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Abstract 
The dependencies and interrelations between classes and 
modules affect the maintainability of object-oriented sys-
tems. It is therefore important to capture weaknesses of 
the software architecture to make necessary corrections. 
This paper describes a method for software evolution 
analysis. It consists of three complementary steps, which 
form an integrated approach for the reasoning about 
software structures based on historical data: 1) The 
Quantitative Analysis uses version information for the 
assessment of growth and change behavior; 2) the 
Change Sequence Analysis identifies common change 
patterns across all system parts; and 3) the Relation 
Analysis compares classes based on CVS release history 
data and reveals the dependencies within the evolution of 
particular entities. In this paper, we focus on the Relation 
Analysis and discuss its results; it has been validated 
based on empirical data collected from a Concurrent 
Versions System (CVS) covering 28 months of a Picture 
Archiving and Communication System (PACS). Our  soft-
ware evolution analysis approach enabled us to detect 
shortcomings of PACS such as architectural weaknesses, 
poorly designed inheritance hierarchies, or blurred inter-
faces of modules. 

1 Introduction 

To evaluate the impact of changes over several releases of 
a software system, we need to understand the relationships 
(i.e. dependencies) among modules that compose the sys-
tem. Most methods for identifying dependencies are based 
on metrics such as coupling and cohesion measures. There 
are two basic problems with these measures: 1) handling 
large code size per system release; and 2) recovering dy-
namic relations. 

In fact, some dependencies are not written down either 
in documentation or in the code. The software engineer 
just “knows” that to make a change of a certain type, 
he/she has to change a certain set of modules. 

Code-based measures reveal syntactic dependencies 
and what we are really interested in is logical dependen-

cies among modules. The purpose of this paper is to pre-
sent an approach to uncover such logical dependencies by 
analyzing the release history of a system. Release histories 
contain a wealth of information about the software struc-
ture. The task is just to analyze them and uncover the 
information. 

The evolution of the studied software system was inves-
tigated on the level of classes; so classes constitute the 
measured entities for our analysis. The research on soft-
ware engineering of the last few years suggests that not 
only the source code with its number of lines of code pro-
vides enough information about the complexity of a sys-
tem, but we have to investigate on modules and programs 
for the measurement of software systems. Accordingly, 
classes as basic building blocks of object-oriented systems 
provide a good decomposition level for the assessment of 
the size and evolution of a system. Additionally, this level 
can be used to evaluate functional enhancements. 

Our methodology, QCR, investigates the historical de-
velopment of classes. The time when new classes are 
added to the system and when existing classes are changed 
has to be measured. Attributes related with changes of 
classes, such as the author or the date of a change, are 
additional inputs for our software evolution analysis ap-
proach. Changes made to the classes of the studied soft-
ware system were inspected to reveal common change 
behavior. Such common change behavior of different parts 
of the system during the evolution is referred to as logical 
coupling. Through the assessment of classes we can evalu-
ate modules or even the entire system, as they build up a 
hierarchical organization of classes. Thus, the software 
system as a whole can be analyzed, but also the system 
parts may be investigated and related to each other. 

The case study used for our analyses was a Picture Ar-
chiving and Communication System (PACS), implemented 
in Java and consisting of half a million lines of code. The 
evolution of PACS was observed for a period of 28 
months. All actions to the code base within this inspection 
period were noticed to serve as input for the described 
methodology. With our approach we were able to identify 
architectural shortcomings of the software system. Exam-
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ples for revealed architectural weaknesses were poorly 
designed interfaces, redundancy of functionality, god-
classes with several thousand lines of code, and many 
others.  

The defined methodology is composed of 3 comple-
mentary techniques: Quantitative Analysis focusing on 
observing change and growth rates, Change Sequence 
Analysis revealing parts with common change history, and 
Relation Analysis recovering dependencies by change-
related attributes. The results of each technique are inputs 
for the other ones to define an incremental methodology 
where the results are improved in each step. Furthermore, 
each step provides new findings that have to be evaluated 
as well. All three techniques are examined during the 
evolution of the software within the inspection period.  

The focus of this paper is on the Relation Analysis; re-
sults of the other two steps are described only to the extent 
required to understand the whole software evolution 
analysis results. Details of the other steps can be found in 
[14]. 

To validate the accuracy of these logical couplings (i.e. 
module dependencies) identified by our technique, we 
validated our findings with the software developers of 
PACS. The results have shown that our approach is prom-
ising in identifying (otherwise hidden) logical couplings 
among modules across several releases. Such modules are 
candidates for restructuring or reengineering. The tech-
nique requires very little data to be kept for each release of 
a system. Rather than dealing with millions of lines of 
code, it works with structural information about programs, 
modules, and subsystems, together with their version num-
bers and change information for a release. Such release 
data is both easy to compute and usually available in a 
company. 

