
Diploma Thesis
April 26, 2006

SEAL platform
Towards an Integrated Tool Platform for

Software Architecture and Evolution Analysis

Christian Hanimann
of Moerschwil, Switzerland (99-916-389)

supervised by

Prof. Dr. Harald Gall
Dr. techn. Martin Pinzger

Department of Informatics software evolution & architecture lab

Diploma Thesis

SEAL platform
Towards an Integrated Tool Platform for

Software Architecture and Evolution Analysis

Christian Hanimann

Department of Informatics software evolution & architecture lab

Diploma Thesis

Author: Christian Hanimann, christian.hanimann@access.unizh.ch

Project period: 1 November 2005 - 1 May 2006

Software Evolution & Architecture Lab

Department of Informatics, University of Zurich

Acknowledgements

I would like to thank my supervising assistant Martin Pinzger for his great assistance. My
thanks also to Prof. Harald Gall for giving me the opportunity to write this thesis.

Many thanks to Beat Fluri for his input concerning LATEX and his LATEX-style on which this
document is based.

Thanks also to Nick Bell for proofreading my English. And many thanks to Bettina Vetterli for
her moral support and patience with me during this work.

Abstract

Software maintenance and evolution are important tasks in the software lifecycle. To make
software maintenance and evolution easier, procedures exist to represent the software as a model
and to measure the software. There are several graphical approaches to represent this generated
data.

This thesis concerns part of this work. To save a generated FAMIX model of a software
durable, the data of this model is saved with Hibernate in a relational database. The metrics
of this software, computed with the Metrics plug-in, are mapedp with the corresponding entities
of the FAMIX model and are also stored in the database.

The metrics are visualised with the Kiviat Visualizer. On the basis of these graphs, several
questions, concerning architecture, design and evolution, will be answered.

Zusammenfassung

Software Wartung und Evolution ist in der heutigen Zeit eine wichtige Aufgabe im Lebens-
zyklus einer Software. Um die Wartung und Evolution zu vereinfachen, wird versucht, die Soft-
ware in Modelle abzubilden und sie zu vermessen. Um die Resultate anschaulich darzustellen
existieren verschiedene graphische Anstze.

Diese Arbeit widmet sich einem Teilgebiet dieser Aufgabe. Um ein generiertes FAMIX Modell
einer Software dauerhaft verfügbar zu machen, wird dieses Modell mit Hibernate in einer rela-
tionalen Datenbank gespeichert. Zudem werden die mit dem Metrics plug-in erzeugten Metriken
den richtigen Entitten zugeordnet und ebenfalls mit Hibernate in der Datenbank gespeichert.

Mit dem Kiviat Visualizer werden diese Metriken dann graphisch dargestellt. Anhand dieser
Graphen werden dann verschiedene Fragen zur Architektur, zum Design und zur Evolution
beantwortet.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 The goal of the diploma thesis . 2
1.3 Structure of the diploma thesis . 2

2 Related Work 3
2.1 Software Architecture Analysis . 3
2.2 Software Evolution Analysis . 4
2.3 Visualization . 4

3 Design Quality Catalogue 7
3.1 Introduction . 7
3.2 Basic conditions . 7
3.3 The questions . 7

4 Famix-Background 9
4.1 Purpose . 9
4.2 Description . 10

4.2.1 Overview . 10
4.2.2 The FAMIX core model . 10
4.2.3 The abstract part of the FAMIX model . 11
4.2.4 The extended FAMIX model . 11

5 Implementation 13
5.1 Eclipse . 13

5.1.1 The Eclipse platform . 13
5.1.2 An Eclipse plug-in . 14

5.2 Hibernate . 15
5.2.1 Java classes . 16
5.2.2 The Hibernate mapping files . 17
5.2.3 The Hibernate configuration file . 19
5.2.4 The database schema . 20

5.3 The FAMIX export plug-in . 21
5.3.1 The plug-in features . 21
5.3.2 Structure of the FAMIX export plug-in . 21
5.3.3 Design . 22
5.3.4 Data flow . 22
5.3.5 Saving the data . 22

viii CONTENTS

5.3.6 Problems and future work . 24
5.4 The Metrics export plug-in . 24

5.4.1 The plug-in features . 24
5.4.2 Structure of the Metrics export plug-in . 24
5.4.3 Data flow . 25
5.4.4 Design . 25
5.4.5 Saving the data . 27
5.4.6 Problems and future work . 27

6 Evaluation 29
6.1 Procedure . 29
6.2 Preparing the data for the evaluation . 29
6.3 Answering the research questions . 30

6.3.1 A package view . 30
6.3.2 Identifying large classes . 32
6.3.3 Identifying complex classes . 34
6.3.4 A method view . 38
6.3.5 An evolution view . 41

7 Conclusion and future work 43
7.1 Conclusion . 43
7.2 Future work . 44

A Abbrevitations 45

B Content of the CD 47

C The complete FAMIX model 49

CONTENTS ix

List of Figures

2.1 A butterfly. Figure from [SD05]. 5

4.1 Conception of the FAMIX model. Figure from [SD99a]. 9
4.2 The FAMIX core model. Figure from [SD99a]. 10
4.3 The complete original FAMIX model. Figure according to [SD99a]. 11

5.1 The Eclipse platform. Figure from [Fou]. 13
5.2 Two ways to store and read data in/from a database. Figure according to [Ive05]. . 15
5.3 Details of the new classes. 23
5.4 The data flow of the two plug-ins. 23
5.5 The complete model with the exporter of the Metrics export plug-in. 26
5.6 The correct mapping of method values from the Metrics plug-in is a problem. . . . 28

6.1 The metrics of the chosen packages. 31
6.2 The view with NOM as width and NOF as height. 33
6.3 LCOM of the classes Claim and Class. 35
6.4 Metrics of the inheritance. 37
6.5 The different sizes of the methods. 39
6.6 Searching for complex methods. 41
6.7 An attempt to visualise the evolution. 42

