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Abstract

Incremental classifiers build their prediction rules according to the known instances of a

continuous data stream. As these algorithms learn from correct and incorrect predictions,

their performance improves the more instances their rules are based on. In the case of an

instantaneous concept drift, this assumption is no longer valid as the old concepts’ instances

falsify the rules which are to be built. Therefore, it would be ideal to forget the instances. In

this thesis, it is tried to regulate this forgetting rate accurately by using an adapted form of the

entropy term. First, a simple, linear correlation between the entropy and the forgetting rate

will be excluded. Furthermore, a second, semi-dynamic and noise-resistant switching strategy

will be pursued. It will be tested on a synthetic data set and compared with the applicable

benchmarks according to two different quality measures.

Zusammenfassung

Inkrementelle Klassifizierer bilden ihre Vorhersageregeln anhand den ihnen bereits bekannten

Intstanzen eines kontinuierlichen Datenstromes. Da diese Algorithmen aus richtigen und

falschen Voraussagen lernen, werden sie je besser, desto mehr Instanzen sie betrachten. Im

Falle einer plötzlichen Veränderung der Voraussetzungen ändert sich diese Regel, Instanzen

des alten Datenmodells sollten jetzt vergessen werden, da sie falsche Informationen hinsichtlich

des neuen Modells liefern. In dieser Diplomarbeit wird versucht, die Vergessensrate mittels

des Informationsgehaltes des Datenstromes möglichst genau zu regeln. Als erstes wird eine

einfache, lineare Korrelation zwischen Informationsgehalt und Vergessensrate ausgeschlossen.

Dann wird eine zweite, quasi-dynamische und noise-resistente Strategie verfolgt. Diese wird

mittels zwei verschiedenen Qualitätsmassen auf einem künstlichen Datensatze getestet und

gegen verschiedene Benchmarks verglichen.
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Chapter 1

Introduction

1.1 Motivation

“One of the basic tasks of Machinge Learning is to provide methods for deriving descriptions of

abstract concepts from their positive and negative examples. So far, many powerful algorithms

have been suggested for various types of data, background knowledge, description languages,

and some special “complications” such as noise or incompletness. Nevertheless, relatively little

attention has been devoted to the influence of varying context. Daily experience shows that in

the real world, the meaning of many concepts can heavily depend on some given context, such

as season, weather, geographic coordinates, or simply the personality of the teacher. “Ideal

family” or “affordable transportation” have different interpretations in poor countries than in

the North, the meaning of “nice weather” varies with season and “appropriate dress” depends

on time of the day, event, age, weather, and sex, among other things. So time-dependent

changes in the context can include changes in the meaning or definition of the concepts to be

learned. Such changes in concept meaning are sometimes called concept drift.” [Widmer 93].

This citation of Widmer/Kubat dates back to 1993 which is 13 years ago. Since then,

the amount of the data which have to be processed increased exceedingly. There is hardly

a business area which does not collect and store shoals of data. Basically, in recent years,

Machine Learning progressed and a lot of development work has been made in the domain of

Data Mining. But of all areas, in the one Widmer/Kubat have adressed, resarch is still in its

infancy. The behaviour of incremental algorithms in case of concept drifts is neglected due

to the fact that useful means are still not available. The main reason for this phenomenon

may be the fact that all approaches made so far need a lot of computing power. Even modern

processors are too slow to run the known algorithms real-time. Committee classifiers, decision

trees or ensemble learners [Kuncheva 04] provide good classification results indeed, but the

1



1.2 Annotation 2

required computing time therefor inhibits a real-time application.

In this thesis, based on the entropy-term known from the domain of thermodynamics and

its meaning in modern information theory, a new approach is taken. It will be shown that

the entropy is suitable to detect concept drifts in a reliable and noise-resistant way. The

fundamental idea behind this approach is to regulate the incremental algorithm’s forgetting

rate by the information content of the data stream. As a consequence, the algorithm becomes

adaptive and the real-time classification of a continuous data stream will be made possible.

1.2 Annotation

This thesis is not completely self-contained, it stands in a series of related works. Therefore,

the introduction chapter of is kept short and only a quick overview over the fundamental

ideas has been given. For further basic information, it is referred to the thesis of M. Constam,

“Dynamische Regelung inkrementeller Algorithmen unter dem Einfluss von Concept Drifts”1

[Contam 05]. In principle, this thesis is a continuation of Constam’s work. In comparison

therewith, the scope of this thesis is defined more accurately, while Constam’s thesis is the more

widespread. For example, this thesis only focuses on instantaneous concept drifts (the definition

thereof can be found in chapter 3). Nevertheless, it is tried to appreciate preparatory work by

keeping other forms of concept drifts in mind and by setting up the definitions pursuantly. E.g.

the entropy-function is defined in order to detect also continuous drifts (details in chapter 6),

even though this kind of drift is not dealt with in this thesis. Therefore, with this work covers

a predefined2 part of the entire domain. In this part, possible solution approaches will be

developed, be rated against each other and, finally, their numerically proved power will be

presented. As the final results are absolutely promising, in chapter 10, future prospects will be

denoted as possible link for further research.

1 In English: “Dynamic control of incremental algorithms influenced by concept drifts”
2 Details are to be found in the further part of the thesis



Chapter 2

Data Sets

In this thesis, a continuous system of data which changes over time, will be looked at. All

information about the past is known, but none about the future. A data stream which provides

a new instance i at every single point in time t will be examined. The final aim is to detect

the nature of instance it at point in time t based on the information obtained by it−1, it−2,

. . . , it−n+1, it−n as precisely as possible by using an incremental algorithm. The following

paragraphs accurately describe the general layout of the data stream and the exact nature of

the single instances.

2.1 Structure Of The Data Set

The data set consists of a continuous stream of instances1. For every point in time t an instance i

is presented to the algorithm. A single instance i is composed of three parameter-values, x,

y, z, and a label-value2 ∈ [1, 2]. The label-value itself is not known a priori, but has to be

determined by the algorithm on the basis of the parameter-values. To avoid results which are

influenced by the set up of the underlying data set, the latter is held as simple as possible.

Furthermore, a simple set up of the data set reduces the influence of possible side effects.

For the set up of the data set, instances will be used which are simply defined by their

location in space within a sphere. The sphere itself is split into two hemispheres by a plane.

This splitting enables a partitioning of the instances into two classes. The specified design of the

instances is constructed as follows: A sphere with its center in the origin and radius r contains

accidentally distributed points. Every point is defined by its three Cartesian coordinates x, y

1 See figure 2.1.
2 In the further part of the thesis, “label” and “class” are used synonymously.

3



2.1 Structure Of The Data Set 4
Sheet1

Page 1

point in time 1 (...) t-4 t-3 t-2 t-1 t t+1 t+2 t+3 t+4 (...) n

instance 1 (...) i-4 i-3 i-2 i-1 i i+1 i+2 i+3 i+4 (...) n

parameterstream
x -0.16 (...) -0.33 0.43 -0.21 0.30 0.25 -0.17 -0.19 0.35 0.05 (...) 0.35

y -0.23 (...) 0.29 0.14 -0.39 -0.23 -0.10 0.41 0.31 0.21 -0.36 (...) -0.17

z 0.15 (...) 0.06 -0.40 -0.19 0.00 0.35 -0.11 0.42 -0.38 0.40 (...) 0.24

labelstream 2 (...) 2 1 2 1 1 2 2 1 1 (...) 1

Figure 2.1: Data stream with parameter- and label-values

and z ∈ of [−0.5 . . . 0.5]. As already mentioned, the coordinates will be defined as the so called

parameter values of the instance. Thus all parameter values of an instance i comply with

ri 0
√
x2

i + y2
i + z2

i 0 r = 0.5 (2.1)

according to the spherical equation

Vsphere =
4π
3
r3. (2.2)

The sphere itself is divided into two halfs by a plane passing through its centre. This plane is

always parallel to the z-axis and therefore satisfies the plane equation

−→s = −→s0 + λ−→ez + µ−→v with −→s0 =
−→
0 =


0

0

0

 and −→ez = unit vector z


0

0

1

 . (2.3)

Independent from the hade of the plane defined by −→v , the two hemispheres are exaclty

commensurate. Every point, respectively every instance, is located in only one of the two

partitions. Thus its label is defined, e.g. the instance belongs eihter to class 1 or to class 2.

The mathematical expression for determing which class an instance belongs to can be found in

section 3.2. Figure 3.4 and the corresponding formulas 3.3 and 3.4 clarify the relation. The

above described data stream is depicted in figure 2.1.
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2.2 Continuous Versus Discrete Parameter Values

Finally, two different types of paramter values are introduced, continuous and discrete ones. The

former reach values of up to a accuracy equal to the calculation depth of the value-generating

mathprogram, thus approximative infinite3. The latter are limited to a resolution of 0.1. In the

predefined range of [−0.5 . . . 0.5], only 10 possible values can occur. Extrapolated to the three

dimensions of the parameter stream, overall, only ≈ 103 different combinations4 are possible.

The main purpose for this discretisation is to effect an economy of computing time. Compared

with the continuous ones, the results based on the discrete data set do not show significant

differences which will be demonstrated in the following part of the thesis.

3 Purely matematical considered certainly not infinite, but in practical approach this simplification is absolutely
feasible

4 Note that the approximation sign results from the fact that “extreme” combinations of (x,y,z)
(like (0.5, 0.5, 0.5)) violate the constraint

p
x2

i + y2
i + z2

i 0 0.5.



Chapter 3

Concept Drifts

Generally, a concept drift is a mutation in the structure of the data set. It involves a changing

target concept. Two different target concepts, A and B, are considered. A sequence of instances

i1 to in is presented in order to the concept drift algorithm. Before some instance id, the

target concept A is stable and does not change. After a number of instances ∆x beyond id,

the concept is once again stable, this time at concept B. Between instance id and id + ∆x

the concept is drifting between targets A and B according to a distribution. If ∆x = 1, the

concept shifts instantaneously between A and B. Unless otherwise noted, this kind of drift is

meant when it is simply spoken about a concept drifts. When ∆x > 1, the concept is changing

over a number of instances. This is called a continuous drift and will not be dealt with in this

thesis. In our data set, two different kinds of drifts can be distingueshed from each other. This

is described in the following two paragraphs.

3.1 Virtual Drifts

So called virtual drifts are based on a simple variation of the distribution of the instances.

Primarily, the single classes are uniformly distributed, which means that there are exactly

50 percent of the instances in each class. In case of a virtual drift, this distribution changes,

whereas the concept itself levels off. The prior, which indicates the larger ratio of both classes, is

the characterising measure to specify such a drift. E.g. a prior p of 0.8 represents a distribution

p = 0.8 =̂
number of instances in class 1
number of instaces in class 2

= 80% to 20%. (3.1)

Figures 3.1 and 3.2 display such a virtual drift.

6



3.1 Virtual Drifts 7

Figure 3.1: Uniformly distributed instances (graphic by P. Vorburger).

