
Analyzing and Understanding Architectural Characteristics of COM+
Components

Martin Pinzger, Johann Oberleitner, and Harald Gall
Distributed Systems Group

Vienna University of Technology
Argentinierstrasse 8/184-1

A-1040 Vienna, Austria
{pinzger, joe, gall}@infosys.tuwien.ac.at

Abstract

Understanding architectural characteristics of software
components that constitute distributed systems is crucial for
maintaining and evolving them. One component framework
heavily used for developing component-based software sys-
tems is Microsoft’s COM+. In this paper we particularly
concentrate on the analysis of COM+ components and in-
troduce an iterative and interactive approach that combines
component inspection techniques with source code analysis
to obtain a complete abstract model of each COM+ com-
ponent. The model describes important architectural char-
acteristics such as transactions, security, and persistency,
as well as create and use dependencies between compo-
nents, and maps these higher-level concepts down to their
implementation in source files. Based on the model, engi-
neers can browse the software system’s COM+ components
and navigate from the list of architectural characteristics to
the corresponding source code statements. We also discuss
the Island Hopper application with which our approach has
been validated.

Keywords: reverse engineering, software components,
COM+, component inspection

1. Introduction

Large applications are often realized by using a three-
tiered architecture that separates the presentation logic,
business logic and data access logic from each other. This
separation improves scalability, fault-tolerance and evolv-
ability of the whole application since single tiers can be
replicated and hence bottlenecks can be avoided [3, 14].

Current component technologies such as COM+ [10]
and Enterprise JavaBeans (EJB) [17, 24] provide addi-
tional techniques such as load-balancing, transaction han-

dling and role-based access control. Hence, using a dis-
tributed component model has been a natural means to im-
plement the non-visual parts of a three-tiered architecture.
The client often accesses the presentation tier via a web
browser. The presentation logic that renders this web con-
tent is based on web languages such as Microsoft’s Ac-
tive Server Pages (ASP), Common Gateway Interface (CGI)
scripts or Java Server Pages (JSPs). Sometimes clients can
use native applications that still use distributed component
technology.

Vendors of component frameworks provide specific sup-
port for realizing three-tiered applications, in particular for
the implementation of transactions, security, state, and per-
sistence. These architectural concepts are common to cur-
rent component models. However, although the architec-
tures of three-tiered applications can be developed generi-
cally, a major drawback of vendor-specific solutions is that
they are not portable. Once a framework has been selected,
such as COM+, it is not easy to switch to another, poten-
tially more advanced component framework.

Our overall goal is to realize a semi-automatic transfor-
mation of three-tiered applications between different frame-
works such as for example from COM+ to EJB or .NET
based applications. To perform this transformation an un-
derstanding of the architectural characteristics of the com-
ponents comprising such applications is fundamental. In
this context architectural characteristics describe the real-
ization of architectural concepts such as transactions, secu-
rity, persistency, and create and use dependencies between
components. In this paper we concentrate on the anal-
ysis process for extracting architectural characteristics of
COM+ components that are used in the business tier and
the database tier of three-tiered applications.

A prerequisite for the understanding of software com-
ponents is the availability of an abstract representation de-
scribing the architectural characteristics of each component.

Proceedings of the 11 th IEEE International Workshop on Program Comprehension (IWPC’03)
1092-8138/03 $17.00 © 2003 IEEE

Various tools in both the commercial and research commu-
nity are available that address the abstraction problem by
analyzing source code and run-time information. Some ex-
amples are Rigi [25], Dali [9], Software Bookshelf [5] as
well as Imagix-4D [7] or SourceNavigator [23]. Although
they are used to understand software systems they don’t
concentrate on specific application domains such as under-
standing the architectural characteristics of COM+ compo-
nents, in which additional meta and configuration data has
to be considered.

In this paper we address the application domain of three-
tiered software systems built of COM+ components and in-
troduce an iterative and interactive analysis approach that
combines traditional source code analysis with the anal-
ysis of component specific meta and configuration data.
The result is an abstract model that for each COM+ com-
ponent describes important architectural characteristics in-
cluding transactions, security, and persistency, as well as
create and use dependencies between components, and
maps these higher-level concepts down to their implemen-
tation in source files. Based on the model engineers can
then browse the software system’s COM+ components and
navigate from the list of architectural characteristics to the
corresponding source code statements.

The remainder of the paper is organized as follows.
Section 2 provides some required background information
about the COM/COM+ component model. The data model
and its generation by analyzing source code, meta data, and
configuration details are described in Section 3. Section 4
demonstrates the use of our analysis tools by a case study
and mentions limitations of our approach. Related work is
presented in Section 5 and Section 6 summarizes the paper
and indicates future work.