C.1 The complete extended FAMIX model (Part 1). 50
C.2 The complete extended FAMIX model (Part 2). 51

List of Tables

5.1 Exported database schema of the Example from section 5.2.1. 21

6.1 Packages with the number of classes. 32
6.2 Classes with the number of methods and attributes. 33
6.3 Methods and collective attributes. 36
6.4 Classes with the DIT and NSC. 38

List of Listings

4.1 The class InheritanceDefinition. 12
5.1 Example of a Java class for Hibernate. 16
5.2 Example of a mapping file. 17
5.3 The DTD in a mapping file. 18
5.4 The mapping with the path to the mapped class. 18
5.5 Defining a union-subclass relation. 18
5.6 Defining a one to n relationship. 19
5.7 The configuration file for Hibernate. 19
5.8 The alternative configuration of a session factory. 20
5.9 The auto creation of tables. 20
5.10 Inheritance in the mapping files. 22

x CONTENTS

5.11 Example of a class for the export with the Metrics plug-in. 27
5.12 Example of the output generated width the Metrics plug-in. 28
6.1 Example class for the calculation of LCOM. 34
6.2 Common setter and getter methods. 39

Chapter 1

Introduction

1.1 Motivation

The software we use evolves over the time. It becomes more and more complex, the size increases
and the quality declines [Leh97]. Bugs are fixed, new functions are added, a number of functions
removed and so on. We can see that during a life cycle of a software system we have a large
number of changes. We can differentiate between four categories of software changes:

• Adaptive: Changes to adapt the system to new environments such as new operating sys-
tems, compilers and other tools and components

• Corrective: Changes to repair defects in the software system

• Perfective: Changes to improve the product, such as adding new requirements, or to en-
hance the performance

• Preventive: Bug fixing

After a large number of changes a software system is increasingly hard to maintain. So the mo-
ment comes to reengineer the software system. Seacord et al. [RCS03] describe software reengi-
neering as follows:

Software reengineering is a form of modernization that improves capabilities and/or
maintainability of a legacy system by introducing modern technologies and practices.

To carry out reengineering it is necessary to understand the software system we need to reengi-
neer. For this purpose we can study the documentation of the system and look at the code. But the
problem is that the documentation is often not adequate or not available. And such a system has
often hundreds and thousands of lines of code. It is not easy to gain an overview of the functions
of this code.

A way to get a better understanding of a software system is to use Reverse Engineering. The
definition of Reverse Engineering is as follows, according to Chikofsky et al. [EJC90]:

Reverse engineering is the process of analysing a subject system to

• identify the systems components and their interrelationships and

• create representations of the system in another form or at a higher level of ab-
straction.

2 Chapter 1. Introduction

A representation of a system is an abstract model of the code. A model represents all compo-
nents, depending on the source language. Possible components are: directories, files, packages,
classes, methods, different types of variables, attributes. In addition it describes how these differ-
ent components depend on each other and how they interact.

To represent the data we use an extended version of the FAMIX meta model [SD99a] in this
diploma thesis. This is a language-independent model to represent object-oriented source code
data. We give a short introduction to FAMIX in chapter 4.

1.2 The goal of the diploma thesis

In this diploma thesis we use the ArchView Approach [Pin05] in a case study with a Java software
project. We aim to answer a set of research questions concerning the design, architecture and
evolution of this software.

To carry out this case study, the following steps are necessary:

1. Extending the FAMIX exporter tool.

2. Storing the extracted FAMIX model in a relational database.

3. Implementing a tool to export software metrics, generated with the Java metrics tool.

4. Storing the exported metrics in a relational database.

5. Defining a set of research questions concerning the design, architecture and evolution of a
Java software project.

6. Creating various higher-level views of the source code model.

7. Answering the research questions.

1.3 Structure of the diploma thesis

• Chapter 2 gives an introduction to the related work of software architecture and evolution
analysis and the visualisation of extracted source code information

• Chapter 3 introduces the catalogue of research questions concerning the design, architecture
and evolution of a piece of software.

• Chapter 4 provides the background information about the meta model used.

• Chapter 5 describes the implementation of the two plug-ins used to obtain and store the
meta model and the software metrics.

• Chapter 6 describes the case study.

• Chapter 7 presents our conclusion to this thesis.

Chapter 2

Related Work

This diploma thesis applies the ArchView approach represented in [Pin05]. This approach is an
architecture recovery and analysis approach with higher-level views of a software system. To
gain an short overview of existing techniques, this chapter shows several other approaches.

2.1 Software Architecture Analysis

The scope of architecture analysis is very large. It is possible to find many different appendages
to analyse software. We can find methods which are supported with tools to do the different tasks
automatically or we can also find methods with many (or only) manual tasks.

In 2000, Gannod et. al. [GCG00] have described an approach in which a method of manual
and automated architecture analysis is used. First they generated a model by hand, using docu-
mentation, source code and communication with developers. To build a model for the automated
analysis, they had to design a new model with the ACME ADL1, based on this manually extracted
information. ACME allows the architecture in different ADL’s to be described so that the model
is extensible.

A more automated way is the approach of Rötschke et al. [TR02]. They realized a tool-set to
do this work and used (still incomplete) UML2 models and source code to extract information.
With the CDMA tool they extracted relevant information from the source code and stored this
information in a database. With another tool they also extracted information from the UML di-
agram and tried to map this information using the information extracted from the source code.
Detected violations are also stored in the database. To examine the generated data they used PHP
scripts to generate tables or diagrams.

Riva et al. [CR04] used UML as a model to represent the architecture of a software system.
To create the model they had to map the source code files by hand with the logical components.
To gather the relevant information from the implementation they used a Python script. These
extracted data are needed to calculate high-level dependencies between the packages. The re-
sults can be visualized as hierarchical graph. In this graph, the nodes represent packages and
components. The arcs represent logical dependencies.