2 Related work 

Based on the findings in [15,16,20], our Quantitative 
Analysis [8] and Change Sequence Analysis [9] uses mod-
ules as our unit of investigations, rather than the source 
code. Our goal is to identify logical coupling of modules 
that is otherwise hidden in the source code in terms of 
change patterns [9,12]. If programs change together across 
module or subsystem boundaries, the decomposition struc-
ture of the application should be reconsidered and possibly 
restructured or reengineered. In this work classes were our 
modules for the investigations. 

Related approaches differ from our work in that they 
mainly focus on a micro-level to analyze the evolution of a 
software system: the source code is analyzed and source 
code metrics are used as indicators of the system’s quality 
and complexity [19]. Other approaches identify fault-
prone modules using statistical techniques based on design 
metrics [20] and discriminant analysis [13,18]. Fault and 

defect metrics are used for in-process project control and 
for process improvement over time in [3]. 

Coupling and cohesion measures are a way to measure 
structural cohesiveness of a design. The main purpose is to 
evaluate how maintainable a design and resulting imple-
mentation are, and to guide improvement efforts. The 
basic idea is that the more dependencies that exist among 
modules, the less maintainable the system is because a 
change in one module will necessitate changes in depend-
ent modules. Approaches to measuring module dependen-
cies fall into two categories according to the information 
on which it is based:  

• code-level approaches measure coupling based on 
analysis of source code; naturally, such measures can 
only be made after the code has been written. 

• predictive measures try to measure coupling based on 
design information; such approaches attempt to 
evaluate the complexity of the system before the 
code has been written. 

Our approach attempts to measure coupling based on 
analysis of multiple releases of a system. This approach is 
based on observed change behavior of modules in a sys-
tem and may be categorized as retrospective. Our meas-
ures may be used not only as coupling measures to guide 
restructuring efforts but also to validate the effectiveness 
of predictive and code-level coupling measures [8,9, 
10,12]. 

Other related work analyzes the structure and the archi-
tecture of software systems. Methods for evolutionary 
architectural assessment such as [21] can be used as input 
for restructuring or reengineering activities.  

Visualization approaches such as software change per-
spectives [4], sv3D [17], or evolutionary visualization [22] 
represent software by visualizing source code and change 
information in different ways.  

The remainder of the paper is organized as follows: In 
Section 3 we describe the case study. Section 4 describes 
our approach for identifying logical coupling among mod-
ules based on CVS release history data. We report on our 
results in Section 5 and draw some conclusions and point 
out future work in Section 6. 

3 The case study 

A Picture Archiving and Communication System (PACS) 
was selected as case study for our approach. It is imple-
mented in Java and different types of information have to 
be maintained: there are files that contain the source code 
of the particular Java classes. These Java classes have to 
be supported by configuration files, as the runtime behav-
ior of the software system also depends on these configu-
ration files; nevertheless, configuration information is 
differently maintained than source code. 
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The application development process also includes 
other types of files such as images that can be used as 
icons in an application or as background image of boxes 
and buttons. Such files are also necessary for the applica-
tion but are quite static and are often just replaced instead 
of maintained. 

As a result, our analysis concentrates on the Java 
source code to allow reasoning about architectural weak-
nesses of the software system. The metrics that are used 
for the identification of outliers, which may indicate struc-
tural problems, are therefore based on the files that contain 
Java classes only. 

As inspection period for our software evolution analy-
sis we selected 28 months from April 2000 until July 2002 
as during this period the main parts of the application 
existed. At the beginning of the inspection period the 
studied PACS contained approximately 2.000 classes and 
at the end it had more than 5.500 classes. 

The information of the whole application is maintained 
with the help of CVS. The software structure of the PACS 
is a tree hierarchy. The top level represents the system 
level. At the next level the application is composed of 
different subsystems. All subsystems may be viewed as 
separate projects. All these subsystems encapsulate some 
aspects of the whole application such as the viewing unit, 
the archiving process or extensions to the viewing unit. 
These extensions add diagnostic features to the viewing 
application. 

The entities of the subsystem level are further divided 
into modules. These modules may additionally contain 
submodules. At the lowest level of this hierarchical struc-
ture are the Java classes. These contain the implementa-
tion of the application features. For example, 13.c.21.A 
denotes Class A in Submodule 21 of Module c in Subsys-
tem 13. The units of our software evolution analysis are 
classes. Thus, for example, the size of a subsystem, mod-
ule or submodule is measured on the basis of classes. Also 
changes are tracked on the basis of classes. The case study 
is composed of 35 subsystems, each containing between 
one and 14 modules. Modules are further subdivided in up 
to 29 submodules each; between 1 and 196 classes are 
assembled into a submodule. As subsystems vary much in 
size, several submodules are even larger than the smallest 
subsystems. 

