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Abstract: Increasingly, on-line repositories such as the World Wide Web are being called upon
to provide access not just to documents that collect useful information, but also to services (such

as software, process models or even organizations) that describe or provide useful behavior. As
the sheer number of such services increase it will become increasingly important to provide tools
that allow people (and software) to quickly find the services they need, while minimizing the

burden for those who wish to list their services with these search engines. Current service
retrieval approaches have, however, serious limitations with respect to meeting these challenges.
They either perform relatively poorly or make unrealistic demands of those who wish to index or

retrieve services. This paper reviews these efforts and presents a novel approach, based on the use
of process models, that offers qualitatively higher retrieval precision, acceptable computational
complexity, and a relatively low service modeling burden.
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1. The Challenge: High Precision Service Retrieval

Increasingly, on-line repositories such as those available via the World Wide Web are being

called upon to provide access not just to documents that collect useful information, but also to
services that describe or even provide useful behavior. Examples of such services include
software applications and components (e.g. www.mibsoftware.com and www.compoze.com),

best practice process models (e.g. process.mit.edu/eph/, www.brint.com and www.bmpcoe.com),
and even individuals or organizations who can perform particular functions (e.g. guru.com and
elance.com).

As the sheer number of such services increases it will become increasingly important to provide
tools that allow people (and software) to quickly find the services they need, while minimizing

the burden for those who wish to list their services with these search engines [1]. Current service
retrieval approaches have, however, serious limitations with respect to meeting these challenges.
They either perform relatively poorly or make unrealistic demands of those who wish to index or
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retrieve services. This paper reviews these approaches and presents a novel service retrieval
approached based on the sophisticated use of process models.

2. The State of the Art

Service retrieval technology has emerged from several communities. The information retrieval
community has focused on the retrieval of natural language documents, not services per se, and

has as a result emphasized keyword-based as well as, more recently, concept-based approaches.
The software agents and distributed computing communities have developed simple ‘table-based’
approaches for ‘matchmaking’ between tasks and on-line services. The software engineering

community has also developed a rich set of techniques for service retrieval, most notably
deductive retrieval. We can get a good idea of the relative merits of these approaches by placing
them in a precision/recall space:
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Figure 1. The state of the art in service retrieval.

Recall is the extent to which a search engine retrieves all of the items that one is interested in (i.e.
avoiding false negatives) while precision is the extent to which the tool retrieves only the items
that one is interested in (i.e. avoiding false positives).
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Most search engines look for items that contain the keywords in the query. While services can be
indexed with no manual effort, such approaches are notoriously prone to both low precision and

imperfect recall. Many completely irrelevant items may include the keywords in the query,
leading to low precision. It is also possible that the query keywords are semantically equivalent
but syntactically different from the words in the searched items, leading to reduced recall. While

techniques (e.g. synonym databases [2]) and imprecise matching are available to increase recall,
these typically reduce precision even further. The key underlying problem is that keywords are a
poor way to capture the semantics of a query or service. If this semantics could be captured more

accurately then precision would increase.

Concept-based retrieval relies on defining an ontology of concepts that is used to classify

documents, thereby enabling retrieval based on semantics rather than keywords [3] [4] [5] [6].
This approach potentially enables both increased precision and increased recall, but requires
solutions for problems, such as automated ontology creation and document classification, that are

extremely difficult and remain highly problematic.

Table-based approaches have emerged as a way of more fully capturing service semantics. A

table-based service model consists of attribute value pairs that capture service properties,
typically including its name, description, inputs and outputs, as well as some performance-related
attributes such cost, execution time, and so on. The following, for example, is a table-based
model for an integer averaging service:

Description a service to find the average of a list of integers

Input integers

Output real

Duration number of inputs * 0.1 msec

Both items and queries are described as tables: matches represent items whose property values
match those in the query. All the commercial service search technologies we are aware of (e.g.
Jini, eSpeak [7], and UDDI [8]) use the table-based approach. Table-based approaches do

increase precision, but only to a modest extent, because of the impoverished range of information
they capture. These models typically include a detailed description of how to invoke the service
(i.e., parameter types, return types, calling protocols, etc.), but don’t describe what the service

actually does, aside from an optional full-text description. The invocation-related information is
of limited value for search purposes because services with different goals (e.g. services that
compute averages and medians) can share identical call signatures.
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A third important class of search technique is deductive retrieval  [9] wherein service semantics
are expressed formally using logic (Figure 2):

Name: set-insert
Syntax: set-insert(Elem, Old, New)

Input-types: (Elem:Any), (Old:SET)
Output-types: (New: SET)
Precond: ),( OldElemmember↓

Postcond:

)),((),((

),(),((

),(
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Figure 2. A logic-based service description [10]

Retrieval then consists of finding the items that can be proved to achieve the functionality
described in the query. Deductive retrieval can in theory achieve both perfect precision and
perfect recall. This approach, however, faces two very serious practical difficulties. First of all, it

can be prohibitively difficult to model the semantics of non-trivial queries and services using
formal logic. Even the simple set-insert function shown above in figure 2 is non-trivial to
formalize correctly: imagine trying to formally model the behavior of Microsoft Word or an

accounting package! The second difficulty is that the proof process implicit in this kind of search
can have a high computational complexity, making it extremely slow [10]. Our belief is that these
limitations, especially the first one, make deductive retrieval unrealistic as a scalable general
purpose service search approach.

