
CVS Release History Data for Detecting Logical Couplings

Harald Gall, Mehdi Jazayeri, and Jacek Krajewski

Technical University of Vienna, Distributed Systems Group
Argentinierstrasse 8/184-1, A-1040 Wien, Austria, Europe

{gall,jazayeri}@infosys.tuwien.ac.at

Abstract
The dependencies and interrelations between classes and
modules affect the maintainability of object-oriented sys-
tems. It is therefore important to capture weaknesses of
the software architecture to make necessary corrections.
This paper describes a method for software evolution
analysis. It consists of three complementary steps, which
form an integrated approach for the reasoning about
software structures based on historical data: 1) The
Quantitative Analysis uses version information for the
assessment of growth and change behavior; 2) the
Change Sequence Analysis identifies common change
patterns across all system parts; and 3) the Relation
Analysis compares classes based on CVS release history
data and reveals the dependencies within the evolution of
particular entities. In this paper, we focus on the Relation
Analysis and discuss its results; it has been validated
based on empirical data collected from a Concurrent
Versions System (CVS) covering 28 months of a Picture
Archiving and Communication System (PACS). Our soft-
ware evolution analysis approach enabled us to detect
shortcomings of PACS such as architectural weaknesses,
poorly designed inheritance hierarchies, or blurred inter-
faces of modules.

1 Introduction

To evaluate the impact of changes over several releases of
a software system, we need to understand the relationships
(i.e. dependencies) among modules that compose the sys-
tem. Most methods for identifying dependencies are based
on metrics such as coupling and cohesion measures. There
are two basic problems with these measures: 1) handling
large code size per system release; and 2) recovering dy-
namic relations.

In fact, some dependencies are not written down either
in documentation or in the code. The software engineer
just “knows” that to make a change of a certain type,
he/she has to change a certain set of modules.

Code-based measures reveal syntactic dependencies
and what we are really interested in is logical dependen-

cies among modules. The purpose of this paper is to pre-
sent an approach to uncover such logical dependencies by
analyzing the release history of a system. Release histories
contain a wealth of information about the software struc-
ture. The task is just to analyze them and uncover the
information.

The evolution of the studied software system was inves-
tigated on the level of classes; so classes constitute the
measured entities for our analysis. The research on soft-
ware engineering of the last few years suggests that not
only the source code with its number of lines of code pro-
vides enough information about the complexity of a sys-
tem, but we have to investigate on modules and programs
for the measurement of software systems. Accordingly,
classes as basic building blocks of object-oriented systems
provide a good decomposition level for the assessment of
the size and evolution of a system. Additionally, this level
can be used to evaluate functional enhancements.

Our methodology, QCR, investigates the historical de-
velopment of classes. The time when new classes are
added to the system and when existing classes are changed
has to be measured. Attributes related with changes of
classes, such as the author or the date of a change, are
additional inputs for our software evolution analysis ap-
proach. Changes made to the classes of the studied soft-
ware system were inspected to reveal common change
behavior. Such common change behavior of different parts
of the system during the evolution is referred to as logical
coupling. Through the assessment of classes we can evalu-
ate modules or even the entire system, as they build up a
hierarchical organization of classes. Thus, the software
system as a whole can be analyzed, but also the system
parts may be investigated and related to each other.

The case study used for our analyses was a Picture Ar-
chiving and Communication System (PACS), implemented
in Java and consisting of half a million lines of code. The
evolution of PACS was observed for a period of 28
months. All actions to the code base within this inspection
period were noticed to serve as input for the described
methodology. With our approach we were able to identify
architectural shortcomings of the software system. Exam-

Proceedings of the Sixth International Workshop on Principles of Software Evolution (IWPSE’03)
0-7695-1903-2/02 $17.00 © 2002 IEEE

ples for revealed architectural weaknesses were poorly
designed interfaces, redundancy of functionality, god-
classes with several thousand lines of code, and many
others.

The defined methodology is composed of 3 comple-
mentary techniques: Quantitative Analysis focusing on
observing change and growth rates, Change Sequence
Analysis revealing parts with common change history, and
Relation Analysis recovering dependencies by change-
related attributes. The results of each technique are inputs
for the other ones to define an incremental methodology
where the results are improved in each step. Furthermore,
each step provides new findings that have to be evaluated
as well. All three techniques are examined during the
evolution of the software within the inspection period.

The focus of this paper is on the Relation Analysis; re-
sults of the other two steps are described only to the extent
required to understand the whole software evolution
analysis results. Details of the other steps can be found in
[14].

To validate the accuracy of these logical couplings (i.e.
module dependencies) identified by our technique, we
validated our findings with the software developers of
PACS. The results have shown that our approach is prom-
ising in identifying (otherwise hidden) logical couplings
among modules across several releases. Such modules are
candidates for restructuring or reengineering. The tech-
nique requires very little data to be kept for each release of
a system. Rather than dealing with millions of lines of
code, it works with structural information about programs,
modules, and subsystems, together with their version num-
bers and change information for a release. Such release
data is both easy to compute and usually available in a
company.

2 Related work

Based on the findings in [15,16,20], our Quantitative
Analysis [8] and Change Sequence Analysis [9] uses mod-
ules as our unit of investigations, rather than the source
code. Our goal is to identify logical coupling of modules
that is otherwise hidden in the source code in terms of
change patterns [9,12]. If programs change together across
module or subsystem boundaries, the decomposition struc-
ture of the application should be reconsidered and possibly
restructured or reengineered. In this work classes were our
modules for the investigations.