2. COM/COM+ components

This section provides the necessary technical foundation
of Microsoft’s Component Object Model (COM) [2, 4, 16]
and its recent enhancement COM+ [10] to facilitate the un-
derstanding of our approach.

COM is a component model [6] used heavily within Mi-
crosoft’s operating systems. Like other component mod-
els the only way to access a component’s functionality is
through explicit interfaces exposed to the outside. These in-
terfaces can be declared with Microsoft’s Interface Defini-
tion Language (MIDL), a language that allows the definition
of interfaces and component classes out of a set of primitive
language constructs similar to that of C++. As usual inter-
faces consist only of functions, component classes consist
of sets of incoming or outgoing interfaces. Latter interfaces
are not implemented by COM components but used to issue
events.

The MIDL compiler uses an IDL file to generate a COM

type library and some C-/C++ header files for reuse of the
component in clients. Microsoft VisualBasic does not cre-
ate IDL files but automatically builds a type library file
when compiling a COM component. The type library con-
tains the same information as the IDL file but uses a binary
representation and can be queried by predefined COM inter-
faces. Frequently, type libraries are provided together with
the COM binary files (DLL or EXE).

COM components are always used as binary units that
can be deployed on a system by putting it into one persis-
tent location and registering the component in the Windows
Registry. The registration information contains data where
to find the DLL or EXE file, the type library, versioning
information and other data. Due the binary representation
there are only two ways to access a component’s interfaces:
either the clients use interfaces they are aware of at build
time or they use the component’s dynamic invocation ser-
vice realized by the IDispatch interface. In both cases the
interfaces of the component are the only way to access a
component’s functionality.

COM+ enhances COM with server-side facilities such as
transaction monitoring or event filtering. These new mecha-
nisms have been integrated in Windows 2000 and Windows
XP. It is not restricted solely to the use of programmatic
transactions but allows also the configuration of transac-
tional behavior of COM+ components. Hence, it is possible
to automatically create new transactions just by configuring
components. In addition COM+ introduced a powerful role-
based access-control scheme to make COM+ based applica-
tions secure. In addition to programmatic security it is pos-
sible to set a component’s access rights at the component-
level, at the interface-level, and at the method-level. The
COM+ services implemented by Windows 2000 or Win-
dows XP also increase scalability of components with an
activation/passivation mechanism applied to component in-
stances not used regularly.

Unlike for traditional COM these settings mentioned
above do no longer rely just on the Windows Registry but
Microsoft has introduced a set of COM+ administration
components that allow querying and modification of declar-
ative transaction and security settings.

COM+ has not become obsolete by Microsoft’s .NET
initiative since .NET does not introduce new server-side fa-
cilities that replace COM+ [26]. On the contrary the COM+
services work together with .NET. Frequent programming
models for COM and COM+ are based on Microsoft Visual-
Basic or Microsoft’s Visual C++ compiler using the Active
Template Library (ATL) and Microsoft Foundation Classes
(MFC).

In this work we restricted the source code analysis to
VisualC++, VisualBasic, and the frameworks mentioned.
Most analysis schemas can be transformed to other COM
programming environments, too.

Proceedings of the 11 th IEEE International Workshop on Program Comprehension (IWPC’03)
1092-8138/03 $17.00 © 2003 IEEE

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

Interfaces

Library

DLL, EXE

Type

Registry

Methods

Source

Code

SourceNavigator, Revealer, grep
Imagix−4D

Imagix−4D, Revealer, grep

4. Source Code Analysis

1. Component Identification

Architectural
Deployment Info

2. Meta−Data Analysis

3. Configuration Analysis

COM+
components

input

extract

Characteristics

Component Inspector

Component Inspector

Figure 1. COM+ component analysis process.

3. Analyzing COM+ components

The goal of our analysis process is the generation of an
abstract model describing important architectural character-
istics of each COM+ component. A list of architectural
characteristics we currently take into account is given in Ta-
ble 1. To provide a complete picture of a COM+ component
we have to consider different information sources including:

• Source code comprises definition (IDL) and source
files that define and implement the interfaces of COM+
components. Source files also contain the statements
that indicate certain architectural characteristics such
as for example SetComplete() and SetAbort() for
handling transactions.

• Type libraries correspond to interface definition files
and provide detailed information about the interfaces
implemented and provided by COM+ components. In-
stead of parsing IDL files we use the COM+ API to ex-
tract the type library information of each COM+ com-
ponent. In particular such an approach is useful if no
IDL files are used or have been created automatically
by the IDE as it is in the case of VisualBasic.