Another approach to analysing architecture is described in [FdB]. De Boer et al. used XML for
static and dynamic analysis of architectures and to express the signature of an architecture. It is
possible to use this model with other tools and data can be easily shared.

1ACME homepage: http://www.cs.cmu.edu/ acme/
2UML homepage: http://www.uml.org

4 Chapter 2. Related Work

2.2 Software Evolution Analysis

As described in [Leh97] software maintenance is becoming increasingly complex. For this reason
it is necessary to have one or more processes in order to analyse software evolution adequately.
In recent years, more and more research groups have developed new techniques to do this work.

Burd et al. [EB00] analysed the calling structure of each version of a software system and
compared the generated structures with all versions. They recorded all modifications, such as
addition or deletion of procedural units or calls within a specific procedural unit. Afterwards
they analysed the data usage in all software versions in the same way.

Lanza [Lan02] introduced the Evolution Matrix to trace software evolution. He used different
metrics to generate a matrix, known as the Evolution Matrix. To visualize a class of a certain
program version, he needed two metrics, one for the width, one for the height. It is possible to
visualize the life cycle of a class with this information.

CVSscan is a tool from Voinea et al. [LV05]. They used the data of CVS system to generate a
data model. With this model, they computed the difference between several versions of a software
system. To show this differences between all versions, they used a visualization tool. With this
method it is also possible to show time influence, which means it is possible to show when an
entity appears or disappears.

2.3 Visualization

To understand all generated information it is useful to visualize this data in a suitable way. A
number of software evolution or architecture analysis methods use their own visualization, but
often we obtain only the data of the analysis. Because reverse engineering and reengineering have
become more important in the last few years, various new techniques to visualize data have been
developed. We can differentiate between 2D and 3D methods of carrying out this task.

Lanza et al. [ML03] described a method to visualize data, named Polymetric Views. They used
the visualization tool CodeCrawler3 to analyse object-oriented software. The ArchView approach
which we apply in this thesis, uses an extended Polymetric View technique. Polymetric Views use
two-dimensional displays. Nodes represent software entities and edges represent relationships
between those entities.

• Node Size: The height and the weight can each render a metric.

• Node Colour: Another metric be visualised with the colour of a node. The higher the metric
value is, the darker the node is.

• Node Position: It is possible to visualise two metrics with the X and Y coordinates of the
node position.

Another way to visualise information is ”Butterflies”, see figure 2.1, described in [SD05]. In
this case Butterflies were used to characterize packages and class dependencies. Butterflies are
based on a radar visualization, which is in turn based on dividing a circular area with a certain
number of axes. Radar visualizations are complex and so Ducasse et al. defined a distribution of
the metrics to generate a butterfly shape. They defined the butterfly in the following way:

• The left wing represents what a package provides to other packages.

• The right wing represents what a package uses from other packages.

3CodeCrawler: http://www.iam.unibe.ch/ scg/Research/CodeCrawler/

2.3 Visualization 5

Figure 2.1: A butterfly. Figure from [SD05].

• The bottom part shows the inheritance (e.g. a package has classes which have subclasses in
other packages).

A similar method was also used by Chuah et al. [MCC97]. They used 3D glyphs to represent
data. These glyphs can show many different types of data (e.g. releases, engineers, features, etc.).
Each variable is encoded as an equal slice of a circle. The radius of a slice encodes the size of the
representing variable and each variable has its own colour.

Chapter 3

Design Quality Catalogue

In this chapter, we define a number of research questions which we will answer later in chapter 6.

3.1 Introduction

In the evaluation we use our FAMIX and Metrics export plug-ins. With the Kiviat Visualizer we
generate different graphs and we use these graphs to answer the defined research questions.

With these research questions, we examine the design, architecture and evolution of a piece of
software. We also want to check if these tools are adequate for this problems or if the tools have
to be adapted or extended.

3.2 Basic conditions

To do this work, we have a number of technical limitations. These limitations are:
In this version, the Kiviat Visualizer:

• offers only the possibility to visualize one release of a software system.

• is not able to visualise dependencies between entities (for example between classes).

3.3 The questions

We define the questions which we answer later in this diploma thesis.

1. What can a package say about software quality? A package contains several classes. There
is interaction between classes in the same package and between these classes and classes in
other packages. What can we learn about a software system at this level?

2. Is it possible to find large classes? Large classes can have a large number of lines of code,
but we can also define this as a class with many methods and/or attributes. Can we detect
these classes with our tools?

3. Is it possible to detect complex classes? If we have large classes then they are often also
complex classes. A class which has many methods and/or attributes is often in an interac-
tion with many other classes.

8 Chapter 3. Design Quality Catalogue

4. What can we say about inheritance? Used in the right way, inheritance has a number of
advantages. Can we say something about the usage of inheritance?

5. What are the large methods? Large methods are harder to maintain and complexity in-
creases with size. Can we identify the large methods?

6. Can we identify the complex methods? Are we able to identify the complex methods? Are
the complex methods also the large methods which we tried to identify in the previous step?

7. Can we say something about evolution? Do these tools allow us to make a prediction about
evolution?

Chapter 4

Famix-Background

This chapter provides the background information about the FAMIX [SD99a] meta model. This
model is used to store the extracted source code data of a Java project.

4.1 Purpose

The FAMIX meta model (FAMOOS Information Exchange Model) was developed by the Univer-
sity of Berne in 1999. It is a language-independent model to represent object-oriented source code
data. It defines the exchange model which was used within the FAMOOS reengineering1 project.

The idea behind FAMIX was to introduce an alternative to the current standard in object-
oriented modelling languages, UML2 from the Object Management Group. The group (Demeyer
et al. [SD99b]) which developed the FAMIX model, argues that UML is not sufficient to serve as a
tool-interoperability standard for integrating round-trip engineering tools. This is because UML
defines different concepts that do not appear in the implementation model. And otherwise there
are concepts in the implementation model which don’t have any equivalents in UML. Demeyer
et al. use this new FAMIX meta model as the tool interoperability standard within the FAMOOS
project.

