A Service Architecture for Mobile Teamwork-

Engin Kirda, Pascal Fenkam, Gerald Reif and Harald Gall
Technical University of Vienna
Distributed Systems Group
Argentinierstrasse 8/184-1, 1040 Vienna / Austria

{E.Kirda,P.Fenkam,G.Reif,H.Gally@infosys.tuwien.ac.at

ABSTRACT

Mobile teamwork has become an emerging requirement in the daily
business of large enterprises. Employees collaborate across lo-
cations and need support while they are on the move. Business
documents (artifacts) and expertise need to be shared independent
of the actual location or connectivity (e.g., access through a mo-
bile phone, laptop, Personal Digital Assistant, etc.) of employ-
ees. Although many collaboration tools and systems exist, most do
not deal with new requirements such as locating artifacts and ex-
perts through distributed searches, advanced information subscrip-
tion and notification, and mobile information sharing and access.
The MOTION service architecture that we have developed supports
mobile teamwork by taking into account the different connectivity
modes of users, provides access support for various devices such
as laptop computers and mobile phones, and uses XML meta-data
and the XML Query Language (XQL) for distributed searches and
subscriptions. In this paper, we describe the architecture and the
components of our generic MOTION service platform for build-
ing collaborative applications. The MOTION Teamwork Services
Components are currently being evaluated in two industry case-
studies.

Keywords

Mobile teamwork, collaborative systems, distributed searches, XML
meta-data and XQL, architectures, components

1. INTRODUCTION

Most companies and enterprises use some form of collaborative
system or tool in their organizations. People need to work together
by sharing information and communicating. Hence, support for
information storage, communication, sharing, and retrieval is pro-
vided by popular collaborative systems such as Lotus Notes and
Microsoft Outlook.

*This project is supported by the European Commission in the
Framework of the IST Programme, Key Action Il on New Methods
of Work and eCommerce. Project number: 1ST-1999-11400 MO-
TION (MObile Teamwork Infrastructure for Organizations Net-
working)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SEKE ’02, July 15-19, Ischia, Italy.

Copyright 2002 ACM 1-58113-556-4/02/0700 ...$5.00.

Mobile teamwork[19] (i.e., nomadic working) is an emerging re-
quirement for large enterprises. These global organizations have
employees that are situated in many countries and need to collab-
orate across locations. Because of the distributed nature of these
organizations, many employees are often on the move and they
need to share expertise and business documents independent of
their physical location and actual connectivity. When a consultant
is at an airport, for example, she may only have access to a Web
browser. Her WAP-enabled mobile phone will work in Europe, but
chances are that it will not work in the US.

Thus, anytime, anywhere access to information has become in-
teresting to many organizations. New working methods and tech-
nologies are needed for dealing with emerging requirements such
as locating documents and experts through distributed searches, ad-
vanced information subscription and notification, and mobile infor-
mation sharing and access. We are addressing such problems in
the MObile Teamwork Infrastructure for Organizations Network-
ing (MOTION) project that aims to create a flexible, open and scal-
able Information and Communication Technologies (ICT) architec-
ture for mobile collaboration. The MOTION project has started in
February 2000 and is near completion. The MOTION prototype
has been implemented and the MOTION Teamwork Services Com-
ponents are currently being evaluated in two industry case-studies.

Although many collaboration tools and systems have been built
to date and much has been written on the topic, most do not provide
support for mobile teamwork. In this paper, we describe the archi-
tecture and components of our generic MOTION service platform
for building collaborative applications.

The paper is structured as follows: Section 2 gives an overview
of the layered architecture. Section 3 discusses the main compo-
nents of the architecture. Section 4 presents related work and Sec-
tion 5 concludes the paper.

Terminology

We first define some basic terms that will be used throughout the
paper.

e Artifact: Any document or file in the MOTION system (e.g.,
a text-processing document, a picture, a sound file, etc.)

e Peer: Any computing device connected to the MOTION sys-
tem (e.g., notebook, Web browser, Personal Digital Assistant
(PDA), etc.)

e Community: A collection of users in the MOTION system
that are interested in a topic or that have a common property

(e.g., “researchers”, “paper writing”,“review”,etc.)

