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Vid Podpečan
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Preface

As the name suggests, service-oriented computing utilizes services as the basic con-
structs to enable composition of applications from software and other resources dis-
tributed across heterogeneous computing environments and communication networks.
The service-oriented paradigm has induced a radical shift in our definition of third-
generation data mining. The 1990’s vision of a data mining tool suite encapsulated in
a domain-specific shell gives way to a service-oriented ar- chitecture with functionality
for identifying, accessing and orchestrating local and remote data/information resources
and mining tools into a task-specific workflow.

Thus the major challenge facing third-generation DM systems is the integration of
these distributed and heterogeneous resources and software into a coherent and effec-
tive knowledge discovery process. Semantic Web research provides the key technolo-
gies needed to ensure interoperability of these services; for instance, the availability
of widely accepted task and domain ontologies ensures common semantics for the an-
notation, search and retrieval of the relevant data/knowledge/software resources, thus
enabling the construction of shareable and reusable knowledge discovery workflows.
Another important feature is advanced support to the user. Composing effective knowl-
edge discovery processes to solve a given application problem out of the available ser-
vices is still more an art than a well-understood science. Formal planning can help a
user to build such processes, but an important requirement for that is the acquisition
of much more control-knowledge of what should or should not be composed together.
Meta-Learning has so far been mostly applied to choose single modeling tools. Learn-
ing which services should be composed together has just been started.

The Planning to Learn and Service-Oriented Knowledge Discovery Workshop (Plan-
SoKD 2011) was held in Athens, Greece, on September 9th 2011 in conjunction with
the The European Conference on Machine Learning and Principles and Practice of
Knowledge Discovery in Databases (ECML PKDD 2011). The PlanSoKD workshop
resulted from the merge of the Planning to Learn Workshop series (at ECML/PKDD-
2007, ICML/COLT/UAI 2008 and ECAI 2010) and the Service-Oriented Knowledge
Discovery workshop series (ECML/PKDD-2008, 2009 and 2010). More information
about this workshop and its predecessors can be found at
http://www.ifi.uzh.ch/ddis/events/plansokd2011/.
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A meta-mining infrastructure to support KD
workflow optimization

Phong Nguyen, Alexandros Kalousis, and Melanie Hilario

Artificial Intelligence Laboratory, University of Geneva

Abstract. Knowledge Discovery in Databases (KDD) is a complex pro-
cess that involves many different data processing and learning opera-
tors. Today’s Knowledge Discovery Support Systems (KDSS) contain
several hundreds of those operators. A major challenge of third genera-
tion KDSS is to assist the user in his/her choice of different operators
in order to build workflows that are not only valid but also – ideally –
optimize some performance measure associated with the user goal. The
ideal KDSS should be able to select those workflows that are most likely
to optimize the performance measure associated with the given user goal.
In this paper we present such a system. Our system is built on top of a
workflow planner that can compose valid and applicable workflows given
some input data and a goal description. However the planner has no way
of comparing the relative merits of the different valid operators choices
– a fact which leads to an explosion of the workflow search space. We
present a meta-mining infrastructure which analyses previous mining ex-
periments, i.e. applications of different workflows on different datasets, in
order to extract a model that will be used by the planner during workflow
construction to guide operator selection.

1 Introduction

Knowledge Discovery in Databases (KDD) is a complex process that typically
involves many different data processing and learning operators (i.e. algorithm im-
plementations). Today’s Knowledge Discovery Support Systems (KDSS) contain
several hundreds of those operators. For instance, the RapidMiner1 platform, in
its extended version with Weka2 and R3, proposes more than 500 operators.
Whenever the analyst is faced with a new knowledge discovery problem he/she
has to select among the available operators the ones that can be meaningfully
combined in order to build a valid knowledge discovery workflow which can ad-
dress his/her goal. With the advance of third generation KDSS, one of the main
challenges for these systems is to intelligently assist the user in the design of data
mining workflows. The e-LICO project4 virtual data mining laboratory features

1 http://www.rapid-i.com
2 http://www.cs.waikato.ac.nz/ml/weka/
3 http://cran.r-project.org/
4 http://www.e-lico.eu
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an Intelligent Discovery Assistant (IDA) that supports users in the construc-
tion of mining workflows which match their data analytical goals and the input
data. The IDA is built upon a cooperative AI-planner [6] which constructs data
mining plans following the hierarchical task networks (HTN) planning approach.
Initially, the AI-planner can only identify operators whose preconditions are met
at a given planning step, but is unable to determine which of these will proba-
bly attain better performance than the others. Consequently the AI-planner can
produce an extremely high number of candidate plans and leave the user at a
loss as to which is most appropriate for his problem. One way to address this
problem is to guide operator selection5 using some cost function related to the
goal addressed by the user. For example, if the current goal is the construction
of a classification model, an appropriate cost function is the expected predictive
accuracy of the model that will be produced by the final workflow. At each step,
the planner will then select those operators that are expected to result in models
of high predictive power.

The selection of the appropriate operator (or algorithm) and parameter set-
tings for a given inductive task has been a predominant focus of meta-learning
research for the past few decades. Meta-learning is the application of machine
learning techniques to improve the performance or efficiency of base-level learn-
ers. The e-LICO approach can be more aptly called meta-mining, roughly de-
fined as process-oriented meta-learning; more precisely, it extends meta-learning
to the full knowledge discovery process [4]. In the same way that meta-learning
is aimed at optimizing the results of learning, meta-mining optimizes the results
of data mining processes by taking into account the interdependencies and in-
teractions between the different process operations, and in particular between
learning and the different pre/post-processing steps. In this paper, we present
the e-LICO architecture with the meta-mining infrastructure for the IDA. The
meta-mined model ranks data mining operators according to their potential to
maximize the cost function for the given input data. Meta-mining relies on a
collection of past mining experiments, applications of data mining workflows on
different datasets, and the produced results, which it then analyses to produce
a meta-mined model that associates good workflow performance with specific
dataset characteristics and workflow patterns. Thus the e-LICO IDA combines
planning with meta-mining in order to provide intelligent user support in the
design of data mining workflows.

In section 2, we present the differents components of the e-LICO architec-
ture, what they do and how they are related, and in section 3, we describe in
more detail the meta-mining infrastructure, its probabilistic transition model
and meta-mining analysis. We finally conclude in section 4.

5 We use the words ”operator selection” and ”operator ranking” synonymously since
the first can be achieved through the second.
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2 The e-LICO architecture

Figure 1 gives an overview of the e-LICO architecture. The three (blue) shaded
boxes depict the system’s main components: the user interface, the Data Min-
ing Experiment Repository (DMER), and the IDA. The user interacts with the
e-LICO system by selecting from two front-ends – one provided by Taverna6,
its e-science infrastructure, and the other by RapidMiner, its main DM software
package. The DMER, built on the RapidAnalytics platform, stores all the re-
sources used and produced by the system during a user session. Finally, the IDA
provides the user with data mining support through the collaboration of the
AI-planner (supported by DMWF, the Data Mining Worklow Ontology [6]) and
the meta-miner (supported by DMOP, the Data Mining Optimization Ontology
[3]).

 data flow

meta−mined

input MD

Intelligent Discovery Assistant (IDA)

training MDplans

Meta−Miner

input MD
goal

mode
operator ranking

current plan + app. ops offlineonline
mode

Planner
AI

DM Workflow
Ontology (DMWF)

DMERUser Interface (Taverna/RM) Metadata (MD) service
input data

RapidAnalytics

DM Optimization
Ontology (DMOP)

model

datasoftware

Fig. 1: The e-LICO infrastructure and its components.

The user initiates a DM experiment by selecting a data mining goal (e.g.
classification) and providing an application dataset, from which RapidAnalytics
Meta-data Service extracts input metadata. The MD service has been extended
with the e-LICO Data Characterization Tool (DCT), which computes several
types of data characteristics: 1. statistical measures (e.g. number of instances,
proportion of missing values); 2. information-theoretic measures (e.g. class en-
tropy, mutual information)7; 3. geometrical and topological measures (e.g. non-
linearity, volume of overlap region) [5]; and 4. model-based measures (error rates
obtained by landmarkers such as 1NN or DecisionStump [7], weights learned

6 http://www.taverna.org.uk/
7 http://www.metal-kdd.org/
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by Relief or SVM). The AI-planner uses simple statistical measures to identify
applicable operators for a given task, whereas the meta-miner exploits the more
advanced measures to correlate workflow performance with dataset and workflow
characteristics.

As mentioned in Section 1, the initially näıve planner generates a large num-
ber of candidate workflows, from which one is selected either at random or based
on simple usage frequencies. All experimental metadata — descriptions of input
and intermediate data; selected operators, algorithms and workflows; learned
models and performance results — are recorded and stored in the DM exper-
iment repository. These are then structured and organized in a Data Mining
Experiment Database (DMEX-DB). After a sufficiently large number of exper-
iments, the meta-miner analyses DMEX-DB meta-data to build a model that
will be used for operator selection during the planning process. The meta-mining
process takes place offline; the mined model is then deployed in subsequent ex-
periments, where it is matched with the current user goal and input metadata
to build a task-specific probabilistic transition model. At each planning step,
the transition model ranks candidate workflows based on its estimate of a pre-
selected cost function for each applicable operator, given the current partial
workflow. The next section describes in detail one among many possible meta-
mining approaches to workflow assessment and ranking.

3 The Meta-Miner

The AI-planner builds mining workflows following an HTN decomposition of the
CRISP-DM process model [2]. Although useful for understanding the mining
processes specifications, this model is not addressed for the task of operator se-
lection. In recent work [3, 4], a Data Mining Optimization Ontology (DMOP) has
been proposed which extends the Rice framework and pries open the black box of
algorithms to address the meta-mining problem. This conceptual framework has
been used for characterizing the interdependencies and interactions between the
different process operations of a data mining experiment by extracting frequent
patterns of annotated workflows following an apriori-like algorithm [1, 4]. Figure
2 shows two examples of workflow patterns: on the top, we have a very gen-
eral pattern expressing that a feature selection algorithm composed of a feature
weighting algorithm and a feature weights cut-off is followed by a classification
algorithm. On the bottom, we have a more specific pattern expressing that a
multivariate feature selection algorithm can be followed by a decision tree algo-
rithm. Thus, these workflow patterns assess similarities between workflows and
allow to addresse the task of operator selection by reflecting knowledge extracted
from past experiments.

In order to understand the interaction between the meta-miner and the AI-
planner, we present first a simple probabilistic transition model for operator
selection based on those frequent workflow patterns. Then we present a more
elaborate model which conditions these patterns on the input dataset charac-
teristics and the specific cost function that the user would like to optimize, e.g.
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accuracy in the case of classification, in order to improve the operator selection
task in a manner that will result to workflows that will potentially optimize the
given cost function for the specific input data.

X-Validation

FeatureSelection
Algorithm

FeatureWeighting
Algorithm

Select by
Weights

ClassificationModelling
Algorithm

X-Validation

FeatureSelection
Algorithm

Multivariate
FeatureSelectionAlgorithm

Decision
Tree

Fig. 2: Two workflow patterns
Thin edges depict workflow decomposition; double lines depict subsumption.

3.1 Basic Operator Selection

As we already mentioned in the basic operator selection scenario we follow a
simple frequent pattern approach. The basic idea here is to extract frequent pat-
terns from previously executed worflows. These patterns capture how different
operators have been used together in the past to achieve a given task, however
they provide no means to determine whether the specific operator combination
given by them is the one that best fits the given task and the input data. In
a sense the operator selection based solely on these workflow patterns is done
on the basis of how often the different operators have been used in the past to-
gether. The description of the frequent pattern extraction from the data mining
workflows has already been given in [4].

During the planning process the meta-miner and the AI-planner interact
each time the planner has to make a choice on which is the operator that should
be applied in the next step. Concretely at step i the meta-miner is given a
set O of applicable operators that have been determined by the planner, based
on syntactic constraints and how they contribute towards the goal, and the
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plan, o1:i−1, that has been assembled so far. The meta-miner has to provide a
probability for each operator o ∈ O of being the one that should be chosen in the
ith step based on the workflow patterns. The planner will select that operator ô
that maximizes this probability, i.e.:

ô = arg max
o∈O

p(oi = o|o1:i−1) (1)

A frequent pattern mining approach based on ground operators is not able to
discover relations between higher-level families of operators, e.g. relations such
as the one given in figure 2. The approach that we took in extracting the frequent
workflow patterns uses the DMOP taxonomy and is able to discover such abstract
patterns which are used then to suggest what the next operator should be, as we
will describe soon. This can deal with scenarios in which for example it would
be better to apply an operator from some given family, say a J4.8 decision tree,
but for some reason, e.g. a syntactical constraint, this operator is not applicable
thus is not included in O, however there is another operator of the same family,
e.g. CART, which is not used very frequently but can perform exactly the same
task. Using this type of abstract workflow patterns we are able to suggest an
operator from the appropriate family, even if this operator has not been used
often in the past in the context of the plan that has been constructed so far.