Figure 3.2: Distribution after prior has changed (graphic by P. Vorburger).
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Figure 3.3: Prior distribution

The data set simulating virtual drifts consists in 73 concepts per 3000 instances. This number

of instances between two drifts has been choosen to achieve a reasonable average between

drifting and stable phases of the data set. Would the number be smaller, drifts would occur

unrealisically often. Would the number be greater, the contrary case would occor. Therefore,

the entire data set contains 73 ∗ 3000 = 219000 instances. This value of 73 is a consequence

of the decision to model all possible drifts from one prior to another. Needless to say, the

prior-resolution is limited to a fineness of 0.1. Altogether, there are n = 8 possible class

distributions (prior = 0.1 up to prior = 0.9 in steps of 0.1). If every possible drift shall be

modeled, the number of drifts come across

2 ∗
n∑

k=1

k =
2n(n+ 1)

2
= 72 drifts (3.2)

between 73 concepts. The factor 2 in front of the sigma sign results from the fact that a

difference is made between drifts and their converse. Therefore drift (priori � priorj) 6=
(priorj � priori). Although we have defined the prior as the larger ratio of both classes, e.g.

priorl = (1 - priorl) ∀ (priorl < 0.5), for the sake of simplicity, in the further part of the thesis,

we will not strictly follow. So if e.g. a “prior of 20%” is mentioned, in fact a prior of 80% is

meant. Finally, figure 3.3 shows the performace of the prior over the whole data set. The

numerical values of the prior performance are to be found in table A.2 in the appendix.
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3.2 Real Drifts

Unlike virtual drifts, real drifts are effectively based on a shifting of the concept. In exchange

the prior levels off, due to the design of the data set it remains constant at a value of 0.5. For

the sake of simplicity, the test arrangement is broken down into only two dimensions. Thus,

there is a circle (originally a sphere), dividided into two halfs by a straight line Θ (originally

a plane) passing through the center, as shown in figure 3.4. The single instances (the points

inside the sphere) are defined by two dependent variables x and y and one independent 1

variable z (whereas z is not to be seen in the two-dimensional figure 3.4). Plane Θ dividides

the instances into two classes. In order to determine to which class a instance belongs, a simple

but accurate and mathematical proper way is used. The normal −→n of the plane Θ is defined

with |−→n | = 1 and ω = 90◦. This gives rise to

−→n ∗ −→vP > 0 −→ P ∈ Class 1 (3.3)

−→n ∗ −→vQ < 0 −→ Q ∈ Class 2 (3.4)

So every instance will be assigned one-to-one to a class. The concept drift itself is defined

by rotating the plane by a rotating angle ϕ. The rotating axis is passing though the center of

the sphere and is parallel to the z-axis. Thus the parameter z is independent, a variation of it

has no influence on the class membership of the instance. In figure 3.5, a real drift is shown.

The whole data set consists of 20 concepts per 3000 instances. Consequently, it contains

60000 instances and 19 drifts between the single concepts. The drifts themselves become the

more intense the bigger the number of the instance is. Table A.1 in the appendix summarises

all drifts. It must be pointed out that the given angle ϕ always corresponds to the preceding

concept, not to a global reference. Angle ϕ is altered according to the following sequence:

it starts at value π
128 [radians] and will be duplicated at each step until the value of π

16 .

Thenceforward drifti = drifti−1 + π
16 up to π, which is equivalent to 180◦ degrees. A further

rotating of the plane would not make any sense as the period of the systems is equal to π. A

drift with � (ϕ+ π) corresponds exactly to a drift with � ϕ.

1 The reason for this independence is explained later on.
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Figure 3.4: Mathematical background of a class determination (own graphic).
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Figure 3.5: Illustration of a real drift (own graphic).



Chapter 4

Algorithms

4.1 Naïve Bayes

The naïve Bayes algorithm is known for its robustness. It does not require much computational

power and produces prediction probabilities. The naïve Bayes algorithm is a simple probabilistic

classifier. It is based on models which incorporate strong independence assumptions between

the single parameter values1, hence are (deliberately) naïve. The basic assumption is that

every attribute depends on the corresponding class only. The mathematical background is the

Bayes theorem which describes the handling of conditional probabilities:

P (A|B) =
P (A ∩B)
P (B)

=
P (A∩B)

P (A) · P (A)

P (B)
=
P (A) · P (B|A)

P (B)
(4.1)

in which P (A) is the a priori probability and P (B|A) the probability for an occurrence of B

on the condition that A occurs. If the number of occurrences is finite, the Bayes theorem is

incidental in the following way: If Aj , i = 1, . . . , N represents a decomposition of the event

space in disjoint occurrences, for the a posteriori probability P (Ai|B) applies

P (Ai|B) =
P (B|Ai) · P (Ai)

P (B)
=

P (B|Ai) · P (Ai)
N∑

j=1
P (B|Aj) · P (Aj)

(4.2)

in which the relation

1 In the following, probabilities must be multiplied. So the strong independence is a necessary constraint.

11



4.2 K-Nearest Neighbour 12

P (B) =
N∑

j=1

P (Aj ∩B) =
N∑

j=1

P (B|Aj) · P (Aj) (4.3)

is called the law of total probability. By combining the probability model with a decision

rule, the naïve Bayes classifier itself is constructed. The common decision rule is to pick the

hypothesis which is most probable. This is known as the maximum a posteriori decision rule.

The corresponding classifier is the function Ω, which is defined as follows:

Ω(b1, ..., bN ) = argmaxa P (A = a)
N∏

j=1

P (Bj = bj |A = a). (4.4)

Additionally, the naïve Bayes algorithm used in this thesis is combined with the Laplace

estimation2[Duda 00]. Thus probabilities P (X) = 0 (and therefore divisions by zero) will be

prevented. Even though the parameter values of our data set are not independent, the algorithm

provides quite good results. Furthermore, its simple calculation rule allows a fast computation.

Basically, in spite of their naïve design and apparently over-simplified assumptions, naïve

Bayes classifiers often work much better in many complex real-world situations than it might

be expected because of their very simple design- as long as the parameter values are not too

intercorrelated among themselves.

4.2 K-Nearest Neighbour

The nearast neighbour rule, a typical non-parametric decisions rule, is quite attractive because

no prior knowledge of the distributions is required. In order to make decisions on the membership

of unknown objects, these rules rely, instead on the training set, on objects with known class

membership. The nearest neighbour rule, as its name suggests, classifies an unknown object

according to the most prevalent class of its nearest neighbours in the measurement space using,

most commonly, Euclidean metrics. Thus the algorithm calculates the distance to every known

neighbour ni

∆ni = |−→vi | =
√
x2

i + y2
i + z2

i for i = 1, . . . , t (4.5)

2 Laplace estimation inserts a single entry to every occurrence
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Figure 4.1: Diagram k-nearest neighbours

with t = total number of neighbours. In a second step, it collects the k (in our case k = 21)

nearest ones nnear_j .

nnear_01 = min([∆n1,∆n2, . . . ,∆nt−1,∆nt])

nnear_02 = min([∆n1,∆n2, . . . ,∆nt−1,∆nt] \ [nnear_01])

nnear_03 = min([∆n1,∆n2, . . . ,∆nt−1,∆nt] \ [nnear_01, nnear_02])

. . .

nnear_(k−1) = min([∆n1,∆n2, . . . ,∆nt−1,∆nt] \ [nnear_01, nnear_02, . . . , nnear_(k−2)])

nnear_k = min([∆n1,∆n2, . . . ,∆nt−1,∆nt] \ [nnear_01, nnear_02, . . . , nnear_(k−1)]).

Then the number of all instances which belong to the same class3 are counted4

3 As we exclusive deal with a 2-class problem only this case is mentioned. Basically, n-class problems are
handled the same way.

4 Under the assuption, that one instance nnear_j counts as 1.
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Number of class 1 = m1 =
k∑

j=1
nnear_j ∀ nnear_j ∈ class 1

Number of class 2 = m2 =
k∑

j=1
nnear_j ∀ nnear_j ∈ class 2

whereas m1 + m2 = k = 21. Finally, the class of instance ni+1 is equivalent to the class

of max(m1,m2). E.g. in figure 4.1 with k = 5, |−→v1 |, |−→v2 |, |−→v3 |, |−→v5 | and |−→v9 | are the shortest

connections to the nearest neighbours. As four of the neighbours belong to class 2 but only one

to class 1, the new instance will be (correctly) classified as class 2 by the algorithm. Generally,

it is a simple and evident algorithm. However, in practise it needs a lot of computing time as

for every single instance all ∆ni have to be calculated and stored.



Chapter 5

Benchmarks

In order to know how well the controlled algorithm works, an applicable benchmark is needed.

Without such a possibility of comparison, it would be useless to consider the power of the

controlling instrument, or rather the performance of the incremental algorithm. For this reason

so called benchmarks are calculated which represent either the highest reachable limit or the

performance of other approaches than the regulation by the entropy.
Sheet1

Page 1

Concept A A    l    g    o    r    i    t    h    m

Instances  t = 0 Concept B
concept drift

w i n d o w   s i z e   w s  o f   t h e   a l g o r i t h m  

Figure 5.1: Window size ws of an algorithm

In the present case, the efficiency of the algorithm which predicts the label of an instance i

is exclusively dependent on its forgetting rate. The forgetting rate is strongly coupled to the

window size ws of the incremental algorithm. The window size ws determines on how many

past intances the classifier (the algorithm) builds it rules. E.g. ws = 600 means that the

classification rule is built on the basis of the last 600 instances This is schematically shown in

figure 5.1. Therefore, the forgetting rate should be as small as possible as long as the concept

beneath the data stream does not change. As the algorithm “learns” from wrong predicted

labels, the more instances the algorithm classifies, the more precise the algorithm becomes. In

the case of a concept drift, the suppositions are completely different. It would be optimal for

the algorithm to totally forget the old concept and to concentrate only on the instances of the

new concept. In other words, in case of a concept drift, the forgetting rate should be very high

and the instances of the old concept should not be implicated as they provide (now) wrong

15
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information about the actual situation. A high forgetting rate is equal to a small window size

which contains only a few points which the algorithm is based on. Taking figure 5.1 as an

example, as a sizable part of the old concept is involved in building the classifier rule, the

window size of the algorithm is too large.

Until this point, vague terms like “efficency” or “precession” in connexion with the algorithm

have been discussed. In the next two short paragraphs, two measured values which allow us to

express the efficiency of the algorithm (in relation to the forgetting rate) in numerical values

will be specified.

Accuracy η

The accuracy-term quotes the percentage rate of the correct predicted labels,

accuracy η =
correct predicted instances

all instances
. (5.1)

A value of e.g. 430 correct classified instances of totally 500 instances leads to an accuracy of

η = 430
500 = 0.86 or 86%. The accuracy is a very lucid measure, simple to comprehend and very

easy to calculate. It directly indicates information about the power of the algorithm. Since it

does not include cost information, it is possible that a less accurate model is more cost-effective.

This disadvantage will be compensated by calling in a second measure, the area under curve.

Area Under Curve AUC

The so called area under curve AUC is a measure based on receiver operation characteristics

ROC [Provost 01]. The ROC can be represented equivalently by plotting the fraction of

true positives vs. the fraction of false positives1. This is equivalent to the including of cost

information. In short, the area under curve is a measure which class-wise determines the

prediction quality of a classifier. The value of the AUC for a certain class is equal to the

area under the ROC-curve of the corresponding class2. A special case are two-class problems,

where the AUCs of both classes have the same values. Therefore, in the subsequent discussion,

only one value for the area under curve is considered. Although it is mostly used on two-class

problems, it can be applied to multi-class problems [Ferri 03].

The main point of ROC-curves is that the power of a classifier can be determined per class

without considering the class distributions [Fawcett 05]. On the one hand, this is very useful

1 A false positive, also called a Type I error, exists when a test incorrectly reports that it has found a result
where none really exists.

2 Which is 0.5 for random and 1 for perfect classifiers
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Figure 5.2: Accuracy benchmark sphere real discrete naïve Bayes

in the case of very different misclassification costs (e.g. credit fraud) or, on the other hand, if

it is intended to assess of a classifier without regarding the class distributions is intended.

5.1 Ultimate Benchmark

The idea of the calculation of a benchmark as mentioned above is very simple. It is assume

that each instance belongs to an optimal window size which results in the highest possible

accuracy. Therefore, the algorithm is trained with all possible window sizes. In a next step, the

accuracies at every single instance are compared and the windowsize which leads to the highest

accuracy is defined as optimal. Consequentely, the optimal window size wsopt at instance i is

defined by:

wsopt(i) = ws of max(η(ws(i))) ∀ ws(i) ∈ [1, . . . , 1000]. (5.2)

In figure 5.2, three exemplary accuracies to corresponding windowsizes are shown.