Related approaches differ from our work in that they
mainly focus on a micro-level to analyze the evolution of a
software system: the source code is analyzed and source
code metrics are used as indicators of the system’s quality
and complexity [19]. Other approaches identify fault-
prone modules using statistical techniques based on design
metrics [20] and discriminant analysis [13,18]. Fault and

defect metrics are used for in-process project control and
for process improvement over time in [3].

Coupling and cohesion measures are a way to measure
structural cohesiveness of a design. The main purpose is to
evaluate how maintainable a design and resulting imple-
mentation are, and to guide improvement efforts. The
basic idea is that the more dependencies that exist among
modules, the less maintainable the system is because a
change in one module will necessitate changes in depend-
ent modules. Approaches to measuring module dependen-
cies fall into two categories according to the information
on which it is based:

• code-level approaches measure coupling based on
analysis of source code; naturally, such measures can
only be made after the code has been written.

• predictive measures try to measure coupling based on
design information; such approaches attempt to
evaluate the complexity of the system before the
code has been written.

Our approach attempts to measure coupling based on
analysis of multiple releases of a system. This approach is
based on observed change behavior of modules in a sys-
tem and may be categorized as retrospective. Our meas-
ures may be used not only as coupling measures to guide
restructuring efforts but also to validate the effectiveness
of predictive and code-level coupling measures [8,9,
10,12].

Other related work analyzes the structure and the archi-
tecture of software systems. Methods for evolutionary
architectural assessment such as [21] can be used as input
for restructuring or reengineering activities.

Visualization approaches such as software change per-
spectives [4], sv3D [17], or evolutionary visualization [22]
represent software by visualizing source code and change
information in different ways.

The remainder of the paper is organized as follows: In
Section 3 we describe the case study. Section 4 describes
our approach for identifying logical coupling among mod-
ules based on CVS release history data. We report on our
results in Section 5 and draw some conclusions and point
out future work in Section 6.

3 The case study

A Picture Archiving and Communication System (PACS)
was selected as case study for our approach. It is imple-
mented in Java and different types of information have to
be maintained: there are files that contain the source code
of the particular Java classes. These Java classes have to
be supported by configuration files, as the runtime behav-
ior of the software system also depends on these configu-
ration files; nevertheless, configuration information is
differently maintained than source code.

Proceedings of the Sixth International Workshop on Principles of Software Evolution (IWPSE’03)
0-7695-1903-2/02 $17.00 © 2002 IEEE

The application development process also includes
other types of files such as images that can be used as
icons in an application or as background image of boxes
and buttons. Such files are also necessary for the applica-
tion but are quite static and are often just replaced instead
of maintained.

As a result, our analysis concentrates on the Java
source code to allow reasoning about architectural weak-
nesses of the software system. The metrics that are used
for the identification of outliers, which may indicate struc-
tural problems, are therefore based on the files that contain
Java classes only.

As inspection period for our software evolution analy-
sis we selected 28 months from April 2000 until July 2002
as during this period the main parts of the application
existed. At the beginning of the inspection period the
studied PACS contained approximately 2.000 classes and
at the end it had more than 5.500 classes.

The information of the whole application is maintained
with the help of CVS. The software structure of the PACS
is a tree hierarchy. The top level represents the system
level. At the next level the application is composed of
different subsystems. All subsystems may be viewed as
separate projects. All these subsystems encapsulate some
aspects of the whole application such as the viewing unit,
the archiving process or extensions to the viewing unit.
These extensions add diagnostic features to the viewing
application.

The entities of the subsystem level are further divided
into modules. These modules may additionally contain
submodules. At the lowest level of this hierarchical struc-
ture are the Java classes. These contain the implementa-
tion of the application features. For example, 13.c.21.A
denotes Class A in Submodule 21 of Module c in Subsys-
tem 13. The units of our software evolution analysis are
classes. Thus, for example, the size of a subsystem, mod-
ule or submodule is measured on the basis of classes. Also
changes are tracked on the basis of classes. The case study
is composed of 35 subsystems, each containing between
one and 14 modules. Modules are further subdivided in up
to 29 submodules each; between 1 and 196 classes are
assembled into a submodule. As subsystems vary much in
size, several submodules are even larger than the smallest
subsystems.

With the help of the hierarchical structure of the soft-
ware system the vendor can support entire product fami-
lies. A PACS may contain many different workstations
that support different features. Some could be used as
viewing units only, where a doctor can view X-ray pic-
tures of a patient and draw some conclusions from them.
Other workstations may additionally provide diagnostic
features, i.e., to allow a doctor to change the images, mark
a particular region of an image to show a colleague where
he recognized a problem, or sort the images and arrange

them into new sequences to support further diagnosis.
However, the system includes more than just workstations.
An archive is necessary to store the X-ray images and the
administrative information. The data of the images has to
be received from X-ray recorders. The images are as-
signed to different patients, where information for each
patient has to be kept and maintained. Thus, products with
different capabilities may by assemble to build up a prod-
uct family.

3.1 Release history data in CVS

The data about the evolution of the studied software was
taken from a Concurrent Versions System (CVS). CVS
allows handling of different versions of files in a cooperat-
ing team of developers. Each member of such a co-
operating team can check out some files, change them and
then check them in again. When the files are checked in,
CVS merges the newly added content to build up a consis-
tent view of the whole work [7].