The FAMIX model is extensible: the model allows extensions with language specific entities
and properties if needed. It contains only parsed and not interpreted data.

1The FAMOOS Project: http://www.iam.unibe.ch/ scg/Archive/famoos/
2UML: http://www.uml.org/

Figure 4.1: Conception of the FAMIX model. Figure from [SD99a].

10 Chapter 4. Famix-Background

Figure 4.2: The FAMIX core model. Figure from [SD99a].

Figure 4.1 shows the conception of the FAMIX model. For each language a tool which im-
plements the language dependent parsing technology is needed. These tools get the source code
of a program written in this programming language and parse the information into the FAMIX
model. The information is now language independent and can be used by any other program.

Each different language needs a specific plug-in because each language has its own entities
and properties. And it is also possible that a tool needs to define a number of specific properties.

4.2 Description

4.2.1 Overview

As described in section 4.1 the FAMIX model is a language-independent model to represent
object-oriented source code data. To enable the transfer of the generated data between differ-
ent tools, FAMIX is based on CDIF [Par92]. This is an industrial standard for transferring models.
This model could be generated with different tools. The advantages of CDIF are:

1. It is an industrial standard

2. It uses standard plain text encoding

3. CDIF supports extensibility

4.2.2 The FAMIX core model

Figure 4.2 shows the core model of FAMIX. The entities and relations of the FAMIX core model
can extracted immediately from source code. This core model consists of the main object-oriented
entities:

• Class

• Method

• Attribute

• InheritanceDefinition

To compute metrics or analyse dependencies we need more information. For this reason there
are two other entities in the FAMIX core model.

4.2 Description 11

Figure 4.3: The complete original FAMIX model. Figure according to [SD99a].

1. Invocation

2. Access

With this additional information it is possible to answer different questions concerning the
cooperation between the entities.

4.2.3 The abstract part of the FAMIX model

In the abstract part of the model all elements are children of the type object. Figure 4.3 shows
the completely original FAMIX model with the abstract model (grey boxes). For the purpose of
specifying language plug-ins, it is allowed to define new language specific objects and to add new
attributes to existing objects.

Object, Property, Entity and Association are made available to manage the extensibility re-
quirements, defined in [SD99a].

4.2.4 The extended FAMIX model

The Eclipse plug-in for the FAMIX export plug-in is based on the extended FAMIX model of
Coogle [Sag06], an Eclipse plug-in for searching similar classes in Java projects. The FAMIX ver-
sion of Coogle contains several additional attributes to represent extracted Java source code data
and is itself based on the FAMIX Java language plug-in 1.0 [Tic99].

For our requirements we have adapted the FAMIX model in an other way than adding only
new attributes or language specific objects. We have inserted a new class named Generalization.
Furthermore we have inserted a class Inheritance and a class Subtyping.

• Generalization This class inherits from Association. It provides almost the same information
as the class InheritanceDefinition. This information is: accessControlQualifier, subclass,
superclass and index.

12 Chapter 4. Famix-Background

• Inheritance This class inherits from Generalization. It is used for the inheritance of a Java
class. The class Inheritance knows the super class of a class.

• Subtyping This class also inherits from Generalization. The class Subtyping knows the Inter-
face of a class.

This adaptation has a number of advantages compared to the official implementation with the
class InheritanceDefinition. The InheritanceDefinition provides information about inheritance
and subtyping. This is implemented with the constructor from listing 4.1. When the superclass is
an interface, the boolean extending is true: otherwise it is false.

public InheritanceDefinition(Class subclass, Class superclass,

boolean extending)

Listing 4.1: The class InheritanceDefinition.

To get all interface classes, a tool has to check each instance of the InheritanceDefinition. With
our extended model we are able to get this information directly. This fact also helps us to store
the generated FAMIX model with Hibernate3. We are thus able to store this model information in
two different tables in a database, one table for Subtyping, the other table for Inheritance.

3Hibernate: http://www.hibernate.org

Chapter 5

Implementation

Eclipse and Hibernate are two tools which we used to realise our FAMIX export plug-in and
Metrics export plug-in. This chapter gives a short introduction to the technology of the Eclipse
platform and Hibernate. It also describes the two plug-ins.

5.1 Eclipse

To store the generated FAMIX model and the metrics of a Java project, we developed two plug-ins
for Eclipse1. For a better understanding of the Eclipse platform, we describe the most important
points of the Eclipse SDK in this section.

5.1.1 The Eclipse platform

Eclipse is a modular platform. To realise this concept the developers of Eclipse chose plug-in
technology. With a plug-in it is possible to extend the platform and to add new functions or even
documentation. Each subsystem of Eclipse is also another plug-in or even a set of plug-ins. Figure
5.1 shows the Eclipse platform and the plug-in technology.

The most important subsystems of Eclipse are:

1Eclipse: http://www.eclipse.org

Figure 5.1: The Eclipse platform. Figure from [Fou].

14 Chapter 5. Implementation

• Runtime core: The most important part in general is the runtime core. This core implements
the runtime engine. It starts the platform. And it is also responsible to discover and run
plug-ins. This action is normally a dynamic activity, which means that a plug-in is known
by Eclipse but will only be loaded and activated when the user needs the action provided
by this plug-in. This is also known as the Lazy Loading Rule [EG04].

• Workbench UI: This part implements the workbench user interface. It defines different
extension points to enable other plug-ins to enlarge the user interface with new menus,
toolbar actions, new wizards etcetera. To generate this user interface the workbench user
interface can use SWT (Standard Widget Toolkit). With this SWT it is possible to create the
look and feel of the underlying operating system.

To develop Java software, Eclipse needs the JDT plug-in.

• Java Development Tools (JDT): The JDT plug-in extends the platform with different fea-
tures. This plug-in provides functions for editing, viewing, compiling, debugging and last
but not least running Java code. This plug-in is already integrated in the SDK version of
Eclipse.