We will now describe how to use the abstract workflows to support oper-
ator selection. Given the set of workflow patterns W extracted from the set
of workflows WF stored in the DMEX-DB, we can rewrite equation 1 so that
it considers the current plan and its possible solutions at the abstract level of
workflow patterns as:

ô = argmax
o∈O

(arg max
wo

i∈W
p(wo

i |wi−1)) (2)

where wi−1 ∈ W is a workflow pattern that matches the current plan, and wo
i ∈

W is some specialization of wi−1, denoted by wo
i ≺ wi−1, with the constraint

that wo
i matches the operators o ∈ O. One can notice that all possible patterns

wo
i have the same common pattern prefix wi−1. Solving equation 2 is equivalent

to determining the association rule wi−1 ⇒ wo
i with the highest confidence as

this is given by:

p(wo
i |wi−1) =

s(wo
i )

s(wi−1)
(3)

where s(w) is the support function of a pattern w counting how many times a
pattern appears within the different workflows:

s(w) =
1

|WF |
�

wf∈WF

Iw(wf ) (4)

where Iw(wf ) returns 1 if the pattern w matches the workflow wf and zero oth-
erwise. There can be many different wi−1 workflow patterns that match the plan
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that has been constructed so far. To select among them we rely on the trade-off
of the support and confidence of the association rule wi−1 ⇒ wo

i corresponding
to each one of them according to:

ô = arg max
o∈O

(arg max
wo

i∈W
((1− λ)

s(wo
i )

s(wi−1)
+ λs(wi−1))) (5)

where λ ∈ [0, 1] controls the trade-off between the support and the confidence.
As λ approaches one we favor high support over confidence.

As already mentioned this way of selecting operators does not consider the
characteristics of the input dataset nor the cost function that the user would
like to optimize with the workflow under construction. In the next sections, we
present a more elaborated approach to operator selection that takes into account
both of them.

3.2 Conditional Operator Selection

We want to condition operator selection on the user goal g, the input metadata x
extracted by the DCT as described in the section 2, and the cost function c that
the user wants to optimize. More precisely given some dataset d and its metadata
x, we would like to favor the use of workflow patterns that have been found to
relate to good workflow performance for the goal g under the cost function c
when they have been applied in the past to datasets that are similar to d, N(d).
In other words prefer workflow patterns that are often found in workflows that
have achieved good performance when applied on N(d). More precisely let:

N(d) = { di| dataset di is is similar to d}
WF �(x, g, c) = {wf |wf ∈WF and wf performs well in N(d) for g under c}

s(w|x, g, c) =
1

|WF �(x, g, c)|
�

wf∈WF �(x,g)

Iw(wf ) (6)

We will see in the next section how good workflows can be defined. Note that now
we define support in a different manner by considering only the good workflows,
equation 6. In order to have a confidence measure that reflects the quality of the
good workflow patterns, we use:

conf(w|x, g, c) =
s(w|x, g, c)

s(w)
(7)

We can now use equation 7 to identify what is the operator that has the most
chances achieving good performance according to the c cost function when given
the d dataset described by the x metadata by:

p(wo
i |wi−1, x, g, c) =

conf(wo
i |x, g, c)

conf(wi−1,c|x, g)
(8)

7



Similar to equation 5, we will strive for a trade-off between the support of the
prefix pattern and the confidence of the association rule as:

ô = arg max
o∈O

(arg max
wo

i∈W
(

conf(wo
i |x, g)

conf(wi−1|x, g)
+ λconf(wi−1|x, g))) (9)

With equation 9, the meta-miner is now able to provide probability transitions
to the AI-planner such that at each specialization step of the current plan the
selected operator is the one that has most chances to optimize c given x.

In the next section, we present the offline meta-mining analysis which com-
pletes this section. The meta-mining analysis builds a meta-mined model that
allows to compute the conditioned support.

3.3 The Meta-Mining Analysis

As mentioned in section 2, the meta-mining analysis is made offline, before the
planning process starts. The goal of this component is to analyse past exper-
iments in order to provide operator suggestions to the AI-planner through a
meta-mined model. One of the key components of the meta-mining analysis is
to determine the set of datasets N(d) that are in some sense similar to the input
dataset d. We will briefly describe how we can do so when the goal is to con-
struct classification workflows that maximize the predictive accuracy. In order
to do so we analyse a collection of datasets by applying on them a number of dif-
ferent classification algorithms and estimate their predictive performance. Each
dataset is now described by a vector of accuracies of the classification algorithms
that we have use: one-nearest-neighbor (1NN), decision tree algorithms J48 and
CART, Naive Bayes (NB), logistic regression algorithm (LR), and SVMs with
linear (SVM-L) and Gaussian (SVM-R) kernels. For J48 the C (pruning con-
fidence) and M (minimum number of instances per leaf) parameters were set
to 0.25 and 2 respectively; for CART the M and N (number of folds for the
minimal cost-complexity pruning) parameters were set to 2 and 5 respectively.
The C parameter was set to 1 for both SVM-L and SVM-R, and SVM-R’s γ
parameter was set to 0.1. We used the implementations of these algorithms in
the RapidMiner data mining suite. These algorithms represent quite distinct
learning biases. We measure the similarity of datasets using Spearman’s rank
correlation coefficient on the performance ranking of the different algorithms
applied to them. The main idea here is that datasets will be similar for what
we want to do, i.e. workflow construction for classification, if the performance
order of different algorithms is similar. Then we cluster the space of datasets us-
ing agglomerative clustering with Ward’s method in order to determine clusters
of datasets on which we have similar profiles of algorithm performance. These
clusters are used to define the neighborhood N(d) of a new dataset. Since it is
clear that we cannot apply the classification algorithms every time we have a
new dataset, since these is computationally expensive, we need a different way
to locate the cluster to which d belongs. We do so by defining a classification
problem in which datasets are described in terms of the metadata description

8



and the class is the cluster to which the dataset belongs. Additionally for each
cluster we separate the workflows to ”good” and ”bad” workflows with respect
to their relative performance on the datasets that belong in the cluster. We then
score the different workflow patterns according to their conditional support as
this is given in equation 6. So whenever we need to plan classification workflow
for some new dataset we first need to situate the new dataset in the appropriate
cluster of datasets using its metadata description and then use workflow patterns
to suggest what the next operator should be according to the estimated quality
of these workflow patterns in the dataset cluster.

4 Conclusion and Future Work

We have very briefly sketched the main points of an infrastructure that allows
us to plan data mining workflows by exploiting patterns of good workflow per-
formance in past experiments. The infrastructure combines traditional planning
and meta-mining in order to associate workflow patterns that are expected to
lead to good performance for a selected user goal under some cost function. We
are currently fine-tuning the different parts of the infrastructure. Especially chal-
lenging is the construction of the appropriate classification model that will allow
us to situate a new dataset in the correct cluster with respect to the expected
relative performance of the different classification algorithms on it. Additionally
we want to determine the performance improvement that meta-mining brings
into the process of workflow planning. Finally we would like to experiment with
different ways of combining workflow patterns and dataset characteristics that
build on work from the area of recommender systems.

Acknowledgments This work is partially supported by the European Commu-
nity 7th framework program ICT-2007.4.4 under grant number 231519 ”e- Lico:
An e-Laboratory for Interdisciplinary Collaborative Research in Data Mining
and Data-Intensive Science”. The meta-mining infrastructure described in this
paper is the result of ongoing collaborative work within the e-LICO project of
Jörg-Uwe Kietz, Floarea Serban, Simon Fischer, Agnieszka �Lawrynowicz and the
authors. For ease of presentation we made some simplications with respect to
the full meta-mining infrastructure.
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RMonto - towards KDD workflows for
ontology-based data mining

Jedrzej Potoniec, Agnieszka �Lawrynowicz
Institute of Computing Science,

Poznań University of Technology, Poznań, Poland,
email: {jpotoniec,alawrynowicz}@cs.put.poznan.pl

Abstract. We present a tool, implemented as an extension to the pop-
ular data mining framework RapidMiner, that supports modeling and
execution of KDD workflows involving data mining methods that exploit
ontologies as background knowledge. In order to support the state-of-the
art in ontology related technologies, in particular Semantic Web tech-
nologies, our tool offers acquisition of data from local files as well as
from SPARQL endpoints. The latter feature enables easy consumption
of various distributed Semantic Web data such as Linked Open Data as
input for data mining experiments. The tool is presented on the example
of currently implemented clustering algorithms together with a set of
operators for measuring similarity by exploitation of ontologies.

1 Introduction

The “first generation data mining systems“ provided a small set of algorithms
operating on attribute-valued data. Currently available “second generation sys-
tems“ address scalability, functionality and flexibility issues, by providing among
others an access to data warehouses, and supporting data mining schemas and
query languages. It is claimed that a major challenge for emerging “third genera-
tion data mining systems“ is then in the integration of distributed, and possibly
heterogeneuous data and knowledge resources and tools. The systems should
hence support data mining tasks that deal with distributed data, found e.g. on
intranets or on the Web, and also integrate with tools for managing knowledge.
An important feature of such systems is also an advanced support for the user
in performing KDD tasks. To achieve its goals, third generation data mining re-
quires modularized, and composable implementations of data mining algorithms,
that would support easier construction, and execution of KDD workflows.

Following this direction of research on data mining systems we introduce
a tool to support design and execution of knowledge discovery processes ex-
ploiting ontologies as background, domain knowledge, and operating on possibly
distributed Semantic Web [2] data.

The tool, an extension of RapidMiner1 [11] we named RMonto, is being
designed, and developed to support data mining approaches that despite having
various names, we think often have many commonalities. They may be called
Semantic Web mining [14], in particular data mining from the Semantic Web,
or alternatively also ontology mining [5] that is activities that allow to discover
1 http://rapid-i.com/
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hidden knowledge from ontological knowledge bases. Since ontological knowledge
bases are commonly represented in description logics [1] hence we may also
refer to the name description logic learning (or DL-learning in short) [9], where
DL-learning is a kind of Inductive Logic Programming approach that assumes
description logics as a logical language to represent data and hypotheses. A data
mining approach where domain ontologies are used as background knowledge
has been also recently named semantic data mining [12].

In the next sections, we discuss the related work, the design issues, and
present the current status of the implementation of the tool.

2 Related work

With growing adoption of the Semantic Web technologies, and increasing avail-
ability of large amounts of data annotated by ontologies, ontology–based data
mining approaches become an important line of research. However, there are
very few tools publicly available to support such tasks.

A tool which is the most related to ours is DL-learner [10], which provides
a framework for learning in description logics and OWL2. DL-Learner provides
machine learning algorithms exploiting OWL, it supports different knowledge
base formats, an OWL library, and reasoner interfaces. It uses a component-
based model, with four types of components: knowledge source, reasoning ser-
vice, learning problem, and learning algorithm. Current DL-Learner algorithms
mostly address the concept learning task. A feature distinguishing our approach
from DL-Learner is that by exploiting the framework of RapidMiner, we go fur-
ther with a modularized, and compositional approach, and allow for designing a
data mining workflows that ultimately may be more arbitrary, and fine-grained
than what is currently available to be done with DL-Learner.

Relevant to our work is already existing RapidMiner extension: rapidminer–
semweb3 [7]. This extension provides operators for extracting an RDF graph from
a repository and transforming it into a feature vector, preprocessing methods for
resolving set-valued features occurring when creating feature-vectors from RDF
data, and visualization of the transformation process. As such, the extension does
not tackle the problem of learning directly from expresssive and semantically rich
representations such as description logic knowledge bases.

A proposal for a data mining extension to SPARQL4, a standard Semantic
Web query language, named SPARQL-ML [8], may also be considered as rel-
evant to our work. That extension introduces new keywords to the SPARQL
syntax that serve for the induction of models, and their further use for predic-
tion/classification. There have been also tools, such as g-SEGS5, that support
lightweight ontologies in the form of taxonomies in the data mining algorithm.