All operations that are performed with the help of CVS
are logged automatically by the Concurrent Versions Sys-
tem. Thus, the historical development of files, which are
maintained by CVS, is traced automatically and may be
viewed with the help of appropriate CVS commands.
These commands provide information about the history in
many different levels of granularity. On the one hand CVS
allows for every line of any file to find out in which re-
lease the particular line was introduced. On the other hand
it is possible to get informed when an entire file changed
its release number. Every time a file is change and
checked in into CVS, the release number of this file is
incremented. Thus, changes of files may be tracked
through the release numbers [1].

For each change of a file administrative data is col-
lected by CVS (date, time as hours and minutes, the au-
thor, the release number, the file name and the path asso-
ciated with a single change, etc.). Based on this informa-
tion a time sequence analysis is possible, which can be
enhanced with additional attributes such as the author of a
change. As a result, the first challenge was to extract use-
ful historical information to reason about architectural
deficiencies of the software system.

4 The QCR approach

In this section, we give an overview of our QCR method-
ology for identifying common change histories among
modules and revealing hidden dependencies among them.
To do that, we define 3 techniques that use the CVS data.
We give an overview of the 3 techniques here and describe
one of them in detail in this paper.

Proceedings of the Sixth International Workshop on Principles of Software Evolution (IWPSE’03)
0-7695-1903-2/02 $17.00 © 2002 IEEE

1. The Quantitative Analysis (QA) analyzes the change
and growth rates of modules across releases and pro-
vides indicators for noteworthy change or growth in-
tensities (e.g. outliers).

2. The Change Sequence Analysis (CSA) identifies com-
mon change histories of modules. Each change of a
module (reflected in a change of its version number) is
related to the system level (with system release se-
quence numbers). All changes of a module can then be
viewed on the system level and put together to form a
change sequence. A change sequence for a module
shows the releases in which the module has been
changed, e.g. <1,2,5,9,15>. Such change sequences al-
low comparing different modules in terms of their
change history and identify common “change pat-
terns.” The output of the CSA process is a set of logi-
cal couplings among specific modules that follow the
same change pattern. For details we refer to [9].

3. The Relation Analysis (RA) compares modules (i.e.
classes) based on CVS change history information and
reveals module dependencies. RA is based on the pre-
viously developed QA and CSA; it enhances and com-
plements them.

The complete QCR results of the case study can be found
in [14]. In the following, we are focusing on the Relation
Analysis as the main contribution of this paper.

5 Relation Analysis (RA)

The Relation Analysis (RA) was developed to complement
the Change Sequence Analysis (CSA). Both analyses sup-
port the evaluation of a software system based on histori-
cal module interdependencies. Logical coupling refers to
patterns of change that are similar or even equal in differ-
ent parts of the software system.

The RA method tries to incorporate more details of
changes applied to each piece of software to gain im-
proved results of the analysis. Thus, within RA the com-
parison of changes is not only based on the time of check
in, but also on the author that actually carried out the par-
ticular change. As we will see with the help of RA we can
verify some of the results of CSA and even get better and
fine-grained results. The logical coupling between differ-
ent parts of a system points to structural shortcomings.
Especially, the relations between separate modules may be
an architectural weakness that requires attention.

5.1 The Relation Analysis (RA) approach

While examining the system for common change patterns
the attention was drawn to the modularity of the software
system. The evolvability can be preserved or improved

with a well-formed architecture composed of self-
contained software components.

Thus, an ideal situation would allow changing each
component independently of the others. If changes are
necessary, the smallest possible set of components should
be involved in a particular change. In the Relation Analy-
sis (RA) single classes and their historical development
are investigated in detail. The evolution of classes is com-
pared to find those classes that were most frequently
changed together. Therefore, the changes of each class are
compared with the changes of other classes. This compari-
son is based on the author name and the date and time of
the check in of a particular change. Each change was
considered based on the exact date and the author of the
change.

This selection was based on the fact that the analyzed
software system was developed with strong ownership of
code. A developer was responsible for a particular part of
the software system. Thus, a necessary change for a re-
quested improvement of the software was carried out by a
single developer. As a result, the comparison of the au-
thors of changes was expected to lead to good results.
Additionally, within RA the date of each change of a class
is compared with the dates of changes of other classes to
discover equal change dates. Dates are compared on
equality, but a time window of four minutes was chosen,
because a check in of a large module takes a while, the
according files may get different time stamps.

All changes that are done on the same date and by the
same author point to a logical coupling. The more such
correspondences can be found between a particular group
of classes the stronger is the postulated relationship. This
logical coupling can be represented as number of common
changes, which defines the “strength” of the logical con-
nection.

The necessary information about changes was extracted
from CVS. An excerpt of a CVS log file is shown in the
following textbox. For each file the name and path is
stored; further some administrative data such as latest
version (head) and the number of releases (total revisions)
are provided. To compare changes of different classes, the
date and author of each change were taken into account for
the Relation Analysis. Other interesting information,
which could be used for a very detailed investigation, can
be the number of added and removed lines of code and the
message, which the author of the change included.

Proceedings of the Sixth International Workshop on Principles of Software Evolution (IWPSE’03)
0-7695-1903-2/02 $17.00 © 2002 IEEE

An interesting aspect of coupling is the distinction be-
tween internal and external links. We define internal cou-
pling as a dependency that happens between classes in
respective parts of the system. E.g. the relations between
classes of a single module and its submodules are defined
as internal couplings. The connections between classes
within this module and any other part of the software like
another module or another subsystem are considered as
external couplings.