Figure 5.3 points out a detail of figure 5.2 and allows to draw some interesting conclusions:
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Figure 5.3: Accuracy benchmark sphere real discrete naïve Bayes, detail

1. Obviously, it can not be avoided that the accuracy breaks in after a concept drift, no

matter which forgetting rate is chosen.

2. Shortly after a concept drift, small window sizes (e.g. ws = 100, the magenta colored

line) perform better. Even though small window sizes are above-average reactive and

deflect strongly, they lead to a higher accuracy than large window sizes. Due to this fact,

the short window sizes are obviously inapt for the “normal state” of the system, e.g. if

there are no concept drifts.

3. Large window sizes (e.g. ws = 1000, the dark blue colored line) behave “sedate”. Single

outlier-instances do not influence the behaviour of the accuracy as much as if the algorithm

would have been based on a small window size. On the other hand, large window sizes

behave inertial. They need a lot more time to adapt to the new situation. After about

1000 instances after the concept drift, they perform plus-minus equal to the benchmark.
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4. An average window size (e.g. ws = 500, the green colored line) combines the two extrema

(see points 2. and 3.). It reacts slower than the small window sizes, but is more robust.

Also, it performs good results earlier than large window sizes but never reaches their

high average accuracy η

η =
1
n

n∑
i=1

η(i). (5.3)

5.1.1 Conclusion

First of all, it should be noted that, due to the limited available CPU-performance for this

project, the effective resolution of the above mentioned benchmark is set to a value of 10 ws.

With the given infrastructure, it was not possible to calculate every single window size ws

as denoted in equation 5.2. Basically, a resolution of 1 %3 is a close enough approximation.

Missing values will be interpolated. A higher resolution would flatten the benchmark-curve,

but would definitely not offer new information. Therefore, the defined benchmark (red line in

figures 5.2 and 5.3) represents the most optimal effectiveness the algorithm is able to perform.

If this mark is reached by the way of controlling the algorithm presented in this thesis, the

best possible aim will be achieved. In the further part of the thesis, this algorithm’s upper

limit will be called the ultimate benchmark.

5.2 Optimal Window Sizes

If the above mentioned path is followed backwards, it should be able to draw a function which

- hypothetically - assings an optimal window size ws to every single instance i. Basically,

this proceeding should lead to a regular function ws(i) over all instances. In reality it has

to be dealt with outliers, which adulterate this function ws(i). There are two reasons for

this interfering behaviour. On the one hand, there are for example small window sizes which

accidentally produce (independent from a concept drift) isolated good results (figure 5.4). On

the other hand, other large window sizes perform similarly good values of accuracy; while the

accuracy itself fluctuates within half of a percent, the window size fluctuates within a range of

250 (figure 5.5).

If this two phenomena are disregarded and just the graph without any adjustment factors

is generated, the result looks rather disruptet (figures 5.6 and 5.7). The correlation between

3 The maximum window size is set to 1000, 10 equals 1% of this value
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Figure 5.4: Small window sizes performs good accuracy by accident (plane sphere real
continuous knn)(own graphic).
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Figure 5.5: Big window sizes perform similar good results (plane sphere real continuous
knn)(own graphic).
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Figure 5.6: Optimal window sizes per instance without adjustment (plane sphere real continuous
knn)(own graphic).

concept drifts, instances and optimal window sizes can be imagined, but it is not very obvious

at a first glance. The reason therefore might be the above characterised facts. With slight

modifications in the mapping formula from best accuracy η(i) to window size ws(i), the

correlation shall be clarified by avoiding the “noise” using different means. Mentioned below

are four approaches, their effects and the consequences for the further part of this thesis. To

clarify the theoretical explanations, in figure 5.8 three exemplary instancens are mentioned.

Arithmetic Mean x

The arithmetic mean x is defined as

x =
1
n

n∑
i=1

xi. (5.4)

It is arguably the most common mean. However, it is not robust against single outliers. E.g.4

for n = 3 the arithmetic mean would result in ws = x = 670 at point in time t, what is a

pretty bad indication of the real distribution. Outliers disrupt intense, therefore the aritmetic

mean is an inapplicable measure.

4 Please refer to figure 5.8.
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Figure 5.7: Optimal window sizes per instance without adjustment, detail (plane sphere real
continuous knn)(own graphic).

Sheet1

Page 1

acc ws acc ws acc ws
1 0.96 990 0.96 60 0.97 1000
2 0.95 960 0.95 1000 0.97 990
3 0.95 60 0.95 990 0.96 500
4 0.94 1000 0.95 970 0.96 490
5 0.93 980 0.95 980 0.58 550
6 0.90 950 0.95 960 0.57 950
7 0.88 890 0.94 920 0.56 870
8 0.87 880 0.94 930 0.55 940
9 0.85 910 0.94 890 0.55 960

10 0.80 930 0.94 900 0.54 780

instance t instance (t +1) instance (t+2)

Figure 5.8: Three exemplary instances with window sizes ws and corresponding accuracies η
(own graphic).
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Median x̃

The median x̃ is the value below which 50% of the scores fall, or the middle score. For an odd

number of scores the median is

x̃ = x(x+1)/2, (5.5)

for an even number

x̃ =
1
2
∗ (xn/2 + x(n+1)/2). (5.6)

If the median is applied to the best accuracies, it would result in the value ws = x̃ = 60 at

point in time (t+ 1). Only the outlier is counted. This is exactly the opposite of what was

aimed for. Applying it to the best windowsizes (e.g. n = 5), it would result in ws = x̃ = 550

at point in time (t+ 2) (with a low accuracy η of 0.58) which would be mistaken likewise.

Best of n xn

Typically, the arithmetic mean x and the median x̃ result in window sizes which are too small.

One might consider whether it would make sense to pick only the largest window size in a range

of the best n window sizes. This approach would result in reasonable values for large window

sizes. In case in which small window sizes (e.g. after a concept drift) would be expected, xn

would falsify the result towards too large window sizes.

X Percent Neighbourhood

Each of the first three examples given in figure 5.8 shows weaknesses in special situations of

distributions. In the case of a relatively large data set with lots of instances, these special

situations often occur. In any case, the final conclusion will be strongly influenced by the

average measure. Therefore, a subtle mesure which smoothes the curve “intelligently” is needed.

According to the fact described in interrelation with figure 5.5, accuracies often appear in close

quaters, i.e. in a nearby “neighbourhood”. Using this feature, the best accuracy is determined

and all accuracies located in a X percent neighbourhood are assigned. Thereafter, the largest

of the corresponding window sizes will be defined as optimal window size wsopt.

This proceeding prevents the window size curve from outliers, delivers a comprehensible

measure and does not adulterate the results. E.g. in case of the three exemplary instances

in table 5.8, the three 1.5 percent neighbourhoods would reach from η = 0.96 to 0.9456 at

instance t, including window sizes ws 990, 960 and 60 which results in an optimal window
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Figure 5.9: Optimal window sizes per instance with adjustment (plane sphere real continuous
knn)

size wsopt of 990. At instance t+ 1, the same values appear for the neighbourhood, including

window sizes ws 1000, 990, 980, 970, 960 and 60, which results in wsopt of 1000. At the third

instance, t+ 2, the neighbourhood reaches from η = 0.97 to 0.9554, including the window sizes

1000, 990, 500, 490, also resulting in an optimal window size wsoptof 1000.

Although the constructed instances at t, t+ 1 and t+ 2 are not especially fitted to this

example compared to the other means, doubtlessly this result makes more sense from a

statistical point of view. If this so defined measure (maintaining the value of 1.5% for the

range of neighbourhood) is applied to one of the data sets, the result looks like expected in

theory (Figure 5.9 and 5.10).

5.3 Monitoring of the Results

In the further part of the thesis, basic considerations will be based on the benchmark and

its optimal window size. For this reason, a short look into the noticeable specifics of these

curves is taken in this paragraph. At this stage these specifics are only noted. Later on, the

phenomenons will be explained in depth. First of all, it is pointed out that the window size ws
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Figure 5.10: Optimal window sizes per instance with adjustment, detail (plane sphere real
continuous knn)

reacts in exactly the same way after every concept drift5 which can be seen in figure 5.9. Right

after the drift, the window size “breaks totally in” and arrives at a minimal value. Afterwards,

the window size recuperates and rises linearly (with a constant gradient) up to the predefined

maximum value of 1000. This happens after exactly 1000 instances.

5.4 Error caused by Smoothing the Curve

The advantages of smoothing the window size-curve on theoritical grounds were disussed above.

At this point, a short look at the numerical impact of this decision is taken and its consequences

are shown. For this purpose the corresponding accuracy-curves are compared and the loss of

precision is calculated. In Figure 5.11, the accuracies of the original benchmark are confronted

with the accuracies of the smoothed benchmark. It is noticeable that after the first couple

of instances after the concept drift the smoothed benchmark provides not as many as good

accuracies as the ultimate benchmark, whereas after about 1000 instances, the two curves

are nearly congruent. The error in the first part roughly spans an interval of 0 to maximal

1.5 percent. This maximum value seems to be rather large. However, it occurred accidentally.

5 At the present, the small drifts at the beginning of the data set are disregarded
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Figure 5.11: Accuracy without/with 1.5 percent neighbourhood smoothing (plane sphere real
continuous knn)

Due to the fact that small windowsizes react in a quite fragile way on outliers in the dataset,

they sometimes produce “lucky punches”, i.e. good values. However, this is infrequent and not

reproducible. Furthermore, the mean of all errors is only 0.3% which relativates the single

outliers very much. Concluding, it can be retained that the demonstrated smoothing (and the

curve itself) produces a reasonable result and makes sense from a mathematicalpoint of view.

Therefore, the further research is based on the assumption that the behaviour of the window

size as shown in Figure 5.10 is ideal and leads to really very results.

5.5 Smoothed Benchmark

By eliminating outliers and therefore smoothing the curve of the optimal window sizes, a

further benchmark was unconsciously generated. If the slightly smaller average accuracy η of

the smoothed curve is not considered as an error but as a more realistic assumption compared

to the ultimate benchmark, a more reasonable benchmark is obtained. If the experiment would

be performed several times and only the average result would be looked at, it would definitely

look like the smoothed curve and not like the ultimate benchmark. Therefore, also from a
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statistical point of view, the smoothed benchmark has its right to exist. In the further part of

the thesis, each result will be tested on both benchmarks for the purpose of comparison.

5.6 Committee Benchmark

As previously mentioned, for real-time uses, committee-based algorithms are applicable only

in a restricted way. This is due to the fact that they require a lot of calculating capiticity.

Nevertheless, for the sole purpose of having a third possibility of camparison for our approach,

based on such a committee, a benchamark is generated. Our committee consists of maximal

9 members m. The single members are distinguished by their different underlying forgetting

rates6. In the present case, the window sizes 1000, 750, 500, 250, 100, 75, 50, 25 and 10 are

chosen. As this selection contains both minima, maxima, mean window sizes and a sufficient

number of small window sizes which achieve good results shortly after a drift, it is balanced

and representative.

At every given point in time t, every committee-member m(ws) is trained on the trainingset

by ten fold cross validation. Generally, cross validation is the practice of partitioning a sample

of data into subsamples such that the analysis is initially performed on a single subsample, while

further subsamples are retained “blind” in order for subsequent use for confirming and validating

the initial analysis. In the domain of Data Mining, k-fold cross validation means a partioning

of the data into k subsamples, whereas (k-1) subsamples are used as (sub-)trainingsset and

one as (sub-)testset. After a cycle, the roles are exchanged and the testing starts over until

every subsample has been tested. The performace of the algorithm is defined as the average of

all passes and gives an idea of the algorithm’s power.