- SEKE ’02 - 513 -

Presentation Layer

TWSAP| === ==== === =----------oooo—-
Team Work Services

TWS A

Layer ccess DUMAS

Control .
Repository
User Community
Management Management

Messaging Publish/

1
. Business Specific Services
1
1

Distributed Artifact
Subscribe Search Management

Communication Middleware

Event based System

Peer-to—Peer File Sharing

Figure 1: Overview of the MOTION Architecture

2. MOTION SERVICE ARCHITECTURE

In this section, we give a brief overview of the layered archi-
tecture of the MOTION system and provide details about the main
components in the following sections. Figure 1 depicts the MO-
TION architecture.

The MOTION system is composed of peers. Some host services
and some only act as clients. Any peer that is able to run the MO-
TION libraries can act as a service host. A typical MOTION con-
figuration consists of desktop computers, laptops (i.e., notebooks
and sub-notebooks) and PDAs that host services and clients such
as Web browsers and WAP-enabled mobile phones that do not host
services, but can only be used to remotely access them.

The lowest layer of the architecture is the communication mid-
dleware. It offers basic communication services such as peer-to-
peer file sharing through distributed searches and publish/subscribe
(i.e., event-based system) mechanisms to the layers above. In the
prototype implementation of the MOTION platform, this function-
ality is provided by PeerWare[17]. The communication layer, how-
ever, can be replaced by any other suitable middleware that pro-
vides distributed search and publish/subscribe support (e.g., dis-

tributed searches with JTella[13] and publish/subscribe with JEDI[3]).

We chose to use PeerWare in the prototype implementation because
we had access to its source code and could experiment with it. Fur-
thermore, PeerWare has support for both distributed searches and
publish/subscribe, and thus covers all the requirements of the low-
est layer in the architecture.

The Teamwork Services (TWS) layer is situated directly above
the communication middleware. This layer integrates the basic sys-
tem components such as the repository and DUMAS (see next sec-
tion) and provides an Application Programming Interface (API) to
the teamwork services. This is a Java APl in our prototype.

The TWS API offers services such as (1) storing artifacts and
their meta-data (profile) in the local repository, (2) managing re-
sources (artifacts, users, and communities), (3) sharing artifacts
with other users in communities, (4) subscription to specific events
in the MOTION system, (5) sending and receiving messages from
other users or from the system, (6) managing access rights on re-
sources, (7) and searching for resources based on their profile in-
formation.

An application programmer can build business specific services
(BSS) on top of the TWS API. By using the functionality provided
by the API, the programmer can implement new functionality ac-
cording to the end-users’ business requirements. Hence, the basic

set of services provided by the TWS API can be customized and
extended by businesses and organizations. For example, a com-
pany might be interested in integrating workflow support for tran-
sistor design into the platform whereas another might be interested
in having document versioning support for artifacts.

The top layer of the architecture is the presentation layer. It pro-
vides a user interface to the services provided by the MOTION sys-
tem. The presentation layer is built using the TWS API. Because of
the need for mobility, a typical configuration has a number of user
interfaces for different devices such as desktop computers, laptops,
Personal Digital Assistants (PDAs), Web Browsers and WAP. In
the current prototype, we have a native Java user interface that pro-
vides full functionality and an experimental lightweight Java PDA
interface.

3. TEAMWORKSERVICES COMPONENTS

In this section, we describe the components of the MOTION
Teamwork services layer.

3.1 The Dynamic User Management and Ac-
cess Control Component (DUMAS)

Confidentiality, security and privacy are important in many dis-
tributed multi-user applications. This has motivated the design
and implementation of a number of access control models (e.g.,
[7, 20]). In most cases, the access control model is chosen by the
software/security engineer and is hard-coded into the application.
Hence, users of these applications have little or no support at all for
customizing and adapting the security settings to requirements that
may change over time.