Despite of the availability of the abovementioned tools, we have found that
none of them gathers all of the characteristcs that we find important, such as
availability of algorithms supporting certain types of tasks (e.g., algorithms ex-
ploiting ontologies in a manner of DL-learning, such as clustering involving se-
mantic similarity measures), or a possibility to model data mining workflows.
RMonto was developed in order to address these shortcomings.
2 http://www.w3.org/TR/owl-features/
3 http://code.google.com/p/rapidminer-semweb/
4 http://www.w3.org/TR/rdf-sparql-query/
5 http://kt.ijs.si/anze_vavpetic/SDM/index.html
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3 A tool for ontology-based data mining

3.1 Design of a framework

While designing a tool to support data mining tasks exploiting ontologies and
Semantic Web data, one needs to consider several issues such as possible dis-
tributed nature of the data, and the state-of-art in the tools supporting manip-
ulation and reasoning with ontologies. In case of developing an extension to an
existing framework such as RapidMiner, one also needs to take its characteristics
into account. For example, the most typical data format handled by RapidMiner
is a tabular data, while the data we deal with in our extension is relational.

In particular, we have identified the following requirements:

1. Ability to flexibly, and on-demand replace a reasoning tool. Reasoning tools
differ in their capabilities, and performance, e.g. semantic stores (such as
e.g., OWLim6) are optimized towards scalable, and fast querying and data
retrieval, while OWL reasoners (such as e.g. Pellet7 or HermiT8) support
advanced reasoning on very expressive ontologies [3,13].

2. Support for loading data from multiple different sources, such as local files
stored in different formats (e.g. RDF/XML, N3), files available on the Web,
triple stores queried with SPARQL language to harvest data for data mining
experiments, relational databases treated as triple-stores and queried with
SQL. Subsequently, integration of the harvested data into a one knowledge
base, which later can be queried with conjunctive queries, such as formulated
in SPARQL to select examples.

During software development, those requirements can be addressed in the
following way:

1. Plugin oriented architecture, moving dependency resolving from build time
to run-time. The only thing that has to be available during software build-
ing process is a set of common abstract interfaces, used as facades to the
reasoning tools and implemented by the plug-ins. In Java, this could be im-
plemented for example with Open Services Gateway initiative framework9

or by hand-made solution based on JAR files and their manifest files.
2. Data downloading, loading and integration can generally be addressed by

adequate reasoning software parts, optionally extended with additional tools
and libraries, such as JDBC for querying relational databases.

In order to support flexibility in using different semantic reasoners, and avoid
dependency of our implementations on particular reasoners or APIs, we have
developed our internal API, called PutOntoAPI (where “Put“ stands for Poznan
University of Technology), which acts as a bridge between our implementations
of data mining algorithms and reasoning/storing/etc. software that is called to
invoke relevant reasoning services via APIs used by popular semantic reasoners
such as Jena API, OWL API or Sesame API.

6 http://www.ontotext.com/owlim
7 http://clarkparsia.com/pellet/
8 http://www.hermit-reasoner.com/
9 http://www.osgi.org/
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RapidMiner

I/O SeSiL proxy Clustering API

SeSiL

PutOntoAPI

Fig. 1: Architecture of current rmonto extension.

3.2 Extending RM by New Operators

The currently implemented components of RMonto are organized with three
core libraries:

PutOntoAPI which works as a facade between the higher level libraries and
reasoning software with plug-in architecture;

SeSiL implementing different kernel methods for Semantic Web data;
RMonto gathering functions provided by PutOntoAPI and SeSiL into Rapid-

Miner operators.

The overall architecture of our software is presented in Fig. 1.
During development, we created several new operators for RapidMiner. Be-

low, they are grouped with respect to the RapidMiner operators tree sections.

Loading We have developed three operators for loading data: Load from file,
Load from SPARQL endpoint and Build knowledge base. As one can expect,
Load from file defines access to files accessible with normal file-system op-
erations (i.e. stored locally or on the mounted network share). Load from
SPARQL endpoint makes possible to download part of remote data from
some SPARQL endpoint in the form of a subgraph. Those graphs are con-
structed with SPARQL language, namely with a CONSTRUCT query.
The reason for Load. . . operators to exist is to supply the third one with
parameters of data sources. It is to avoid situation, in which the whole
data loading logic is hidden in one operator, what would happen if those
parameters were given as Build knowledge base’s. Data loading is invoked
inside Build knowledge base, as callback methods of objects received from
the Load. . . operators.

ABox SPARQL selector and ABox extractor operators both provide list of URI
identifying objects to be used in the learning process. Those URIs must be
valid identifiers of individuals in the KB built by Build knowledge base. The
first operator uses a SPARQL query to extract data and the second one
simply extracts a list of URIs of the whole ABox.

TBox Operators All known classes and Features selector work in the similar
way as those in the ABox section, but they build a list of classes instead.
Both generate the list of classes in the internal RMonto format. We resigned
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Fig. 2: A screenshot of the RapidMiner RMonto workflow.

from URI-list representation in favor of our internal format to provide more
complex language, enabling usage of complex classes not defined in the KB
(i.e. intersection of two defined classes). This is the way the Features selector
operator works, providing an editor to edit list of classes by hand. All known
classes extracts information about all named classes in the KB.

Kernels This section contains operators implementing kernel functions. They
compute dissimilarity matrix, that is pairwise dissimilarities between objects.
For instance, the implementation includes Identity and Common classes ker-
nels [4] and Epistemic kernel [6].

Clustering Currently, there are implementations of two algorithms. The first
one, Semantic k–Medoids is a simple k–Medoids algorithm implemented to
be able to work with dissimilarity matrix computed by a kernel. Agglomer-
ative hierarchical clustering is extended to produce semantic description of
computed clusters. If the cluster has only one element, conjunction of all its
related classes is adopted. When clusters are joined, their descriptions are
joined with union and simplified by removing duplicates.

Fig. 2 presents a screenshot of RapidMiner with an RMonto workflow.
RMonto software as well as a short tutorial introducing a tool can be found

at http://semantic.cs.put.poznan.pl/RMonto/

4 Conclusions and Future Work

In this paper, we present RMonto, a RapidMiner extension that supports de-
signing and execution of KDD workflows addressing tasks of data mining ex-
ploiting ontologies as background knowledge. The tool is under development,
but already supports a set of features such as data harvesting from distributed
Semantic Web sources, data integration, and a set of operators suitable for sim-
ilarity based data mining methods.

Ongoing and future work includes extending RMonto by new algorithm
implementations, in particular the ones addressing (frequent) pattern mining.

Acknowledgements. We acknowledge the support from European Community
7th framework program ICT-2007.4.4 (grant 231519 ”e-LICO: An e-Laboratory for
Interdisciplinary Collaborative Research in Data Mining and Data-Intensive Science”)
and from the Polish Ministry of Science and Higher Education (grant N N516 186437).

15



References

1. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.
(eds.): The Description Logic Handbook: Theory, Implementation, and Applica-
tions. Cambridge University Press (2003)

2. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American
284(5), 34–43 (May 2001), http://www.scientificamerican.com/article.cfm?
id=the-semantic-web

3. Bishop, B., Kiryakov, A., Ognyanoff, D., Peikov, I., Tashev, Z., Velkov, R.:
OWLIM: A family of scalable semantic repositories. Semantic Web 2(1), 33–42
(2011)

4. Bloehdorn, S., Sure, Y.: Kernel methods for mining instance data in ontologies.
In: Aberer, K., Choi, K.S., Noy, N.F., Allemang, D., Lee, K.I., Nixon, L.J.B.,
Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudr-Mauroux,
P. (eds.) The Semantic Web — Proceedings of the 6th International Semantic Web
Conference and the 2nd Asian Semantic Web Conference (ISWC 2007 + ASWC
2007), November 11-15, 2007, Busan, Korea. Lecture Notes in Computer Science,
vol. 4825, pp. 58–71. Springer, Berlin–Heidelberg, Germany (2007)

5. d’Amato, C., Fanizzi, N., Esposito, F.: Inductive learning for the Semantic Web:
What does it buy? Semantic Web 1(1-2), 53–59 (2010)

6. Fanizzi, N., D’Amato, C., Esposito, F.: Learning with kernels in description
logics. In: Proceedings of the 18th international conference on Inductive Logic
Programming. pp. 210–225. ILP ’08, Springer-Verlag, Berlin, Heidelberg (2008),
http://dx.doi.org/10.1007/978-3-540-85928-4_18

7. Khan, M.A., Grimnes, G.A., Dengel, A.: Two pre-processing operators for im-
proved learning from Semantic Web data http://www.cs.jyu.fi/ai/papers/
IJIIT-2005.pdf

8. Kiefer, C., Bernstein, A., Locher, A.: Adding data mining support to SPARQL via
statistical relational learning methods. In: Bechhofer, S., Hauswirth, M., Hoffmann,
J., Koubarakis, M. (eds.) ESWC. Lecture Notes in Computer Science, vol. 5021,
pp. 478–492. Springer (2008)

9. Kietz, J.U., Morik, K.: A polynomial approach to the constructive induction of
structural knowledge. Machine Learning 14(1), 193–217 (1994)

10. Lehmann, J.: DL-Learner: Learning concepts in description logics. Journal of Ma-
chine Learning Research 10, 2639–2642 (2009)

11. Mierswa, I., Scholz, M., Klinkenberg, R., Wurst, M., Euler, T.: Yale: Rapid pro-
totyping for complex data mining tasks. In: In Proceedings of the 12th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining. pp.
935–940. ACM Press (2006)
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Abstract. With the expanding of the Semantic Web and the availabil-
ity of numerous ontologies which provide domain background knowledge
and semantic descriptors to the data, the amount of semantic data is
rapidly growing. The data mining community is faced with a paradigm
shift: instead of mining the abundance of empirical data supported by
the background knowledge, the new challenge is to mine the abundance
of knowledge encoded in domain ontologies, constrained by the heuristics
computed from the empirical data collection. We address this challenge
by an approach, named semantic data mining, where domain ontologies
define the hypothesis search space, and the data is used as means of con-
straining and guiding the process of hypothesis search and evaluation.
The use of prototype semantic data mining system g-SEGS is demon-
strated in a simple semantic data mining scenario and in two real-life
functional genomics scenarios of mining biological ontologies with the
support of experimental microarray data.

Keywords. semantic data mining, ontologies, background knowledge,
relational data mining

1 Introduction

The knowledge discovery process can significantly benefit from the domain (back-
ground) knowledge, as successfully exploited in relational data mining and Induc-
tive Logic Programming (ILP). Additional means of providing more information
to the learner is by providing semantic descriptors to the data.

Usually, there is abundant empirical data, while the background knowledge is
scarce. However, with the expanding of the Semantic Web and the availability of
numerous ontologies which provide domain background knowledge and semantic
descriptors to the data, the amount of semantic data (e.g., ontologies and anno-
tated data collections) is rapidly growing1. The data mining community is now
faced with a paradigm shift: instead of mining the abundance of empirical data
1 See the Linked Data site http://linkeddata.org/
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supported by the background knowledge, the new challenge is to mine the abun-
dance of knowledge encoded in domain ontologies, constrained by the heuristics
computed from the empirical data collection. This paper uses the term semantic
data mining to denote this new data mining challenge and approaches in which
semantic data are mined.

We present g-SEGS, a prototype semantic data mining system implemented
in the novel service-oriented data mining environment Orange4WS [16] which
supports knowledge discovery workflow construction from distributed data min-
ing services. System g-SEGS is a successor of SEGS, a system for Searching
of Enriched Gene Sets [20] designed specifically for functional genomics tasks.
While SEGS is a special purpose system for analyzing microarray data with
biological ontologies as background knowledge, g-SEGS is a general purpose se-
mantic data mining system. It takes as input (1) domain ontologies in the OWL
format, used to construct a version space of hypotheses (patterns) to be mined,
and (2) an empirical data collection, annotated by domain ontology terms, used
to constrain and guide the top-down search of hierarchically structured space of
hypotheses, as well as for hypotheses quality evaluation.

After presenting the related work in Section 2, the paper presents the g-SEGS
system, its implementation in Orange4WS, and its applications. Sections 3 first
introduces the semantic data mining task and presents the proposed semantic
data mining methodology, together with the g-SEGS algorithm implementation.
Section 4 presents an illustrative example of using g-SEGS in a simple hand-
crafted semantic data mining scenario, followed by the presentation of selected
results of using g-SEGS in real-life functional genomics use cases in Section 5.
In Section 6 we conclude and propose directions for further work.