With the help of the hierarchical structure of the soft-
ware system the vendor can support entire product fami-
lies. A PACS may contain many different workstations 
that support different features. Some could be used as 
viewing units only, where a doctor can view X-ray pic-
tures of a patient and draw some conclusions from them. 
Other workstations may additionally provide diagnostic 
features, i.e., to allow a doctor to change the images, mark 
a particular region of an image to show a colleague where 
he recognized a problem, or sort the images and arrange 

them into new sequences to support further diagnosis. 
However, the system includes more than just workstations. 
An archive is necessary to store the X-ray images and the 
administrative information. The data of the images has to 
be received from X-ray recorders. The images are as-
signed to different patients, where information for each 
patient has to be kept and maintained. Thus, products with 
different capabilities may by assemble to build up a prod-
uct family. 

3.1 Release history data in CVS  

The data about the evolution of the studied software was 
taken from a Concurrent Versions System (CVS). CVS 
allows handling of different versions of files in a cooperat-
ing team of developers. Each member of such a co-
operating team can check out some files, change them and 
then check them in again. When the files are checked in, 
CVS merges the newly added content to build up a consis-
tent view of the whole work [7]. 

All operations that are performed with the help of CVS 
are logged automatically by the Concurrent Versions Sys-
tem. Thus, the historical development of files, which are 
maintained by CVS, is traced automatically and may be 
viewed with the help of appropriate CVS commands. 
These commands provide information about the history in 
many different levels of granularity. On the one hand CVS 
allows for every line of any file to find out in which re-
lease the particular line was introduced. On the other hand 
it is possible to get informed when an entire file changed 
its release number. Every time a file is change and 
checked in into CVS, the release number of this file is 
incremented. Thus, changes of files may be tracked 
through the release numbers [1].  

For each change of a file administrative data is col-
lected by CVS (date, time as hours and minutes, the au-
thor, the release number, the file name and the path asso-
ciated with a single change, etc.). Based on this informa-
tion a time sequence analysis is possible, which can be 
enhanced with additional attributes such as the author of a 
change. As a result, the first challenge was to extract use-
ful historical information to reason about architectural 
deficiencies of the software system. 

4 The QCR approach 

In this section, we give an overview of our QCR method-
ology for identifying common change histories among 
modules and revealing hidden dependencies among them. 
To do that, we define 3 techniques that use the CVS data. 
We give an overview of the 3 techniques here and describe 
one of them in detail in this paper. 
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1. The Quantitative Analysis (QA) analyzes the change 
and growth rates of modules across releases and pro-
vides indicators for noteworthy change or growth in-
tensities (e.g. outliers).  

2. The Change Sequence Analysis (CSA) identifies com-
mon change histories of modules. Each change of a 
module (reflected in a change of its version number) is 
related to the system level (with system release se-
quence numbers). All changes of a module can then be 
viewed on the system level and put together to form a 
change sequence. A change sequence for a module 
shows the releases in which the module has been 
changed, e.g. <1,2,5,9,15>. Such change sequences al-
low comparing different modules in terms of their 
change history and identify common “change pat-
terns.” The output of the CSA process is a set of logi-
cal couplings among specific modules that follow the 
same change pattern. For details we refer to [9]. 

3. The Relation Analysis (RA) compares modules (i.e. 
classes) based on CVS change history information and 
reveals module dependencies. RA is based on the pre-
viously developed QA and CSA; it enhances and com-
plements them.  

The complete QCR results of the case study can be found 
in [14]. In the following, we are focusing on the Relation 
Analysis as the main contribution of this paper.  

5 Relation Analysis (RA) 

The Relation Analysis (RA) was developed to complement 
the Change Sequence Analysis (CSA). Both analyses sup-
port the evaluation of a software system based on histori-
cal module interdependencies. Logical coupling refers to 
patterns of change that are similar or even equal in differ-
ent parts of the software system.  

The RA method tries to incorporate more details of 
changes applied to each piece of software to gain im-
proved results of the analysis. Thus, within RA the com-
parison of changes is not only based on the time of check 
in, but also on the author that actually carried out the par-
ticular change. As we will see with the help of RA we can 
verify some of the results of CSA and even get better and 
fine-grained results. The logical coupling between differ-
ent parts of a system points to structural shortcomings. 
Especially, the relations between separate modules may be 
an architectural weakness that requires attention. 

5.1 The Relation Analysis (RA) approach 

While examining the system for common change patterns 
the attention was drawn to the modularity of the software 
system. The evolvability can be preserved or improved 

with a well-formed architecture composed of self-
contained software components.  

Thus, an ideal situation would allow changing each 
component independently of the others. If changes are 
necessary, the smallest possible set of components should 
be involved in a particular change. In the Relation Analy-
sis (RA) single classes and their historical development 
are investigated in detail. The evolution of classes is com-
pared to find those classes that were most frequently 
changed together. Therefore, the changes of each class are 
compared with the changes of other classes. This compari-
son is based on the author name and the date and time of 
the check in of a particular change. Each change was 
considered based on the exact date and the author of the 
change.  