In a second step, the achieved accuracies η of the members m(ws) are ranked. Deduced

from this ranking, the committee of the n, whereas n ∈ [1, . . . , 9], is composed. Now every

member m(ws) is tested on the testset and, thereafter, predicts the label value of the instance i

at point in time t. Finally, the class of instance i(t) is determined according to the chosen

weighting of the single committee-members.

In sum, 14 different committee-benchmarks have been calculated. Numbers # 1 to #

9 represent unweighted committee-decisions. Finally, the class-prediction of the member

m(ws) with the best accuracy η is chosen. By contrast, numbers # 10 to # 14 stand for

weighted decisions. The following list displays the different weights of the particular 9 members,

commencing with the member with the best accuracy7.

6 Remember: Forgetting rate and window size ws are strongly coupled. A high forgetting rate stands for a
small window size ws and a low one for a large window size.

7 The mathematic expression of how committees # 12 and # 13 are weighted may be misunderstood. Simply
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committe # 10 −→ 1
1 ,

1
2 ,

1
3 ,

1
4 ,

1
5 ,

1
6 ,

1
7 ,

1
8 ,

1
9

committe # 11 −→ 9
10 ,

8
9 ,

7
8 ,

6
7 ,

5
6 ,

4
5 ,

3
4 ,

2
3 ,

1
2

committe # 12 −→ max η(mclass1) + (max-1) η(mclass1) + . . .

max η(mclass2) + (max-1) η(mclass2) + . . .

committe # 13 −→ max (η(mclass1)− 0.5) + (max-1) (η(mclass1)− 0.5) + . . .

max (η(mclass2)− 0.5) + (max-1) (η(mclass2)− 0.5) + . . .

committe # 14 −→ 9, 8, 7, 6, 5, 4, 3, 2, 1

Not all committee benchmarks perform equally good results, numerical values8 can be found in

table 5.1. In addition thereto, the handling of such a large number of different benchmarks is

tedious. On this account, for the furter part of the thesis, it is restricted to two significant ones,

committees # 3 (greatest η) and # 13 (members with the best accuracy determine the class).

committe # 1 2 3 4 5 6 7

η 0.9127 0.9158 0.9245 0.9218 0.9224 0.9182 0.9172

committe # 8 9 10 11 12 13 14

η 0.9055 0.8999 0.9240 0.8999 0.9081 0.9184 0.9231

Table 5.1: Values of committee benchmarks

put into words, in committee # 12, all accuracies η of the members which predict the same class are added.
The greater sum then determines the class-prediction of the whole committee. Committee # 13 is built the
same way as # 12. The slight difference is that, in each case, 0.5 is subracted from η. This shifts the weight
towards members with high accuracies.

8 The values refer to the naïve Bayes algorithm on the real drift data set.



Chapter 6

Entropy

6.1 Basics

The basic idea of this approach is to control the forgetting rate of the incremental algorithm by

using the underlying information content of the data stream. In other words, if new information

in the data stream is available, to provide good results in the future, the algorithm must react

thereupon. The challenge was to find an instrument which delivers exact details about changes

in the data stream. This latter instrument shall be found in the basic information theory,

known as entropy.

The entropy-term itself was originally defined in thermodynamics and statistical mechanics

where entropy is a key physical variable in describing a thermodynamic system. There is

an important connection between entropy and the amount of internal energy in a system

which is not available to perform simple work. Without going very deep into the theory

of thermodynamics, it can be stated that entropy is a mightful measure to determine the

order/disorder or rather the information content of a system. Claude E. Shannon detected in

his fundamental paper of 1948 “A Mathematical Theory of Communication” [Shannon 48] that

entropy is also a self-evident measured value to describe the information content in information

theory. He defined entropy H in terms of a discrete random event x, with possible states 1 . . . n

as:

H(x) =
n∑

i=1

p(i) ∗ log2
(

1
p(i)

)
= −

n∑
i=1

p(i) ∗ log2 (p(i)) (6.1)

29
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Figure 6.1: Entropy of a Bernoulli Trial

It is obvious that, in a two class problem (e.g. Bernoulli trial1, Figure 6.1), this formula

leads to the following conclusions:

• H(x) ∈ [0 . . . 1]

• H(x) reaches its maximum when the probabilities are equal, p1(x) = p2(x) = 0.5

• If the result is already predefined (probability ∈ of [0, 1]) → H(x) = 0

• The entropy function is symmetric relative to the straight line p(x) = 0.5

If it is tried to measure the information content of a continuous data stream by means of

the entropy, the entropy-term has to be modified slightly and adapted to the present problem

statement. Based on M. Constam’s entropy term2 in his master thesis [Contam 05], the term

shall be adapted, its problematic parts 3 shall be eliminated, it shall be normalised and made

adaptive - and therefore dynamically adjustable.

1 In the theory of probability and statistics, a Bernoulli trial is an experiment of which the outcome is random
and can be either of two possible outcomes. Therefore, the sum of all probabilities is always equal to 1.

2 A brief subsumption is to be found in the following section.
3 E.g. in the primal form the entropy term has to look far into the future



6.2 Primal Form Of Entropy Term 31

6.2 Primal Form Of Entropy Term

Based on the original formula for the entropy H(x), M. Constam has developped a slightly

modified form. The foundation pillars of this modified form consist in i. a sliding window

over the instances which identifies the corresponding instances, ii. a distribution of the values

according to a bin and iii. the taking of the (simple) average of all calculated data. In order

to avoid confusion, the following example is considered. For further information it is referred

to [Contam 05].

6.2.1 Breaking Down the Data Stream into Pieces

Our data stream is composed of n “sub-streams”; (n− 1), so-called parameter streams, and one

dependent label stream, whereas the label stream depends on the parameter streams. Only

the parameter streams, all of them equally weighted, are finally implicated in the entropy.

Htotal =
(

1
n− 1

)
∗ (H1 +H2 + . . .+Hn−2 +Hn−1) (6.2)

In the following, one of these parameter streams Hi which, in principle, are all the same, is

exclusively considered. In order to become familiar with the proceeding of calculating the

entropy of a continuous data stream, it will be illustrated by using an example.

6.2.2 Arranging of the Instances According to Label/Time

The exemplary sample stream Hi looks as follows:
Sheet1

Page 1

past window future window
Point of time t ... -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 ...
Parameter stream ... 3 5 5 2 10 4 5 6 1 1 2 5 6 7 1 9 ...
Label stream ... 1 0 0 1 1 0 1 0 1 0 1 0 1 1 0 0 ...

For every point in time t, there are n− 1 (equals 1 in the example) parameter streams. The

parameters reach values in a predefined range, e.g. they are ∈ N+ and < 11. Needless to say,

in synthetic generated data sets, this range is known. Compared therewith, natural ones are

not stringent. Commencing with a readout of all instances within the time frame from (t− n)

to (t+ n) (e.g. n = 6), these instances are arranged according to their label and corresponding

to the time window. Furthermore, the minima and maxima shall be determined.Sheet1

Page 1

Label 0 Label 1 Label 0 Label 1
Past window Minimum 1 1
Future window Maximum 6 10

5, 4, 6 2, 10, 5
1, 5 1, 2, 6, 7
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6.2.3 Compilation of the Conditional Histograms

The determination of minima and maxima allows to calculate the borders for the bin separation.

Generally, this segmentation of the instances into multiple bins is necessary for detecting a

successive change4 in the data stream. As initially mentioned, in principle, continuous concept

drifts are not discussed in this thesis. However, in order to enable future research in this area,

the entropy term will be calculated in a way that continuous concept drifts are recognisable.

Without this separation, such a continuous concept drift would not be noticed by the entropy.

The reason therefor is that all the instances would shift in the exact same way, the difference

∆ would also remain the same and the entropy would miss out the drift. For this reason, two

bins are defined which are seperated by the following borders:

binnborder =
1
2
∗ (Minimum + Maximum) for n ∈ [1, 2], (6.3)

so bin1border = 1+6
2 = 3.5 and bin2border = 1+10

2 = 5.5 in the example. Starting from these

borders, all values are divided into a so called “conditional histogram” which provides a basis

for comparing the instances and calculating the entropy. In this histogram, not the values of

the instances itself, but the number of values is important. The next step is to scale these two

conditional histograms. The scaling is performed in order to keep the entropy values in the

range range [0 . . . 1].

scaled value =
number of instances(bin n (past and future window))

number of all instances
for n ∈ [1, 2] (6.4)

4 Continuous concept drift, described in section 3
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Histogram Label 0
Bin 1 Bin 2

Histogram Label 1
Bin 1 Bin 2

(1 <= x <= 3.5) (3.5 < x <= 6) (1 <= x <= 5.5) (5.5 < x <= 10)

Past window
Items itself Ø 4, 5, 6

Past window
Items itself 2, 5 10

Number of items 0 3 Number of items 2 1

Future window
Items itself 1 5

Future window
Items itself 1, 2 6, 7

Number of items 1 1 Number of items 2 2

Scaled histogram Label 0 Bin 1 Bin 2 Scaled histogram Label 1 Bin 1 Bin 2

Past window
Scaled number

0.00 0.75 Past window
Scaled number

0.50 0.33
of items of items

Future window
Scaled number

1.00 0.25 Future window
Scaled number

0.50 0.67
of items of items

6.2.4 Computing the Entropy

According to the entropy formula for a two class problem, H(x) = −(p1∗log2(p1)+p2∗log2(p2))

the following four entropies are calculated

Entropy label 0, bin 1 = H01 = −(0 ∗ log2(0) + 1 ∗ log2(1)) = 0

Entropy label 0, bin 2 = H02 = −(0.75 ∗ log2(0.75) + 0.25 ∗ log2(0.25)) = 0.8113

Entropy label 1, bin 1 = H11 = −(0.5 ∗ log2(0.5) + 0.5 ∗ log2(0.5)) = 1

Entropy label 1, bin 2 = H12 = −(1
3 ∗ log2(

1
3) + 2

3 ∗ log2(
2
3)) = 0.9183.

As the distribution in the scaled conditional histogram can vary highly, the entropies are

weigthed according to the numbers of instances on which they are based. This procedure

of weighting forecloses that a few instances warp the result. Also, it keeps Htotal in the

range [0 . . . 1]. The weights are calculated using the following equation

wij =

both∑
windows

instances ∈ [same label]

total number of instances
(6.5)

weight label 0, bin 1 = w01 = 0+1
12 = 1

12

weight label 0, bin 2 = w02 = 3+1
12 = 1

3

weight label 1, bin 1 = w11 = 1+2
12 = 1

4

weight label 1, bin 2 = w12 = 2+2
12 = 1

3 .
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Figure 6.2: Entropys [-n; 0; 0; n] ∈ of [100, 1000, 2000] (prior discrete nb)

Finally, the total entropy Htotal is calculated by multiplying the single entropies Hij with their

corresponding weights wij .

Htotal =
1∑

i=0

2∑
j=1

wij ∗Hij =
1
12

∗ 0 +
1
3
∗ 0.8113 +

1
4
∗ 1 +

1
3
∗ 0.9183 = 0.8265 (6.6)

If this procedure is repeated for every single instance, it leads to a one-to-one assignment

between instances and entropy. At this state of our study, only the question of the lenght

of the time frame of the sliding window remains to be defined. In the above example, n = 6

was taken, M. Constam opted for n = 1000 in his thesis. The reason for his choice was a

threshold argumentation. Below this threshold, the curve is too discontinuous and craggy,

above it, the decreasing edge (which indicates a forthcoming drift) is too flat. In figure 6.2,

zoomed in figure 6.3, the two extremas are calculated and shown in comparison to Constam’s

choice. In chapter 6.3, the result of this calculation will be discussed. Also, a closer look shall

be taken at the assets and drawbacks of the so defined entropy and develop a form with better

applicability.
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Figure 6.3: Entropies [-n; 0; 0; n] ∈ of [100, 1000, 2000], detail (prior discrete nb)

6.3 Further Development of the Entropy Term

6.3.1 Structural Weakness of Constam’s Approach

Basically, Constam’s approach of calculating the entropy of a continuous data stream is well-

founded and coherent. However, it possesses certain weaknesses which shall be tried to be

eliminated. Some further elaborations shall be made regarding his approach. First of all,

attention is paid to the fact that the formula deals with future information.