The FAMIX and Metrics export tools which we developed are also plug-ins. To be able to
develop plug-ins we need another set of plug-ins, the PDE.

• Plug-in Development Environment (PDE): The PDE extends the JDT with tools to create,
manipulate, debug and deploy new plug-ins. This set of plug-ins is also included in the
SDK version of Eclipse.

5.1.2 An Eclipse plug-in

A plug-in extends the Eclipse platform with new functions or even documents. A plug-in contains
numerous files. The central file is the plugin.xml. This file contains all the information about the
plug-in, such as extension points, dependencies or extensions. This file contains all information
and settings needed by the plug-in.

• Dependencies: In this point all additional plug-ins needed by the new plug-in must be
declared . By default these are the three plug-ins org.eclipse.ui, org.eclipse.core.runtime,
org.eclipse.jdt.core. If a new plug-in needs any additional plug-ins, they must be added.
(Example: the Metrics export plug-in needs the additional Metrics 1.3.62 plug-in to get the
computed metrics of a Java project.)

• Extension Points: To extend an existing plug-in, it is necessary to have a point to get access
to this plug-in. The extension points exist for this purpose. An extension point defines how
this plug-in can be extended without changing the plug-in.

• Runtime: If another plug-in wants to use one or more extension points of a plug-in, it
is necessary to allow, this plug-in to see all needed packages and classes in this plug-in.
Otherwise it is not possible to extend this plug-in because the new one needs class A from
package C but it cannot access reach this class.

• Extensions: A new plug-in provides new functionality. To use this new functionality it is
also necessary to provide a possibility to start or view it. For this purpose new extensions
can be added to the plug-in. An extension can be a popup menu, a view or something else.

2The Metrics 1.3.6 plug-in: http://metrics.sourceforge.net

5.2 Hibernate 15

Figure 5.2: Two ways to store and read data in/from a database. Figure according to [Ive05].

In this plugin.xml file there is also information on how Eclipse has to build this plug-in for the
contribution. This is necessary because a plug-in can use also external jar files, for example, and
when Eclipse builds this plug-in for the contribution, it is also necessary to add these jar files in
the plug-in and the classpath has to be set correctly.

This plugin.xml file will be created automatically when we start the wizard to create a new
plug-in project. The wizard also generates Java classes. One of these classes is the plugin.java. It
contains all code needed to start or stop the plug-in. It is not necessary to change anything in this
Java class.

For each extension we defined, Eclipse needs a Java class. This class will be called when we
use this extension. For example: We have defined a popup menu and we are using it. The plug-in
will call the class which is associated with this action. In this class we have to define the action
for this extension.

5.2 Hibernate

To store our generated FAMIX model and the metrics of a Java project, we use Hibernate. Hiber-
nate is an object/relational persistence and query service. This tool helps to relieve the developer
of a large number of common data persistence related programming tasks. Using XML descrip-
tors, Hibernate provides an object-oriented view of a relational database [Ive05].

In order to work, Hibernate needs different components:

1. Common Java classes.

2. A Mapping file for each Java class we need to store/read data.

3. A configuration file.

4. A relational database such as MySQL or PostgreSQL.

16 Chapter 5. Implementation

5.2.1 Java classes

Java classes provide he basis for mapping with Hibernate. A class does not need any specific
attributes or methods to save a class instance with Hibernate. The class has to implement only
the getter and setter methods for each attribute which we need to store. With these setter and
getter methods, Hibernate is able to read and write all the necessary information.

Hibernate is not bounded to simple attributes such as Integer or String. It is also possible to
map information stored for example in a HashSet. For this purpose Hibernate needs the interface
of the class HashSet.

public class Package {

// The attribute and collection to store.

private String packageName = "";

private Set<Class> classes = new HashSet<Class>();

public void Package() {

super()

}

public Set<Class> getClasses() {

return classes;

}

public void setClasses(Set<Class> classes) {

this.classes = classes;

}

public String getName(){

return name;

}

public void setName(String name){

this.packageName = name;

}

public void addClass(Class cl) {

this.classes.add(cl);

}

}

Listing 5.1: Example of a Java class for Hibernate.

Listing 5.1 shows an example for a Java class with information which we need to store in or
load from the database. We have the simple attribute packageName, which is a String, and we have
a HashSet classes which is a set of the class Class. To store the information of this class Class it
is necessary to have all the getter and setter methods in Class so that Hibernate can access the
attributes in this class. In our example these are the methods:

5.2 Hibernate 17

• getName()

• getClasses()

• setName(String name)

• setClasses(Set<Class> classes)

5.2.2 The Hibernate mapping files

But how does Hibernate know which attributes or collections we need to store and how they
are labelled? For this purpose, each class we handle with Hibernate needs its own mapping file.
These mapping files are labelled in the following manner: class name.hbm.xml. If we follow our
example from section 5.2.1, our mapping file is labelled package.hbm.xml.

These files describe the collaboration between the Java classes themselves and between the
Java classes and Hibernate. So we can find the following information in this mapping files:

1. All properties of a Java class which are needed to store in or read from a database.

2. Inheritances between classes

3. Associations between classes

We shall to follow our example from 5.2.1 and show how a mapping file is made.

<?xml version="1.0"?>

<!DOCTYPE hibernate-mapping PUBLIC

"-//Hibernate/Hibernate Mapping DTD 3.0//EN"

"http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd">

<hibernate-mapping package="seal.famix.model">

<!-- Package mapping -->

<union-subclass name="Package" extends="Context" table="package">

<!-- Associations -->

<many-to-one name="belongsTo" column="parent_id"

class="Context" cascade="none" />

<!-- 1-n package container relationship -->

<set name="packages" inverse="true" cascade="save-update">

<key column="parent_id" />

<one-to-many class="Package" />

</set>

<!-- 1-n class container relationship -->

<set name="classes" inverse="true" cascade="save-update">

<key column="parent_id" />

<one-to-many class="Class" />

</set>

18 Chapter 5. Implementation

</union-subclass>

</hibernate-mapping>

Listing 5.2: Example of a mapping file.