With the measures of the relationships between differ-
ent system blocks we try to answer the following queries.
These queries were defined to find outliers to detect archi-
tectural anomalies:
• Which parts of the software system have been

changed together most often?
• How many classes are involved in an external cou-

pling with a particular module?
• Is the internal or the external coupling stronger?
• Do couplings mostly concern internal or external

classes?
• Does a central class exist to which most classes are

related?
• Do some modules have significantly more relations

than other modules?
• Are there outliers of the previous steps of the analysis

(QA, CSA) that cannot be verified by the Relation
Analysis?

• Which couplings can be revealed with the help of RA,
but could not be found with the help of CSA?

• Are there some other suspicious parts of the systems
in RA, which were not recognized within the other 2
steps of the analysis?

As evolvability of the system is a main issue, the attention
is directed towards classes with many changes. On the
average every class in this software system was changed
five times. Thus, we compare only classes which have
more than five changes during their development history.

5.2 Evolution observations

The QA and CSA steps of the evolution analysis—not
described in this paper due to space limitations—revealed
certain structural deficiencies of the analyzed software
system. This section describes the observations within the
Relation Analysis (RA) to analyze a software system much
more fine-grained. In this section we describe the findings
of logical coupling via RA that could not be recovered,
although the Quantitative Analysis (QA) showed interest-
ing change and/or growth rates in the affected parts of the
software system. The results will be analyzed in detail and,
furthermore, we will discuss the strongest relations, which
were found only with the help of the Relation Analysis.
The results will be visualized by graphical representations

5.2.1 Logical coupling based on QA and RA

Two submodules of Subsystem 29 were identified as out-
liers by the Quantitative Analysis. Further, two submod-
ules of Subsystem 13 could not be recognized with CSA
but with QA and RA. So, when we investigate the system
by means of RA it can be shown that there are additional
logical dependencies.

Fig. 1 Couplings of Submodule 13.c.18 (Nodes are
classes and linkage is defined by logical couplings; thick-
ness of lines represents coupling strength)

The information about the evolution of Submodule
13.c.18, depicted in Fig. 1, includes all discovered corre-

Proceedings of the Sixth International Workshop on Principles of Software Evolution (IWPSE’03)
0-7695-1903-2/02 $17.00 © 2002 IEEE

spondences with strengths greater than 8 between classes
of Submodule 13.c.18 and other parts of the software.

In Fig. 1 the focus is on Submodule 13.c.18 meaning
that the picture just shows dependencies pointing from this
Submodule to other classes and Submodules, but not a
complete bi-directional view is provided. The stronger the
dependency is, the thicker is the line connecting two
classes (i.e. nodes). Additionally to the internal relation-
ships, each figure includes the external ones of the ana-
lyzed software part. Again only strong external connec-
tions are shown in the graphical representation. Thus,
external and internal couplings are displayed, whereas the
lower level of strength is chosen to be equal for both
types. In Fig. 1 all couplings with strengths greater than 8
are combined to provide a more homogenous picture.

In Fig. 1 Submodule 13.c.18 has several internal and
external couplings. A crucial point is Class 13.c.18.A that
has strong internal coupling. The strength of the connec-
tion is measured by the number of common check-ins. So,
Class 13.c.18.A was 21 times checked in together with
Class 13.c.18.B and Class 13.c.18.C. Although a relation
with coupling strength of 21 may seem not that important
with respect to the maintenance of the entire software
system, the connection is still strong, as the classes of Fig.
1 change 40 times on average during their evolution.

Class 13.c.18.D is an important outlier, because it has
many internal couplings and additional external couplings
both with Submodule 13.c.5 and Submodule 13.c.21 (with
strength of 9 and 10 common check-ins, respectively).

For external coupling, only 2 classes (i.e. Classes
13.c.18.A and 13.c.18.D) of Submodule 13.c.18 are re-
lated with other parts of the software system. It is notewor-
thy that from a more general point of view Submodule
13.c.18 is several times coupled with Submodule 13.c.21.
All the subsystems involved in the interdependency of
Submodule 13.c.18 were also outliers of the Quantitative
Analysis done in the first step of QCR [14]. So the prior
results were confirmed with RA.

Submodule 13.c.9 was an outlier of the Quantitative
Analysis but could not be filtered out with the Change
Sequence Analysis: it has the third highest changing inten-
sity and a high changing rate. Fig. 2 depicts the relations
of Submodule 13.c.9 that were discovered by means of
RA. Again complementary results were achieved.

The coupling of Submodule 13.c.9 shows a totally dif-
ferent picture than the relationships of other parts of the
software system. Submodule 13.c.9 has more external than
internal links. There are even twice as many external cou-

plings than internal ones. Two classes of Submodule
13.c.9 have only internal relations. The classes of Fig. 2
changed on the average 100 times during the evolution of
the system.

Fig. 2 Couplings of Submodule 13.c.9

Class 13.c.9.C has the most interdependencies of all
classes of Submodule 13.c.9: it has 3 internal and 3 exter-
nal relations whereas the internal couplings are slightly
stronger. Class 13.c.9.E is the only class that has light
relations with Submodule 13.c.18, which is depicted in
Fig. 1.

All three classes of Submodule 13.c.9 that have exter-
nal relationships show a similar behavior: they are each
connected with (three) classes of Submodule 13.c.21. So,
the external coupling from Submodule 13.c.9 to Submod-
ule 13.c.21 is quite intensive and spread over several
classes of 13.c.21. Submodule 13.c.21 itself is already
coupled with Submodule 13.c.18, which was previously
analyzed.