2 Related work

The idea of using hierarchies as background knowledge to generalize terms in
inductive rule learning has been proposed already in [13]. More recent usage of
ontologies in data mining includes [7, 2, 19, 3, 12] as well as domain specific
systems which use ontologies as background knowledge for data mining [9, 20].

In [7], the use of taxonomies (where the leaves of the taxonomy correspond
to attributes of the input data) on paleontological data is studied. The problem
addressed was to predict the age of a fossil site on the basis of the taxa that
have been found in it – the challenge was to consider taxa at a suitable level of
aggregation. Motivated by this application, the authors studied the problem of
selecting an antichain from a taxonomy that improves the prediction accuracy.
In [2], background knowledge is in the standard inheritance network notation
and the KBRL2 algorithm performs a general-to-specific heuristic search for
a set of conjunctive rules that satisfy user-defined rule evaluation criteria. In
[19], ontology-enhanced association mining is discussed and four stages of the
(4ft-Miner-based) KDD process are identified that are likely to benefit from

2 KBRL is based on the RL learning program of [5]
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ontology application: data understanding, task design, result interpretation and
result dissemination over the semantic web. The work of [3] first focuses on pre-
processing steps of business and data understanding in order to build an ontology
driven information system (ODIS), and then the knowledge base is used for the
post-processing step of model interpretation. Liu et al. [12] propose a learning-
based semantic search algorithm to suggest appropriate Semantic Web terms
and ontologies for the given data.

An ontology driven approach to knowledge discovery in biomedicine is de-
scribed in [9], where efforts to bridge knowledge discovery in biomedicine and
ontology learning for successful data mining in large databases are presented. A
domain specific system that uses ontologies and other hierarchies as background
knowledge for data mining is SEGS [20]. The SEGS system finds groups of dif-
ferentially expressed genes, called enriched gene sets3. Compared to earlier work
[18, 10], the novelty of SEGS is that it does not only test existing gene sets (ex-
isting ontology terms) for differential expression but it generates also new gene
set descriptions that represent novel biological hypotheses.

The main differences of system g-SEGS compared to the related approaches
is that these either (1) use non-standard ontology formats [7, 20], (2) are domain
specific [7, 20], (3) are not implemented as web services [2, 7], or (4) perform
non-symbolic classification [7].

3 Semantic Data Mining with g-SEGS

In this paper we use the term semantic data mining to denote a data mining task
in which semantic data are mined. This section first introduces this task, followed
by the methodology of semantic data mining as implemented in g-SEGS.

3.1 Semantic data mining

A semantic data mining task, illustrated in Figure 1, is defined as follows.

Given: a set of domain ontologies and an empirical data collection, annotated
by domain ontology terms,

Find: a hypothesis (a predictive model or a set of descriptive patterns) by min-
ing the abundance of information in ontologies, constrained by the informa-
tion in the empirical data collection.

Successful approaches to solving the semantic data mining task may result
in a paradigm shift in which the abundance of domain ontologies will be mined,
and the empirical training data will be used mainly to constrain the hypothesis
search space by the heuristics computed from the training data collection4.
3 A gene set is enriched if the genes that are members of this gene set are statistically

significantly differentially expressed compared to the rest of the genes.
4 A similar challenge is faced in pattern mining research where the original problem

of mining the abundance of data was recently transformed into a problem of mining
the abundance of induced patterns, constrained by the heuristics computed from the
training data.
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Fig. 1. Schema of a semantic data mining process, with ontologies and annotated data
as inputs.

Motivated by the successful applications of SEGS [20, 14], we have decided to
generalize SEGS to become domain independent, and developed a new system
named g-SEGS (generalized SEGS).The methodology, implemented in the g-
SEGS system, assumes that the hypothesis language are logical rules, where
rule conditions are conjunctions of ontology terms. While statistical significance
of rules could be measured on the fly in the process of rule construction, we
have decided to construct all the rules satisfying the support constraint, and to
eliminate insignificant rules in rule postprocessing, using a heuristic known from
subgroup discovery. As shown in Section 4, semantic data mining results in more
general and semantically more meaningful rules, if compared to standard rule
learning. From the four main components of SEGS, only the SEGS hypothesis
language and the generation and pruning procedure are used unchanged in the
new semantic data mining system g-SEGS.

The proposed semantic data mining methodology, implemented in g-SEGS, is
described in terms of its four main components: the hypothesis language, the in-
put (domain ontologies and training data), the hypothesis generation procedure
and the hypothesis (pattern) evaluation and filtering procedure.

3.2 Hypothesis language

The hypothesis language are descriptive patterns in the form of rules Class ←
Conditions, where Conditions is a logical conjunction of ontology terms. For
example, a rule whose antecedent is a conjunction of three terms, has the form
Class← X ∧ Y ∧ Z, where X stands for all x ∈ X, Y stands for all y ∈ Y , and
Z stands for all z ∈ Z, and where e.g., X ∈ Ont1 , Y ∈ Ont2 , and Z ∈ Ont3 .

3.3 Input

g-SEGS requires two types of inputs: the ontological background knowledge and
the training data.

Background knowledge consists of domain ontologies, typically in the OWL
format.5 Ontologies are used to construct the hypothesis search space.

5 In addition to OWL ontologies, we allow for other formats of annotated hierarchically
structured data sources, such as the ENTREZ and KEGG hierarchies, which were
used in one of the two real-life functional genomics use cases in Section 5.
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Training data are class-labeled vectors of attribute values, annotated by the
terms in domain ontologies. The data are used to constrain the hypothesis
search, and for rule quality evaluation in rule postprocessing.

3.4 Rule construction

Rule construction results in a set of rules satisfying the minimal support crite-
rion. As a rule antecedent is a conjunction of ontology terms, all possible con-
junctions of ontology terms can be generated and evaluated for small ontologies.
In case of large ontologies, however, the search space needs to be pruned. To do
so, we use the subsumption property of a relation which forms the hierarchical
backbone of the ontology (e.g. is-a). Suppose that rule C ← X � ∧ Y � ∧ Z �

has been constructed by the specialization of rule C ← X ∧ Y ∧ Z, where
X � � X, Y � � Y, Z � � Z (� denotes more or equally specific relation). If rule C
← X � ∧ Y � ∧ Z � covers m objects where m < N (m is lower than the support
threshold N which determines the minimal number of objects to be covered by
each rule), it is pruned and none of its specialization will be constructed. This
results in a significant reduction of the hypothesis search space.

In a simplified case, where three ontologies Ont1, Ont2 and Ont3 are given,
hypothesis generation consists of creating the conjunctions of individual ontol-
ogy terms, one from each ontology. Hypothesis construction is performed in a
top-down manner, starting from the most general terms in each of the three
ontologies, and specializing the rule antecedent as long as the stopping criterion
is satisfied (ensuring sufficient coverage of data instances)6. If one conjunct does
not satisfy the constraint, then its descendents will also not satisfy it, because
they cover a subset of instances covered by the conjunction. Therefore, we first
construct conjuncts from the top nodes of Ont1, Ont2 and Ont3, and if the
conjunction fails to satisfy the given constraint, g-SEGS will not refine the last
added term. Note that the efficiency of the algorithm comes from the usage of
the hierarchical structure of ontologies.

In addition to is-a or instance-of subsumption relations there may be
other links (relations) among ontology terms, e.g, the interacts relation. Con-
sider a simple rule class(A)← is-a(A,B), and suppose that ontology term B is
linked with term C through interacts(B,C). In this case, the rule’s antecedent
can be refined to form a conjunction is-a(A,B) ∧ interacts(B,C). This illus-
trates a situation which is common to ILP, as one can also make statements
about B or C, not only about term A which appears in the rule head class(A).
Hence a simple top-down refinement approach to rule construction is insufficient,
as will be shown in an example of Section 5.

6 If the ontology is simply a hierarchy (a tree), with the root of the graph being the
most general term, this means that substantial pruning of the search space can be
achieved in rule construction.
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3.5 Rule filtering and evaluation

As the number of generated rules can be large, uninteresting and overlapping
rules have to be filtered. In g-SEGS, rule filtering is performed using the wWRAcc
(Weighted Relative Accuray heuristic with example weigths) heuristic [11], which
uses example weights to provide the means for considering different parts of
the example space when selecting the best rules in rules postprocessing. In the
wWRAcc heuristic defined below, N � denotes the sum of weights of all examples,
n�(C) is the sum of weigths of examples of concept C, n�(Cnd) is the sum of
weights of all covered examples, and n�(Cnd ∧ C) is the sum of weights of all
correctly covered examples of concept C.

wWRAcc(C ← Cnd) =
n�(Cnd)

N � ·
�

n�(Cnd ∧ C)
n�(Cnd)

− n�(C)
N �

�

Rule filtering, using the weighted covering approach, proceeds as follows. It
starts with a set of generated rules, a set of examples with weights equal to 1
and parameter k, which denotes how many times an example can be covered
before being removed form the example set. In each iteration, we select the rule
with the highest wWRAcc value, add it to the final rule set, and remove it from
the set of generated rules. Then counter m is increased to m + 1 and weigths
of examples covered by this rule decreased to 1

m+1 , where example weight 1
m

means that the example has already been covered by m < k rules. These steps
are repeated until the algorithm runs out of examples or rules or if no rule has
a score above 0. Once the learning process is finished and the rules have been
generated and filtered, they are evaluated and sorted using the Fisher’s exact
test or the original WRAcc (Weighted Relative Accuray) measure known from
CN2-SD subgroup discovery, which trades-off the generality of a rule and its
precision. The WRAcc heuristic is defined as

WRAcc(C ← Cnd) =
n(Cnd)

N
·
�

n(Cnd ∧ C)
n(Cnd)

− n(C)
N

�

where N is the number of all examples, n(C) is the number of examples of
concept C, n(Cnd) is the number of all covered examples, and n(Cnd ∧ C) is
the number of all correctly covered examples of concept C.

3.6 g-SEGS implementation

The g-SEGS system takes as input the ontologies in the OWL format and data
in the Orange [15] format, uses the hierarchical structure of the is-a relation of
ontologies for efficient search and pruning of the rule search space, generates rules
by forming conjunctions of terms from different ontologies, and uses the wWRAcc
(Weighted Relative Accuray heuristic with example weigths) for rule pruning
by iteratively selecting the rules and Fischer exact test or WRAcc (Weighted
Relative Accuray) to sort/rank the selected rules.

g-SEGS is implemented in the Orange4WS [16] environment which upgrades
the freely available Orange [15] data mining environment with several additional
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Fig. 2. An Orange4WS workflow with g-SEGS.

features: simple creation of new visual programming units (widgets) from dis-
tributed web services, composition of workflows from both local and distributed
data processing/mining algorithms and data sources, and implementation of a
toolkit for creating new web services. By using these tools, we were able to give
g-SEGS a user-friendly interface and the ability to be executed remotely as a
web service. By mapping the g-SEGS input to the SEGS input we were able to
fully reuse the already implemented SEGS system. We defined the g-SEGS web
service using WSDL (Web Service Definition Language). Using the web service
definition and the set of tools provided by Orange4WS, we created a web service
for our system. Finally, also using Orange4WS, we imported the web service into
the Orange visual programming environment, thus allowing g-SEGS to be used
in various workflows together with other Orange widgets.

A screenshot of an Orange4WS workflow with g-SEGS is shown in Figure 2.
The workflow is composed of one widget for loading the dataset (File), three
widgets for loading the three ontologies (Read Ontology), and one widget for
specifying top-level ontology terms that are too general to appear in the final
rules (General terms). These five widgets act as the input to the g-SEGS wid-
get, which generates rules, displayed in the g-SEGS Rule set browser widget.

4 An illustrative example

As a proof-of-concept semantic data mining example, consider a bank which
has the following data about its customers: place of living, employment, bank
services used, which includes the account type, possible credits and insurance
policies and so on. The bank also categorized the clients as ‘big spenders’ or not
and wants to find patterns describing big spenders. Table 1 presents the training
data.

The application of standard classification rule learning algorithm CN2 (we
chose the Orange [15] implementation of CN2) to these data generates the rules
presented in the top part of Table 2, and the middle part of this table presents
the results obtained by using the CN2-SD subgroup discovery algorithm [11].

