of labeling the data manually.
Our preliminary experiments showed that AL helps significantly when only a few

tweets (e.g., 100 200) are labeled. After 200 tweets are labeled, the accuracy of the
SVM-­AL-­Clust algorithm is 7.5% higher when compared to the random selection
policy. Unfortunately, when more and more tweets are labeled, the differences
between the evaluated algorithms (incl. Random) diminish. Also, the tested

tweets, the accuracy of any
of the algorithms (incl. Random) accounts for roughly 85% of the final accuracy
achieved by labeling the entire dataset (i.e., 379,390 tweets). We believe that, to some
extent, this is because tweets are very short texts and consequently, given a small
number of labeled tweets, the resulting bag-­of-­words space has a relatively low
number of dimensions (i.e., words and n-­grams). This makes it difficult for SVM to
model the sentiment vocabulary early in the process.
Our next step is to measure the dimensionality of the bag-­of-­words space in each

iteration of the AL loop. In addition, we will assess the orthogonality of the test set
with respect to the training set. We assume that by putting forward the tweets that
red
increase faster. On the other hand, the resulting bag-­of-­words space tends to be
extremely sparse. We will employ various dimensionality reduction techniques in an
attempt to reduce the orthogonality between the training and test set even further. Last

9 Hierarchical sampling implementation, http://cseweb.ucsd.edu/~djhsu/codes.html

45

but not least, we will employ transductive learners in an attempt to make use of
unlabeled data as well.

Acknowledgments.This work has received funding from the European Community s
Seventh Framework Programme (FP7/2007-­2013) in the context of the project FIRST
under Grant Agreement n. 257928.

References

1. Das, S. R., Chen, M. Y.: Yahoo! for Amazon: Sentiment Extraction from Small Talk on the
Web. 53 (9), pp. 1375-­1388. (2007)

2. Pang, B., Lee, L., Vaithyanathan, S.: Thumbs up? Sentiment classification using machine

3. Dave, K., Lawrence, S., Pennock, D. M.: Mining the Peanut Gallery: Opinion Extraction
and Semantic Classification of Product Reviews. Proceedings of the 12th WWW. (2003)

4. Cavnar, W. B., Trenkle, J. M.: N-­Gram-­Based Text Categorization. Proceedings of SDAIR-­
94, 3rd Annual Symposium on Document Analysis and Information Retrieval. (1994)

5. Wilson, T., Hoffmann, P., Somasundaran, S., Kessler, J., Wiebe, J., Choi, Y., Cardie, C., et
al.: OpinionFinder: A System for Subjectivity Analysis. Learning, 2-­4. ACL. (2005)

6. Esuli, A., Sebastiani, F.: SentiWordNet: A publicly available lexical resource for opinion
mining. Proceedings of LREC. (2006)

7. Barbosa, L., Feng, J.: Robust sentiment detection on Twitter from biased and noisy data. In
Proceedings of COLING. (2010)

8. Pang, B., Lee, L.: Opinion Mining and Sentiment Analysis. 2 (1-­2), pp. 1-­135. (2008)
9. Settles, B.: Active Learning Literature Survey. University of Wisconsin-­Madison, Computer
Sciences Technical Report. (2008)

10. Tong, S., Koller, D.: Support Vector Machine Active Learning with Applications to Text
Classification. ICML, (2000)

11. Dasgupta, S., Hsu, D.: Hierarchical sampling for active learning. Proceedings of the 25th
ICML, p.208-­215, Helsinki, Finland. (2008)

12. Bifet, A., Frank, E.: Sentiment Knowledge Discovery in Twitter Streaming Data. Discovery
Science 6332, 1-­15. (2010).

13. Go, A., Bhayani, R., Huang, L.: Twitter Sentiment Classification using Distant Supervision.
Processing 1-­6 (2009).

14.Eugster, P.T., Felber, P.A., Guerraoui, R.,Kermarrec, A. M.: The many faces of
publish/subscribe. ACM Computing Surveys 35, 114-­131 (2003).

15.Baldoni, R., Virgillito, A.: Distributed event routing in publish/subscribe communication
systems: a survey. DIS Universita di Roma "La Sapienza". Technical Report (2005).

16.Cauwenberghs, G., Poggio, T.: Incremental and Decremental Support Vector Machine
Learning. Neural Information Processing Systems (NIPS) (2001).

17.Eggen, R., Sunku, S.: Efficiency of SOAP Versus JMS.International Conference on Internet
Computing, pages 99 105 (2003).

18.Broder, A., Glassman, S., Manasse, M., Zweig, G.: Syntactic Clustering of the Web.
International World Wide Web Conference (Apr. 1997), 393-­404. (1997).

46

	A meta-mining infrastructure to support KD workflow optimization
	RMonto - towards KDD workflows for ontology-based data mining
	Semantic Data Mining System g-SEGS
	A Browser-based Platform for Service-Oriented Knowledge Discovery
	Web Services for Stream Mining: A Stream-Based Active Learning Use Case