This selection was based on the fact that the analyzed 
software system was developed with strong ownership of 
code. A developer was responsible for a particular part of 
the software system. Thus, a necessary change for a re-
quested improvement of the software was carried out by a 
single developer. As a result, the comparison of the au-
thors of changes was expected to lead to good results. 
Additionally, within RA the date of each change of a class 
is compared with the dates of changes of other classes to 
discover equal change dates. Dates are compared on 
equality, but a time window of four minutes was chosen, 
because a check in of a large module takes a while, the 
according files may get different time stamps. 

All changes that are done on the same date and by the 
same author point to a logical coupling. The more such 
correspondences can be found between a particular group 
of classes the stronger is the postulated relationship. This 
logical coupling can be represented as number of common 
changes, which defines the “strength” of the logical con-
nection. 

The necessary information about changes was extracted 
from CVS. An excerpt of a CVS log file is shown in the 
following textbox. For each file the name and path is 
stored; further some administrative data such as latest 
version (head) and the number of releases (total revisions) 
are provided. To compare changes of different classes, the 
date and author of each change were taken into account for 
the Relation Analysis. Other interesting information, 
which could be used for a very detailed investigation, can 
be the number of added and removed lines of code and the 
message, which the author of the change included. 
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An interesting aspect of coupling is the distinction be-
tween internal and external links. We define internal cou-
pling as a dependency that happens between classes in 
respective parts of the system. E.g. the relations between 
classes of a single module and its submodules are defined 
as internal couplings. The connections between classes 
within this module and any other part of the software like 
another module or another subsystem are considered as 
external couplings. 

With the measures of the relationships between differ-
ent system blocks we try to answer the following queries. 
These queries were defined to find outliers to detect archi-
tectural anomalies: 
• Which parts of the software system have been 

changed together most often? 
• How many classes are involved in an external cou-

pling with a particular module? 
• Is the internal or the external coupling stronger? 
• Do couplings mostly concern internal or external 

classes? 
• Does a central class exist to which most classes are 

related? 
• Do some modules have significantly more relations 

than other modules? 
• Are there outliers of the previous steps of the analysis 

(QA, CSA) that cannot be verified by the Relation 
Analysis? 

• Which couplings can be revealed with the help of RA, 
but could not be found with the help of CSA? 

• Are there some other suspicious parts of the systems 
in RA, which were not recognized within the other 2 
steps of the analysis? 

As evolvability of the system is a main issue, the attention 
is directed towards classes with many changes. On the 
average every class in this software system was changed 
five times. Thus, we compare only classes which have 
more than five changes during their development history. 

5.2 Evolution observations 

The QA and CSA steps of the evolution analysis—not   
described in this paper due to space limitations—revealed 
certain structural deficiencies of the analyzed software 
system. This section describes the observations within the 
Relation Analysis (RA) to analyze a software system much 
more fine-grained. In this section we describe the findings 
of logical coupling via RA that could not be recovered, 
although the Quantitative Analysis (QA) showed interest-
ing change and/or growth rates in the affected parts of the 
software system. The results will be analyzed in detail and, 
furthermore, we will discuss the strongest relations, which 
were found only with the help of the Relation Analysis. 
The results will be visualized by graphical representations 

5.2.1 Logical coupling based on QA and RA 

Two submodules of Subsystem 29 were identified as out-
liers by the Quantitative Analysis. Further, two submod-
ules of Subsystem 13 could not be recognized with CSA 
but with QA and RA. So, when we investigate the system 
by means of RA it can be shown that there are additional 
logical dependencies. 

Fig. 1 Couplings of Submodule 13.c.18 (Nodes are 
classes and linkage is defined by logical couplings; thick-
ness of lines represents coupling strength) 

The information about the evolution of Submodule 
13.c.18, depicted in Fig. 1, includes all discovered corre-
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spondences with strengths greater than 8 between classes 
of Submodule 13.c.18 and other parts of the software. 

In Fig. 1 the focus is on Submodule 13.c.18 meaning 
that the picture just shows dependencies pointing from this 
Submodule to other classes and Submodules, but not a 
complete bi-directional view is provided. The stronger the 
dependency is, the thicker is the line connecting two 
classes (i.e. nodes). Additionally to the internal relation-
ships, each figure includes the external ones of the ana-
lyzed software part. Again only strong external connec-
tions are shown in the graphical representation. Thus, 
external and internal couplings are displayed, whereas the 
lower level of strength is chosen to be equal for both 
types. In Fig. 1 all couplings with strengths greater than 8 
are combined to provide a more homogenous picture. 

In Fig. 1 Submodule 13.c.18 has several internal and 
external couplings. A crucial point is Class 13.c.18.A that 
has strong internal coupling. The strength of the connec-
tion is measured by the number of common check-ins. So, 
Class 13.c.18.A was 21 times checked in together with 
Class 13.c.18.B and Class 13.c.18.C. Although a relation 
with coupling strength of 21 may seem not that important 
with respect to the maintenance of the entire software 
system, the connection is still strong, as the classes of Fig. 
1 change 40 times on average during their evolution. 