While CN2 generates a set of dependent and very specific classification rules,
CN2-SD produces rules representing individual subgroup descriptions which are
better suited for the comparison with the results obtained with g-SEGS. Note
that both sets of rules are rather specific, due to the specificity of the attribute-
value data representation. Standard data mining does not provide automated
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Table 1. Table of bank customers described by different attributes and class ‘big
spender’.

id occupation location account loan deposit inv fund insur. big spender
1 Doctor Milan Classic No No TechShare Family YES
2 Doctor Krakow Gold Car ShortTerm No No YES
3 Military Munich Gold No No No Regular YES
4 Doctor Catanzaro Classic Car LongTerm TechShare Senior YES
5 Energy Poznan Gold Apart. LongTerm No No YES

. . . . . . . . . . . . . . . . . . . . . . . . . . .
25 Transport Cosenza Classic Car ShortTerm No Family NO
26 Police Tarnow Gold Apart. No No No NO
27 Nurse Radom Classic No No No Senior NO
28 Education Catanzaro Classic Apart. No No No NO
29 Transport Warsaw Gold Car ShortTerm TechShare Regular NO
30 Police Cosenza Classic Car No No No NO

means for rule generalization; if more general rules were desired, the data should
have been manually preprocessed and attribute-values generalized to obtain more
general rules and therefore more valuable results.

Table 2. Rules generated by CN2, CN2-SD and g-SEGS from the data in Table 1.
Coverage, confidence and WRAcc were computed in postprocessing.

CN2 rules for class big spender=’YES’ Coverage Confid. WRAcc
occupation=’Doctor’ 20.00% 83.33% 0.067
loan=’No’ ∧ account=’Gold’ 10.00% 100.00% 0.050
occupation=’Health-care’ 6.67% 100.00% 0.033
occupation=’Education’ ∧ account=’Gold’ 6.67% 100.00% 0.033

CN2-SD rules for class big spender=’YES’ Coverage Confid. WRAcc
account=’Gold’ ∧ investment fund=’No’ 33.33% 80.00% 0.100
account=’Gold’ 46.67% 64.29% 0.067
occupation=’Doctor’ 20.00% 83.33% 0.067
occupation=’Health-care’ 6.67% 100.00% 0.033
investment fund=’TechnologyShare’ ∧ account=’Classic’ 13.33% 75.00% 0.033

g-SEGS rules for class big spender=’YES’ Coverage Confid. WRAcc
occupation(Public) ∧ bankingService(Gold) 26.67% 87.50% 0.100
bankingService(Gold) 46.67% 64.29% 0.067
occupation(Doctor) 20.00% 83.33% 0.067
occupation(Public) ∧ bankingService(Deposit) 26.67% 75.00% 0.067
occupation(Health) 23.33% 71.43% 0.050
occupation(Doctor) ∧ bankingService(Deposit) 16.67% 80.00% 0.050
location(Bavaria) 16.67% 80.00% 0.050
location(Germany) ∧ occupation(Service) 16.67% 80.00% 0.050

∧ bankingService(investmentFund)
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

 





















































































































 

  



Fig. 3. Ontologies for data in Table 1. Note that these are not the full ontologies, but
only the parts needed to interpret the rules presented in this paper. Concepts with
omitted subconcepts are drawn with a dashed line.

In semantic data mining using g-SEGS, in addition to the data in Table 1,
three ontologies shown in Figure 3 are used as input to introduce semantics into
the discovery process. The result of applying g-SEGS to these ontologies and the
given training data is presented in the bottom part of Table 2.7

The result illustrates the following characteristics of semantic data mining
by g-SEGS: (a) Conditions of g-SEGS rules are conjunctions of literals, hav-
ing ontology terms as arguments of predicates bearing the ontology name (and
therefore logically defined semantic meaning), while the conditions of CN2 and
CN2-SD rules are conjunctions of attribute-value pairs, (b) g-SEGS rules are
more general compared to rules constructed by CN2, CN2-SD or other non-
semantic data mining algorithms, and (c) automated and therefore repeatable
data preprocessing of data and rules can be performed, less prone to human
preprocessing errors.

7 The same data and background knowledge could also be used for describing credit
holders or clients that have closed their account in a bank.
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5 Functional genomics use cases

We tested g-SEGS on biological microarray datasets: acute lymphoblastic leukemia
(ALL) [4] and human scenescence mesenchymal stem cells (hMSC) [21]. Both
publicly available datasets8 encode gene expression data for two classes and the
challenge is to produce descriptions of differentially expressed genes involved in
the process of each domain.

To show the form of rules produced, recall the results of the SEGS system,
the ancestor of g-SEGS, on the same dataset from a clinical trial in acute lym-
phoblastic leukemia (ALL). The ALL dataset was chosen as it is typical for
medical research and has a reference role for such evaluations as it has been a
model dataset for other microarray data analysis tools as well. The analysis of
differences in gene expression between two lymphocyte subtypes (lymphocyte B
and lymphocite T) was performed as follows. Genes were first ranked accord-
ing to their expression value, and differentially expressed genes were selected by
gene filtering according to logFC cut-off value |0.3|. Three semantic knowledge
sources were used as background knowledge to SEGS and g-SEGS: GO, KEGG
and Entrez. As, except for GO, these hierarchies are not available in the OWL
format, in SEGS a dedicated algorithm for merging these three sources was used
to form the joint input database format, which can be chosen as a parameter
in g-SEGS, in addition to the default OWL format. Discovered rules, describing
subgroups of differentially expressed genes, are formed as conjuctions of terms,
e.g., receptor-binding(G) ∧ T-cell-activation(G). Similar to previous re-
search, the results show that one of the main differences between differentially
expressed and non-differentially expressed gene groups is the expression of major
histocompatibility complex (HLA) related genes.

In the experiments with g-SEGS, we used the same preprocessing steps.
Genes were first ranked using the ReliefF [17] algorithm and then filtered using
the logarithm of expression fold change (logFC). All genes with |logFC| < 0.3
were removed from the set, resulting in 9,001 genes in the ALL domain and
20,326 genes in the hMSC domain. The top 300 genes were used as the posi-
tive class both in SEGS and g-SEGS, while g-SEGS treats all other examples as
negative.

Table 3 present the quality measurements of g-SEGS on the two domains.
The discovered rule sets were evaluated using the descriptive measures of rule
interestingness as proposed in [11]: AvgCov - the average rule coverage, AvgSup -
the overall support, AvgSig - the average significance, AvgWRAcc - the average
unusualness and AUC - the area under the convex hull (method 1). Additionally
we also measured the execution time t.

The results show that g-SEGS produces more significant rules in the ALL
dataset, and that the other results are comparable. Of course we need to take
into account that it is not necessary that these measures well reflect the quality
of the rule set, i.e. whether they provide novel and interesting knowledge for

8 http://segmine.ijs.si
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g-SEGS
Domain AvgCov AvgSup AvgSig AvgWRAcc AUC t[min]

ALL 0.024 0.770 15.214 0.0012 0.573 11.25
hMSC 0.023 0.700 10.427 0.0005 0.563 10.75

Table 3. Experimental results.

the domain expert. Such an analysis with a domain expert is planned for future
work.

6 Conclusions

This paper discusses semantic data mining as an adequate approach to face a
potential paradigm shift in data mining, addressing the new challenge of min-
ing the knowledge in ontologies, constrained by the empirical evidence in the
collected data. In our approach, domain ontologies define the hypothesis search
space, and the data is used as means of guiding and constraining the hypothesis
search and evaluation.

Prototype semantic data mining system g-SEGS is used to illustrate the
approach in a simple semantic data mining scenario and in two real-life functional
genomics scenarios. The g-SEGS system takes ontologies in the OWL format and
data in a standard attribute-value format as its input, and takes advantage of
the hierarchical relationships in ontologies for efficient search and pruning of the
hypothesis search sapce. A user friendlly interface is also one of the key features
of the g-SEGS system.

There are many possible fields of application of semantic data mining. It
can be directly applied to domains where data are characterized by sparsity
and taxonomies are available, like market basket analysis, to give an example.
We have demonstrated the usefulness of semantic data mining in two real-life
functional genomics scenarios where biological ontologies are mined with the
support of experimental microarray data. The prototype semantic data mining
system g-SEGS shows major advantages compared to non-semantic systems, as
more general rules and automated data preprocessing are performed. There are
also advantages compared to ILP and other related approaches since our system
uses a standardized encoding of knowledge.

A systematic comparison of g-SEGS to the state of the art relational data
mining systems is planned in our further work. The first results of comparing
g-SEGS to the state of the art ILP system Aleph indicate that using the ontolo-
gies in their native format substantially simplifies the system’s use in real life
scenarios, by reducing the encoding time and ensuring the system’s reusability.
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Abstract. The paper proposes a novel platform for knowledge discov-
ery which is based on modern web technologies, and is implemented as a
web application. It is based on the principles of service-oriented knowl-
edge discovery, and features interactive scientific workflows. In contrast
with existing comparable platforms, ours is suitable for any knowledge
discovery task, offers advanced workflow construction including meta-
workflows, can use any existing web service as a workflow processing
component, and runs in all major web browsers and platforms, including
mobile devices.

Keywords: knowledge discovery, service-oriented architecture, web ap-
plication, web services, scientific workflows

1 Introduction

This paper presents a platform for designign and running data mining workflows
which was designed to overcome recognized deficiencies of existing solutions while
retaining all of their important features. As such, the proposed platform benefits
from service-oriented technologies, a visual programming paradigm, as well as
platform and software independent technologies.

First, the visual programming paradigm simplifies the construction of com-
plex knowledge discovery scenarios by providing basic building blocks (widgets)
which can be connected and executed, enables repeatability of experiments by
saving constructed workflows and parameters, provides an intuitive structur-
ing of complex parts of workflows by introducing the notion of meta-workflow
(workflow of workflows), and makes the platform suitable also for non-experts
due to the representation of complex procedures as sequences of simple process-
ing steps. Along with the presented platform, notable application that employ
the visual programming paradigm include Weka [1], Orange [2], KNIME [3] and
RapidMiner [4]. The most important common feature is the implementation of
a workflow canvas where workflows can be constructed using drag, drop and
connect operations on the available components.

Secondly, service-oriented architecture featuring web services as processing
components enables parallelization, remote execution, and high availability by
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2 A Browser-based Platform for Service-Oriented Knowledge Discovery

default, provides access to large public (and proprietary) databases, enables
easy integration of third party components (as services) and loose coupling,
and supports not only distributed processing but also distributed development.
Platforms such as Weka4WS [5], Orange4WS [6], Web Extension for RapidMiner
and Taverna [7] allow the integration of web services as workflow components.
With the exception of Orange4WS and Web Extension for RapidMiner, these
applications are mostly specialized for domains like systems biology, chemistry,
medical imaging, ecology and geology. None of these applications are browser
based and still require specific hardware and software.

Finally, as the platform and software independence can be achieved by using
web technologies only, our platform relies on standards such as HTML, CSS,
Ajax and Javascript, and widely supported and accepted software solutions such
as Apache and PHP.

To summarize, the presented platform offers a complete service-oriented
workflow environment, suitable for any knowledge discovery task. The platform
is truly independent as it is implemented in the form of a web application which
is accessible from any modern web browser. The functionalities and the design
of the platform are presented in this paper along with an illustrative use case.
A detalied description of two additional practical use cases may be found on the
authors’ website1.

2 Platform design and functionalities

The presented platform consists of three layers as shown in Figure 1(a). The
uppermost layer presents the parts of the platform which run at the client side.
The middle layer is located on the server where the platform is hosted. The
bottom layer consists of the remote resources which provide web services.

The graphical user interface was implemented in HTML and JavaScript.
Two JavaScript libraries were used to implement the interactivity of the GUI.
The jQuery UI library2 provided dragging and dropping functionalities used for
manipulating the canvas. The jQuery library3 was used to handle mouse and
keyboard events, and asynchronous invocation of server side scripts. The GUI
consists of three main parts: the toolbar, the widget repository, and the canvas.
A sample screenshot of the user interface is shown in Figure 1(b).

The toolbar is used to start, execute, save and load workflows or parts of
workflows. The primary function of the toolbar is to start, execute, save, and
load workflows, and to separate parts of the workflow.

The widget repository provides a clickable list of available widgets. By click-
ing on a widget, its instance appears on the canvas hosting the currently active
workflow. The repository can be expanded by the user by saving parts of a
workflow as a new widget or importing new widgets from web services.