As a result, Submodule 13.c.9 has strong internal cou-
pling (which looks reasonable at first sight) but also sev-
eral external couplings with Submodule 13.c.21 that
should be further investigated for architectural shortcom-
ings or design erosion.

Proceedings of the Sixth International Workshop on Principles of Software Evolution (IWPSE’03)
0-7695-1903-2/02 $17.00 © 2002 IEEE

Fig. 3 Couplings of Submodule 29.a.4

The next part of this section analyses two other submod-
ules that were outliers in the Quantitative Analysis, but for
which no common change sequences were found.
Submodule 29.a.4 is the first and depicted in Fig. 3. The
first outstanding sign is the manifold internal coupling
around the dominating Class 29.a.4.D. Additionally, this
class has strong external couplings with two classes of
Submodule 29.a.5. The strongest relations exist between
Class 29.a.4.D and Classes 29.a.5.A and 29.a.5.B (with
strength 30-35 common check-ins).

The classes of Submodule 29.a.4 that are involved in
the coupling with Submodule 29.a.5 constitute the frame-
work for accessing storage media. These connections are
quite strong compared with the internal relations of Sub-
module 29.a.4. Submodule 29.a.5 on the other hand forms
a dictionary for protocol translation. Submodule 29.a.4
does not only exhibit interdependencies with Submodule
29.a.5, but also with Submodule 29.a.7 (with strength 15).
The link with Submodule 29.a.7 is weaker than the cou-
pling with Submodule 29.a.5, because Class 29.a.4.H
encloses data that is used to display images to the user.
Submodule 29.a.5 is the second submodule that was iden-
tified during CSA, where no common change sequences
could be found, although these submodules were outliers

of QA. When analyzing Submodule 29.a.4 we could al-
ready spot Submodule 29.a.5; there existed some strong
connections between these two submodules (see Fig. 3).

In Fig. 4, again the dependency between Submodule
29.a.5 and Submodule 29.a.4 is evident. Nevertheless, the
internal coupling of Submodule 29.a.5 between Class
29.a.5.A and 29.a.5.B is the strongest relationship (with
strength 64). This is among the strongest couplings meas-
ured with the help of RA; Class 29.a.5.A was checked in
78 times and Class 29.a.5.B 86 times in total.

Fig. 4 Couplings of Submodule 29.a.5

Fig. 4 shows a very symmetric coupling. Both classes of
Submodule 29.a.5 have 10 external couplings. Each class
is coupled with 8 classes of Submodule 29.a.4, once cou-
pled with Submodule 29.a.7 and once with Submodule
29.a.2. In Fig. 3 the focus was on Submodule 29.a.4 and in
Fig. 4 the focus is on Submodule 29.a.5; so both figures
complete our observations about these two Submodules,
one from each direction (focus). The result shows a strong
internal coupling and many external couplings with classes
of Submodule 29.a.4 that should be further investigated.

5.2.2 Couplings based on results of CSA and RA

This section addresses the interdependencies identified by
CSA and RA. During CSA some interesting relationships
were found for Submodule 13.c.5, depicted in Fig. 5.

Proceedings of the Sixth International Workshop on Principles of Software Evolution (IWPSE’03)
0-7695-1903-2/02 $17.00 © 2002 IEEE

Fig. 5 Couplings of Submodule 13.c.5

In Fig. 5 we see many connections inside Submodule
13.c.5. The structure is dominated by the relation of Class
13.c.5.A to Class 13.c.5.B (with strength 78). This repre-
sents the strongest coupling that was identified during RA
across the whole case study. The other entities within
Submodule 13.c.5 gather around these two classes and
produce a star-shaped image.

During CSA the central relation between Class
13.c.5.A and Class 13.c.5.B could not be recognized; both
classes had other changes additional to the changes done
on both classes together. Thus, the change sequences of
these classes had commonalities, but each change se-
quence of these two classes also contained changes in
months different to the change sequence of the other class.
The strongest coupling that could be discovered with CSA
was the connection between Class 13.c.5.O and Class
13.c.5.P. Although they were checked in together only 32
times, these classes were changed always in the same
months of the inspection period.

A strong divergence could be identified between the re-
sults of CSA and RA concerning external dependencies.
CSA identified dependencies between Submodule 13.c.5,
Subsystem 11 and Submodule 13.c.5. However, no de-
pendencies between these two parts can be identified with
the help of RA. A common change sequence of 10 months
linked Module 13.a and Submodule 13.c.5. A logical
coupling between these two entities may be identified
through RA, but this link is very weak, as it contains only
6 common changes.

Within CSA a weak dependency was identified be-
tween Submodule 13.c.5 and Submodule 13.c.14. A com-

mon change sequence of 5 months matched classes in both
submodules. This coupling can be verified with RA (with
strength of 24).

The strongest external dependency of Submodule
13.c.5 is the relation with Submodule 13.c.23. It is the
only coupling that was strong enough to be covered by
Fig. 5. Between Submodule 13.c.23 and Submodule 13.c.5
common check-ins occurred 66 times. Both submodules
contain a class, which changed within each month of the
evaluation period.

Fig. 5 describes only one type of external coupling of
Submodule 13.c.5: the strong relationship with Submodule
13.c.23 via 4 classes. In QA we recognize that Submodule
13.c.23 has a high changing rate and a high changing in-
tensity. This high changing activity was mainly caused by
one class within this submodule which exactly forms the
connection to Submodule 13.c.5.