Class 13.c.18.D is an important outlier, because it has 
many internal couplings and additional external couplings 
both with Submodule 13.c.5 and Submodule 13.c.21 (with 
strength of 9 and 10 common check-ins, respectively). 

For external coupling, only 2 classes (i.e. Classes 
13.c.18.A and 13.c.18.D) of Submodule 13.c.18 are re-
lated with other parts of the software system. It is notewor-
thy that from a more general point of view Submodule 
13.c.18 is several times coupled with Submodule 13.c.21. 
All the subsystems involved in the interdependency of 
Submodule 13.c.18 were also outliers of the Quantitative 
Analysis done in the first step of QCR [14]. So the prior 
results were confirmed with RA. 

Submodule 13.c.9 was an outlier of the Quantitative 
Analysis but could not be filtered out with the Change 
Sequence Analysis: it has the third highest changing inten-
sity and a high changing rate. Fig. 2 depicts the relations 
of Submodule 13.c.9 that were discovered by means of 
RA. Again complementary results were achieved.  

The coupling of Submodule 13.c.9 shows a totally dif-
ferent picture than the relationships of other parts of the 
software system. Submodule 13.c.9 has more external than 
internal links. There are even twice as many external cou-

plings than internal ones. Two classes of Submodule 
13.c.9 have only internal relations. The classes of Fig. 2 
changed on the average 100 times during the evolution of 
the system. 

Fig. 2 Couplings of Submodule 13.c.9 

Class 13.c.9.C has the most interdependencies of all 
classes of Submodule 13.c.9: it has 3 internal and 3 exter-
nal relations whereas the internal couplings are slightly 
stronger. Class 13.c.9.E is the only class that has light 
relations with Submodule 13.c.18, which is depicted in 
Fig. 1. 

All three classes of Submodule 13.c.9 that have exter-
nal relationships show a similar behavior: they are each 
connected with (three) classes of Submodule 13.c.21. So, 
the external coupling from Submodule 13.c.9 to Submod-
ule 13.c.21 is quite intensive and spread over several 
classes of 13.c.21. Submodule 13.c.21 itself is already 
coupled with Submodule 13.c.18, which was previously 
analyzed.  

As a result, Submodule 13.c.9 has strong internal cou-
pling (which looks reasonable at first sight) but also sev-
eral external couplings with Submodule 13.c.21 that 
should be further investigated for architectural shortcom-
ings or design erosion.  
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Fig. 3 Couplings of Submodule 29.a.4 

The next part of this section analyses two other submod-
ules that were outliers in the Quantitative Analysis, but for 
which no common change sequences were found. 
Submodule 29.a.4 is the first and depicted in Fig. 3. The 
first outstanding sign is the manifold internal coupling 
around the dominating Class 29.a.4.D. Additionally, this 
class has strong external couplings with two classes of 
Submodule 29.a.5. The strongest relations exist between 
Class 29.a.4.D and Classes 29.a.5.A and 29.a.5.B (with 
strength 30-35 common check-ins). 

The classes of Submodule 29.a.4 that are involved in 
the coupling with Submodule 29.a.5 constitute the frame-
work for accessing storage media. These connections are 
quite strong compared with the internal relations of Sub-
module 29.a.4. Submodule 29.a.5 on the other hand forms 
a dictionary for protocol translation. Submodule 29.a.4 
does not only exhibit interdependencies with Submodule 
29.a.5, but also with Submodule 29.a.7 (with strength 15). 
The link with Submodule 29.a.7 is weaker than the cou-
pling with Submodule 29.a.5, because Class 29.a.4.H 
encloses data that is used to display images to the user. 
Submodule 29.a.5 is the second submodule that was iden-
tified during CSA, where no common change sequences 
could be found, although these submodules were outliers 

of QA. When analyzing Submodule 29.a.4 we could al-
ready spot Submodule 29.a.5; there existed some strong 
connections between these two submodules (see Fig. 3). 

In Fig. 4, again the dependency between Submodule 
29.a.5 and Submodule 29.a.4 is evident. Nevertheless, the 
internal coupling of Submodule 29.a.5 between Class 
29.a.5.A and 29.a.5.B is the strongest relationship (with 
strength 64). This is among the strongest couplings meas-
ured with the help of RA; Class 29.a.5.A was checked in 
78 times and Class 29.a.5.B 86 times in total.  

Fig. 4 Couplings of Submodule 29.a.5 

Fig. 4 shows a very symmetric coupling. Both classes of 
Submodule 29.a.5 have 10 external couplings. Each class 
is coupled with 8 classes of Submodule 29.a.4, once cou-
pled with Submodule 29.a.7 and once with Submodule 
29.a.2. In Fig. 3 the focus was on Submodule 29.a.4 and in 
Fig. 4 the focus is on Submodule 29.a.5; so both figures 
complete our observations about these two Submodules, 
one from each direction (focus). The result shows a strong 
internal coupling and many external couplings with classes 
of Submodule 29.a.4 that should be further investigated.  