1 http://kt.ijs.si/janez kranjc/usecases.html
2 http://jqueryui.com/
3 http://jquery.com/
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(a) (b)

Fig. 1. The three layered design of the platform (a) and a screenshot of the environment
in the Mozilla Firefox browser (b).

The workflow canvas is used for connecting widgets into a workflow. Widgets
can be connected by clicking on their inputs and outputs. When both an input
and an output are selected, an event is triggered which checks for cycles in the
workflow graph using the depth first search algorithm. If no cycles are detected,
a connection is drawn and the corresponding widgets become connected.

The execution of the entire workflow is realized by a special JavaScript func-
tion, which iteratively searches for widgets whose predecessors have finished their
execution, and executes them.

To execute a widget, the platform passes all inputs of a widget to the cor-
responding server side script using asynchronous HTTP POST requests. When
the results are available (or when an error occurs), a call-back function is called
which stores the results of the execution of the widget into the output variables
in the underlying document object model. The script may either return the data
in a serialized form or issue a special command which instructs the user interface
to open a pop-up window for displaying the results (data visualization widgets
utilize this functionality). The execution of multiple independent widgets simul-
taneously is assured by the asynchronous nature of POST requests.

Workflow components of the presented platform may be implemented as
remote web services provided by a third party, or as PHP scripts located on the
server hosting the platform.

Since web services are completely defined by their WSDL descriptions, the
functionality to import web services was implemented in PHP by parsing the
corresponding WSDL document. For every operation provided by a web service
the PHP script returns an HTML description of the corresponding widget. In
the user interface, this procedure is accessible through a button whose event
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4 A Browser-based Platform for Service-Oriented Knowledge Discovery

handler queries the user for the location of a WSDL file which is then imported
and parsed, and a list of available widgets is added to the repository.

3 An illustrative use case

In order to demonstrate some of the abilities of the service oriented browser
based platform a simple use case is presented. The workflow in this use case is
based on a simple workflow available on the myExperiment website4.

The workflow utilizes a publicly avaiable web service for querying the KEGG
database (Kyoto Encyclopedia of Genes and Genomes) to retrieve definitions of
given database entries.

First, the KEGG API (a SOAP web service)5 was imported in our work-
flow nvironment by providing the location of the WSDL document. The import
operation resulted in a collection of widgets in the repository representing all
KEGG web service operations. Then, an instance of the btit widget representing
btit(string:str) operation of the KEGG API was created by clicking on its name
in the repository.

The btit() operation expects database entries as an input which we provided
by using a local widget for composing strings. The results of the operation (the
definitions of database entries) were displayed in a local widget for displaying
text. The workflow and examples of its input and output data are shown in
Figure 2.

Fig. 2. A simple workflow for querying the KEGG database using the btit() operation.
The input and output are handled by local string operations widgets. A sample query
and the result are also shown.

4 http://www.myexperiment.org/workflows/1099.html
5 http://soap.genome.jp/KEGG.wsdl

33



A Browser-based Platform for Service-Oriented Knowledge Discovery 5

4 Conclusions

The paper presents a browser-based platform for service oriented knowledge
discovery which relies on modern web standards and widely supported and ac-
cepted software solutions. Coupled with the extreme versatility and power of
web services, the platform presents a new generation tool, ready to be used by
researchers and students in any scenario or form of knowledge discovery, in-
cluding mining of web and data streams thus surpassing all currently available
knowledge discovery software tools. Moreover, the proposed environment is able
to run in all modern web browsers, including those available on mobile devices,
which presents great opportunities for its deployment and widespread use.

In future work we will explore adding means of mining data streams as well
as semi-automatic workflow construction based on planning algorithms, modern
knowledge discovery ontologies, and systems for semantic annotation of web ser-
vices. Moreover, additional built-in workflow components as well as web services,
specialized for data mining, text mining, and systems biology are also under de-
velopment. Finally, we plan to provide a public installation of the environment,
a workflow repository, a community web site, and release the sources under an
open-source license.
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Abstract.  The  nature  of  data  on  the  Web  is  becoming  more  and  more   stream-­
oriented  and  in  this  context,  the  idea  of  mining  Web-­generated  data  streams  is  
becoming   a   hot   topic.   Web   services,   on   the   other   hand,   have   become   an  
inevitable  tool  for  the  future  development  of  the  Web.  While  Web  services  have  
been   very   successful   in   providing   distributed   computing   environments,   they  
have  not  been  exploited   for  building  and  executing  stream  mining  workflows.  
In   this   paper,   we   discuss   a   service-­based   environment   suitable   for   stream  
mining   and   present   a   service-­oriented   stream  mining  workflow   for   sentiment  
classification  through  active  learning.  In  the  context  of  this  use  case,  we  present  
the  general  idea  of  active  learning  as  well  as  an  empirical  evaluation  of  several  
active  learning  methods  on  a  stream  of  opinionated  Twitter  posts.  

Keywords:   stream   data   mining,   Web   services,   active   learning,   sentiment  
analysis,  Twitter.  

1   Introduction  and  Motivation  

Handling  vast  Web-­generated  streams  is  a  relatively  new  challenge  emerging  mainly  
from   the   self-­publishing   activities   of   Web   users   (e.g.,   blogging,   twitting,   and  
participating   in  discussion   forums  and   social   networks).  Furthermore,   news   streams  
(e.g.,  Dow   Jones,   Business  Wire,   Bloomberg,   Reuters)   are   growing   in   number   and  
rate,  which  makes   it   impossible   for   the   users   to   systematically   follow   the   topics   of  

Web,  are  expected  to  grow  substantially  in  the  upcoming  decades.  In  accordance  with  
1   vision,   many   devices   (such   as   wireless   sensors   and   even  

household   appliances)   are   expected   to   be   connected   to   the   Web,   producing   data  
streams   for   the   purpose   of   surveillance   (incl.   alerting   and   visualization)   and   data  
analysis   (such   as   stock   price   prediction   and   monitoring,   environmental   and   traffic  
monitoring,   and  vital   signs  monitoring).  From   this   perspective,  we   can   talk   about   a  

  
In  the  European  project  FIRST  (Large-­scale  information  extraction  and  integration  

infrastructure   for   supporting   financial   decision   making),   the   goal   is   to   provide   an  
infrastructure   for   analyzing   vast   streams   of   user-­generated   Web   content   and   news  
feeds  from  the  domain  of  financial  markets.  The  integration  infrastructure  devised  in  

                                                                                                                      
1  Web  of  Things,  http://en.wikipedia.org/wiki/Web_of_Things  
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the  project  will  be  based  on  SOA2  principles.  Service-­oriented  architectures  are  more  
and   more   often   the   technological   choice   for   software   integration   and   exposure   of  
public   interfaces   (e.g.,  Yahoo!,  Google,  Twitter,   and   eBay  APIs).   In   a   standardized  
manner,  SOA  allows  software   interoperability  across  multiple,  separate  systems  and  
domain
implementations  from  the  user,  ensures  the  sufficient  hardware  resources,  and  allows  
the  (indirect)  use  of  proprietary  data.  However,  SOAs  suffer  from  several  drawbacks  
in   stream-­based   real-­time   scenarios,   which   have   to   be   accounted   for   as   further  
discussed  in  Section  2.  
In   this   paper,   we   present   a   use   case   of   service-­oriented   stream-­based   active  

learning  for  the  purpose  of  sentiment  analysis.  The  aim  of  sentiment  classification  is  
to  decide,  given  a  fragment  of  text  or  full  text,  whether  the  sentiment  attributed  to  the  
object   discussed   in   the   text   is   positive   or   negative.   The   approaches   to   sentiment  
classification  are  in  general  either  rule-­based  [1]  or  based  on  machine  learning  [2,  3].  
We  use  a  machine-­learning  approach  by   training  a  classifier  on  a   labeled  dataset  of  
messages  (i.e.,  tweets)  posted  on  Twitter.  One  of  the  main  problems  in  this  setting  is  
the   lack   of   labeled   data,   especially   in   the   domain   of   financial   markets.   Creating  
labeled  datasets  manually  is  an  expensive  and  time-­consuming  process  as  it  requires  
the  active  participation  of  domain  experts.  To  reduce   these  costs,  we  employ  active  
learning,  a  machine-­learning  technique  designed  to  actively  query  the  domain  expert  
for  new  labels  by  putting  forward  data  instances  that,  upon  being  labeled,  contribute  
most   to   the   model   being   built.   In   effect,   after   a   certain   relatively   low   amount   of  
carefully  chosen   instances  were   labeled,   the  model  performs  better   than   if   the   same  
amount  of  instances  were  selected  randomly.  Our  design  of  putting  an  active  learning  

-­based  SOA  is  discussed  in  Sections  3  and  4.  

2   Web  Services  for  Stream  Mining  

Service-­oriented  architectures  suffer  from  several  drawbacks  in  specific  scenarios.  In  
their   traditional   form,   they   employ   a   request-­response   protocol,   such   as   REST3   or  
SOAP4.  If  the  requests  and  responses  are  large  and  frequent,  the  connection  between  
the   client   and   the   server   most   likely   represents   a   bottleneck.   In   data   mining  
workflows,   inputs   to   elementary   services   (e.g.,   a   labeled   dataset   required   by   an  
algorithm  for  building  a  classification  model)  and   their  outputs   (e.g.,   the  parameters  
of  a  classification  model)  are  often  very  large  (thousands  or  millions  of  data  instances  
and   model   parameters).   This   situation   is   illustrated   in   Figure   1.   In   stream   mining  
workflows,  the  inputs  and  outputs  are  usually  smaller  because  only  the  newly  arrived  
data   instances   and   changes   to   the   models   can   be   passed   around.   However,   the  
frequency  tends  to  be  much  higher  and  is  in  fact  posed  by  the  input  stream  speed.  In  
both  of  these  two  scenarios,  a  lot  of  (unnecessary)  traffic  happens  between  the  client  
and  the  server  and  can  result  in  a  bottleneck.    

                                                                                                                      
2  Service-­Oriented  Architecture,  http://en.wikipedia.org/wiki/Service-­oriented_architecture  
3  Representational  State  Transfer,  http://en.wikipedia.org/wiki/Restful  
4  Simple  Object  Access  Protocol,  http://en.wikipedia.org/wiki/Soap  
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Two  relatively  simple  techniques,  pipelining  and  parallelization,  can  be  employed  
to   increase   the   throughput   of   a   stream   mining   workflow.   Pipelining   refers   to   the  

another).   Even   though   the   services   are   executed   one   after   another,   the   pipeline  
maximizes   the   throughput   by   processing   several   data   units   at   the   same   time.  

implemented  so  that  two  or  more  elementary  services,  either  processing  the  same  data  
unit   or   performing   load   balancing,   are   executed   simultaneously.   In   the   SOA  
paradigm,  these  techniques  need  to  be  implemented  on  the  client  side  which  creates  a  
lot  of  (unnecessary)  engineering  overhead.  Furthermore,  as  the  server  (or  the  service  
provider)  is  unaware  of  the  workflow  which  is  defined  on  the  client  side,  it  is  difficult  
to  optimize  the  workflow  execution  and  workflow  topology  on  the  server  side  in  order  
to  increase  the  quality  of  service  (QOS).    
Last  but  not  least,  because  streams  are  infinite  (i.e.,  continuously  flowing  into  the  

system)   and   the   client   is   acting   as   a   broker,   the   client   is   required   to   have   constant  
access  to  the  services.  This  is  highly  unrealistic,  especially  if  the  client  is  not  a  server  
machine   (which   is   usually   the   case)   and   is   eventually   shut   down   or   loses   internet  
connection.  
The   solution   to   the   discussed   problems   is   to   employ   a   publish-­subscribe  

mechanism  (such  as  ZeroMQ5  and  Java  Messaging  Service  [14,  15,  17])  that  allows  
elementary  services  to  communicate  with  each  other  directly  without  the  client  acting  
as   a   broker.   In   this   setting,   the   client   first   builds   (instantiates)   the  workflow,  which  

outputs  of  services  preceding  them  in  the  workflow.  The  client  then  uploads  the  data  
(and  other  required  parameters)  to  the  first  service  in  the  workflow.  When  the  request  
is  successfully  processed  by  the  first  service,  the  results  are  passed  directly  to  the  next  
service  (or  se
at  any  time  query  the  services  about  the  status  of  its  request  and  eventually  download  

client-­server  network  traffic  is  thus  limited  to  the  upload  of  the  data  and  parameters  at  
the  beginning  and  the  download  of  the  results  when  the  workflow  finishes  processing  
the  request.    
When  dealing  with  streams,  there  are  two  alternatives  to  how  a  data  stream  enters  a  

workflow.  It   can  either  be  provided  by   the  client   (constantly   sending  updates   to   the  
workflow)  or   it  can  be  obtained  from  the  Web  by  one  of   the  services.  Our  use  case  
luckily  falls  into  the  second  category:  the  data  is  obtained  from  the  Twitter  API6.  This  
means  that  after  the  client  instantiates  and  configures  the  workflow,  it  can  disconnect  
from  the  server  without  shutting  down  the  workflow.  The  data-­mining  models  built  by  
such  stream-­based  workflow  are  constantly  being  updated  (to  be  up-­to-­date  with  the  
stream)  and  can  at  any   time  be  queried  by   the  client.  This   is   illustrated   in  Figure  2.  
Apart   from  this  clear  advantage  of   the  publish-­subscribe  mechanism,  pipelining  and  
parallelization   come  naturally  with   the  way   the   inter-­service   communication  works.  
Furthermore,  a  server  is  aware  of  the  workflow  fragments  built  by  the  users  with  the  
services  hosted  by  the  server.  It  is  also  aware  of  the  other  servers  to  which  the  outputs

                                                                                                                      
5  ZeroMQ,  http://www.zeromq.org/  
6  Twitter  API,  http://dev.twitter.com/doc  
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Fig.  1.  The  main  shortcoming  of  Web  services  
in   data   mining   workflows:   a   lot   of   data   is  
passed  between  the  client  and  the  server(s).  
  

