
Abstracting Module Views from Source Code ∗

Martin Pinzger, Michael Fischer, Mehdi Jazayeri
Distributed Systems Group

Vienna University of Technology
Argentinierstrasse 8/184-1

A-1040 Vienna, Austria
{pinzger, fischer, jazayeri}@infosys.tuwien.ac.at

Harald Gall
Department of Informatics

University of Zurich
Winterthurerstrasse 190

CH-8057 Zurich, Switzerland
gall@ifi.unizh.ch

Abstract

In this paper we present ArchView an approach for
abstracting and visualizing software module views from
source code. ArchView computes abstraction metrics that
are used to filter out architectural elements and relation-
ships of minor interest resulting in more reasonable and
comprehensible module views on software architectures.

1. Motivation

Views on the architecture of software systems aid engi-
neers in maintaining and evolving software systems. How-
ever, abstracted views as obtained by existing reverse en-
gineering techniques often are too low level and cluttered
with information making them almost useless.

In this paper we address this problem and introduce
ArchView a view abstraction approach that concentrates on
the abstraction and visualization of condensed architectural
views. ArchView is based on the abstraction approach of
Holt et al. described in [2]. A similar approach also has
been presented by Feijs et al. in [1]. Our approach uses the
techniques of both approaches but extends them by focus-
ing on the computation of abstraction metrics. They then
are used to highlight interesting architectural elements and
relationships and filter information of minor interest.

2. ArchView Approach

Abstraction: The abstraction approach of ArchView
uses binary realtional algebra to abstract/lift information
along a containement hierarchy as given by the underlying

∗This work is partially funded by the Austrian
Forschungsförderungsfonds für die Gewerbliche Wirtschaft (FFF)
and the European Commission under EUREKA 2023/ITEA-ip02009
’FAct-based Maturity through Institutionalisation Lessons-learned and
Involved Exploration of System-family engineering (FAMILIES)’.

source code meta model. For example, a software module
is implemented by package A which contains a number of
sub-packages. Each package contains a set of classes that
further contain methods and attributes. Using these con-
tains relationships the algorithm first determines the set of
entities (e.g. methods) contained by each module and next
computes the relationships (e.g. invokes) between these en-
tities. Whenever a relationship between the entities of mod-
ule A and module B occurs an abstracted relationship of this
type is established between modulel A and B.

Visualization: The visualization technique used by
ArchView is an extension of the technique presented by
Lanza et al. in [3]. The extension is concerned with show-
ing the weights of relationships and filtering mechanisms.
Filtering is based on the abstraction metrics computed dur-
ing the abstraction process. For instance, thresholds are
used to filter minor entities and relationships. This yields
to more condensed architecural views.

Case Study and Results: To demonstrate and validate
the ArchView approach we applied it to the open source
web browser Mozilla. The focus of the case study was
to analyze source code related dependencies between a se-
lected set of Mozilla’s sofware modules. By computing the
abstraction metrics and applying filtering techniques more
condensed views on selected software modules have been
retrieved than by using the existing techniques.

References

[1] L. Feijs, R. Krikhaar, and R. van Ommering. A relational
approach to support software architecture analysis. Software
Practice and Experience, 28(4):371–400, 1998.

[2] R. C. Holt. Structural manipulations of software architecture
using tarski relational algebra. In Proceedings of the Working
Conference on Reverse Engineering, pages 210–219. IEEE
Computer Society Press, 1998.

[3] M. Lanza. The evolution matrix: Recovering software evo-
lution using software visualization techniques. In Proceed-
ings of IWPSE 2001 (International Workshop on Principles
of Software Evolution), 2001.