5.3 Validation of the Relation Analysis

We evaluated our findings to find explanations for the
figures received with the help of RA and, therefore, inte-
grated domain knowledge to evaluate which kind of struc-
tural inadequacy is responsible for the affected part of the
software system.

Submodule 13.c.18 as a self-contained unit provides
the implementation of the printing framework of PACS. It
receives information from the user about the data that
should be printed including the appropriate images and the
requested details to be printed. The printing itself is exe-
cuted as a separate batch process within the application.
For the communication with the user, classes such as
13.c.18.A are necessary. It is interesting that the entire
Submodule 13.c.21 implements many features for the
interaction with users. Thus, the fact that Submodule
13.c.18 has logical coupling with Submodule 13.c.21 is
not unusual. However, Class 13.c.18.D is part of the
threading engine and, therefore, should not be tightly cou-
pled with the user interaction. Especially the necessity to
change classes of the threading engine together with
classes of the user interaction framework is probably an
undesired property of the evolution of the system and the
use of patterns such as the Model-View-Controller (MVC)
should be considered.

Submodule 13.c.5, which is part of the imaging
framework, also has dependencies on Submodule 13.c.18.
The imaging data have to be handled by the printing
framework to send the data to printers. Class 13.c.18.D is
part of the threading engine and should therefore not be
related to the imaging framework.

During the Quantitative Analysis Submodule 13.c.18
could be discovered as the submodule of Module 13.c
with the highest growing and changing rates. These strik-
ing measures were traced to the difficulties of printing to

Proceedings of the Sixth International Workshop on Principles of Software Evolution (IWPSE’03)
0-7695-1903-2/02 $17.00 © 2002 IEEE

many devices with different capabilities. With the help of
RA it is further recognizable that the submodule bears
architectural deficiencies based on the separation of con-
cerns within the software.

Thus, it would probably be necessary that the threading
engine is subject to restructuring or reengineering. A pos-
sible approach could be to extract the threading part of
Submodule 13.c.18 and build a separate component for
threading. Such a component needs a well designed inter-
face that should improve the evolvability of the PACS
software.

Submodule 13.c.9 is another outlier of the Quantitative
Analysis and could not be recognized within the CSA step.
This submodule exhibits high changing rates. The part of
the observations of the RA already outlined that logical
coupling can be noticed in conjunction with Submodule
13.c.9. Four classes of this submodule are coupled in such
a form that a quadrangle of dependencies arises. Each of
these four classes is connected to two other classes of the
quadrangle.

These four classes together with Class 13.c.9.A are the
main factor for the internal links of Submodule 13.c.9.
Class 13.c.9.A has logical coupling with Class 13.c.9.C,
which is one of the classes composing the quadrangle of
dependencies.

Nevertheless, the internal coupling is probably not the
only reason for the high changing values of this submod-
ule. The external coupling of Submodule 13.c.9 is even
more frequent than the internal one. Class 13.c.9.C, Class
13.c.9.D, and Class 13.c.9.E are part of the quadrangular
relations and also form the connection to other submod-
ules. All three classes have logical coupling with Submod-
ule 13.c.21. This submodule was already suspicious during
the previous evaluation of Submodule 13.c.18. Submodule
13.c.21 has dependence with Submodule 13.c.9 as well as
with Submodule 13.c.18.

Each class of Submodule 13.c.9 that shows external
coupling has three strong links with classes of Submodule
13.c.21. The affected classes of Submodule 13.c.9 are part
of the graphical user interface included in Submodule
13.c.9. Additionally, the classes also contain parts of the
implementation of the configuration of Submodule 13.c.9.
As it was already mentioned, Submodule 13.c.21 makes
up a framework for user interaction within PACS. Consid-
ering all the available information we can conclude that
the external relationship of Submodule 13.c.9 is the result
of an architectural flaw. As the graphical user interface
and, therefore, the related framework for user interaction
is frequently changed, it should be separated from the rest
of the application.

Module 29.a is the second largest and contains about
15% of all classes of the entire system. Two submodules
could not be measured by CSA although they provided
high changing values.

By means of RA, Submodule 29.a.4 was already iden-
tified as a module with many internal couplings. Class
29.a.4.D plays a central role and has 6 strong connections
with classes of its own submodule and 2 external relations
with classes of Submodule 29.a.5. Another major point
when considering logical coupling within Submodule
29.a.4 is built up by three classes: Class 29.a.4.E, Class
29.a.4.F, and Class 29.a.4.G. Furthermore, Class 29.a.4.F
and Class 29.a.4.G have external connections to Submod-
ule 29.a.5.

Most classes of Submodule 29.a.4 are involved in the
implementation of a framework for the access of external
storage media. All the classes of Submodule 29.a.4 that
were outlined in the previous paragraphs are part of this
storage framework.

Although all regarded classes build the connection with
Submodule 29.a.5, they implement the access mechanism
to different types of storage media. Submodule 29.a.5
implements a translation mechanism for different proto-
cols. We drew the conclusion that the inheritance hierar-
chy of the classes that form the storage framework could
bear structural shortages and should be rearranged.

The other classes of Submodule 29.a.4 that are in-
volved in the strong coupling of this submodule are im-
plementations of different data structures. One of these
classes is Class 29.a.4.H which is outstanding, because it
has internal dependence on Class 29.a.4.D and external
coupling with Submodule 29.a.7. Thus, this class seems to
play an important role as bridge between the storage
framework and the data structures of Submodule 29.a.4. It
builds a similar data structure as Class 29.a.4.I, although it
does not show relationships with this class. Thus, the data
structures are probably better designed than the storage
mechanism, because they evolve independently from each
other.