• Registry: COM+ allows the configuration of compo-
nent behavior at deployment time such as transaction
semantic and security settings. This information gives
a rough estimate about deployment specific architec-
tural characteristics of COM+ components and com-
plements the source code and type library analysis re-
sults.

The tools we use in our analysis process comprise ex-
isting reverse engineering tools such as Imagix-4D [7]
(C/C++) and SourceNavigator [23] (VisualBasic) for pars-
ing source code and visualizing results, Revealer [19] and
grep for matching source code patterns that indicate COM+
characteristics in method implementations, and our Compo-
nent Inspector tool for extracting meta data and configura-
tion data from type libraries and the Windows Registry.

The complete analysis process, its results, and tools used
in each step are depicted in Figure 1. The process starts
with the identification of components in the source code
of the client application (i.e. presentation layer). Subse-
quently, all components identified are used for meta data,
configuration, and source code analysis. If any additional
components are identified the process is applied iteratively
for these new components.

Source code, type libraries, and the Windows Registry
are the basic information sources for our analysis process.
Each analysis step also uses the results produced by the
previous step to extract and generate the data describing
a COM+ component (i.e. interfaces, methods, deployment
info, architectural characteristics). In this way each iteration
reveals information about new identified COM+ compo-
nents until all components of a software system have been
analyzed. A detailed description of the four major phases
of our analysis process is given in the following sections.

3.1. Component identification

For analyzing a three-tiered software system that uses
COM+ components we start with the client application (i.e.

Proceedings of the 11 th IEEE International Workshop on Program Comprehension (IWPC’03)
1092-8138/03 $17.00 © 2003 IEEE

presentation layer) and determine all COM+ components
that are used by it. To obtain a list of these components
we investigate the client application’s source code in which
we basically focus on those portions of code that instantiate
COM+ components. Programming frameworks for COM+
development provide specific statements for instantiation.
Figure 2 shows an example for VisualC++ with ActiveX
Template Library (ATL), VisualBasic, and Active Server
Pages (ASP).

Each COM+ component can be identified by a program
identifier. Therefore, when instantiating a COM+ compo-
nent a program identifier has to be specified as an argument
of the create statement. All three statements in Figure 2
create an instance of the component CustomerC whose pro-
gram identifier is M.CustomerC. The standard format of a
program identifier is

<Vendor>.<Component>.<Version>

Often the version number is omitted if there exists only one
version of the COM+ component. To match instantiation
statements we apply our lexical analysis tool Revealer [19]
that facilitates the specification and extraction of simple
source code patterns. The output of Revealer is a list of pro-
gram identifiers along with their match location in source
files. They indicate all COM+ components that are directly
accessed by the client. Other components that are accessed
indirectly by the client are determined in the same way by
analyzing the source code of the components already iden-
tified.

✞

✝

�

✆

// Visual C++
pObjCustomer.CoCreateInstance

(__uuidof(M.CustomerC));

’ Visual Basic
Set objCustomer = CreateObject

("M.CustomerC")

’ Active Server Pages (ASP)
Set objCustomer = Server.CreateObject

("M.CustomerC")

Figure 2. Code snippets describing the in-
stantiation of COM+ components in Visu-
alC++, VisualBasic, and ASP

Program identifiers provide the starting points for the
next analysis steps that are concerned with the extraction
of meta and configuration data of each COM+ compo-
nent. Therefore we developed the Component Inspector that
given a program identifier finds the corresponding COM+

component, loads its type library and extracts the meta data,
and retrieves its deployment data. A more detailed descrip-
tion of these two analysis steps is provided by the next two
sections.

3.2. Meta data analysis

Component models provide meta data to aid system inte-
gration of components developed independently. Meta data
contains descriptions about external visible interfaces and
the corresponding methods that are exposed externally to
clients.

COM+ stores meta data in type libraries. These libraries
are either stored in additional files with suffix .tlb or directly
placed in the component’s image file [2]. In both cases the
COM+ API function LoadTypeLib may be used to load a
type library. These API function returns a COM+ compo-
nent that implements the predefined ITypeLib interface and
provides methods to retrieve the ITypeInfo interface that
contains necessary functionality to access COM+ meta data
about interfaces, methods, parameters, user-defined types,
enumerations and all names used for defining this meta data.

If the location of the type library file is unknown but
the component is installed on the system and supports the
IProvideClassInfo interface or the IDispatch interface
a reference to ITypeInfo can be retrieved by instantiat-
ing the component, retrieving either IProvideClassInfo
or IDispatch and retrieving the interface pointer with a
method provided by these interfaces.