3. Our Approach: Exploiting Process–Based Service Models

Our challenge can thus be framed as being able to capture enough service and query semantics to
substantively increase precision without reducing recall or making it unrealistically difficult for

people to express these semantics. Our central claim is that these goals can be achieved through

the use of process models. A process model captures behavior, such as what a service does, as a
collection of interlinked sub-activities. The greater expressiveness of process models, as

compared to keywords or tables, enables qualitatively increased retrieval precision, and we will
argue that this can be achieved with a reasonable expenditure of service modeling effort. We
describe the approach below. We consider first how to model service semantics using process

models, describe the PQL query language, and then outline the algorithm used to find matches
between process-based service models and these PQL queries.
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Modeling Services as Process Models: The first step in our approach is to capture service
behavior as process models. To understand why, we need to better understand the causes of

imperfect precision (i.e. false positives). One cause is that a component of the service model is
taken to have an unintended role. For example, a keyword-based query to find mortgage services
that deal with “payment defaults” (a kind of exception) would also match descriptions like “the

payment defaults to $100/month” (an attribute value). The other cause for false positives occurs
when a service model is taken to include an unintended relationship between components. For
example, we may be looking for a mortgage service where insurance is provided for payment

defaults, but a keyword search would not distinguish this from a service that provides insurance
for the home itself.

The trick to increasing retrieval precision, therefore, comes down to ensuring that the roles and
relationships that are meaningful to the user are made explicit in both the query and the service
model, so unintended meanings (and therefore false positives) can be avoided. We believe that

process-modeling languages are well suited for this. Process modeling languages have been
designed to capture the essence of different behaviors in a compact intuitive way, and have
become ubiquitous for a very wide range of uses. The examples below offer concrete glimpses

into how well suited process models are for capturing the semantics relevant for useful queries.

Broad consensus has emerged on how to model processes, using such primitives as tasks,
resources, inputs, outputs, and exceptions. Our representation (formally described in [Berstein,

2002 #4272]) is a straightforward formalization of this consensus (Figure 3):
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Figure 3: Process model formalism.
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The key components of this representation include:

♦ Attributes: Processes can be annotated with attributes that capture such information as a
textual description, typical performance values (e.g. how long a process takes to execute), and

so on.
♦ Decomposition:  A process can be modeled as a collection of processes that can in turn be

broken down (“decomposed”) into sub-processes.

♦ Resource Flows: All process steps can have input and output ports through which resources

flow. One innovation we use is to recognize that processes can be divided into ‘core’
activities as well as those involved in coordinating the flow of resources between core

activities [11]. This insight allows us to abstract away details about how sub-processes
coordinate with each other, allowing more compact service descriptions without sacrificing
significant content.

♦ Mechanisms: Processes can be annotated with the resources they use (as opposed to consume
or produce). For example, the Internet can serve as a mechanism for a process.

♦ Exceptions: Processes typically have characteristic ways they can fail and, in at least some

cases, associated schemes for anticipating and avoiding or detecting and resolving them. This
is captured in our approach by annotating processes with their characteristic ‘exceptions’, and
mapping these exceptions to processes describing how these exceptions can be handled [12].

Let us consider a simple example to help make this more concrete (Figure 4):
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Fig. 4. An example of a process-based service model

This represents the process model for a service for selling items electronically. The plain text

items represent entities (such as exceptions, ports and tasks), while the italicized items represent
relationships between these entities. The substeps in this service model include ‘identify potential
customers via data mining’, ‘inform customers’ (which uses the Internet as a mechanism), and

‘take orders’. The potential exception of sending out unwanted solicitations is avoided by
filtering out the names of individuals who have placed their names on ‘opt-out’ lists. Each of the
entities can have attributes (not shown) that include their name, description, and so on.