A mapping file implements a certain structure. This structure is defined in the DTD, the Doc-
ument Type Definition. To know which DTD is used, the mapping file has to declare it. This is
the first definition in a mapping file.

<?xml version="1.0"?>

<!DOCTYPE hibernate-mapping PUBLIC

"-//Hibernate/Hibernate Mapping DTD 3.0//EN"

"http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd">

Listing 5.3: The DTD in a mapping file.

To find a class, Hibernate needs to know the path to the class. To do this, we can set the
optional attribute package=”...” which defines the complete path.

<hibernate-mapping package="seal.famix.model">

<!-- place for the mapping -->

</hibernate-mapping>

Listing 5.4: The mapping with the path to the mapped class.

It is necessary to define how a class has to be mapped. For this case there are three different
strategies. Each strategy has a number of advantages and disadvantages. To imagine this we use
an example with the superclass Animal and the derived classes Cat, Cow and Horse:

• Table per class hierarchy: This strategy needs only one table in a database for Animal and
Cat, Cow, Horse. The really big disadvantage is that a column declared in a subclass may not
have a NOT NULL constraints.

• Table per subclass: This strategy needs many more tables than the table per class hierarchy.
For the example with Animal, Cat, Cow, Horse we need four tables in a database. The three
derived classes have a primary key association to the superclass.

• Table per concrete class: This strategy also needs a large number of tables in a database,
for each of the derived classes Cat, Cow, Horse exactly one table, but no table for Animal. A
major problem is that a property declared in the superclass needs the same column name in
all subclasses.

Listing 5.5 shows the strategy with a table per concrete class. We have chosen this strategy for
the FAMIX export plug-in and the Metrics export plug-in. The reason is that with this strategy we
need more tables in the database but it is more flexible than with the table per class hierarchy. So
we are able to load only the necessary information, using the visualization tool. We are not forced
to always load more than the needed class.

<union-subclass name="Package" extends="Context" table="package">

<many-to-one name="belongsTo" column="parent_id"

class="Context" cascade="none" />

5.2 Hibernate 19

</union-subclass>

Listing 5.5: Defining a union-subclass relation.

Many-to-one is an ordinary association to another persistent class. The foreign key referencis
the primary key of the target table.

Listing 5.6 shows a relation ship between two classes. In this example we have a one-to-many
relation. In this case, a Package contains zero, one or more instances of a Class. The foreign key
also references the primary key of the target table.

<!-- 1-n class container relationship -->

<set name="classes" inverse="true" cascade="save-update">

<key column="parent_id" />

<one-to-many class="Class" />

</set>

Listing 5.6: Defining a one to n relationship.

5.2.3 The Hibernate configuration file

The classes are developed and the mapping files are written. But how can Hibernate know where
the mapping files are and how they are labelled? And what about the database?

For this case Hibernate has a further file, the hibernat.cfg.xml. In this file all the information
about the mapping files and the database connection is stored. The first element in the hiber-
nat.cfg.xml file is the DTD declaration. This DTD is only a little bit different from the DTD in
the mapping files. It is not the Hibernate Mapping DTD 3.0 but the Hibernate Configuration DTD
3.0. The next element is the tag for the session factory. This session factory will be used to create
a session for a new connection to the database. Listing 5.7 shows the configuration file for our
example from section 5.2.1.

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE hibernate-configuration PUBLIC

"-//Hibernate/Hibernate Configuration DTD 3.0//EN"

"http://hibernate.sourceforge.net/

hibernate-configuration-3.0.dtd">

<hibernate-configuration>

<session-factory>

<property name="connection.username">User name</property>

<property name="connection.password">Password</property>

<property name="connection.url">DB URL</property>

<property name="dialect">SQL dialect</property>

<property name="connection.driver_class">Driver class</property>

<!-- FAMIX mapping -->

<mapping resource="seal/famix/model/mappings/Package.hbm.xml"/>

</session-factory>

</hibernate-configuration>

Listing 5.7: The configuration file for Hibernate.

20 Chapter 5. Implementation

With the property name=”...” tags it is possible to define all parameters for the database connection.
In this case hibernate gets the following information:

• The user name to connect to the database.

• The password if a password is needed to connect to the database.

• The complete URL of the database. (Example: jdbc:mysql://localhost/famix)

• The SQL dialect of the database. (Example: org.hibernate.dialect.MySQLDialect)

• The JDBC driver to connect the to database. (Example: com.mysql.jdbc.Driver)

There are several other possible optional properties to set. For example it is possible to define
if Hibernate has to show all SQL statements, if it has to use a reflection optimizer and so on. More
details are described in the Hibernate manual [Sys]

The disadvantage of this method is that Hibernate can open a connection only to this database.
If another database has to be connected, the hibernate.cfg.xml has to be adapted. To remove this
disadvantage it is possible to configure the connection settings dynamically in a Java class. With
this method of creating a session factory it is possible to change a database more easily than by
adapting the configuration file. This method is shown in Listing 5.8.

Configuration cfg = new Configuration();

cfg.setProperty("hibernate.connection.url","DB URL");

cfg.setProperty("hibernate.connection.username", "User name");

cfg.setProperty("hibernate.connection.password", "Password");

cfg.configure("/hibernate.cfg.xml");

// Creates the new session

Session session = cfg.buildSessionFactory().openSession();

Listing 5.8: The alternative configuration of a session factory.

To give Hibernate the information about the mapping files, there is the mapping resource=”...”
tag. This entry defines the complete path to the mapping file, including the file name.

With all this information, Hibernate is ready to work.

5.2.4 The database schema

The Java classes are ready, the mapping and configuration files are written to map the Java classes
and to connect the database. So it remains to prepare the database. This is the easiest step of
all. The mapping files have the same structure as the tables in the database. For this reason
Hibernate is able to create all the tables automatically. With an additional tag, see listing 5.9, in
the hibernate.cfg.xml file, it is possible to enable Hibernate to create the tables. Table 5.1 shows the
generated database schema of a table.