5.2.2 Couplings based on results of CSA and RA 

This section addresses the interdependencies identified by 
CSA and RA. During CSA some interesting relationships 
were found for Submodule 13.c.5, depicted in Fig. 5. 
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Fig. 5 Couplings of Submodule 13.c.5 

In Fig. 5 we see many connections inside Submodule 
13.c.5. The structure is dominated by the relation of Class 
13.c.5.A to Class 13.c.5.B (with strength 78). This repre-
sents the strongest coupling that was identified during RA 
across the whole case study. The other entities within 
Submodule 13.c.5 gather around these two classes and 
produce a star-shaped image.  

During CSA the central relation between Class 
13.c.5.A and Class 13.c.5.B could not be recognized; both 
classes had other changes additional to the changes done 
on both classes together. Thus, the change sequences of 
these classes had commonalities, but each change se-
quence of these two classes also contained changes in 
months different to the change sequence of the other class. 
The strongest coupling that could be discovered with CSA 
was the connection between Class 13.c.5.O and Class 
13.c.5.P. Although they were checked in together only 32 
times, these classes were changed always in the same 
months of the inspection period. 

A strong divergence could be identified between the re-
sults of CSA and RA concerning external dependencies. 
CSA identified dependencies between Submodule 13.c.5, 
Subsystem 11 and Submodule 13.c.5. However, no de-
pendencies between these two parts can be identified with 
the help of RA. A common change sequence of 10 months 
linked Module 13.a and Submodule 13.c.5. A logical 
coupling between these two entities may be identified 
through RA, but this link is very weak, as it contains only 
6 common changes. 

Within CSA a weak dependency was identified be-
tween Submodule 13.c.5 and Submodule 13.c.14. A com-

mon change sequence of 5 months matched classes in both 
submodules. This coupling can be verified with RA (with 
strength of 24). 

The strongest external dependency of Submodule 
13.c.5 is the relation with Submodule 13.c.23. It is the 
only coupling that was strong enough to be covered by 
Fig. 5. Between Submodule 13.c.23 and Submodule 13.c.5 
common check-ins occurred 66 times. Both submodules 
contain a class, which changed within each month of the 
evaluation period. 

Fig. 5 describes only one type of external coupling of 
Submodule 13.c.5: the strong relationship with Submodule 
13.c.23 via 4 classes. In QA we recognize that Submodule 
13.c.23 has a high changing rate and a high changing in-
tensity. This high changing activity was mainly caused by 
one class within this submodule which exactly forms the 
connection to Submodule 13.c.5. 

5.3 Validation of the Relation Analysis 

We evaluated our findings to find explanations for the 
figures received with the help of RA and, therefore, inte-
grated domain knowledge to evaluate which kind of struc-
tural inadequacy is responsible for the affected part of the 
software system.  

Submodule 13.c.18 as a self-contained unit provides 
the implementation of the printing framework of PACS. It 
receives information from the user about the data that 
should be printed including the appropriate images and the 
requested details to be printed. The printing itself is exe-
cuted as a separate batch process within the application. 
For the communication with the user, classes such as 
13.c.18.A are necessary. It is interesting that the entire 
Submodule 13.c.21 implements many features for the 
interaction with users. Thus, the fact that Submodule 
13.c.18 has logical coupling with Submodule 13.c.21 is 
not unusual. However, Class 13.c.18.D is part of the 
threading engine and, therefore, should not be tightly cou-
pled with the user interaction. Especially the necessity to 
change classes of the threading engine together with 
classes of the user interaction framework is probably an 
undesired property of the evolution of the system and the 
use of patterns such as the Model-View-Controller (MVC) 
should be considered. 

Submodule 13.c.5, which is part of the imaging 
framework, also has dependencies on Submodule 13.c.18. 
The imaging data have to be handled by the printing 
framework to send the data to printers. Class 13.c.18.D is 
part of the threading engine and should therefore not be 
related to the imaging framework.  

During the Quantitative Analysis Submodule 13.c.18 
could be discovered as the submodule of Module 13.c 
with the highest growing and changing rates. These strik-
ing measures were traced to the difficulties of printing to 
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many devices with different capabilities. With the help of 
RA it is further recognizable that the submodule bears 
architectural deficiencies based on the separation of con-
cerns within the software. 

Thus, it would probably be necessary that the threading 
engine is subject to restructuring or reengineering. A pos-
sible approach could be to extract the threading part of 
Submodule 13.c.18 and build a separate component for 
threading. Such a component needs a well designed inter-
face that should improve the evolvability of the PACS 
software. 