DUMASI5, 6] is an access control component that is formally
specified, verified, and implemented. Its goal was the creation of
a generic, customizable component that satisfies different security
requirements. This access control component provides support for
managing users and roles (e.g., by creating, deleting, etc.) and as-
signing users to roles. Furthermore, generic permissions can be
created, assigned to users and bound to specific operations (e.g., a
user X has a permission Invoke on operation SendMessage()). The
functionalities of DUMAS are grouped in three sub-components:
a user management component, a community management compo-
nent and an authorization component. These sub-components are
strongly connected in the sense that each of them is necessary for
the two other sub-components to operate.

Considering the number of external requests, DUMAS is one of

- SEKE ’02 - 514 -

Presentation Layer + Business Specific
Services

WAP Phone GSM Phone E-Miail Client

1
I
. Messaging System
\ Front End

3
>
o

Publish/Subscribe Desktop Messages

1
(Middleware) E Gateway
1

MOTION Messaging System

Repository

Figure2: The MOTION M essaging Architecture

the most demanded components of the Teamwork Services Layer.
For performing any security sensitive operation (e.g. creating a
user, downloading an artifact, etc.) DUMAS must be consulted to
find out whether the user is permitted to invoke this operation. In
this sense, DUMAS is a service provider. DUMAS, however, is
also a service consumer as it needs to store data and publish events.
The publish/subscribe support of the underlying middleware is used
for distributing events across peers.

DUMAS follows an architecture driven by (1) the the Peer-to-
Peer model of the underlying file sharing system and (2) the re-
quirement for mobility support.

In the first case, access control data (ACD) are divided in two
types. First, ACD on artifacts are stored with these artifacts and are
therefore distributed across peers. Second, ACD on other entities
such as users and communities are stored on distributed servers.
Each DUMAS component can be configured to behave as such a
server.

As far as mobility is concerned, DUMAS can be customized to
run on a variety of mobile devices (e.g., Java-enabled PDAs such
as the Nokia Communicator and the Compaqg iPAQ). uDUMAS is
the lightweight implementation of DUMAS for such devices. This
version is based on the remote invocation of implementations avail-
able on more powerful peers (i.e. desktop computers and laptops).
The communication between a uDUMAS and a DUMAS instance
is performed by publishing an XML event using the underlying
middleware. The uDUMAS component does not need to know the
actual instance or the location of the server it is communicating
with. The XML event is simply published and the DUMAS com-
ponent configured to address such requests executes the specified
operation and publishes the result back. This technique allows us
to explicitly deal with device and user mobility in the sense that the
instance of DUMAS to which a uDUMAS instance connects can
be anyone. For example, a user can move from Montreal to Vienna
without the need for re-configuring her system. Further, if the peer
on which the DUMAS instance is running is not available for some
technical reason, or there is a connection problem as it is often the
case in mobile computing, the publish/subscribe system will queue
the XML event and deliver it whenever possible.

3.2 MOTION Messaging Component

MOTION Messaging is an integrated messaging service that en-
ables users to communicate and exchange information. Notifica-
tions based on subscriptions are also delivered by this messaging
service. MOTION messages are sent to users using technologies

- SEKE ’02 -

such as lightweight push®, email (i.e., SMTP), GSM short mes-
sages (SMS), and wireless application protocol service indication
(WAP SI)[8].

MOTION Messaging enables employees to stay in direct and
constant contact no matter what devices they are using and where
they are.

From the point of view of the originator and the recipient, there
are System-to-User, System-to-Community, User-to-User, and User-
to-Community messages. On the other hand, messages can also be
categorized based on the delivery mechanism; we distinguish be-
tween SMTP, SMS, WAP SI, and desktop messages.

System-to- User and System-to- Community messages are mainly
sent by the MOTION system as notifications of subscriptions (see
Section 3.3). Whenever a document on transistor design, for exam-
ple, is available in the system, a community of users interested in
transistor design will receive a notification.

User-to-User messages are messages sent by users to other users.
In order to set up a meeting, for example, two users may commu-
nicate using this type of messages.