A different means to get a reference to a type library is
by searching the Windows Registry. The Registry stores the
place where to find a type library in a key retrievable by the
class identifier.

3.3. Configuration analysis

Some information of component based systems is not
available during development time but is made available
only at deployment time. This information describes trans-
action semantics or security settings that are dependent on
the final installation of a system. Nevertheless, this infor-
mation complements the information gained by meta data
and source code analysis. Although this configuration set-
tings are specific to a particular component deployment they
give a rough estimate about the transaction and security ar-
chitecture.

Distributed component models such as COM+ and EJB
rely on role-based security. That means operating system
users belong to certain roles and further security settings
are based solely on these roles. COM+ allows fine-grained
control over the realized roles, the mappings of operating
system users to component roles, and the security settings
of roles to whole components, to component interfaces and

Proceedings of the 11 th IEEE International Workshop on Program Comprehension (IWPC’03)
1092-8138/03 $17.00 © 2003 IEEE

m_x()

m_y()
AC.idl
A.h
A.cpp

AC.cpp

CA::m_x() {
...

}
CA::m_y() {

...
}

...
}

CA::m_z() {
identify
provide
realize

ProgID CLSID Interface A1

Interface A2CLSID m_z()

ComA

C:\Source

Deployment View Source Code View

Figure 3. Mapping between COM+ component meta data and source code.

to interface methods. However, it is unlikely that role names
will be defined completely different for each installation
site. If roles are used within a component’s code to real-
ize fine-grained security control, the names of the roles are
already fixed. The COM+ COMAdminCatalog component
that ships with Windows 2000 and Windows XP provides
interfaces to extract these data. We collect the security in-
formation that is configurable by COM+ for further process-
ing.

Declarative transaction settings can be retrieved, too. Al-
though the settings are restricted to if a transaction is sup-
ported, if a method has to be executed within an exist-
ing transaction, or if a new transaction shall be started on
each method invocation of a component, this information
shows a rough picture where transactions are necessary. As
for security these settings are not completely independent
of the implementation. In COM+ based web applications
transactions are often used when updating the data storage.
Hence, the methods involved in transactions will either lead
to calls to a database or to the COM+ methods SetAbort
and SetComplete. The COM+ COMAdminCatalog compo-
nent is used to extract transactional settings to complement
information gained by source code analysis.

Configuration information is used by the Component In-
spector to extend the information collected during meta data
analysis.

3.4. Source code analysis

The goal of the source code analysis is to provide a map-
ping between COM+ component interfaces and their imple-
mentations on the method level as well as a detailed charac-
terization of each method with respect to relevant architec-
tural characteristics. As a preliminary step of this analysis
phase we use Imagix-4D and SourceNavigator to parse the
source code of components. The generated source models
are stored in the Imagix-4D database.

Figure 3 demonstrates the basic mapping of a COM+
component’s meta data and its implementation. Each
COM+ class is indicated by a unique class identifier. There-
fore to create a mapping between a component and its im-
plementation we use the class identifier of a component and
apply a simple grep-query to search for a source code direc-
tory containing files that specify the corresponding CLSID
(e.g. A.idl). Concerning the mapping of methods to source
code we query the source model with respect to source files
that are contained in the component’s directory and further
contain the implementation of a particular method. For ex-
ample to map the methods m x(), m y(), and m z() we
query the files of directory ComA.

After obtaining the source code links we analyze each
method implementation and concentrate on the following
two questions:

• Does the method implement and make use of transac-
tions, security, persistency, and state (shared property)
mechanisms?

• Which other components are instantiated and used,
stored, and returned by the method?

Both questions are concerned with important architec-
tural characteristics whose answers lead to a better un-
derstanding of the system’s software architecture. There-
fore, we query the extracted source models and additionally
perform lexical-based analysis on source code information
not considered by parsers. The targets of our queries are
given by the COM+ component model itself that provides
various services which can be accessed by specific state-
ments. For example transactions are controlled by the Mi-
crosoft Transaction Server (MTS) and basically driven by
the SetComplete and SetAbort statement. SetComplete
is called if an object wants to indicate that it has completed
successfully and votes to commit any transaction it is en-
listed in. On the contrary, SetAbort is called if the object

Proceedings of the 11 th IEEE International Workshop on Program Comprehension (IWPC’03)
1092-8138/03 $17.00 © 2003 IEEE