<property name="hbm2ddl.auto">create</property>

Listing 5.9: The auto creation of tables.

In this table of the example from 5.2.1 parent id and model id are two foreign keys: parent id has
to be another package id.

5.3 The FAMIX export plug-in 21

column type modifiers

id (primary key) BIGINT(20) not null
name VARCHAR(255)
parent id BIGINT(20)

Table 5.1: Exported database schema of the Example from section 5.2.1.

5.3 The FAMIX export plug-in

To generate and export the FAMIX model we implemented an Eclipse plug-in. This plug-in uses
the AST3-parser patviz to generate the FAMIX model and Hibernate to store the data in a database.

5.3.1 The plug-in features

The plug-in provides a wizard which guides users through the process. To start the wizard, a Java
project must be selected. In the context menu of this project there is a new entry labelled Parse
AST to FAMIX. The wizard needs a number of inputs and then it starts the parsing. The main
tasks of the wizard art to:

• read in the information about the database (URL, username password).

• read in the information about the selected program (name and version).

• create a new database connects an existing database.

• start the FAMIX parser.

To run this plug-in, Eclipse 3.0 or later, J2SE 5.0 (Java 1.5) and the MySQL database 5.0 or later
are needed.

5.3.2 Structure of the FAMIX export plug-in

To provide the service of this FAMIX export plug-in the following main components are needed:

• The AST parser

• The FAMIX model

• The Hibernate mapping

• A wizard to choose or create a database

These components are embedded in several packages. For a better understanding of the struc-
ture, a short introduction about the different packages of the plug-in will be helpful.

• patviz.*: This package contains the parser to parse the Eclipse AST to the FAMIX meta
model. This is the heart of the plug-in.

• seal.famix: The FAMIXInstance in these packages contains all containers for parsed classes,
methods, attributes. And this FAMIXInstane also contains a model which we will describe
in the package seal.famix.model.

3AST: Abstract Syntax Tree

22 Chapter 5. Implementation

• seal.famix.model: This contains the extended FAMIX model. We have described this ex-
tension in 4.2.4. This model stores the parsed meta model, generated from the parser in
the patvix.* packages. This package also contains a class named model. This model contains
information about the parsed system, the exported program (name, version) and so on.

• seal.famix.container: These are the containers which are used in the class FamixInstance.
These containers provide methods to add parsed information and to search for parsed in-
formation. There are containers for: Classes, Methods, Packages. To resolve bindings these
packages also provides the class Claim.

• seal.famix.mappings: Here we find the mappings for the FAMIX classes.

• seal.famix.wizard.* These are the packages for the wizard with all the classes needed for
the wizard which guides the user through the process of creating or selecting a database.
It collects the information about the program and starts the parsing of the selected Java
project.

• seal.AST2FAMIX.* and seal.famix.plugin: Contains all classes which are needed to start
the plug-in.

5.3.3 Design

The design of the our FAMIX model is very similar to the design of the FAMIX model used in the
Coogle [Sag06] plug-in. The difference consists of the new classes Inheritance, Generalization and
Subtyping. As described in 4.2.4, these classes help to ease the handling of the inheritance and
the interfaces during mapping with Hibernate. Figure 5.3 shows the new classes, added to the
FAMIX model. The complete FAMIX model is shown in figure C.1 in the Appendix.

5.3.4 Data flow

The flow of the data is easy to understand. First, we have a Java project. Eclipse loads this project
and generates the AST. Then the parser gets this AST and generates the FAMIX model. Hibernate
gets the data from this model and stores it in the database. Or if we want to use an existing FAMIX
model, Hibernate reads the data from the database and generates the model by loading the data
from the database. Figure 5.4 illustrates this simple data flow. The marked areas are our plug-ins.

The data flow between the FAMIX model and the database is a two way flow, which means a
newly generated FAMIX model can be stored in a database or an existing FAMIX can be loaded
from a database.

5.3.5 Saving the data

To save the generated FAMIX model, we use Hibernate. For each class instance we have to save,
we need the respective mapping file. Because of the choice to use the strategy ”A table per con-
crete class”, we have more classes and mapping files than tables in the database. In order not to
lose data, we use the inheritance in the mapping files. Listing 5.10 shows an inheritance in the
mapping files. With this mechanism it is possible to store all information without using a table
for each class.

<?xml version="1.0"?>

<!DOCTYPE hibernate-mapping PUBLIC

"-//Hibernate/Hibernate Mapping DTD 3.0//EN"

5.3 The FAMIX export plug-in 23

Figure 5.3: Details of the new classes.

Metrics export plug-in

FAMIX export plug-in

Java project Eclipse ASTStart eclipse parsing
(Eclipse)

FAMIX model parsing
(patviz)

mapping
(Hibernate)

New metric model

parsing
(Metrics)

Metrics model

“exporting”
data-
base

mapping
(Hibernate)

Figure 5.4: The data flow of the two plug-ins.

24 Chapter 5. Implementation

"http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd">

<hibernate-mapping package="seal.famix.model">

<union-subclass name="Context" extends="Entity" abstract="true">

</union-subclass>

</hibernate-mapping>

Listing 5.10: Inheritance in the mapping files.

5.3.6 Problems and future work

During our work with this FAMIX parser plug-in we detected that the parser is very slow and
that the FAMIX model needs a large amount of memory. To improve the speed, we assume that a
solution would be to reengineer the resolving of the claims. These claims are unresolved objects
like methods, classes and so on.

5.4 The Metrics export plug-in

The Metrics plug-in generates several metrics of a Java project. To store these metrics, we have
implemented the Metrics export plug-in.