Submodule 29.a.5 provides a striking picture: Only
two classes of Submodule 29.a.5 are involved in the inter-
dependence of this submodule. These two classes are
strongly coupled with each other and provide many exter-
nal couplings too. Class 29.a.5.A and Class 29.a.5.B are
connected to a very large quantity of classes. The internal
coupling of Submodule 29.a.5 between these two classes
is very strong, but there are many more external couplings.
Another important fact about the connection structure of
Submodule 29.a.5 is that the image is rather symmetrical.
Each external class that is connected to Class 29.a.5.A has
also a coupling with Class 29.a.5.B.

These results lead to the conclusion that the classes are
representations of two aspects of the same concept. The
hypothesis is confirmed by the fact that one of these two
classes is a large collection of constants, whereas the other
class provides the access mechanisms to these values. A
possible solution to the evolutionary problem of Submod-
ule 29.a.5 could be that the two classes should be inte-

Proceedings of the Sixth International Workshop on Principles of Software Evolution (IWPSE’03)
0-7695-1903-2/02 $17.00 © 2002 IEEE

grated into one single class. However, the size of the
classes contradicts this suggestion, as each class contains
many hundred lines of code. Thus, the entire concept of
Submodule 29.a.5 should be reconsidered and be subject
to reengineering.

The multiple links between Submodule 29.a.5 and
Submodule 29.a.4 are a remarkable architectural charac-
teristic of the studied software system. One of the consid-
erations should be to integrate these two submodules. This
suggestion is further confirmed by the other external cou-
plings of Submodule 29.a.5. This submodule is not only
coupled with Submodule 29.a.5, but also with Submodule
29.a.7 and Submodule 29.a.2. The first attention is drawn
towards Submodule 29.a.7. It is like other external parts of
the software system evolutionary related with both Class
29.a.5.A and Class 29.a.5.B. However, the previous part
describes the relationship of Submodule 29.a.4 with Sub-
module 29.a.7. Thus, perhaps the integration of Submod-
ule 29.a.4 and Submodule 29.a.5 could help to develop a
good external interface to separate the evolution of the
new integrated submodule and other parts of the software.
Then each part could be changed without demanding the
change of too many other system blocks, as the design-for-
change principles suggest.

5.4 Lessons learned

In this section, we discuss certain properties of RA based
on the experiences during the RA of the case study:
• RA combines all levels of decomposition: The Rela-

tion Analysis is based on information concerning
changes applied to single classes. With these smallest
building blocks it is possible to relate parts of the sys-
tem on different decomposition levels with each other.
As the sizes of the different parts on different levels
have large deviations it seems promising to compare
different levels of decomposition with each other, to
receive a better insight into the structure of the soft-
ware system.

• RA reveals many couplings: With the help of RA it
was possible to find logical dependencies. Despite
this high number of findings it seems that no false
positives have been revealed. Many discoveries help
in the architectural reasoning of a broad range of sys-
tem blocks, which may contain structural weaknesses
and draw the attention to those parts that should be
developed carefully.

• Different types of results: The evaluation of the results
gives rise to the assumption that many kinds of struc-
tural deficiencies may be discovered with the help of
RA. Examples of such findings are spaghetti code,
bad inheritance hierarchies, and poorly designed in-
terfaces.

• Most findings based on submodules: In the case study
most couplings that were discovered were located on
the submodule level. Based on the strong deviations
of size on different levels it is interesting to find sub-
modules, which are related based on their historical
development.

• Frequent dependencies between system blocks: RA
revealed many internal and external couplings. Inter-
nal links are likely to point out limitations within
classes. External couplings are even more interesting,
because they may bring to light limitations of the ar-
chitecture of the entire system.

• Visualization simplifies navigation: Due to the huge
base of results as output of the RA method, additional
visualization of the findings would improve the navi-
gation to the system blocks of interest. This visualiza-
tion could be supported by more sophisticated tools.

• Some metrics were beneficial: To spot outliers easily,
metrics based on the attributes used within RA are
helpful. For the evaluation the number of common
check-ins was taken into account. In addition the av-
erage number of check-ins within the inspected part of
the software is useful. Other such metrics could be in-
tegrated to enhance the Relation Analysis.

• Domain knowledge: For the evaluation of the findings
resulting form RA the integration of domain knowl-
edge into the analysis technique is essential. By apply-
ing RA certain problematic points in the architecture
can be found. Then human knowledge has to be in-
corporated into the method to assess the necessity to
revise the discovered part of the software system.

6 Conclusions and future work

In this paper, we described our Relation Analysis that
allows a deep analysis of logical coupling of modules.
Classes as smallest entities are compared based on dates
and authors of changes. With this information, parts of the
system that were changed together can be discovered. The
approach was evaluated on 28 releases of an industrial
Picture Archiving and Communication System (PACS)
consisting of half a million lines of Java Code; for that, we
consider our results as representative.

Release history data stored in CVS enables the detec-
tion of logical coupling of modules across the evolution of
a software system effectively, thereby not analyzing any
piece of source code. Design flaws such as god classes or
spaghetti code could be discovered, although the source
code was not analyzed at all. Additionally, the results of
the case study pointed to architectural weaknesses such as
poorly designed inheritance hierarchies and blurred inter-
faces of modules and submodules. Hence, this approach
seems promising to be studied further.