Characteristic Statement Description

transactions

SetComplete vote to commit transactions
SetAbort vote to abort transactions
EnableCommit object is ready for commit
DisableCommit object is not ready for commit

security
IsSecurityEnabled check if role based security is enabled
IsCallerInRole check if caller is member of specified role

state

CreatePropertyGroup create shared property group
CreateProperty create shared property by name
CreatePropertyByPosition create shared property by position
Property retrieve reference to shared property by name
PropertyByPosition retrieve reference to shared property by position

persistency
(ADO)

Open open an ActiveX Data Objects (ADO) connection
Execute execute SQL statement
SQL select, insert, update, delete statement

create
dependency

CreateInstance create a single object
CoCreateInstance create a single object
QueryInterface get pointer to interface of an object currently accessed by client

error handling AtlReportError provide error information

Table 1. VisualC++ statements indicating architectural characteristics of COM+ components.

votes to abort its transaction. Finding such statements in a
method implementation simply indicates corresponding ar-
chitectural characteristics and component interaction. Table
1 shows an excerpt of important COM+ related VisualC++
statements that we currently take into account. Regarding
VisualBasic or ASP we created similar lists.

Besides the create dependency we also consider state-
ments that represent use relations between components such
as component A accesses services (e.g. calls methods) of
component B.

For each COM+ component the source code analysis tool
stepwise fills the data model with the name of the corre-
sponding source code directory, the name of files imple-
menting the interfaces, and information about the interface
method implementations. Latter comprises the source code
locations (file names plus line numbers) and a list of charac-
terizing statements including the match location (line num-
ber) and the architectural characteristic affected by it.

To get a complete picture of a COM+ component we
combine source code information with meta data and con-
figuration details. Such a combination is necessary because
COM+ also supports the use of transactions and security
settings that have no counterpart in the source code. For ex-
ample, database access frameworks that are prepared to au-
tomatically make use of transactions such as ActiveX Data
Objects (ADO) [21] or OLE DB [15] need no specific trans-
action handling in components. Although, the component
that invokes the database access has no control over the
transaction COM+ allows configuration of transaction set-
tings. Hence, using only source code analysis cannot gen-

...

+name()
+qualifier()
+attributes()
+compareTo()

«interface»
IFeature

«interface»
IMethod

+queryFor()
+getFeature()
+addFeature()
+removeFeature()

«interface»
IFeatureContainer

1 *

«interface»
IProperty

Figure 4. Feature Container Design

erate a complete picture of the architectural characteristics.

3.5. Data model

All data collected during the different analysis steps will
be stored in one data model. We reused the internal rep-
resentation for components that has been implemented for
the Vienna Component Framework (VCF) [18]. This Java
based framework provides a generic bridge facility for dif-
ferent component models. It provides an abstract model
that allows the administration of component features such
as methods, properties and events in a tree-like data struc-
ture. Figure 4 shows a class diagram of feature containers
and features constituting the data structure.

The VCF uses feature containers to organize sets of com-
ponent features and attributes to store associated detail data

Proceedings of the 11 th IEEE International Workshop on Program Comprehension (IWPC’03)
1092-8138/03 $17.00 © 2003 IEEE

Characteristic Attribute class Description Analysis phase

transactions

DeclarativeTransactionSupport Transaction type configuration
TransactionIsolationLevel Isolation level configuration
Synchronization Synchronization level configuration
ProgrammaticTransaction Code statement & source code location source code

security

AccessCheckEnabled Role-based access check enabled configuration
CheckAccessCheckEnabled Determine if based access check is enabled source code
TotalRoles All roles and users assigned to a component configuration
Roles Roles allowed to access a feature configuration
CallerInRole Source code location source code

dependency
CreateInstance Create a component instance source code
QueryInterface Query a component interface source code
Call Call a method of another component instance source code

Table 2. Attribute classes representing component characteristics.

to features. Particular features, called hierarchical features,
administrate their own feature containers and in this way al-
low for a flexible hierarchical composition of features. With
respect to the output data generated by our analysis process
the feature data structure is filled top-down from compo-
nents, followed by interfaces down to methods, properties,
and events. Latter are represented as leaf nodes in this tree.
Each feature can have an unlimited number of associated
attributes. While the feature types are predefined by VCF,
attributes can be arbitrary Java objects. This allowed us to
extend VCF with custom attributes when needed.

During meta data analysis a feature container is created
for each component that is investigated and tree nodes are
created for each COM+ interface, method and property,
and inserted into the tree. All additional characteristics
that are found by configuration and source code analysis
are inserted into the container as attributes associated to al-
ready existing features. Table 2 shows some of the attribute
classes we have implemented to represent different compo-
nent characteristics and their origin.