This representation is equivalent to other full-fledged process modeling languages (e.g. IDEF
[13], PIF [14] and PSL [15]) with the exception that it does not currently include primitives

oriented at expressing control semantics, i.e. that describe when each subtask gets enacted. Such
primitives were excluded for two reasons. One is that the bulk of the variation between different
process modeling languages occurs in the realm of representing control semantics, and we

wanted to begin with a formalism that mapped directly to a wide range of existing process
models. The other reason is that it is our experience to date that most service queries are
concerned with what a process does, rather than when the parts of the process gets enacted.

Modeling service behaviors as process models may of course involve some manual effort, but we
argue that this need not be a significant barrier to adoption of this approach. In our experience
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even relatively simple process models can enable qualitative increases in retrieval precision.
Because process formalisms are so widely used, many services will already have process models

defined for them. Software applications and business models, for example, are routinely
described using flow charts or other process modeling formalisms. Providers in competitive
marketplaces will be motivated to create such models as a way of making the advantages of their

services explicit. Someone offering an electronic sales service may, for example, wish to capture
their ability to handle unwanted solicitations or use data-mining in their published models.
Capturing service semantics enables, in addition, many important uses other than retrieval,

including service execution, interoperation, composition and execution monitoring [16]. Since
creating a service represents a substantial effort, it is unlikely that the relatively small increment
needed to model that service as a process will be a major concern. Finally, template-based

modeling (see ‘future work’) can be used to substantially reduce the modeling effort involved.

Defining Queries: We have defined a query language called PQL (the Process Query Language)

designed for retrieving process models (see [Berstein, 2002 #4272] for a formal description).
Process models can be straightforwardly viewed as entity-relationship diagrams made up of
entities like tasks characterized by attributes and connected by relationships like ‘has-subtask’.

PQL queries are built up as combinations of five clause types that check for these elements:

• Entity <entity> isa <entity type>
• Relation <source entity> <relationship type>  <target entity> [*]

• Attribute <attribute> of <entity> {includes | equals} <value>

The ‘entity’ clause matches any entity of a given type (the entity types include task, resource,

port and so on). The ‘relation’ clause matches any relationship of a given type between two
entities (the relationship types include has-subtask, has-specialization, has-port, and so on). The
optional asterisk finds the transitive closure of this relationship. The ’attribute’ clause looks for

entities with attributes that have given values. Any bracketed item <> can be replaced by a
variable (with the format ?<string>) that is bound to the matching entity and passed to subsequent
query clauses.

We have also found it useful to include an operator for grouping clauses into sub-queries:

• When {exists | does-not-exist} <query>

The ‘when’ clause enables further pruning by submitting the matches returned by a sub-query to

a predicate. At present, only two built-in predicates have been defined but this will likely expand.
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Let us consider a simple example to help make this more concrete. The query below searches for
a sales service that uses the Internet to inform customers:

attribute "Name" of ?sell includes "sell"
when exists (relation ?process has-subtask ?subtask *

                    attribute "Name" of ?subtask includes "inform"
                    attribute "Description" of ?subtask includes “internet")

The first clause searches for a processes in the ontology whose name includes “sell”, and the
second checks if any subtasks of these services are “inform” processes with “internet” in their
description. A PQL query is thus equivalent to a sub-graph pattern, and any search for a process

model can then be treated as finding the nodes of type task which match the graph pattern that
represents the query.

Finding Matches: The algorithm for retrieving matches given a PQL query is straightforward.
The clauses in the PQL query are tried in order, each clause executed in the variable binding
environment accumulated from the previous clauses. The bindings that survive to the end

represent the matching services. Query performance can be increased by using such well-known
techniques as query clause re-ordering. This can be viewed as an application of existing work on
graph grammars [17]. Graph grammars model artifacts as graphs and manipulating them using
rules that rewrite segments of these graphs. We can in principle implement service retrieval as a

graph grammar rule that notifies a user of all matching instances found in a database of process
models. The unique contribution of our work lies in identifying how we can exploit the particular
semantics of process models to enable retrieval-specific capabilities, such as semantics-

preserving query mutation and automated service indexing (see ‘future work’ below), that would
be difficult or impossible to achieve without knowledge of the link and node semantics.

4. How Well Does it Work?

A PQL interpreter has been implemented, in Common Lisp. We have defined and enacted many
PQL queries and our experience is that PQL can be used in a straightforward way to capture
queries drawn from many domains. We have also found that PQL enables qualitative

improvements in retrieval precision, even with quite simple process models. Our test case
involved searching for services that sell products using the Internet to inform customers. The
Process Handbook database was used as our service repository. All queries had perfect recall.