Submodule 13.c.9 is another outlier of the Quantitative 
Analysis and could not be recognized within the CSA step. 
This submodule exhibits high changing rates. The part of 
the observations of the RA already outlined that logical 
coupling can be noticed in conjunction with Submodule 
13.c.9. Four classes of this submodule are coupled in such 
a form that a quadrangle of dependencies arises. Each of 
these four classes is connected to two other classes of the 
quadrangle. 

These four classes together with Class 13.c.9.A are the 
main factor for the internal links of Submodule 13.c.9. 
Class 13.c.9.A has logical coupling with Class 13.c.9.C, 
which is one of the classes composing the quadrangle of 
dependencies.  

Nevertheless, the internal coupling is probably not the 
only reason for the high changing values of this submod-
ule. The external coupling of Submodule 13.c.9 is even 
more frequent than the internal one. Class 13.c.9.C, Class 
13.c.9.D, and Class 13.c.9.E are part of the quadrangular 
relations and also form the connection to other submod-
ules. All three classes have logical coupling with Submod-
ule 13.c.21. This submodule was already suspicious during 
the previous evaluation of Submodule 13.c.18. Submodule 
13.c.21 has dependence with Submodule 13.c.9 as well as 
with Submodule 13.c.18.  

Each class of Submodule 13.c.9 that shows external 
coupling has three strong links with classes of Submodule 
13.c.21. The affected classes of Submodule 13.c.9 are part 
of the graphical user interface included in Submodule 
13.c.9. Additionally, the classes also contain parts of the 
implementation of the configuration of Submodule 13.c.9. 
As it was already mentioned, Submodule 13.c.21 makes 
up a framework for user interaction within PACS. Consid-
ering all the available information we can conclude that 
the external relationship of Submodule 13.c.9 is the result 
of an architectural flaw. As the graphical user interface 
and, therefore, the related framework for user interaction 
is frequently changed, it should be separated from the rest 
of the application. 

Module 29.a is the second largest and contains about 
15% of all classes of the entire system. Two submodules 
could not be measured by CSA although they provided 
high changing values.  

By means of RA, Submodule 29.a.4 was already iden-
tified as a module with many internal couplings. Class 
29.a.4.D plays a central role and has 6 strong connections 
with classes of its own submodule and 2 external relations 
with classes of Submodule 29.a.5. Another major point 
when considering logical coupling within Submodule 
29.a.4 is built up by three classes: Class 29.a.4.E, Class 
29.a.4.F, and Class 29.a.4.G. Furthermore, Class 29.a.4.F 
and Class 29.a.4.G have external connections to Submod-
ule 29.a.5. 

Most classes of Submodule 29.a.4 are involved in the 
implementation of a framework for the access of external 
storage media. All the classes of Submodule 29.a.4 that 
were outlined in the previous paragraphs are part of this 
storage framework. 

Although all regarded classes build the connection with 
Submodule 29.a.5, they implement the access mechanism 
to different types of storage media. Submodule 29.a.5 
implements a translation mechanism for different proto-
cols. We drew the conclusion that the inheritance hierar-
chy of the classes that form the storage framework could 
bear structural shortages and should be rearranged. 

The other classes of Submodule 29.a.4 that are in-
volved in the strong coupling of this submodule are im-
plementations of different data structures. One of these 
classes is Class 29.a.4.H which is outstanding, because it 
has internal dependence on Class 29.a.4.D and external 
coupling with Submodule 29.a.7. Thus, this class seems to 
play an important role as bridge between the storage 
framework and the data structures of Submodule 29.a.4. It 
builds a similar data structure as Class 29.a.4.I, although it 
does not show relationships with this class. Thus, the data 
structures are probably better designed than the storage 
mechanism, because they evolve independently from each 
other. 

Submodule 29.a.5 provides a striking picture: Only 
two classes of Submodule 29.a.5 are involved in the inter-
dependence of this submodule. These two classes are 
strongly coupled with each other and provide many exter-
nal couplings too. Class 29.a.5.A and Class 29.a.5.B are 
connected to a very large quantity of classes. The internal 
coupling of Submodule 29.a.5 between these two classes 
is very strong, but there are many more external couplings. 
Another important fact about the connection structure of 
Submodule 29.a.5 is that the image is rather symmetrical. 
Each external class that is connected to Class 29.a.5.A has 
also a coupling with Class 29.a.5.B.  

These results lead to the conclusion that the classes are 
representations of two aspects of the same concept. The 
hypothesis is confirmed by the fact that one of these two 
classes is a large collection of constants, whereas the other 
class provides the access mechanisms to these values. A 
possible solution to the evolutionary problem of Submod-
ule 29.a.5 could be that the two classes should be inte-
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grated into one single class. However, the size of the 
classes contradicts this suggestion, as each class contains 
many hundred lines of code. Thus, the entire concept of 
Submodule 29.a.5 should be reconsidered and be subject 
to reengineering.  