The VCF provides predefined data types and methods
to query feature containers for elements with certain char-
acteristics. It is possible to find all features with particu-
lar attribute types or attribute values. Since we added new
attribute classes it was possible to search for all methods
that interact with one specific method of another compo-
nent, or all methods that are involved in transactions and
contain calls to database routines.

4. Case study

To demonstrate our approach we applied the analysis
tools to the Island Hopper application, a sample applica-
tion of about 10 KLOC described in [10] to illustrate design
and implementation concepts of COM+ based application
development. The software architecture of Island Hopper is

three-tiered in which the presentation logic is implemented
using Active Server Pages (ASP) and the business and data
access logic using VisualC++ and VisualBasic. With regard
to a component view all components of the business and
data access tier are COM+ components whose services are
accessed top-down from the client application. We installed
all sixteen components (10 VisualBasic and 6 VisualC++)
of the Island Hopper application and their sources and per-
formed our analysis steps as follows:

1. We use Revealer to query the ASP-files of the
client application and match COM+ object instanti-
ation statements (i.e. CreateObject(‘‘ProgID’’)).
Revealer outputs a list consisting of six dif-
ferent program identifiers whereas two of them
indicate Windows components handling database
access (ADODB.Resultset) and scripting (Script-
ing.FileSystemObject).

2. Using the program identifiers we apply our COM+ in-
spection tool to extract the meta data of COM+ com-
ponents as described in Section 3.2

3. We further use the Component Inspector to obtain the
configuration data. Table 3 shows an excerpt of the
results collected during the first three steps contain-
ing the program identifiers, interfaces and methods
of two investigated COM+ components M.CustomerC
and M.ProductC.

4. We use Imagix-4D (C/C++) and SourceNavigator (Vi-
sualBasic) to parse the source code of the Island Hop-
per components that we already have identified so far.
For each interface of these components we investigate
the method implementations with respect to the recov-
ered create dependencies to determine the remaining
COM+ components indirectly used by the client ap-
plication until we get the “transitive closure” of all

Proceedings of the 11 th IEEE International Workshop on Program Comprehension (IWPC’03)
1092-8138/03 $17.00 © 2003 IEEE

Figure 5. Component Inspector showing features of the db ProductC component.

COM+ components of the Island Hopper application.
For each new identified component we repeat the anal-
ysis steps two and three to obtain their meta data and
configuration details.

Based on the set of all COM+ components we ana-
lyze all method implementations with respect to state-
ments indicating architectural characteristics. We ex-
tract such indicators by querying the source models
stored in the Imagix-4D database and the correspond-
ing source code. All results generated by our analysis
tools are stored in feature containers as described in
Section 3.5.

ProgID Interface Method

M.CustomerC

ICustomer
Validate()
Add()
GetByEmail()

IChange
Add()
Update()
Delete()

ILookup
GetByID()
ListByLastName()
GetByEmail()

M.ProductC IProduct

Add()
Delete()
Update()
GetByID()
GetUnitPrice()
ListByDesc()

Table 3. Meta data of two COM+ components
identified and extracted during the first three
steps of our analysis process.

Through the combination of the data extracted from all
three different information sources we obtain a meaningful
picture of the Island Hopper application that provides a ba-
sis for further architectural reasoning. We have provided
a graphical user interface for the Component Inspector to
quickly navigate through components, interfaces, methods,
architectural characteristics, and their attributes. Through
the source code mapping we are also able to browse those
portions of code that implement certain characteristics. Fig-
ure 5 represents the Component Inspector showing a subset
of features extracted for component db ProductC. In par-
ticular, it shows the declarative and programmatic transac-
tion properties implemented by the method add(). For lat-
ter properties also the location (file name and line numbers)
of the corresponding source code statements are listed. This
location information is exploited to navigate to text win-
dows showing the corresponding source code.

Besides the usefulness of our approach the case study
also indicated some problems that may influence the accu-
racy of results produced by our approach. For example it
is crucial to configure the C/C++ parser of Imagix-4D to-
wards the emulation of the VisualC++ parser to get accurate
source models. Basically this concerns the specification of
preprocessor statements and system header files to include
because on the one hand the source model database can get
large when analyzing system header files is enabled, but on
the other hand you loose important source model informa-
tion such as methods and data types predefined by the de-
velopment environment. For our case study we adjusted this
setting to include all necessary header files.

Although Imagix-4D emulates the VisualC++ parser it
cannot fully handle C++ templates that are heavily used
within Microsoft’s COM/COM+ programming models. Ba-
sically, the problem is in the instantiation of nested tem-

Proceedings of the 11 th IEEE International Workshop on Program Comprehension (IWPC’03)
1092-8138/03 $17.00 © 2003 IEEE

plates and causes the loss of type information. Therefore,
some workaround is needed to determine for example the
COM+ instance whose method is called.