  
  
Fig.  2.  The  publish-­subscribe  paradigm  in  the  
stream-­based   setting:   severely   reduced   traffic  
between   the   client   and   the   server(s).   Clearly  
advantageous   in   stream-­based   service-­
oriented  environments.  
  

are   sent   and   from   which   the   inputs   are   received   in   the   case   of   a   distributed  
environment.  This  allows  the  service  owners  to  analyze  the  workflows  and  optimize  
either  the  elementary  services  that  represent  bottlenecks  or  the  entire  topology  if,  for  
example,  the  bottleneck  results  from  the  communication  between  the  servers.  
In  the  following  sections,  we  present  a  use  case  for  such  a  service-­oriented  publish-­

subscribe  environment.  We  first  present  the  individual  services  and  then  the  workflow  
for  stream-­based  active  learning  for  building  sentiment  classification  models.  

3   Stream-­Based  Active  Learning  Workflow  

In   this   section,   we   present   a   particular   use   case   based   on   the   service-­oriented  
principles   discussed   in   the   previous   sections.   Specifically,   we   present   a   service-­
oriented   workflow   which   dynamically   builds   and   applies   a   model   for   sentiment  
classification   of   financial   Twitter   posts.   To   deal   with   the   lack   of  manually   labeled  
data  and  the  dynamic  nature  of  the  data  stream,  we  include  active  learning  as  one  of  
the  main  components  in  the  workflow.  The  concepts  of  active  learning  and  sentiment  
analysis   are   further   discussed   in   Section   3.   In   addition,   we   present   the   workflow  
components:   Twitter   API,   language   detector,   near-­duplicate   detector,   and   active  
learner  in  more  detail.  Each  component  is  implemented  as  a  separate  Web  service  and  
directly   communicates   with   the   subsequent   service   without   the   client   acting   as   a  
broker.  Thus,  for  instance,  the  output  of  the  language  detector  component  is  provided  
as   an   input   to   the  near-­duplicate   detector.   In   addition,   each   component   provides   an  
interface  through  which  the  client  can  receive  a  status  report  or  configure  the  service.  
  

Twitter  API.  Since  we  are  interested  in  analyzing  financial  Twitter  posts  (tweets),  the  
main   data   resource   in   our   workflow   is   the   Twitter   API.   By   the   informal   Twitter  
conventions,   as  a  prefix  to  the  stock  symbol  

tocks.  This   convention  
makes  it  easy  to  retrieve  financial  tweets.  Twitter  provides  three  types  of  APIs:  REST,  

39



Streaming,  and  Search  API.  To  collect  as  much   tweets  as  possible,  we  combine   the  
Streaming   and   Search   API.   Through   the   Search   API,   we   constantly   poll   for   a  
predefined   set   of   stock   symbols   and   through   the   Streaming   API,   we   consume   the  
Spritzer   tweet   stream,   approximately   1%  of   all   public   tweets,   and  we   filter   out   the  
non-­financial  tweets.  
  

Language  Detection.  We  have  observed  that  many  of  the  collected  tweets  are  not  in  
English.   To   ensure   a   better   performance   of   the   text   processing   components   in   our  
workflow,   we   have   constrained   the   workflow   to   process   only   English   tweets.  
Although  the  Twitter  API  provides  the  information  about  the  language  of  a  particular  
Twitter   user,   this   information   is   often   incorrect   (e.g.,   non-­English   speakers   often  

.  Therefore,  we  have  developed  a  custom  n-­grams-­based  language  
detection  model   [4].  N-­grams  are  n  characters   long  sequences  created  by  slicing  up  
the   text   tokens.  Using   several   text   corpora   in   the   languages  we  want   to   be   able   to  
detect,  we  developed  a  profile     histogram  of  n-­gram  frequencies     for  each  language.  
Thus,  to  detect  the  language  of  a  tweet,  we  count  the  n-­gram  occurrences  and  we  find  
the   profile   which   makes   the   best   match.   Tweets   that   do   not   match   the   English  
language  profile  are  discarded.  
  

Near-­duplicate  Detector.  We  also  noticed  that  tweets  with  very  similar  content  occur  
many   times   in   the   stream.  We   observe   that   this   is  mainly   caused   by   re-­tweets   and  
spam.   Twitter   provides   a   feature   with   which   users   can   re-­tweet   the   posts   of   other  
users,   i.e.   tweet   the   same   post,   original   user.  
Spammers,   on   the   other   hand,   flood   the   stream   with   tweets   posted   from   different  
accounts,   but   with   very   similar   content.   These   tweets   represent   noise   and   may  
negatively  influence  the  performance  of  the  subsequent  components  in  the  workflow.  
Since  using  simple  hashing  of  the  tweets  will  not  allow  us  to  detect  such  tweets,  we  
have  employed  the  near-­duplicate  detection  algorithm  proposed  in  [18].  Specifically,  
we   represent   each   tweet   as   a   set   of   5-­shingles,   i.e.   set   of   all   5-­character   sequences  
contained  in  the  tweet,  and  compute  the  Jaccard  similarity  of  the  shingle  sets.  If  this  
similarity   is  above  a  given   threshold,  we  consider   the   tweets  as  near-­duplicates.  By  
default,  this  method  would  require  that  each  new  tweet  in  the  stream  is  compared  to  
all  the  exiting  tweets,  which  is  unrealistic  for  the  fast  stream  we  have  in  this  use  case.  
To   minimize   the   number   of   comparisons,   we   constantly   keep   an   inverted   index,  
which  as  keys  has  bi-­grams  (two  word  sequences)  and  as  values  has  a  set  of   tweets  
where  the  bi-­gram  is  contained.  Thus,  when  a  new  tweet  arrives,  we  use  the  inverted  
index  to  retrieve  a  set  of  candidate  near-­duplicates  and  we  only  compare  those  to  the  
tweet  currently  being  processed.  
  

Active  Learning.  This   component   implements   the   active   learning   principle   and   its  
output   is   a   model   for   sentiment   classification   of   financial   tweets.   The   component  
keeps  three  pools  of  tweets:   labeled,  unlabeled,  and  query  tweets.  All  tweets  labeled  
so  far  are  placed  in  the  pool  of  labeled  tweets.  The  pool  of  unlabeled  tweets  contains  
the  most  recent  unlabeled  tweets  which  are  the  candidates  for  the  query  pool.  As  the  
stream  flows  into  the  system,  this  pool  is  updated:  new  tweets  come  in,  old  flow  out.  
The  query  pool,  on  the  other  hand,  contains  all  unlabeled  tweets  which,  according  to  
the  current  model,  if  labeled  will  improve  the  model  the  most.  Every  new  tweet  in  the  
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Fig.  3.  Our  workflow  for  stream-­based  active  learning.  
  
stream,  based  on  the  current  model,  is  either  placed  into  the  query  or  unlabeled  pool.  
With  every  new  labeled  tweet,  the  model  is  updated  and  accordingly,  the  query  pool  
is  changed.  This  component  also  exposes  a  Web  interface  through  which  the  domain  
experts  can  label  tweets  (depicted  as  Client  in  Figure  3).  The  tweets  to  be  annotated  
are  taken  from  the  query  pool.  The  domain  expert  is  shown  one  tweet  at  a   time  and  
can  either  provide  a  label  or  ask  for  another  tweet  if  he  is  unsure  about  the  label.  This  
feedback  is  afterwards  propagated  to  the  model.  As  shown  in  the  figure,  many  domain  
experts  can  provide  annotations  simultaneously.  More  details  about  the  idea  of  active  
learning   for   sentiment   analysis   and   the  methods  which  we   have   considered   for   this  
purpose   are   provided   in   the   next   sections.   It   is   important   to   note   that   due   to   the  
dynamic  nature  of  the  data,  this  component  must  include  not  only  the  application  of  a  
previously  trained  model,  but  also  the  model  building  phase.  The  financial  sentiment  
indicators   are   constantly   changing   their   polarity   and   the  model  must   be   at   all   times  
updated   and   in   line   with   the   current      evident   from   the   stream   in   order   to  

due  to  the  current  financial  crises  in  the  country,   it  may  be  considered  as  a  negative  
financial  indicator.  However,  before  the  crises,  the  same  term  was  most  likely  a  signal  
of  neutral  or  positive  sentiment  (e.g.,  history  and  culture,  holidays).  

4   Active  Learning  for  Sentiment  Analysis  

4.1   Sentiment  Analysis  

Textual   information   can   generally   be  of   two  main   types:   facts   and   opinions.  While  
facts   consist   of   objective   expressions,   opinions   are   typically   subjective   expressions  

or   impressions   towards   different   events,  
entities,  and   their  properties.  Although  factual   information  is  very   important,   it   is   in  
the   human   nature   .   Opinions   are   so  
important  to  us  that  every  time  we  need  to  make  a  decision,  we  seek  the  opinions  of  
others  on  the  matter.    
With  the  emergence  of  the  Web  2.07,  the  amount  of  user-­generated  content  on  the  

Web  has  rapidly  increased,  resulting  in  large  amounts  of  opinionated  text.  The  social  
networks  such  as  Twitter,  Facebook,  MySpace,  and  
                                                                                                                      

7  Web  2.0,  http://oreilly.com/web2/archive/what-­is-­web-­20.html  
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track  of  research  called  sentiment  analysis  or  opinion  mining  (in  the  remainder  of  the  
text  we  use  the  first  term).  The  main  problem  that  sentiment  analysis  tries  to  solve  is  
to  extract  sentiment  from  text  and  to  detect  its  polarity  (positive  or  negative).  Other,  
more  complex  definitions  may  also  involve  detecting  the  object  and  the  object  feature  
towards  which  the  sentiment  is  expressed  as  well  as  the  opinion  holder.    
In   the   literature,  we  generally  observe   two  approaches   to   solving   the  problem  of  

sentiment   analysis:   (1)   the   natural   language   processing   (NLP)   and   (2)   the  machine  
learning   (ML)   approach.   The   NLP   approach   is   mostly   unsupervised   and   uses  
advanced   linguistic   analysis   (dependency   parsing),   rules,   and   knowledge   resources  
(WordNet)   to  analyze  opinionated   text   [5,  6].  The  ML  approach,  on   the  other  hand,  
takes  a  supervised  learning  approach  and  defines  the  problem  as  a  classification  task  
where   documents/sentences   are   classified   into   predefined   categories   (positive,  
negative,  and  possibly  neutral),  based  on  their  sentiment.  However,   in  some  studies,  
these   approaches   are   combined,   for   example,   part-­of-­speech   tagging   can  be  used   to  
construct  the  features  used  for  classification  [7].  With  the  large  availability  of  labeled  
data  from  Web  sites  like  Trip  Advisor,  IMDB,  Epinions,  etc.,   the  number  of  studies  
which  successfully  apply  the  ML  techniques  has  grown  significantly  [8].  
In   this   study,  we  perform   sentiment   analysis   of  Twitter   posts   (tweets).  With  145  

million   users   (reported   in   September   20108)   and   growing,  Twitter   is   no   doubtingly  
one   of   the   most   popular   sites   on   the   Web.   Moreover,   it   has   promoted   itself   as   a  
platform   where   people   express   their   personal   opinions   and   sentiment   towards  
companies,   products,   events,   etc.   While   tweets   come   with   a   lot   of   metadata   (user  
information,   topic  tags,  references  to  other  users),   the  nature  of  the  data  poses  some  
specific  challenges.  Tweets  can  be  up  to  140  letters  long  (1 2  sentences)  and  usually  
contain  informal  language  and  expressions  (slang).    Consequently,  this  makes  most  of  
the   standard  NLP   techniques   less   applicable   or   not   applicable   at   all.   Therefore,  we  
apply   the   ML   approach   to   sentiment   analysis   and   we   define   the   problem   as   a  
document  classification  problem.  However,  the  limited  amount  of  manually  annotated  
tweets   makes   the   classical   supervised   learning   techniques   less   applicable   and  
demands  the  use  of  other  more  sophisticated  techniques  such  as  active  learning.  