6.3.2 Avoiding the Need of Future Information

As it is impossible to unerringly predict incidents in the remote future it must be avoided that

the term (t+ n) for (t = 0) becomes too large and points too far into the future. Regardless of

this latter fact, the ability to predict upcoming concept drifts must remain intact, even if an

“effort” must be made in order to meet this demand. Subsequently, a couple of approaches are

exemplified.
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1. Starting at the initial situation with n = 1000 ([-1000; 0; 0; 1000]), the time frames5 are

tried to be optimised. Sheet1

Page 1
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2. Choosing n = 0

Sheet1

Page 1

past window future window

Point of time t ...

t-(
n+

2)

t-(
n+

1)

t-n

t-(
n-

1)

... t-3 t-2 t-1 t+
1

t+
2

t+
3 ...

t+
(n

-1
)

t+
n

t+
(n

+1
)

t+
(n

+2
)

...

 t = 0

Point of time t ... ...

 t = 0, n = 0

A simple, but inapt solution. n = 0 ([0; 0; 0; 0]) leads to window size ws = 0 which again

leads to entropy H = 0 over all instances i. Thereby, the approach would be frustrated

from the outset.

3. Choosing n small
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Looking “a bit” in the future is not a bad as looking “far” in the future. If n is chosen

small (e.g. n = 50, [-50; 0; 0; 50], figure 6.4), on the one hand, the handicap of the need

to know the future is relativated. On the other hand, the entropy becomes discontinuous

and craggy and is therefore useless.

4. Shifting the windows to the past
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If the windows are shifted to the past, a look into the future is no longer necessary.

Unfortunately, the entropy term lags behind the actual incidents (e.g. Figure 6.5, window

sizes ws 500 each, [-1000; -500; -500; 0]). Literally spoken, the loss of up-to-dateness is

the price for the compliance with axiomatic physical laws. As it emanates from figure 6.5,

it takes 500 instances in order to discover the upcoming drift. Therefore, this approach

does not meet the set demand either.

5 To avoid misunderstandings and to unambiguously indicate the time frames, they are labeled in the follwing
way: [spol; epol; spfw; epfw] whereas spol = start point old window, epol = end point old window,
spfw = start point future window, epfw = end point future window
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Figure 6.4: Entropy window size 50([-50; 0; 0; 50]) (prior discrete nb)
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Figure 6.5: Entropy window size 500([-1000; -500; -500; 0]) (prior discrete nb)
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5. Weighting the windows
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The inital idea of this approach was to priviledge the importance of the close-by instances

and to neglect the importance of the distant ones. This appraoch does not directly deal

with the problem explained earlier on. It came up when working on the ideal window

size ws, this is the reason why this approach is dealt with at this point. While the figure

suggest, at the given resolution of course, a linear correlation between the distance from

t = 0 and the weight of the instance, experiments with logarithmic weight(tn) ∼ logi(t−n)

(especial loge, ln) approaches were made at the same time. In a nutshell, smooth weihting

entailed almoust only disadvantages. The indications of a forthcoming drift, a precipitous

gradient flank, are “washy” and unclear. For this reason, this approch was rejected. The

mathematically interested reader’s attention is drawn to the fact, that the examples

given up to now are applications of weighted windows. E.g. if the the weighting function

is convolved, the result would look exactly like the first examples.

6. Overlapping the windows
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In this approach, the basic idea of shifting the window into the past is reassumed. The

main and obvious difference to the previous approaches is that the past window adheres

to t = 0 and only the future window is shifted backwards. The effect is that parts of the

windows overlap. The effect is seen in figure 6.6. Without explaining the mathematical

background of the entropy’s behaviour, this approach can be rejected. The recovery

phase which, in a second step or a further thesis is intended for regulating the incresing

window size, is hardly existent. Therefore, also this approch is rejected.

7. Overlapping the windows but maintain the back border
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Even though the results of the last attempt have not been promising, for this approach

most of the the arrangement’s parts are kept. Just the back borders of the two windows

are matched. This formation features several advantages, as to be retraced considering

figure 6.8:
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Figure 6.6: Entropy ([-1000; 0; -800; 200]) (prior discrete nb)

• A foresight into the future is no longer necessary

• The entropy reacts comparatively fast on concept drifts.

• The overlapping part can be understood as some kind of a smoothing factor which

levels out disturbing factors in the curve.

• The overlaying part of the future window processes the incoming information.

• In a “ideal world” the future window would overlay the past one with only one

instance. So the algorithm would react instantaneously on changings of the concept

and therefore drifts.

According to the above mentioned facts, it has been invested a lot of time in the above

described form of the entropy. Finally, it has been rejected all the same. There are two

reasons therefor. First, the numerical entropy-values provided by this form range in

the region of 10−3 down to 10−7, dependend on the ratio ∆ between the windows. A

simple correction factor to transfer the values back in the range of [0 . . . 1] simply does

not exist. This conclusion is based on mathematical considerations. Besides, in these

considerations the second reason for rejecting the approach is to be found. Overlapping
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the windows ends6, after some substitutions, in the following entropy formula derived

from the original one. Basically, the fraction ζ
ζ+γ represents the overlap of parts of the

windows.

Horig = −(p ∗ log2p+ (1− p) ∗ log2(1− p))

Hoverlap = −
(

ζ

ζ + γ
∗ log2

(
ζ

ζ + γ

)
+

(
1− ζ

ζ + γ

)
∗ log2

(
1− ζ

ζ + γ

))

= −
(

ζ

ζ + γ
∗ log2

(
ζ

ζ + γ

)
+

γ

ζ + γ
∗ log2

(
γ

ζ + γ

))

= −
(

ζ

ζ + γ
∗ (log2 ζ − log2 (ζ + γ)) +

γ

ζ + γ
∗ (log2 γ − log2 (ζ + γ))

)

=
−ζ
ζ + γ

∗ log2 ζ +
ζ

ζ + γ
∗ log2(ζ + γ) +

−γ
ζ + γ

∗ log2 γ +
γ

ζ + γ
∗ log2(ζ + γ)

=
ζ

ζ + γ
∗ (log2(ζ + γ)− log2(ζ)) +

γ

ζ + γ
∗ (log2(ζ + γ)− log2(γ))

Horig < Hoverlap

At this point the transformation is stopped. Obviously, the term log2(ζ + γ) inhibits a

conversion of Hoverlap to Horig. This is not a simple question of missing numeracy skills,

log(a+ b) < x ∗ log(y) (6.7)

is an generally insolvable problem, as the sum a+b into the brackets can not be eliminated.

To illustrate this problem, a synthetic data set with a maximal drift is generated. Then

6 The time-consuming derivation is omited due to legibility. Interested readers are welcome to write out the
comprehensive equation in full by their own.
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Figure 6.7: Behaviour the entropy with overlapping windows in case of a maximal drift at
instance 3000

the entropy with different window sides slides over this instances. According to the

theory, the entropy should reach a value of 0 in case of a maximal drift (cp. equation 6.1

and figure 6.1). But as to be seen in figure 6.7 the entropys’ minima depends on

the windowsize. Introducing a universal correcting factor is, according to equation 6.7,

impossible. Recapitulating, this approach is rejected according to theoretical and practical

reasons.

8. Surrender the congruence of the time frames
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As the entropy-form of overlapping the windows is unfit for regulation the algorithm,

a further approach is tracked. By trying to make the most of the previous insight, the

“normal” past window is combined with a small future one. The large past window is

supposed to smooth the curve. The future window is held short to keep the algorithm’s

up-to-dateness. With this arrangement useful results can be reached. Besides, the
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Figure 6.8: Entropy ([-1000; -100; -1000; 0]) (prior discrete nb)
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Figure 6.9: Entropies side by side (real discrete nb)
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mathematical background is kept correct, further adjustments of the entropy-term must

not be made. Figure 6.9 shows two possible entropy curves. In the further part of the

thesis this arrangement of the windows will be called “side-by-side”.

6.4 Normalisation

In the original formula 6.1 only the parameter streams of the data set are included. In contrast,

the label stream itself is irrelevant. For the purpose of normalisation, this is changed. Basically,

the label entropy will be calculated the same way as a singel parameter stream. Per definition,

only one label stream is existing. Therefore, a weighting according to equation 6.2 does not

apply. The normalised entropy is defined as follows:

Hnormalised(x) =
Hparameter(x)
Hlabel(x)

∀ instances. (6.8)

The data sets react different on this normalisation. In the case of real drifts, Hlabel ≈ 1, and

thereforeHnormalised ≈ Hparameter. In contrast, in the case of prior drifts, Hlabel ≈ Hparameter,

Hnormalised ≈ 1. Consequence there of is that Hnormalised distinguishes between real and

prior drifts. Therewith, the problem of handling the drifts’ different natures has been solved.

See figures 6.10 and 6.11.

6.5 Entropy Limit Definitioin

Above, the ideal arrangement of the entropy’s window sizes has been established. As the

arangement itself is determined, its specific parameters will be deduced by limit observations.

The available parameters are the window sizes and their ratio. This parameters are described

by the variables ws which define the total window size (ws = wsold + wsnew), and the ratio ∆

between them.

∆relative =
wsnew

wsold + wsnew
=
wsnew

ws
, (6.9)

∆absolute = ws− wsold = wsnew. (6.10)
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Figure 6.10: Hnormalised, Hparameter and Hlabel in the case of real drifts
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Figure 6.11: Hnormalised, Hparameter and Hlabel in the case of prior drifts
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Figure 6.12: Divide the dataset into drift/ no drift-categories

The first restriction that has to be followed is that ∆ must be prevented from getting

too large, upper limit of ∆absolute = 200. If ∆absolute exceeds this limit, the information

extracted from the entropy calculation is too obsolete and therefore not usable. Accepting a

∆absolute > 200 would mean a substantial time delay. As explainded in chapter 1, the whole

appraoch is aimed for real-time applications, therefore, such a limit must be set.

First, the window size ws of the entropy is defined to be 1000. This derives from the fact that

the algorithm’s maximal size equals 1000. Later on, ws can be changed if necessary. However,

the value of 1000 represents a reasonable set up value. With a given ws, the last variable to be

defined is ∆relative. It is restricted to range between 0 and 20 percent7, 0% < ∆relative < 20%.

At first sight, it is not obvious whether ∆i or ∆j suits the purpose better. Therefore, an

accurately defined criteria for the evaluation of the different Deltas is needed. For this purpose,

all instances of the whole data set are divided into two categories. As the first category’s

instances do not take part of any drifts, they can be distinguished from the second category.

In contrast thereto, the instances of the second category are directly affected by the drift.

Figure 6.12 explains the problem. Category 1 represents the drift and category 2 the data

7 The value of 20% results from the condition ∆absolute < 200 and the chosen ws = 1000
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Figure 6.13: Determinate an ideal ∆; σ vs ϑ

between the drifts. In view of the search for an optimal ∆, the following statements can be

made:

1. The entropy should indicate the drifts as explicitly as possible. Therefore, the minimum

of the instances of category 1 has to be as small as possible.

2. If there is no drift, the entropy-curve should remain flat and should not look noisy.

In figure 6.12, two different curves are displayed which point out an upcoming problem.