Another problem appeared during meta data analysis
concerning the use of the generic COM/COM+ VARIANT
data type and untyped pointer arguments because their ac-
tual types can only be determined at run-time. Fortunately
source code analysis can provide more accurate typing in-
formation in many cases.

5. Related work

Software components are of primary concerns in the field
of reverse engineering and there exists several tools and
techniques that address the extraction of software compo-
nents from available information (e.g. source code). How-
ever, these approaches don’t take into account the infor-
mation and architectural characteristics that are implicated
by a particular application domain such as COM/COM+
component-based three-tiered applications. With respect to
that our approach is novel.

For example Koschke [13] describes an approach that fo-
cuses on the detection of atomic components by integrat-
ing the user into the detection cycle. Atomic components
are groupings of subprograms, types, and global variables,
and can be viewed as cohesive logical modules. In con-
trast, we view components as deployable units that are self-
contained.

Sneed et al. [22] describe a tool capable of analyzing
very large applications. It uses a relational database for stor-
ing both the requirements specification and also the created
implementation model. A mapping between records that
represent particular requirements and those that represent
implementation models is established in the database, too.
Subsequently the database can be queried by SQL state-
ments to find out about various system properties.

Andrews et al. [1] identify Commercial-of-the-Shelf
(COTS) component comprehension as a specialized activ-
ity within software comprehension. They build a combined
comprehension model for COTS components based on a do-
main model, a situation model, and a program model and
evaluate how different component based software develop-
ment approaches fit with this model. Unlike our approach
they focus on abstract comprehension models without pro-
viding a concrete implementation.

Korel [11] deals with COTS components, too. He treats
components as black-box entities and uses interface prob-
ing as primary tool for obtaining component properties. To
realize interface probing a developer has to design a set of
test cases that are executed on the component. The results
can be evaluated and interface probing can be applied it-
eratively. While black-box understanding methods can be
applied when no source code is available they are limited

with respect to the number of properties they can extract.
Java applets are specific Java components that can be

started in web browsers. Korn et al. have developed
Chava that supports the analysis of Java applets [12]. They
combine source code analysis with bytecode analysis tech-
niques. Similar to our meta data analysis bytecode analysis
can reveal some information about Java classes but cannot
show the full picture since the Java compiler removes infor-
mation.

6. Conclusions

Software systems are more and more built from compo-
nents that follow a certain component framework such as
COM/COM+, EJB, ASP, or JSP. Maintaining and evolving
such systems, therefore, offers new challenges for program
analysis and understanding.

We have developed an approach that specifically
supports analysis and understanding of COM/COM+
component-based systems. It provides semi-automatic
analysis techniques to investigate architectural characteris-
tics of COM+ components such as transactions, security,
persistence, error handling, or component dependency. As
a result, the engineer receives descriptions of component at-
tributes and inter-component relationships that enable him
to faster understand components and their interactions and
to guide him in further evolving the system.

Our approach is implemented in the Component Inspec-
tor tool and combines static analysis with standard reverse
engineering tools. Different analysis steps use specific tools
(e.g. Imagix-4D, Revealer, or SourceNavigator) and collect
the necessary information and present it on the Component
Inspector. Since different levels of abstractions are consid-
ered and linked via the different representations of the re-
covered information (meta-data, source code, etc.) the ap-
proach allows the engineer to navigate from architectural
characteristics (such as transactional or persistency aspects)
all the way down to the corresponding source code. We
have discussed the technical foundations of our approach
for COM/COM+ components and evaluated it with a case
study - the Island Hopper application.

Future work will concentrate on providing the semi-
automatic transformation to move from one component
model to another (e.g. from COM+ to EJB) thereby using
the previously developed Vienna Component Framework
and extending the Component Inspector tool.

Acknowledgements

We are grateful to the Austrian Ministry for Infras-
tructure, Innovation and Technology (BMVIT) and the
European Commission for funding our work under EU-
REKA 2023/ITEA-ip00004 ’from Concept to Application

Proceedings of the 11 th IEEE International Workshop on Program Comprehension (IWPC’03)
1092-8138/03 $17.00 © 2003 IEEE

in system-Family Engineering (CAFÉ)’ and the IST Project
1999-14191 ’Easy Composition in Future Generation Com-
ponent Systems (EASYCOMP)’.

We also would like to thank Michael Fischer for fruit-
ful discussions on the COM+ analysis process and his com-
ments on the paper, as well as the anonymous reviewers for
their feedback.