User-to-Community messages are sent by one user to a com-
munity (e.g., community of users interested in transistor design).
In this sense, User-to-Community messages are similar to mailing
lists. In MOTION, however, User-to-Community messages pro-
vide some added value such as the ease of address management
and the support for mobility. In common mailing lists, managing
addresses is not always an easy task. For instance, an address might
expire, but may still be referred to in the mailing list. This means
that the user has to inform the mailing list administrators that the
address is no longer available, or the administrator has to regularly
check to see if the addresses in the list are valid. Such problems
do not exist in the MOTION system. Users are referenced with
their login names (i.e., user names). This identifier is used in the
MOTION system as the address of the user (or community). Each
user can also specify the medium under which she is available. For
example, a user Hakkinen might specify that he wishes to receive
all messages where the sender’s name contains the string “speed”
via SMS, whereas messages that contain the subject string “Tyres”
should be sent to the address “hakkinen@infosys.tuwien.ac.at”.

In order to deal with memory and message size limitations, mes-
sages that are addressed to mobile phones are automatically split
into a suitable number of SMSs or WAP Sls (e.g., SMS messages
can only be about 160 characters in size). In our prototype, this is

!Lightweight push differs from normal push systems in that only
the locations (URLS) of artifacts are sent to users, and not the entire
artifact contents.

515 -

Presentation Layer + Business Specific Services

i Subscription Gateway
Subscription Front End D D D D D
l ‘ } } } ‘ } Messaging System M
Publish/Subscribe
(lvlliddlaNarel) OO0 Q

I User Spe:cialized Callback. I

Repository

Figure3: The TWSLayer Publish/Subscribe Architecture

done by the gateway that provides access to SMS or WAP SI?.

SMS and WAP SI provide the ability to send notifications to
users in an asynchronous manner. The advantage of WAP Sl is the
capability to include a Universal Resource Identifier (URI) indicat-
ing a service that the user can start by following the link. Messages,
of course, can also be delivered to users using SMTP e-mail and de-
pending on the settings of the particular user, MOTION messages
can be made to directly pop up in windows on users’ desktops (i.e.,
this is similar to messaging services provided by popular applica-
tions such as ICQ and Yahoo Messenger).

The MOTION Messaging component in our prototype consists
of five main components. These components are the SMS gate-
way, the SMTP (email) gateway, the standard messages gateway,
the WAP gateway, and the MOTION front end component (see Fig-
ure 2). The MOTION front end component is the interface between
the business specific services and the MOTION Messaging compo-
nent. It provides transparency to the business specific services by
simple primitives for sending messages. These messages are trans-
formed into XML events that are published through the underlying
publish/subscribe component. Once a message is sent to a spe-
cific user, the configured gateway receives the corresponding XML
event, transforms it and forwards it using the appropriate protocol
(e.g., WAP gateways transform XML events to WAP Sls and SMS
gateways to SMS messages). In case a MOTION gateway is unable
to send a message for some reason, it can queue it in the repository
that is available on the peer (host) the gateway is running on.

3.3 The Teamwork Services Layer Publish/
Subscribe Component

Some have identified Publish/Subscribe as an architectural style
that enables high decoupling among components and fosters mobil-
ity (e.g., [2, 11]). The teamwork services layer’s publish/subscribe
component bridges the gap between the underlying middleware and
the business-specific services and gives a uniform and consistent
view of the event concept to the application layer.

Publish/subscribe systems such as Peerware[17] and JEDI[3] al-
low components to subscribe and react to events by specifying a
method that is invoked once an event occurs that matches a query.
There are different realizations of this concept. In PeerWare, for ex-
ample, the subscriber specifies a callback. The callback is an object

of aclass implementing the interface peer war e. Event Cal | back.

In JEDI, on the other hand, the subscriber directly specifies the
name of the method to be invoked. In both cases, however, there
is essentially no direct mapping between component-level (system)
subscriptions and user-level (application) subscriptions.

2We use a commercial SMS gateway that provides an SMTP inter-
face.

To bridge this gap, we use subscription gateways and user spe-
cialized callbacks (see Figure 3). A user specialized callback is a
component that handles subscriptions of a specific user. When-
ever the user wishes to perform a subscription, she informs her
specialized callback. This callback mediates between the under-
lying publish/subscribe system and the user. It receives the user’s
subscriptions and subscribes on her behalf. Once an event occurs
that satisfies one of the user’s subscription criteria, the correspond-
ing callback is informed and it transforms the received event into
a message. This message is sent to the messaging system and the
user is informed based on her availability criteria.