Proceedings of the Sixth International Workshop on Principles of Software Evolution (IWPSE’03)
0-7695-1903-2/02 $17.00 © 2002 IEEE

Our QCR methodology revealed a large amount and
many different types of architectural shortcomings. Never-
theless, the recall factor seems reasonable as the three
analysis steps regard different aspects of the case study.
The entire methodology provides a good overview of the
system and allows detailed analysis of particular parts. The
graphical representation contributes to understand certain
characteristics of the software structure easily. QCR as a
self-contained methodology allows reasoning about soft-
ware architecture on a macro level, where the historical
data of a system are taken into account. As a result QCR
requires very little data to be kept, rather than dealing with
many thousand lines of source code.

So far, we have used only simple tools in our work. In
the future, we plan to add more sophisticated visualization
capability to enable viewing the identified relationships
with 3-dimensional graphs (e.g. with [17] or [22]).

7 Acknowledgments

We thank our industrial partner that provided all the in-
formation and helped us with the interpretation of the
results. This work was in part supported by the EUREKA
project CAFÉ ip00004 within the ITEA programme and
the Austrian Ministry for Infrastructure, Innovation and
Technology (BMVIT).

8 References
[1] Cederqvist P., “Version Management with CVS,” Network

Theory Ltd., December 2002.
[2] Cubranic D., Murphy G.C., “Hipikat: Recommending

Pertinent Software Development Artifacts,” ICSE 2003,
Portland, IEEE CS Press, May 2003.

[3] Daskalantonakis M.K., “A Practical View of Software
Measurement and Implementation Experiences Within Mo-
torola,” IEEE Transactions on Software Engineering, Vol.
18, No. 11, pp. 998-1010, November 1992.

[4] Eick, S.G., Graves, T.L., Karr, A.F., Mockus, A., Schuster,
P., “Visualizing software changes,” IEEE Transactions on
Software Engineering, 28(4):396-412, April 2002.

[5] Fenton N.E., Pfleeger S.L., Software Metrics—A Rigorous
& Practical Approach, International Thomson Computer
Press, Second Edition, 1996.

[6] Fischer M., Gall H., Pinzger M., “Populating a Release
History Database from Version Control and Bug Tracking
Systems,” International Conference on Software Mainte-
nance, IEEE CS Press, Aug. 2003 (to appear)

[7] Fogel K., “Open Source Development with CVS,” Cariolis
Open Press, November 1999.

[8] Gall H., Jazayeri M., Klösch R., and Trausmuth G., “Soft-
ware evolution observations based on product release his-
tory,” International Conference on Software Maintenance
(ICSM ’97), Bari, Italy, pp.160-166, October 1997.

[9] Gall H., Hajek K., and Jazayeri M., “Detection of logical
coupling based on product release history.” International
Conference on Software Maintenance, IEEE CS Press,
Nov. 1998.

10] Gall H., Jazayeri M., and Riva C., “Visualizing software
release histories: the use of color and third dimension.” In-
ternational Conference on Software Maintenance (ICSM
'99) (Oxford, England), pages 99-108. IEEE CS Press,
Aug. 1999.

[11] Gefen D. and Schneberger S.L. “The Non-Homogeneous
Maintenance Periods: A Case Study of Software Modifi-
cations,” International Conference on Software Main-
tenance, pp. 134-141, November 1996.

[12] Jazayeri M., “On architectural stability and evolution.”
Reliable Software Technologies - Ada-Europe 2002, Vi-
enna, Austria, June 17-21, 2002.

[13] Khoshgoftaar T.M. and Halstead R., “Detection of Fault-
Prone Software Modules During a Spiral Life-Cycle,” In-
ternational Conference on Software Maintenance, pp. 69-
76, November 1996.

[14] Krajewski J., “QCR - A Methodology for Software Evolu-
tion Analysis,” Master’s Thesis, Technical University of
Vienna, April 2003, available at
http://www.infosys.tuwien.ac.at/Teaching/Finished/Master
sTheses/

[15] Lehman M.M., “Programs, life cycles and laws of software
evolution,” Proceedings of the IEEE, pp. 1060-1076, Sep-
tember 1980.

[16] Lehman M.M. and Belady L. A., Program evolution, Aca-
demic Press, London and New York, 1985.

[17] Maletic J.I., Marcus A., and Feng L., “Source Viewer 3D
(sv3D) – A Framework for Software Visualization,” ICSE
2003, Portland, IEEE CS Press, May 2003.

[18] Ohlsson N. and Alberg H., “Predicting Fault-Prone Soft-
ware Modules in Telephone Switches,” IEEE Transactions
on Software Engineering, Vol. 22, No. 12, pp. 886-894,
December 1996.

[19] Pearse T. and Oman P., “Maintainability Measurements on
Industrial Source Code Maintenance Activities,” Interna-
tional Conference on Software Maintenance, pp. 295-313,
October 1995.

[20] Turski W.M., “Reference Model for Smooth Growth of
Software Systems,” IEEE Transactions on Software Engi-
neering, Vol. 22, No. 8, pp. 599-600, August 1996.

[21] Zimmermann T., Diehl S., Zeller A., “How History Justi-
fies System Architecture (or not),” Proceedings of the In-
ternational Workshop on Principles of Software Evolution
(IWPSE 2003), Helsinki, IEEE, September 2003.

[22] Lanza M., “Object-Oriented Reverse Engineering - Coarse-
grained, Fine-grained, and Evolutionary Software Visuali-
zation,” Ph.D. thesis, University of Berne, May 2003.

Proceedings of the Sixth International Workshop on Principles of Software Evolution (IWPSE’03)
0-7695-1903-2/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