References

[1] A. Andrews, S. Ghosh, and E. M. Choi. A model for un-
derstanding software components. In Proc. of the Inter-
national Conference on Software Maintenance, pages 359–
368, Montreal, Canada, October 2002. IEEE Computer So-
ciety Press.

[2] K. Brockschmidt. Inside OLE. Microsoft Press, second edi-
tion, 1995.

[3] V. Cardellini, E. Casalicchio, M. Colajanni, and P. S. Yu.
The state of the art in locally distributed web-server systems.
ACM Computing Surveys (CSUR), 34(2):263–311, 2002.

[4] G. Eddon and H. Eddon. Inside Distributed COM. Microsoft
Press, 1998.

[5] P. Finnigan, R. Holt, I. Kalas, S. Kerr, K. Kontogiannis,
H. Müller, J. Mylopoulos, S. Perelgut, M. Stanley, and
K. Wong. The software bookshelf. IBM Systems Journal,
36(4):564–593, November 1997.

[6] G. T. Heineman and W. T. Councill, editors. Component-
Based Software Engineering: Putting the Pieces Together.
Addison-Wesley, 2001.

[7] Imagix-4d 4.1. http://www.imagix.com, December 2002.
[8] M. Jazayeri, A. Ran, and F. van der Linden. Software Ar-

chitecture for Product Families: Principles and Practice.
Addison-Wesley, Reading, Mass. and London, 2000.

[9] R. Kazman and S. J. Carriére. Playing detective: Re-
constructing software architecture from available evidence.
Journal of automated Software Engineering, 6(2):107–138,
April 1999.

[10] M. Kirtland. Designing Component-Based Applications.
Microsoft Press, 1999.

[11] B. Korel. Black-box understanding of cots components. In
Seventh International Workshop on Program Comprehen-
sion, pages 226–233. IEEE Computer Society Press, May
1999.

[12] J. Korn, Y.-F. Chen, and E. Koutsofios. Chava: Reverse en-
gineering and tracking of java applets. In Proc. of the 6th
Working Conference on Reverse Engineering, pages 314–
325. IEEE Computer Society Press, Oct. 1999.

[13] R. Koschke. An incremental semi-automatic method for
component recovery. In Sixth Working Conference on Re-
verse Engineering, pages 256–267. IEEE Computer Society
Press, Oct. 1999.

[14] S. M. Lewandowski. Frameworks for component-based
client/server computing. ACM Computing Surveys (CSUR),
30(1):3–27, 1998.

[15] Microsoft OLE DB 2.0 Programmer’s Reference and Data
Access SDK. Microsoft Press, 1998.

[16] Microsoft Corporation. The Component Object Model Spec-
ification, 1995.

[17] R. Monson-Haefel. Enterprise JavaBeans. O’Reilly & As-
sociates, Inc., first edition, June 1999.

[18] J. Oberleitner, T. Gschwind, and M. Jazayeri. Vienna com-
ponent framework: enabling composition across component
models. In Proceedings of the 25th international conference
on Software engineering (ICSE). ACM Press, 2003. to ap-
pear.

[19] M. Pinzger, M. Fischer, H. Gall, and M. Jazayeri. Re-
vealer: A lexical pattern matcher for architecture recovery.
In Proc. of the 9th Working Conference on Reverse Engi-
neering, pages 170–178, Richmond, Virginia, October 2002.
IEEE Computer Society Press.

[20] M. Pinzger and H. Gall. Pattern-supported architecture re-
covery. In Proc. of the 10th International Workshop on
Program Comprehension, pages 53–61, Paris, France, June
2002. IEEE Computer Society Press.

[21] D. Sceppa. Programming ADO. Microsoft Press, 2000.
[22] H. M. Sneed and T. Dombovari. Comprehending a com-

plex, distributed, object-oriented software system: a report
from the field. In Seventh International Workshop on Pro-
gram Comprehension, pages 218–225. IEEE Computer So-
ciety Press, May 1999.

[23] Source-navigator 5.1. http://sourcenav.sourceforge.net, June
2002.

[24] Sun Microsystems. Enterprise JavaBeans, 2.0 edition, Oct.
2000. http://java.sun.com/products/ejb.

[25] S. R. Tilley, K. Wong, M.-A. D. Storey, and H. A. Müller.
Programmable reverse engineering. International Jour-
nal of Software Engineering and Knowledge Engineering,
4(4):501–520, 1994.

[26] A. Troelson. COM and .NET Interoperability. APress, Apr.
2002.

Proceedings of the 11 th IEEE International Workshop on Program Comprehension (IWPC’03)
1092-8138/03 $17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