The set of callback components running on a particular peer is
referred to as the subscription gateway. A subscription gateway has
to be configured for each user. Choosing a peer that can function
as a subscription gateway is a configuration issue. Every peer in
the MOTION system can be used as a subscription gateway and
the configuration can be decided by organizations depending on
deployment policies.

The expressiveness of the subscription language also constitutes
a reason for constructing a bridge between the business specific ser-
vices and the middleware. Different middleware implementations
provide different languages for this purpose. To hide all these dif-
ferences, we use the XML Query Language (XQL). This gives the
business specific services the capability to query complex XML
events. The TWS Layer’s publish/subscribe system provides the
business specific services with the capability of subscribing to users,
artifacts, and communities in the system.

3.4 The MOTION Repository

Every peer in the MOTION system that directly runs MOTION
services contains a repository that is used to store artifacts and pro-
file information about users, communities and artifacts. This repos-
itory component is composed of two parts: an XML and an artifact
repository. The XML repository is used to store XML profile infor-
mation. Some of this information is used by the system and some
of it (such as artifact profiles) is entered by the user. The artifact
repository is used to store artifacts that belong to a user. For ex-
ample, when a user Dr. Jaza wishes to enter a paper he is writing
for the SEKE conference into the MOTION system, he would first
enter meta-data about it such as the description of the document
and its purpose. The meta-data would then be inserted into the
XML repository and the document would be physically copied into
the artifact repository. The repository component provides method
calls for inserting, deleting, editing and querying meta-data that it
manages.

In the prototype we have built, artifacts are stored in the local
file system of the peer and a part of the file system is designated as

- SEKE'02 - 516 -

the MOTION artifact repository. Artifacts are queried, inserted and
deleted using API calls that provide an abstraction to the underlying
storage system. Any repository that implements the repository API
interfaces can be used (e.g., OO Database, RDBMS, etc.).

Inserting, deleting and editing artifacts in the MOTION repos-
itory means that the user is invoking these operations in her own
resource space. In order to share an artifact with others in a com-
munity, the artifact is tagged as belonging to a specific community
and is visible to other users as long as the user that owns the arti-
fact is online. If a user wishes to make an artifact persistent so that
it is available to others even when she is not online, she can copy
it into the so called community cabinet. The community cabinet
denotes the repository of a host that acts as a server and is always
connected.

In our prototype, we use the GMD XQL engine and the GMD
IPSI XML repository V1.0.2[9] as the XML repository.

3.5 Artifact Manager

The artifact manager component is composed of the MOTION
repository component and the repository manages.

The repository manager component is responsible for mapping
remote transfer requests to commands in the repository. It retrieves,
inserts, deletes or queries the information in the repository and pro-
vides the communication infrastructure between artifact exchang-
ing peers. The artifact transfer protocol is HTTP. For example,
when Dr. Jaza issues a distributed XQL request and sees that Dr.
Marco has related work on information sharing, he can download
that article from Dr. Marco’s repository. The repository manager
component takes care of transferring the article (i.e., artifact) from
the remote repository into Dr. Jaza’s local repository.

The Artifact Manager component acts as a wrapper to the MO-
TION Repository (i.e., XML and artifact repositories) and the Repos-
itory Manager. It provides artifact management API calls in the
TWS API (e.g., insert an artifact, download an artifact, etc.).

3.6 Distributed searches

One of the distinguishing features of the services provided by the
MOTION platform is its support for distributed searches. A key re-
quirement in the MOTION industrial case-studies was the ability to
locate information in a loosely coupled, distributed setting. Large
organizations often have employees that do not personally know
each other and in most cases cannot benefit from the work others
are doing. For example, a group working on transistor design in
Austria might have a problem that a group in the company located
in South Africa branch has already solved. The ability to query
artifacts, hence, is beneficial and in some cases success critical.