Needless to say, the curves show “extrem” window sizes, but they are ideal to understand the

basic behaviour of this particular curves. The blue line represents a small ∆. During the drift,

the curve gets relatively small; a positive characteristic. Between the drifts, the single instances

(of category 2) show a discontinuous behaviour. In turn, this is negative for our purposes.

Finally, the red curve with a large Delta ∆ shows a contrary behaviour. Consequently, a

trade-off problem has to be dealt with and, preferably, a middle way has to be found.

In order to put the described trade-off problem into measurable quantities, two measures

are defined as follows:

min(H(xj) = min(H(xi)) ∀ xi ∈ category 1 of a drift j (6.11)
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ϑ =
1
n

n∑
j=1

min(H(xj)) with n = number of drifts (6.12)

σ =
1
m

m∑
k=1

(1−H(xk)) (6.13)

with m = total number of instances in category 2. The measures σ and ϑ are simple and

useful to compare and evaluate the quality of different entropies. It is discussible whether

the averaging of ϑ is justified or not as the drifts’ intensity varies over time. Figure 6.14

displays the minima minH(xj) for j = 1 to 19, all drifts. In essence, the basic structure of

the minima-curves among the different Deltas ∆i and ∆j remains the same. Accordingly, the

average σ represents the whole curve meaningfully.

In figure 6.13 σ versus ϑ is plotted, whereas ϑ declines and σ increases. Needless to say,

the x-coordinate of the intersection point depends exclusively on the scaling of the y-axis –

a useless graph in a purely mathematical sense. Nevertheless, the behaviour of the curves

provides valuable information. Basically, their forms resemble a logarithmic function, as they

flatten in positive x-direction. While

σ(x) � σ(x+ 1) for small x, (6.14)

σ(x) ≈ σ(x+ 1) for large x. (6.15)

Just as well

ϑ(x) � ϑ(x+ 1) for small x, (6.16)

ϑ(x) ≈ ϑ(x+ 1) for large x. (6.17)
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Figure 6.14: Behaviour of ϑ for ∆ = 0.1

Hence for Delta ∆ > 7.5% σ and ϑ remain plus-minus constant. As long as it is greater

than the critical value of ≈ 7.5%, therefore it is justified to freely choose a Delta ∆. If this

conclusion is paired with the demand ∆absolute < 200, it results in the choice ∆ = 0.1 with

σ = 0.006 and ϑ = 0.8855. For information purposes, figure 6.14 illustrates the behaviour of θ

with ∆ = 0.1. An averaging of θ is meaningful as the shape of the curve over all drifts does

not change while varying ∆.



Chapter 7

Static Analysis

In chapter 5, a correlation between accuracy, area under curve and optimal window size at

a point in time t has been derived. In chapter 6, the term of entropy has been adapted to

the given problem. At this point, is tried to make a further step and to define a correlation

between entropy and optimal window size. Ideally, this would allow to control the window size

according to an exactly defined mathematical rule. Consequentally, results would be achieved

at the best possible rate. This has already been the keynote of M. Constam’s work. He made

the first move but did not reache the focused aim entirely. The target correlation does not

seem to be as simple as expected, therefore, the involved parts have to be modified by trying

to approach the solution. First, Constam’s results are recapitulated in section 7.1. His ideas

are then further developed in the following chapters.

7.1 Introduction

Constam always calculated the entropy with a “simple” form of window size in which the past

window reached from instance -1000 up to 0 and the future window from 0 to 1000 (c.p. 6.2).

The resulting entropy curve is axially symmetric concerning a vertical straight lines passing

through the instance at which the concept drift occurs. So

H(di − x) = H(di + x) in interval
[
di−1 + di

2
,
di + di+1

2

]
(7.1)

for di = instance at which drift number i occurs. Unlike this symmetry of the entropy, the

curve of the optimal window size does not display such a behaviour. Starting at the minimum

after a drift, it increases (almost) linearly during wsentropy (window size over which the entropy

49
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is calculated) instances until the maximum is reached. Thenceforward, it remains at this level

until the next drift occurs.

ws(di − x) = wsmax in interval
[
di−1 + di

2
, di

]
(7.2)

and

ws(di + x) ≈ wsmax

wsentropy
∗ (di + x) in interval

[
di,

di+1 + di

2

]
. (7.3)

As this difference in symmetry disrupts the correlation between the two curves, it has to be

eliminated. Constam simply did this manually. Knowing the structure of the dataset and the

moments of drifts he defined

H(di − x) = Hmax ≈ 1 in interval
[
di−1 + di

2
, di

]
. (7.4)

Basically, this is not a acceptabe procedure with respect to the final solution. However, it is a

warrantable first workaround which will be dealt with in a couple of paragraphs. Figure 7.2
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illustrates a first impression of the comparison of the symmetry-eliminated entropy versus the

optimal window size. Without looking closely, it can be stated that the two curves in this

particular part of the whole data set seem to show quite similar behaviours. Based on this

first example, a deeper look into the properties of the corralation will be taken in the further

part of the thesis.

7.2 Limitations

In the last section, illustrated by figure 7.2, a quite promising picture of the correlation between

the entropy and the optimal window size has been drawn. Unfortunately, this optimistic

view of the given facts must be revised: Considering a few examples, the deficiencies of the

simple “one-to-one” matching model are pointed out. Simultaneously, an attempt to remedy

the model’s weak points (if possible at the current store of knowledge) and to evolve a sense

for the delicate issues is undertaken.

7.2.1 Finding a More Significant Display Format

Using a two dimensional display format which charts instances on the abscissa versus entropy-

/window size on one ordinate does not allow a strict mathematical comparison1. In order to

provide for the implementation of a tool which describes the correlation, the display format is

changed. Now, on the abscissa, the entropy H is plotted versus the window size ws on the

ordinate. Thus a regression line with its coefficient of correlation gives a clean definition of the

performance available. Figure 7.3 illustrates the train of thoughts. If it is possible to fit the

curve of a regression function into the figure, it is also possible to control the forgetting rate of

the incremental algorithm.

7.2.2 Foreclosing the Need to Manually Edit the Entropy Curve

This issue is not entirely new. It is, from another point of view, already dealt with in section

6.3. Generally, in section 6.3 it is mentioned in connection with the physical impossibility to

look into the future. Now, the same situation is approached from different angle. In chapter 6,

a new shape of the entropy curve has been derived from different requirements. Finally, a so

called side-by-side arrangement of the entropy’s windows has been chosen. Due to the choice

of a large past window and a small future window, the shape of the entropy curve presents

itself as illustrated in figure 6.9. In turn, this shape of the curve looks like the ont manually

1 Needless to say, in theory this would work. But the regression function freg(x) would be extremely difficult
to calculate – impossible in a manner of speaking.
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worked out which is displayed in figure 7.3. As a consequence thereof, it is no longer necessary

to manually edit the entropy curve.

7.2.3 Handling of Unequal Reactions on Concept Drifts

This subject has an enormous impact on the entire thesis. In fact, it contains the main reason

why Constam did not reach his initial goal and, ultimately, why this thesis has been seized.

Recapitulating, the impossibility of combining the entropy – and the optimal window size –

curve in one single formula over i. all instances and ii. over all different strengths of concept

drifts will be discussed. In figure 7.1 the afore mentioned, entire curves are illustrated.

The curves’ quite different reaction on varied concept drifts is conspicious. As already seen

in chapter 3, the drifts are getting more intense the greater the number of instances becomes.

This fact can easily be read off from the entropy curve. At this stage, it is concentrated on

the ratio between the single deflexions and the absolute values of the entropy are neglected.

Simplifying, the more intense the drift, the smaller is the entropy. The entropy emerges as

a precise instrument to indicate the intensity of a drift. Starting at drift number five or six

(located at instance 15’000 and 18’000), the entropy reacts proportionally to the distinctness

of a drift. Compared therewith, the window size-curve looks quite different. The first couple of

drifts do not seem to have a large impact on it. But from drift number four or five (instances

12’000 and 15’000) onwards, the window size totally collapses every time. No matter how

intense the drift actually is, the algorithm reaches the best results by regulating the window

size to its minimum and by increasing it from this point on.

At this point, not the cause but the effect of these different reactions on drifts are shown.

Therefore, figure 7.3 is upgraded. In its primary form, it only shows one single drift. Enlarging

the graph with a few more drifts, a totally different image is presented. Figure 7.4 complies

with figure 7.3, up to three additional curves. It must be noticed that the added curves

represents the same range of drift, e.g. a drift range of 0.7. The shapes of all curves are similar,

even though they are not congruent. As the curves are located within a relatively narrow band

of about 100 window sizes, a regression function would be possible2.

If the precondition that only drifts of the same strength are considered is cancelled and

a look at a “natural” situation, in which all possible ranges of drifts appear, is taken, the

correlation vanishes nearly entirely. Figure 7.5 provides a first impression of the correlation’s

problematic nature. At first glance it resembles a modern painting rather than a mathematical

2 even though the regression line would evince a relatively large coefficient of correlation...
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function. It must be pointed out that the graph looks more disrupted than it actually is; the

first impression is a bit deceiving. As the basic data is nearly unworked3, the ensemble comes

across as disjointed and incoherent. Indeed, this fact disturbs the image. However, this is not

further problematic, as it can be straightened out. The handling of the curves illustrated by

prior drifts 0.1 to 0.9 (red points), 0.1 to 0.8 (green plus signs) and 0.1 to 0.6 (red crosses) is

much more challenging. All these curves trend towards window size wsdrift 1000 when the

entropy H(x) converges towards 1,

wsdrift(H(x)) → 1000 for H(x) → 1, (7.5)

which is comprehensible and serves the initial purpose. The behaviour of the curves for H(x)

<1 is rather different. As the gradients dH(x)

dx
and the shapes of the curves are different, they

fan out. The consequence thereof is that a single value of the entropy H(x) leads to several

values of wsdrift.

H(i) → wsn(H(i)) ∧ H(i) → wsm(H(i)) (7.6)

with wsn(H(i)) 6= wsm(H(i))

e.g. H(x) = 0.9 → ws(0.9) = 220 for prior drift 0.1 to 0.6

ws(0.9) = 260 for prior drift 0.1 to 0.7

ws(0.9) = 515 for prior drift 0.1 to 0.8

ws(0.9) = 730 for prior drift 0.1 to 0.9

ws(0.9) = 920 for prior drift 0.1 to 0.4

This contradicts the fundamental postulation of mathematical functions, as more than one

element of the target quantity is assigned to one singe element of the definition quantity. If

this contradiction would be tried to be avoided by defining a regression line through the points,

a massive error in choosing the correct window size would result. A value could be just as well

chosen randomly.

Recapitulating, it must be pointed out that the above described phenomenon of the single

drifts’ fanning out is intrinsic and not solvable by a simple modification of the given parameters.

3 for example outliers are not eliminated and disturb the overall impression rather intensely
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Based on fundamental different behaviours of the entropy- and the window size-curve in case

of concept drifts, the conclusion is that no statistic solution exists. In chapter 8, a simplifyied

solution (by means of a threshold) is presented which works amazingly well.



Chapter 8

Semi-dynamic approach

Annotation

As this chapter the efforts made so far are consolidated. It is the last chapter that actually

deals with the semi-dynamic regulation of instantaneous drifts. The chapter after the following

chapter already takes a look into future work. Therefore, in this chapter, mainly facts and

graphs are presented, most of the corresponding explanations are to be found in the next

chapter with the title “Discussion”. All figures in this chapter refer to the real data set and the

naïve Bayes algorithm.