The multiple links between Submodule 29.a.5 and 
Submodule 29.a.4 are a remarkable architectural charac-
teristic of the studied software system. One of the consid-
erations should be to integrate these two submodules. This 
suggestion is further confirmed by the other external cou-
plings of Submodule 29.a.5. This submodule is not only 
coupled with Submodule 29.a.5, but also with Submodule 
29.a.7 and Submodule 29.a.2. The first attention is drawn 
towards Submodule 29.a.7. It is like other external parts of 
the software system evolutionary related with both Class 
29.a.5.A and Class 29.a.5.B. However, the previous part 
describes the relationship of Submodule 29.a.4 with Sub-
module 29.a.7. Thus, perhaps the integration of Submod-
ule 29.a.4 and Submodule 29.a.5 could help to develop a 
good external interface to separate the evolution of the 
new integrated submodule and other parts of the software. 
Then each part could be changed without demanding the 
change of too many other system blocks, as the design-for-
change principles suggest. 

5.4 Lessons learned 

In this section, we discuss certain properties of RA based 
on the experiences during the RA of the case study: 
• RA combines all levels of decomposition: The Rela-

tion Analysis is based on information concerning 
changes applied to single classes. With these smallest 
building blocks it is possible to relate parts of the sys-
tem on different decomposition levels with each other. 
As the sizes of the different parts on different levels 
have large deviations it seems promising to compare 
different levels of decomposition with each other, to 
receive a better insight into the structure of the soft-
ware system. 

• RA reveals many couplings: With the help of RA it 
was possible to find logical dependencies. Despite 
this high number of findings it seems that no false 
positives have been revealed. Many discoveries help 
in the architectural reasoning of a broad range of sys-
tem blocks, which may contain structural weaknesses 
and draw the attention to those parts that should be 
developed carefully. 

• Different types of results: The evaluation of the results 
gives rise to the assumption that many kinds of struc-
tural deficiencies may be discovered with the help of 
RA. Examples of such findings are spaghetti code, 
bad inheritance hierarchies, and poorly designed in-
terfaces. 

• Most findings based on submodules: In the case study 
most couplings that were discovered were located on 
the submodule level. Based on the strong deviations 
of size on different levels it is interesting to find sub-
modules, which are related based on their historical 
development. 

• Frequent dependencies between system blocks: RA 
revealed many internal and external couplings. Inter-
nal links are likely to point out limitations within 
classes. External couplings are even more interesting, 
because they may bring to light limitations of the ar-
chitecture of the entire system. 

• Visualization simplifies navigation: Due to the huge 
base of results as output of the RA method, additional 
visualization of the findings would improve the navi-
gation to the system blocks of interest. This visualiza-
tion could be supported by more sophisticated tools. 

• Some metrics were beneficial: To spot outliers easily, 
metrics based on the attributes used within RA are 
helpful. For the evaluation the number of common 
check-ins was taken into account. In addition the av-
erage number of check-ins within the inspected part of 
the software is useful. Other such metrics could be in-
tegrated to enhance the Relation Analysis. 

• Domain knowledge: For the evaluation of the findings 
resulting form RA the integration of domain knowl-
edge into the analysis technique is essential. By apply-
ing RA certain problematic points in the architecture 
can be found. Then human knowledge has to be in-
corporated into the method to assess the necessity to 
revise the discovered part of the software system. 

6 Conclusions and future work 

In this paper, we described our Relation Analysis that 
allows a deep analysis of logical coupling of modules. 
Classes as smallest entities are compared based on dates 
and authors of changes. With this information, parts of the 
system that were changed together can be discovered. The 
approach was evaluated on 28 releases of an industrial 
Picture Archiving and Communication System (PACS) 
consisting of half a million lines of Java Code; for that, we 
consider our results as representative.  

Release history data stored in CVS enables the detec-
tion of logical coupling of modules across the evolution of 
a software system effectively, thereby not analyzing any 
piece of source code. Design flaws such as god classes or 
spaghetti code could be discovered, although the source 
code was not analyzed at all. Additionally, the results of 
the case study pointed to architectural weaknesses such as 
poorly designed inheritance hierarchies and blurred inter-
faces of modules and submodules. Hence, this approach 
seems promising to be studied further. 
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Our QCR methodology revealed a large amount and 
many different types of architectural shortcomings. Never-
theless, the recall factor seems reasonable as the three 
analysis steps regard different aspects of the case study. 
The entire methodology provides a good overview of the 
system and allows detailed analysis of particular parts. The 
graphical representation contributes to understand certain 
characteristics of the software structure easily. QCR as a 
self-contained methodology allows reasoning about soft-
ware architecture on a macro level, where the historical 
data of a system are taken into account. As a result QCR 
requires very little data to be kept, rather than dealing with 
many thousand lines of source code. 

So far, we have used only simple tools in our work. In 
the future, we plan to add more sophisticated visualization 
capability to enable viewing the identified relationships 
with 3-dimensional graphs (e.g. with [17] or [22]). 
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