The keyword based search (“sell” AND “internet” AND “inform”) had a retrieval precision of
5%. We compared this to a range of PQL queries that made increasing use of the information that
can be encoded in process-based service models.
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Query Precision
attribute "Name" of ?service includes "sell"

when exists (relation ?service has-subtask ?subtask *
                    attribute “Name” of ?subtask includes "inform"
                    attribute ?attr of ?subtask includes “internet")

72%

attribute "Name" of ?service includes "sell"
when exists (relation ?service has-subtask ?subtask *

                 attribute “Name” of ?subtask includes "inform"

                 relation ?subtask uses-mechanism ?mechanism
                     attribute “Name” of ?mechanism includes “Internet”)

81%

attribute "Name" of ?service includes "sell"

when exists (relation ?service has-subtask ?subtask *
                 attribute “Name” of ?subtask includes "inform"
                 relation ?subtask uses-mechanism ?mechanism

                 attribute “Name” of ?mechanism includes “Internet”
                 attribute “Name” of ?class equals “Inform”

                     relation ?class has-specialization ?subtask)

100%

The first query made use only of the task decomposition information in the process models. This
allowed us to avoid false positives wherein, for example, the Internet was used but not for the
task of informing customers. Even this basic level of process modeling resulted in qualitatively

higher precision of 72%. The second query added the use of task mechanism information,
retrieving only processes wherein the Internet is used as a mechanism for the inform subtask,
eliminating false positives where the term “Internet” was merely mentioned in the description

somehow. This increased retrieval precision to 82%. The final PQL query added the feature of
exploiting the Handbook process taxonomy to only retrieve processes with subtasks that are a
specialization of the generic “inform” process. This brought retrieval precision up to 100%. This

final example shows that PQL can be integrated with other retrieval approaches (in this case,
concept-based retrieval) to produce higher retrieval precision than is possible using either
approach individually.

Another important result concerns the computational complexity of PQL queries. Even though
our experience with the prototype implementation has been favorable (i.e., queries generally take

several seconds at most, even though our implementation does not exploit well-known query
optimization techniques), it is important to evaluate how performance will scale with the size of
the service model database. We were able to show that PQL is the equivalent of a DATALOG-

type language whose computational complexity is polynomial. This is a good result: polynomial
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complexity implies that the computation needed to enact a PQL query scales comparably with
that of widely-accepted retrieval technologies such as SQL.

Further details on these evaluations, both empirical and analytic, are available in [18].

5. Next Steps

While our results are promising, important challenges remain.  One key issue involves modeling

differences. It is likely that in at least some cases a service may be modeled in a way that is
semantically equivalent to but nevertheless does not syntactically match a given PQL query. The

service model may, for example, use different keywords to mean the same thing, or include a
given subtask several levels down the process decomposition, while in the query that subtask
may be just one level down. In order to avoid poor recall we must therefore provide a ‘fuzzy’ or

imprecise retrieval scheme that is tolerant of such differences. We are exploring, for this purpose,
the use of standard synonym-matching techniques, as well as the notion of semantics-preserving
query mutation that modifies a service query to produce a whole space of semantically similar

variants.

Another key issue concerns rapid service modeling. As pointed out earlier, many services already

have process models created for them as standard practice, so we can simply translate these
models, often automatically, into service descriptions suitable for retrieval by PQL. In the
absence of such pre-existing models, manual service modeling can, we believe, be substantially
sped-up through the use of templates. We simply find an existing description for a service that is

similar to ours, and define our own service description as a modification thereof. The more
service providers that have created process-based descriptions, the more likely it is that a suitable
template will be available to speed our own service description efforts. We can reasonably expect

that research groups, individual enterprises and consortia will define and market industry-specific
template libraries. The MIT Process Handbook, for example, has already created a business
process repository with over 5000 process descriptions ranging over such areas as supply chain

logistics, hiring, and so on [19]. This project has developed sophisticated tools for process
modeling that allow a knowledgeable user to create new models in a matter of minutes.

We are currently engaged in empirically evaluating PQL by asking roughly sixty users to define a
database of services, a suite of keyword, table and process-based queries, and a listing of the
correct service-query matches. Using this data, we will be able to assess the relative precision and

recall of these different retrieval techniques.
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Finally, we plan to address the issue of defining a more accessible interface for human users of
PQL. Creating PQL queries, as with many query languages, requires some technical expertise.

Possible directions include developing graphical or natural language front-ends for PQL queries.

6. Contributions

High retrieval service precision is widely recognised as a critical enabler for important uses that

range from finding useful software components or applications, to uncovering relevant best
practice models, to tracking down people or organisations with the skills you need. Our work can
be viewed as representing a new class of service retrieval technology that helps achieve these

goals (Figure 5):
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Figure 5. The contribution of process-based service retrieval technology.

Our evaluations suggest that process-based queries produce retrieval precision qualitatively
greater than that of existing service retrieval approaches, while retaining acceptable complexity

for query enactment. See http://ccs.mit.edu/klein/ for further details on this work.
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