8.1 Motivation

As it has been proven in chapter 7, a linear, and in manners of speaking, simple control of

the optimal window size by the entropy is impractical. The rather different behaviours of the

entropy and of the optimal window sizes in the case of concept drifts make a static matching

between them impossible. Independent of the nature of the concerned algorithm the entropy

reacts too sensitive to changes of the concept. Even if the entropy deflects very litte from its

normal value of 1, the window size should be adjusted to its minimum. Consequentially, a

simple static approach is abolished and, henceforth, it is tried to regulate the system semi-

dynamically. As the structure of a totally dynamic connection is not obvious at this time, it is

tried to approach the final solution by an intermediate step.

8.2 Implementing a Threshold

The basic idea of the semi-dynamic approach is the implementation of a threshold value.

Figure 8.1 contains an overview. Behind the concept of introducing such a threshold lies

the attempt to “strech” the entropy, in order to reache its minimum faster and more often.

57
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Figure 8.1: Implementing a threshold

Metaphorically speaking, the zero-level is scrolled up from the bottom up. Where exactly the

threshold is fixed will be discussed below. In the beginning, the threshold line is treated like a

natural zero level.

8.3 First Form of Switching and Linear Learning

Regarding the control system of the window size, a quite simple rule is established. Basically,

the window size is maximal, namely 1000. If the entropy declines under the threshold θ at the

instance i, the window size will be adjusted to its minimum. Therefore, the window size will

linearly increase by 1 at every following instance:

ws(j) = ws(j − 1) + 1 with

ws(j = i) = 0 and

H(i) 0 θ < H(i− 1).



8.3 First Form of Switching and Linear Learning 59

3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4 4.1 4.2 4.3 4.4 4.5 4.6 4.7

x 10
4

0.84

0.85

0.86

0.87

0.88

0.89

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

instances

ac
cu

ra
cy

 η

η ultimate benchmark

average η ultimate benchmark

η smoothed benchmark

average η smoothed benchmark

η entropy−regulated window size

average η entropy−regulated window size

Figure 8.2: Entropy-regulated accuracy vs benchmarks (sphere real nb)

The title of the subsection has been chosen based on the above explanation. The threshold θ

switches the window sizes’ behaviour and the classifier builds its rules on a linear increasing

number of instances. From a geometrical point of view, the window size increases linearly with

an angle of 45◦. Even though a more simple approach can hardly be imagined, astonishingly

good results can be achieved. Figure 8.2 displays the obtained accuracy η in comparison with

the benchmarks introduced in chapter 5. The dashed lines in the graph correspond to the

average accuracy η and reveal the quality of the regulation. For the purpose of a better survey,

only a section of the whole data set is displayed, showing mid-intense drifts. The regulation of

the window sizes is based on the entropy of a [-200; -100; -100; 0]-window, a threshold θ = 0.93

and, as mentioned before, an angle of inclination ψ = 45◦ (cp. figure 8.5). A closer look at

the scaling of the variables will be taken in section 8.4.

Primarily, it can be noticed that the entropy-based regulation of the window sizes leads

to a poorer performance than the benchmarks. Numerically, η ultimate benchmark = 0.9452,

η smoothed benchmark = 0.9347 and η entropy-regulated window size = 0.9286. So, on aver-
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Figure 8.3: Heatmap ψ=45◦, ws of H and θ variable, colouring according to η

age, 6.1%� on the smoothed benchmark are lost. In addition, by having a closer look at the

drift at instance 3.3 ∗ 103, as the accuracy η lags behind the benchmarks1, the regulation rule

seems to have missed out the drift. Obviously, the threshold θ was chosen disadvantageously, a

greater value would have performed better. This arguement leads directly to the next section

where the variables ws, ψ and θ, which have not been determined yet, will be discussed.

8.4 Fixing of the Variables

In section 8.2, relatively good results have been achieved by using a simple, but promising

approach of regulating the window size ws semi-dynamically. This promising will be enhanced

and further developed. First of all, for this purpose, all the variables values’ which have

been freely choosen up to this point must be fixed. A so called heatmap has been calculated

therefore. It illustrates the performance of the variables by using an example. For this purpose,

the data set simulating real drifts and the naïve Bayes algorithm have been chosen.

1 As the window size have not been switched, the algorithm slided over the drift with window size 1000. As
been explained in chapter 5 this leads to bad performance.
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8.4.1 Fixing ψ, Regulating ws of H and θ

The heatmap in figure 8.3 illustrates the behaviour of the average accuracy

η =
1
n

n∑
i=1

η(i) (8.1)

with n = total number of instances. Angle ψ is fixed at 45◦. The colouring of the heatmap is

according to η.

Angle ψ=45◦ has been introduced as a geometrical view of increasing the entropy’s window

size according to the number of instances after the threshold θ has been reached. However, ψ

could be treated uncoupled, as self-contained variable. In such a case, ψ defines how fast the

window size will reach its maximum again. The extreme value ψ=90◦ means that the window

size will be regulated back to 1000 within one instance after the drift. The other extrema,

ψ=0◦, will keep the window size on its minimum for the rest of the data set after the first drift.

In the next subsection, ψ will be varied.

8.4.2 Fixing ws of H, Regulating ψ and θ

In order to obtain a comprehensive perspective, the variables and the fixed values are exchanged.

Figure 8.4 illustrates a heatmap in which the entropy’s window size is fixed at [-200; -100; -100; 0].

Angle ψ and threshold θ are varied.

8.5 Second Form of Switching and Linear Learning

In section 8.3, a very simple switching strategy has been pursued. The basic idea was to

regulate the window size as soon as the entropy H declines under the threshold θ. It can be

discussed, whether this kind of switching makes sense in view of the theory behind it. At the

most, this strategy might be overfitted to the given set up. It seems possible that, it would

be more plausible to regulate the window size after the entropy has exceeded the threshold θ.

Figure 8.5 illustrates the train of thoughts.

window size ws at instance j wsj = |(instancej − instancei)| ∗ tan(ψ) (8.2)
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Figure 8.5: threshold based control of the window size

with instancei = the instance where the entropy H exceeds θ again. Chapter 9 contains the

respective discussion.

8.6 Third Form of Switching and Linear Learning

The third form focuses on the word “linear” in the title of this section. Up to now, it described

a linear recovery of the entropy’s window size, either from the point where the entropy falls

below the threshold θ or the point where θ is exeeded. This linearity shall now be directly

applied to the matching function entropy H – window size ws. Some definitions must be made

therefore:

wsmax
.= 1000, (8.3)

wsmin
.= 10, (8.4)

Hmax
.= 1, (8.5)

Hmin
.= θ. (8.6)
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In a second step, a simple linear dependency is defined:

ws = (H −Hmin) ∗
(
wsmax − wsmin

Hmax −Hmin

)
+ wsmin for H 1 Hmin and (8.7)

ws = wsmin for H 0 Hmin (8.8)

At a first glance, this third kind of switching and linear learning looks “the best”. The rule

is not as inflexible as the rules of the first two approaches. Also, several crossings2 of the

entropy curve with the threshold line would not cause a back-regulation of the window size

to its minimum and the therewith related slow recovery phase each time. At this point, no

numerical values are presented yet. (See chapter 9.)

8.7 Performance of the Regulation

In section 8.3, the idea of a simple switching mechanism has been introduced. Considering an

example with randomly chosen variables, the performance of the regulation has been compared

with the benchmarks, see figure 8.2. In the course of the next steps, this variables have been

varied, and the results have been displayed in form of heatmaps. These heatmaps clearly show

how stable the regulation is. Therefore it is not very remarkable that the accuracy of the

regulated window size performed very well compared to the benchmarks. As the regulation

does not strongly depend on the choice of the variables, it can not be spoken of a “fitting” to the

given problem. Therefore, it is possible to compare this solution – the regulation by switching

and linear learning – with common ways of controlling incremental algorithms. In chapter 5,

such an established solution, namely the committee, has been introduced. In figure 8.6, the

result of this comparison is illustrated. The variables ψ and θ have been chosen according to

figure 8.4, ψ and θ are located in the ranges of

35◦ < ψ < 55◦

0.925 < θ < 0.975.

With this set up, the smoothed benchmark has (almost) been reached. The difference of the

average accuracies amounts to only ≈ 1%� Ċompared therewith, the average accuracy η of the

regulated window size is ≈ 1% greater than the committee #3 and ≈ 1.5% greater than the

2 For example by accident, as the system is noisy or as the treshold θ has been choosen at a disadvantageous
value.
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committee #13.

8.7.1 Determining Entropy H and Threshold θ

The switching and linear learning starts as soon as the entropy H falls below the threshold θ.

Therefore, only the declining edge of the entropy curve acts as switching instrument. The

shape of the declining edge is determined only by the lenght of the entropy’s future window.

In chapter 6, the maximum length has been defined. As the future window ws of the entropy

has to range in narrow band of

0 < ws < 200, (8.9)

the shape of the declining edge remains very similar.

Threshold θ is coupled to the entropy’s declining edge. Their intersection point defines the

beginning of the linear learning. On the one hand, these conditions prevent a free choice of H

and θ. On the other hand, there is no need to vary these variables and therefore no possibility
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to make mistakes. As long as θ ≈ 0.95% of the lenght of the future window and the future

window equals approximately 100, the system remains stable.

8.8 Noise Resistance of the System

Based on the information provided by the above presented heatmaps, a strong rection of the

system to noise is not to be expected. The semi-dynamic regulation provides equally good

results in a wide range of the variables. This fact is an indicator for a stable system. In order

to prove this assumtion, noisy data sets have been generated. All in all, sets with 1%, 5%,

10%, 20%, 50% and 100% noise are existing. 100% means that the class of every other data

set instance has been changed randomly. This is the maximal amount of noise that can be

introduced to a system. Needless to say, such a high percentage of noise does not make any

sense from a realistic point of view. Therefore, only a 10% heatmap has been calculated to

give a basic idea of the system’s behaviour. All calulations refer to the data set simulation real

drifts and to the naïve Bayes algorithm. Figure 8.7 displays this heatmap. Due to the noise

the region with high η is smaller, but the system does not collapses at at.

Recapitulating, the approach of regulating the algorithm’s window size which has been

described in this chapter is strongly noise-resistent.



8.9 Overfitting the Solution to the Problem? 67

8.9 Overfitting the Solution to the Problem?

So far, all presented solutions have been based on the average accuracy η, respectively, on

the average area under curve AUC. It can be argued that, averaging these values is not an

ideal measure of performance as all possible states3 of the system are summed up and divided.

Therefore, so the criticism, as the presented approach shall be fitted exactly to the arrangement

of the “drifting”/”normal” parts of the data set, the presented approach shall be overfitted to

the given data set.

To invalidate this argument, the introduced heatmaps above are split up. Every part of

the data set will be analysed individually. Therefore, three possible “regions” of the data set

are determined.

1. Regions of upcoming drifts A which contains

the instances i ∈ [(drift n + 2000), . . . , (drift n + 2999)].

2. Drifting regions B which contains

the instances i ∈ [(drift n), . . . , (drift n + 999)].

3. Regions between two drifts C which contains

the instances i ∈ [(drift n + 1000), . . . , (drift n + 1999)].

Consequently, |A|+ |B|+ |C| = 3000 and n= 1, . . . , 19 in the case of real drifts. The average

accuracy η is calculated region-wise. Figures 8.8, 8.9 and 8.10 illustrate the results. It must be

noted that due to the colour-resolution, figures 8.8 and 8.10 look exactly the same. In fact,

their numerical values are slightly different. Basically, the structure of figure 8.9 is similar to

the structure of figure 8.3. Both figures 8.9 and 8.10 display a very high average accuracy η, as

the regions A and C contain instances of stable parts of the data set. Therefore, only region B
is of note. The use of η as an quality measure is justified as the distribution of η(B) is similar

to the distribution of η(entire data set). Therefore, an overfitting does not take place.