The TWS API provides querying mechanisms to search the ar-
tifacts that are in the MOTION system. The user can define XQL
queries that are propagated through the system. The concept of dis-
tributed searches in the system is similar to searching provided by
peer to peer systems such as Gnutella[10], Morpheus[15] and Nap-
ster[16]. Whereas these systems only provide search support for
document file names, searching in the TWS API is more advanced
and has a finer granularity. For example, Dr. Jaza might search for
related work by specifying a query that identifies all artifacts that
containing the keywords “WICSA, Mobility”, the string “mobile
working” in the description and that was authored by a user that is
working on collaborative systems.

The XQL query in the prototype is composed with the help of
user interface elements such as combo boxes and tables. The user,
hence, does not need to know XQL.

4. RELATED WORK

Much has been written to date on collaborative tools and systems
and many research prototypes and commercial systems have been
built. The majority of these systems, however, are not concerned
with device and user mobility.

One of the first projects to tackle mobility issues in collabora-
tive applications is StudySpace[21]. Although StudySpace attacks
problems such as determining network, hardware and display ca-
pabilities before fetching a document, it does not address subscrip-
tion, distributed searching and community support issues.

Several authors have identified the need to develop groupware
systems that support user mobility.

DACIA[12] is a system that provides mechanisms for building
groupware applications that adapt to available resources. Using
DACIA, components of a groupware application can be moved to
different hosts during execution, while maintaining communication
connectivity with groupware services and other users. The system,
however, does not provide higher-level service support for require-
ments that MOTION deals with such as notification and informa-
tion sharing. Important mobile teamwork features such as file shar-
ing, user awareness (i.e., notification that user X is online) and ac-
cess control are not addressed by DACIA.

MOST[1, 4] provides five components: A group coordination
module, a shared graphical editor module, a remote database mod-
ule, a collaborative viewing module, a collaborative image viewing
module and a job dispatching module. The functionality provided
by the group coordination module is comparable in some respect
to the community support provided by MOTION. The aim of MO-
TION, however, is not to provide a collaborative application, but a
framework and platform for the development of business-specific
applications. Further, MOST does not support emerging mobile
teamwork service requirements that we have mentioned.

Sync[14] is a Java-based framework for developing collabora-
tive applications for wireless mobile systems. Sync is based on
object-oriented replication and offers high-level synchronization-
aware classes based on existing Java classes. MOTION mainly dif-
fers from Sync because it provides an API to higher-level teamwork
services.

A few commercially available collaborative systems (e.g.,[18])
are starting to support some form of mobility (e.g., WAP access),
but they are usually not easily customizable. Further, they were re-
ported by our case-study global organizations as having insufficient
teamwork support and not covering the requirements we address in
this paper.

One system that supports the querying of XML meta-data on
artifacts is Roma[22]. This system, though, is not a collaborative
system and only supports the querying of a central repository by
mobile users and mobile-aware applications. Furthermore, it uses
a lightweight XML query language and does not support powerful
XQL queries as we do.

5. CONCLUSION

Mobile computing devices are becoming more powerful every
day and restrictions such as memory limitations and low CPU power
are disappearing. For example, PDAs such as the Compaq iPAQ
are able to run Java 1.3 programs with Swing user interfaces. Thus,
anytime, anywhere access to information has become interesting to
many organizations and there is a need for new working ways and
technologies for distributed, mobile teamwork.

The MOTION prototype we have built is currently being evalu-
ated in two industry case-studies and business-specific user inter-
faces are under construction for Web browser and PDA access to
MOTION services.

The MOTION basic system libraries consist of about 30,000

- SEKE ’02 - 517 -

lines of Java code (without the off-the-shelf components) and have
been tested under the Windows 2000 and Linux Red Hat 7.1 operat-
ing systems on notebooks and desktops, and under Familiar Linux
on the iPAQ.

Many existing collaborative tools and systems are not customiz-
able, are heavyweight, and do not have support for emerging re-
quirements such as the locating of artifacts and experts through
distributed searches, information subscription and notification, and
mobile information sharing and access.

In this paper, we described the architecture and the components
of our generic MOTION service platform for building collaborative
applications. As more progress is made in mobile computing, we
expect the demand for mobile teamwork architectures and collabo-
rative platforms to grow.

6. REFERENCES

[1] K. Cheverst, G. Blair, N. Davies, and A. Friday. The support
of mobile-awareness in collaborative groupware. Personal
Technologies, 3(1-2):33 42, 1999.