4.2   Active  Learning  

Many  of  the  supervised  learning  systems,  especially  in  text  mining,  need  hundreds  or  
even   thousands  of   labeled  examples   to  achieve  good  performance.  Sometimes   these  
labels   come  at   little   or   no   cost   at   all,   for   example  when  we   flag   emails   as   spam  or  
when  we   rate  movies  on  our   favorite   social   networking  Web   site.  But  many   times,  
acquiring  labeled  instances  for  more  complex  learning  tasks  can  be  time-­consuming,  
difficult,   and   expensive.   On   the   other   hand,   acquiring   large   amounts   of   unlabeled  
instances  can  be  easy  and  without  any  costs.  The  key  hypothesis  of  active  learning  is  
that:  if  the  learning  algorithm  is  allowed  to  choose  the  data  from  which  it  learns     to  

  it  will  perform  better  with  less  training  [9].    

                                                                                                                      
8  Twitter  Statistics,  http://blog.twitter.com/2010/09/evolving-­ecosystem.html  
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As  mentioned  in  the  previous  section,  in  our  particular  use  case,  we  are  not  able  to  
build   an   accurate   sentiment   classification  model   because  we   lack   the   availability  of  
tweets  manually  annotated  with   their   sentiment  polarity.  On   the  other  hand,  we  can  
easily  consume   the  Twitter   stream  of  public   tweets  and  acquire  plenty  of  unlabeled  
instances  at  no  cost.  Therefore,  we  use  the  unlabeled  data  and  active  learning  to  build  
an   accurate  model   while   minimizing   the   number   of   labeled   examples   and   thus   the  
associated   annotation   costs.   We   have   looked   at   several   active   learning   methods:  
Active   Learning   with   Support   Vector   Machines,   Hierarchical   Sampling   for   Active  
Learning,  and  K-­Means  Clustering  and  SVMs  for  Active  Learning.    
In  [10],  the  authors  propose  an  algorithm  for  Active  Learning  with  Support  Vector  

Machines   (SVM).   In  each   iteration  of   the  algorithm,  an  SVM  is   trained  on   the  data  
labeled   so   far   and   the   instance  whose   feature   vector   is   closest   to   the   hyperplane   is  
queried  next.  The  main  idea  behind  the  algorithm  is  that  choosing  the  instance  closest  
to   the  hyperplane  will  maximally  reduce   the  version  space,   the  space  of  all  possible  
hyperplanes,   thus  making  a  more  efficient  search   through   this  space   to  find   the  best  
hyperplane.   They   empirically   show   that   the   algorithm   significantly   reduces   the  
number  of  instances  needed  to  train  an  efficient  SVM  model.  
However,   in   [11]   the   authors   observe   that   in   each   iteration   of   a   closest-­to-­the-­

boundary   (boundary   being   a   hyperplane   in   the   previously   discussed   method)  
algorithms,   the   selected   instances   increasingly   diverge   from   the   underlying   data  
distribution,   resulting   in   sampling   bias.   Thus,   the   sampled   subset   of   instances   is  
hardly  representative.  They  propose  a  method  which  starts  by  building  a  hierarchical  
clustering  tree  from  the  data  and,  given  the  labeled  instances  so  far,   tries  to  find  the  
best  pruning  of  the  tree.  
The  Active  Learning  with  SVMs  (AL-­SVM)  algorithm  starts  by  querying  random  

instances  to  set   the  initial  hyperplane.  In  an  attempt  to  combine  the  two  approaches,  
the  efficient  search  through  the  hypothesis  space  and  the  exploitation  of  the  clustering  
structure  of  the  data,  we  have  augmented  the  AL-­SVM  algorithm  to  include  k-­means  
clustering   as   the   initial   step.   To   make   a   better   sampling   of   the   space,   instead   of  
selecting  random  data  instances,  we  first  cluster  the  data  into  k  clusters,  where  k  is  the  
number  of  samples  we  want  to  take,  and  take  the  medoids  of  the  clusters  as  the  first  
set  of  instances  to  be  labeled.  

4.3   Experiments  

To  measure   the  performances  of  each  of   the  active   learning  algorithms  discussed   in  
the  previous  section,  we  developed  a  data  set  of  noisy  labeled  tweets.  We  consumed  
the  Twitter  Spritzer  stream  (~1%  of  all  public  tweets),  from  23rd  of  February  to  5th  of  
April,  and  collected  50  million   tweets.  We  used   the  positive  (:),   :-­),   :D,   ;;),  etc.)  and  
the  negative  (:(,   :-­(
contained  no   emoticons  or  both  positive   and  negative   emoticons  were   ignored.  The  
idea   of   using   emoticons   for   tweet   sentiment   annotation   has   already   been   used   in  
several   other   studies   [12,   13].   To   further   process   the   tweets,   we   have   used   the  
language   detection   and   near-­duplicate   removal   workflow   components   (Section   3),  
filtering  out   the  non-­English  and   the  near-­duplicate   tweets.  This   resulted   in  a   set  of  
703,584  positive  and  189,695  negative  tweets  or  881,069  tweets  in  total.    As  it  can  be    
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Fig.  4.  Comparison  between  the  performances  of  the  different  active  learning  algorithms  
(x-­axis:  number  of  labeled  instances,  y-­axis:  accuracy  obtained  with  a10-­fold  cross-­validation).  
  

seen,   the   data   set   is   highly   unbalanced   and   the   positive   tweets   dominate.  Although  
this  may  depict   the  real  distribution  of   the  sentiment  polarity   in   the  stream,   in   these  
experiments   we   are   more   interested   in   measuring   the   ability   of   each   algorithm   to  
predict  the  sentiment  polarity  according  to  the  features  and  not  the  prior  probabilities.  
Thus,  we  balanced   the  data   set   so   that   it   contains   the   same  number  of  positive   and  
negative   tweets.   All   negative   tweets   were   retained,   while   the   positive   ones   were  
evenly   sampled,   resulting   in   a   data   set   of   379,390   tweets.   To   carry   out   the  
experiments,   we   used   the   temporal   meta-­information   provided   with   the   tweets   to  
simulate   a   data   stream.   In   this  way,  we   ensured   that   the   experimental   setting   is   the  
same  as  the  one  encountered  in  a  real-­life  application.  
Figure  4  depicts  the  performance  of  each  of  the  active  learning  methods.  The  x-­axis  

shows   the   number   of   instances   sampled,   while   the   y-­axis   shows   the   classification  
accuracy  of  the  algorithms  obtained  with  a  10-­fold  cross-­validation.  For  reference,  we  
have  also  the  classification  accuracy  of  the  random  selection  policy  which  represents  
passive  learning.    
In   all   the   experiments,   we   employed   SVM   for   the   sentiment   classification.   It   is  

important   to   note   that   the  model   needs   to   be  updated   every   time   a   new   instance   is  
labeled.   Using   the   standard   SVM   implementations,   such   as   SVMlight   or   LIBSVM,  
would  require  re-­training  on  all  instances  labeled  so  far,  which  is  computationally  too  
expensive   to   handle   the   fast   data   stream   in   real   time.   Instead,   we   employed   the  
incremental   SVM   implementation   proposed   in   [16],   which   incrementally   trains   the  
model  one  instance  at  a  time.  In  the  case  of  hierarchical  sampling  (HS-­AL-­SVM),  we  
used   the   sampling   method   for   choosing   instances   to   be   labeled   and   we   used   the  
labeled   instances   to   train   an   SVM   model   and   test   its   performance.   For   this  
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experiment,  we  have  used  the  open-­source  implementation  made  publicly  available  by  
the  authors9.    
As   depicted   in   Figure   4,   the  HS-­AL-­SVM  method   shows   poor   performance   and  

fails  to  improve  the  random  sampling.  In  our  opinion,  this  is  a  result  of  the  nature  of  
the  Twitter  data  (short  texts)  which  makes  it  hard  for  this  method  to  find  patterns.  The  
SVM-­AL,   on   the   other   hand,   shows   significant   improvement,   ranging   from   3%   to  
7.5%,   over   the   random   sampling.   It   is   also   interesting   to   note   that   by   performing  
clustering   instead   of   random   sampling,   as   the   initial   step   of   SVM-­AL,   the  
classification   performance   in   the   first   iterations   is   significantly   improved.   This   also  
further  influences  the  performance  in  several  next  iterations,  showing  an  improvement  
over   SVM-­AL.   Finally,   we   observe   that   as   the   number   of   instances   increases,   the  
differences  in  performance  of  all  methods  (incl.  Random)  decreases.  Thus,  in  the  case  
when   more   than   1,000   tweets   are   labeled,   employing   active   learning   loses   its  
advantage  over  a  passive  learner.  

5   Conclusions  and  Future  Work  

In   this   paper,  we   discussed   service-­oriented   stream  mining  workflows.  We   pointed  
out  several  drawbacks  of  traditional  SOAs  when  mining  Web-­generated  data  streams  
and   explained   how   the   publish-­subscribe   mechanism   counters   these   shortcomings.  
Furthermore,  we   presented   a   use   case   on   building   a   sentiment   classification  model  
from  tweets  in  the  domain  of  financial  markets.  Since  the  required  training  data  (i.e.,  
sentiment-­labeled  tweets  about  stocks  and  companies)  is  not  available,  we  resorted  to  
active  learning  (AL)  to  reduce  the  cost  of  labeling  the  data  manually.  
Our  preliminary  experiments  showed  that  AL  helps  significantly  when  only  a  few  

tweets   (e.g.,  100 200)  are   labeled.  After  200   tweets  are   labeled,   the  accuracy  of   the  
SVM-­AL-­Clust   algorithm   is   7.5%   higher   when   compared   to   the   random   selection  
policy.   Unfortunately,   when   more   and   more   tweets   are   labeled,   the   differences  
between   the   evaluated   algorithms   (incl.   Random)   diminish.   Also,   the   tested  

tweets,  the  accuracy  of  any  
of   the   algorithms   (incl.   Random)   accounts   for   roughly   85%   of   the   final   accuracy  
achieved  by  labeling  the  entire  dataset  (i.e.,  379,390  tweets).  We  believe  that,  to  some  
extent,   this   is   because   tweets   are   very   short   texts   and   consequently,   given   a   small  
number   of   labeled   tweets,   the   resulting   bag-­of-­words   space   has   a   relatively   low  
number  of  dimensions  (i.e.,  words  and  n-­grams).  This  makes  it  difficult  for  SVM  to  
model  the  sentiment  vocabulary  early  in  the  process.  
Our  next  step  is  to  measure  the  dimensionality  of  the  bag-­of-­words  space  in  each  

iteration  of   the  AL  loop.   In  addition,  we  will  assess   the  orthogonality  of   the   test  set  
with   respect   to   the   training   set.  We   assume   that   by   putting   forward   the   tweets   that  
red
increase   faster.   On   the   other   hand,   the   resulting   bag-­of-­words   space   tends   to   be  
extremely  sparse.  We  will  employ  various  dimensionality  reduction  techniques  in  an  
attempt  to  reduce  the  orthogonality  between  the  training  and  test  set  even  further.  Last  

                                                                                                                      
9  Hierarchical  sampling  implementation,  http://cseweb.ucsd.edu/~djhsu/codes.html  
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but   not   least,   we   will   employ   transductive   learners   in   an   attempt   to   make   use   of  
unlabeled  data  as  well.  
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