3 It is referred to the “normal” and the “drifting” part of the data set. See also section 6.5, especially figure 6.12
and the correspondig explanations
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Chapter 9

Discussion

9.1 Introduction

In this chapter the results presented in chapter 8 will be discussed. Primarily, it is referred

to the sections 8.3, 8.5 and 8.6, beginning with the latter. In this a linear relation between

entropy H and window size ws, using a threshold value θ, has been introduced. This section

has been kept short deliberatly and no numerical values have been presented. The reason

therefor is the very close connection between this approach and the original idea of regulating

the algorithm by a static matching. Introducing a threshold θ does change the appearence

of the situation, but it does not solve the approaches’ inherent weakness. Assuming θ = 0,

a step back is taken to chapter 7. As already deduced and explained in this chapter, the

approach does not lead to a usefull solution. Recapitulating, the entropies’ and the window

sizes’ behaviours impede a simple one-to-one matching.

The motivation for section 8.5, see figure 8.5, is similarly to the one contained in explanations

concerning the bin separation for the entropy calculation (section 6.2). The regulation of the

entropy, beginning at the instance, where H exceeds θ has been envisaged in order to handle

continuous drifts. Unfortunately, no figures of the entropys’ behaviour in case of continuous

drifts are available, as they have never been simulated for the purpose of this thesis. Therefore,

a hand-made sketch is presented in order to clarify the situation. The situation is illustrated

in figure 9.1. In case of a continuous drift (red line), the entropy remains below the threshold

θ for a long period of time. If the windowsize would be regulated as explained in section 8.3,

the windowsize would be increased from point A onwards. After a couple of instances, the

maximum would be exceeded regardless of the fact that it should be held on its minimum.

Needless to say, the accuracy η would be accordingly low. By regulating the window sizes

according to section 8.5, this would not occur. Until point C, the window size would not have
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behaviour entropy in case of an instantaneous drift

behaviour entropy in case of a continuous drift

threshold Θ

possible behaviour window size

A B C

Figure 9.1: Overview entropy behaviour

increased in case of a continuous drift. In case of an instantaneous drift, the windowsize would

have increased from point B on.

9.2 Main Discussion

In this section, mainly section 8.3 of chapter 8 will be discussed. Beginning with figure 8.6

in section 8.7, it can be stated that the initial aim has mainly been achieved. The smoothed

benchmark has almost been reached and, the committee benchmarks have excelled. The

envisaged kind of regulation is stable with respect to its variables and noise-resistant. Different

heatmaps, as to be seen in chapter 8, document the stability of the regulation system. An

overfitting to the given problem statement has not been undertaken as explained in 8.9 and,

the choice of the values for the entropy H and the threshold θ is unproblematic as described

in section 8.7.1.

The main reason for the performance of this simple approach is illustrated in figure 9.3. For

presentation purpose, only a part of the dataset is displayed. Figure 9.2 displays a wider part

of the data set in order to demonstrate that the drift displayed in figure 9.3 is not a special

case and only shows a common behavoiur.
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Figure 9.2: Heatmap accuracy, window sizes vs instances (sphere real nb), overview
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Due to the very linear behaviour of the system in the case of concept drifts, the regulation

according to section 8.3 works well. It provides a high average η, shortly after the drift as well

as in stable phases of the continuous data stream.

9.3 Transferability to Other Scenarios

Due to limited computing capacity, in the last two chapters, only the real data set and the

naïve Bayes algorithm have been used. In future work, the prior data set and the k-nearest

neighbour algorithm will be involved more frequently in order to support the theory by more

fundamentials. However, due to the algorithms’ similar natures, no deviating results are

expected. Figure 9.4 provides an illustration of the behaviour of the optimal window sizes1

of the the naïve Bayes and the k-nearest neighbour algorithm. As the k-nearest neighbour

algorithm is less noisy, even better results can be expected from the transfer to this scenario.

1 In a 1.5%-neighbourhood according to chapter 5.



Chapter 10

Future prospects

At the beginning of this thesis, the prospects of success were unpredictable. After a couple of

months, the first promising results have been achieved and, therefore, the original strategy has

been pursued. Finally, as presented in chapters 8 and 9, an important intermediate aim has

been reached. As this “milestone” was reached, the decision was made to advance the approach.

Therefore, the future prospect summed up in this chapter does not consist in theoretical

thoughts, it is a but prearranged plan. The final aim is to accurately control the window size

in a fully dynamic way in each possible case1 and to write out the underlying theory. In order

to achive these aims, the following steps must be taken.

1. Testing the result of chapter 8 on a mixed data set. “Mixed” means a combination of

real and virtual drifts.

2. Testing the result of chapter 8 with different algorithms. It is possible that other

algorithms react differently on concept drifts than the naïve Bayes and k-nearest neighbour

algorithms.

3. Finding a possibility of simulating continuous drifts and testing the approaches in case

of such drifts.

4. Making the regulation fully dynamic. A possible approach is that the window size of the

entropy is dynamically adjusted. First tests have been made which are not presented in

this thesis. The reason is that this thesis focusses on the semi-dynamic regulation. The

introduction of a half-finished, fully dynamic approach would have been confuseing.

1 E.g. in case of different algorithms, different kinds of drifts, different data sets and so forth.
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5. Developing of a theory. The regulation by the entropy can be understood as a controlling

by the change of the information content. In, e.g. the oscillation equation

mẍ+ bẋ+ cx = F (t), (10.1)

in nature, a lot of laws accord to differential equations. Potentially , a change of

information content can be treated as ˙H(x) and fitted to a similar differential equation.



Chapter 11

Conclusion

This thesis addresses the entropy-based, semi-dynamic regulation of incremental algorithms in

case of instantaneous concept drifts. In order to achieve such a regulation, some prepository

work was necessary. First of all, a synthetic data set has been generated. This data set belongs

to a continuous stream of instances. These instances refer to points in the three-dimensional

Cartesian coordinate-system which are accidentally distributed within a sphere. This sphere is

divided into two hemispheres by a plane. Thus two classes are definded. By rotating the plane,

so called real concept drifts are simulated. Real concept drifts describe the shifting between

different concepts within a data set. A second form of concept drifts, virtual drifts, do not

describe a real shifting between the concepts but a varying of the class distributions’ prior.

In order to predict the instances’ classes based on their parameter values, the concepts

have to be learned by the predicting classifier, also known as incremental algorithm. In this

thesis, the naïve Bayes and the k-nearest neighbour algorithms have been used. Learning,

from the algorithms point of view, means to build classifying rules on a predefined number of

instances. This number is determined by the algorithms’ window size. In a normal state of the

system, the algorithms’ prediction is the better the greater the number of learned instances is.

In case of concept drifts, this rule does no longer apply as the old instead of the new concept

would be learned. Consequently, a shortening of the window size would be ideal. The main

problem is to predict such drifts and therefore to regulate the algorithm’s window size. In

order to know which windowsize would be ideal for each instance, so called benchmarks have

been introduced. For each instance, the benchmark represents the ideal window size. Every

window size is directly coupled with a measure of performance. The more ideal the window

size, the greater the measure. In this thesis, two measures are used, the accuracy and the area

under curve.

Based on the entropy-term introduced by Shannon, a special kind of entropy has been
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developed. It is able to measure the information content of the parameter stream and therefore

to detect concept drifts. In a first step, it was tried to couple this entropy directly with the

window size. It was then shown that a simple matching is not possible. The reason therefor are

the different behaviours of the entropy and the optimal window size in the case of a concept

drift. Therefore, this approach was rejected and a second approach has been introduced. This

approach allows for the different behaviours. Using a simple, semi-dynamic switching and linear

learning strategy, the regulation provides astonishingly good results close to the benchmark.

Comparable algorithms such as committees, which need more computing capacity, provide

worse results.

The entropy and therefore the regulation strategy is fast, noise-resistant and simple to

implement. In future work, this strategy shall be i. tested on other data sets and algorithms,

ii. enhanced in order to detect continuous concept drifts and iii. made fully dynamic so that it

is as adaptive as possible.
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Appendix

drift no. 1 2 3 4 5 6 7 8 9 10

ϕ [rad] π
128

π
64

π
32

π
16

π
8

3π
16

π
4

5π
16

3π
8

7π
16

ϕ [deg] 1.41 2.81 5.62 11.25 22.50 33.75 45.00 56.25 67.50 78.75

drift no. 11 12 13 14 15 16 17 18 19

ϕ [rad] π
2

9π
16

5π
8

11π
16

3π
4

13π
16

7π
8

15π
16 π

ϕ [deg] 90.00 101.25 112.50 123.75 135.00 146.25 157.50 168.75 180

Table A.1: Values of real drifts
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drift no 1 2 3 4 5 6 7 8

instance 3000 6000 9000 12000 15000 18000 21000 24000

prior 0.1 � 0.5 0.5 � 0.9 0.9 � 0.4 0.4 � 0.8 0.8 � 0.3 0.3 � 0.7 0.7 � 0.2 0.2 � 0.6

∆ prior 0.4 0.4 0.5 0.4 0.5 0.4 0.5 0.4

9 10 11 12 13 14 15 16 17

27000 30000 33000 36000 39000 41000 45000 48000 51000

0.6 � 0.1 0.1 � 0.6 0.6 � 0.2 0.2 � 0.7 0.7 � 0.3 0.3 � 0.8 0.8 � 0.4 0.4 � 0.9 0.9 � 0.5

0.5 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.4

18 19 20 21 22 23 24 25 26

54000 57000 60000 63000 66000 69000 72000 75000 78000

0.5 � 0.1 0.1 � 0.4 0.4 � 0.7 0.7 � 0.1 0.1 � 0.3 0.3 � 0.6 0.6 � 0.9 0.9 � 0.3 0.3 � 0.5

0.4 0.3 0.3 0.6 0.2 0.3 0.3 0.6 0.2

27 28 29 30 31 32 33 34 35

81000 84000 87000 90000 93000 96000 99000 101000 104000

0.5 � 0.8 0.8 � 0.2 0.2 � 0.5 0.5 � 0.7 0.7 � 0.9 0.9 � 0.2 0.2 � 0.4 0.4 � 0.6 0.6 � 0.8

0.3 0.6 0.3 0.2 0.2 0.7 0.2 0.2 0.2

36 37 38 39 40 41 42 43 44

107000 110000 113000 116000 119000 122000 125000 128000 131000

0.8 � 0.1 0.1 � 0.8 0.8 � 0.6 0.6 � 0.4 0.4 � 0.2 0.2 � 0.9 0.9 � 0.7 0.7 � 0.5 0.5 � 0.2

0.7 0.7 0.2 0.2 0.2 0.5 0.2 0.2 0.3

45 46 47 48 49 50 51 52 53

135000 138000 141000 144000 147000 150000 153000 156000 159000

0.2 � 0.8 0.8 � 0.5 0.5 � 0.3 0.3 � 0.9 0.9 � 0.6 0.6 � 0.3 0.3 � 0.1 0.1 � 0.7 0.7 � 0.4

0.6 0.3 0.2 0.6 0.3 0.3 0.2 0.5 0.3

54 55 56 57 58 59 60 61 62

162000 165000 168000 171000 174000 177000 180000 183000 186000

0.4 � 0.1 0.1 � 0.2 0.2 � 0.3 0.3 � 0.4 0.4 � 0.5 0.5 � 0.6 0.6 � 0.7 0.7 � 0.9 0.8 � 0.9

0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

63 64 65 66 67 68 69 70 71 72

189000 192000 195000 198000 201000 204000 207000 210000 213000 216000

0.9 � 0.1 0.1 � 0.9 0.9 � 0.8 0.8 � 0.7 0.7 � 0.6 0.6 � 0.5 0.5 � 0.4 0.4 � 0.3 0.3 � 0.2 0.2 � 0.1

0.8 0.8 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Table A.2: Values of virtual drifts
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