[2] G. Cugola and E. D. Nitto. Using a Publish/Subscribe
Middleware to Support Mobile Computing. In Proceedings
of the Workshop on Middleware for Mobile Computing, in
association with IFIP/ACM Middleware 2001 Conference,
Heidelberg, Germany, November 2001.

[3] G. Cugola, E. D. Nitto, and A. Fuggetta. The JEDI
Event-Based Infrastructure and its Application to the
Development of the OPSS WFMS. Transaction of Software
Engineering (TSE), 27(9), September 2001.

[4] N. Davies, G. Blair, K. Cheverst, and A. Friday. Supporting
collaborative applications in a heterogeneous mobile
environment. In Computer Communications Special Issue on
Mobile Computing, Internal report number MPG-94-18.,
1996.

[5] P. Fenkam, H. Gall, G. Reif, and E. Kirda. A Dynamic and
Customizable Access control System for Distributed
Applications. Technical report, Distributed System Group,
Technical University of Vienna, December 2001.

[6] P. C. Fenkam. Dynamic User management System for Web
Sites. Master’s thesis, Graz University of Technology and
Vienna University of Technology, September 2000. Available
from http//www.ist.tu-graz.ac.at/publications.

[7] D. Ferraiolo and R. Kuhn. Role-Based Access Controls. In
Proceedings of 15th NIST-NCSC National Computer
Security Conference, pages 554-563, October 1992.

[8] W. A. P. Forum. Wireless Application Protocol Service
Indication Specification. Technical report, Wireless
Application Protocol Forum, November 1999. Available at
http://www.wapforum.org/.

[9] GMD. XQL IPSI, http://xml.darmstadt.gmd.de/xql/, 2002.

[10] gnutella.com. Gnutella, http://www.gnutella.com, 2002.

[11] M. Hauswirth. Internet-Scale Push Systems for Information
Distribution—Architecture, Components, and
Communication, Distributed Systems Group, Technical
University of Vienna. PhD thesis, October 1999.

[12] R. Litiu and A. Prakash. Developing adaptive groupware
applications using a mobile component framework. In ACM
2000 Conference on Computer Supported Cooperative Work.
ACM, New York, NY, USA, page 107 116. ACM Press, 2000.

[13] K. McCrary. JTella Homepage,
http://www.kenmccrary.com/jtella/, 2002.

[14] J. Munson and P. Dewan. Sync: a Java framework for mobile
collaborative applications. IEEE Computer, 30(6):59 66,

[15]
[16]
[17]

(18]

[19]

[20]

[21]

[22]

June 1997.

MusicCity. Morpheus, http://www.musiccity.com, 2002.
Napster. Napster homepage, http://www.napster.com, 2002.
G. P. Picco and G. Cugola. PeerWare: Core Middleware
Support Peer-To-Peer and Mobile Systems. Technical report,
Dipartimento di Electronica e Informazione, Politecnico di
Milano, 2001.

Pragmatyxs. Pragmatyxs, http://www.pragmatyxs.com,
2002.

G. Reif, E. Kirda, H. Gall, G. P. Picco, G. Cugola, and

P. Fenkam. A Web-based peer-to-peer architecture for
collaborative nomadic working. In 10th IEEE Workshops on
Enabling Technologies: Infrastructures for Collaborative
Enterprises (WETICE), Boston, MA, USA. IEEE Computer
Society Press, June 2001.

R. S. Sandhu. The Schematic Protection Model: Its
Definition and Analysis for Acyclic Attenuating Schemes.
Journal of the ACM, 35(2):404-432, April 1988.

J. L. Schnase, E. L. Cunnius, and S. B. Dowton. The
StudySpace Project: Collaborative Hypermedia in Nomadic
Computing Environments. Communications of the ACM,
38(8):72-3, August 1995.

E. Swierk, E. Kiciman, V. Laviano, and M. Baker. The Roma
Personal Metadata Service. In Proceedings of the Third IEEE
Workshop on Mobile Computing Systems and Applications,
page 107 116. IEEE Computer Society, Los Alamitos, CA,
USA, 2000.

- SEKE ’02 - 518 -