5.4.1 The plug-in features

The plug-in also provides a wizard which guides user through the process like the FAMIX export
plug-in. To start the wizard, a Java project must be selected. In the context menu of this project
there is a new entry labelled Export Metrics. The wizard needs a number of inputs and then it
starts the export of the metrics. The main tasks of the wizard are to:

• read in the information about the database (URL, username password).

• read in the information about the selected program (name and version).

• check if the tables needed have already been created. If this is not the case, it creates the
needed tables.

• start the metrics export.

Like the FAMIX export plug-in, this plug-in also requires Eclipse 3.0 or later, J2SE 5.0 (Java 1.5)
and the MySQL database 5.0 or later.

5.4.2 Structure of the Metrics export plug-in

The Metrics export plug-in is a relatively small plug-in. We can see this in the structure of the
plug-in. It contains fewer packages and classes than the FAMIX export plug-in. The main com-
ponents of this plug-in are:

• The exporter, based on the MetricsFirstExporter of the Metrics plug-in.

• The metrics model.

5.4 The Metrics export plug-in 25

• The wizard to choose the database.

To give an overview, the most important packages are described in the following lines.

• metricsexporter.exporter This package contains the class, which gets all metrics from the
Metrics plug-in. The exporter fills in this data in our own simple data model.

• metricsexporter.model Our data model is in this package. This model is only for interim
storage. We need this step in order to use Hibernate. Hibernate is not able to get data from
the Metrics plug-in directly so that we are forced to engage this intermediate step.

• metricsexporter.mappings This package contains all the Hibernate mapping files, the map-
ping files for this plug-in and also the mapping files of the FAMIX export plug-in.

• metricsexporter.wizard.* For the sake of comfort, this plug-in also has a wizard which
guides the user through the process. These packages contain all the classes needed.

5.4.3 Data flow

The data flow of the Metrics export plug-in is also simpler than the data flow described in 5.3.4 of
the FAMIX export plug-in. The Metrics plug-in parses the Eclipse AST and computes the different
metrics. The class exporter gets this data and creates our own data model. Afterwards Hibernate
saves this model in the database.

5.4.4 Design

The design of the Metrics export plug-in is very simple. For this reason no pattern was used. To
get the metrics from the Metrics plug-in, there is one class, the exporter. This class gets the metrics
from the plug-in and stores them in our own data model. This data model consists of three new
classes to store all information. The first class contains the descriptions of these metrics:

• the name of the metric.

• the short name of the metric.

• the type of entity which can be measured (possible entities: package, class, method).

In the preferences of the Metrics plug-in it is possible to define ”Save Ranges”. If a metric value
is outside of this ”Save Range”, the Metric plug-in gets a warning. The second class in our own
data model stores the values of this ”Save Range”. But this class also contains other computed
values of a metric. The different values are:

• The minimum and maximum of the ”Save Range”.

• The computed total, average and standard deviation of a metric.

The third class contains all values of the metrics. In this class all the information concerning
the measurement of a package, class or method is stored. This information comprises:

• The computed values of a measured entity.

• The name of the entity.

• The kind of metric (a link to the metric description).

26 Chapter 5. Implementation

Figure 5.5: The complete model with the exporter of the Metrics export plug-in.

5.4 The Metrics export plug-in 27

Figure 5.5 shows the complete model with the exporter and the data model.
For the sake of independence, we have also decided that the Metrics export plug-in should

know the FAMIX model, so that it is possible to map the metrics with the correct classes, methods
or packages. In this way a metric knows its owner. But we don’t want to change the FAMIX
export plug-in and the FAMIX model. So a class, method or a package doesn’t know any metrics.

5.4.5 Saving the data

Saving this data with Hibernate is not complex. Only three mapping files are needed for this data
model. No inheritance exists, so that only associations have to be handled.

To compare the classes, packages and methods from the Metrics plug-in and the FAMIX model
and allocate the metrics, it is necessary to load a part of the FAMIX model. For this purpose the
FAMIX mapping files are also needed.

To implement this process, the Metrics export plug-in has to load the right class, method or
package for each value. Then the plug-in adds this loaded class to the value and stores the value
in the database.

5.4.6 Problems and future work

During the implementation we founded several problems concerning the Metrics plug-in. The
problems are: When the FAMIX export plug-in parses a project, a method afterwards has the
structure: Method name(List of arguments). With this procedure it is possible to differentiate
between the method and the overloaded methods. But methods exported from the Metrics plug-
in have only the structure Method name. So it is not possible to differentiate between a method
and the overloaded methods. At the moment it is not always possible to map the exported metrics
with the correct method. Figure 5.6 illustrates this problem.

The second problem is also a mapping problem. The Metrics plug-in exports the methods
of an inner class incorrectly. This means a method which belongs to an inner class has the class
which contains the inner class and not the inner class itself as its parent. But the FAMIX export
plug-in parses an inner class correctly. So it is not possible to map these two methods.

To illustrate this circumstance, listing 5.11 shows an example of a class with an inner class. As
a comparison, listing 5.12 shows a part of the output from the Metrics plug-in. We can see that
the packages are correct. But the source (parent) of the method myMethod should be InnerClass
and not MyClass. This is incorrect.

package myPackage;

public class MyClass {

public MyClass(){}

public class InnerClass{

public InnerClass(){}

private int number = 0;

public void myMethod(int number){

this.number = number;

28 Chapter 5. Implementation

FAMIX export plug-in
Metrics plug-in
(metrics.sourceforge.net)

Metric A, belongs to
method parse

parse(File file, int number)

parse(File file)

?

?

Figure 5.6: The correct mapping of method values from the Metrics plug-in is a problem.

}

}

}

Listing 5.11: Example of a class for the export with the Metrics plug-in.

<Metric id="MLOC" description="Method Lines of Code">

<Values per="method" total="1" avg="0.333" stddev="0.471" max="1">

<Value name="myMethod" source="MyClass.java"

package="myPackage" value="1" />

<Value name="InnerClass" source="MyClass.java"

package="myPackage" value="0" />

<Value name="MyClass" source="MyClass.java"

package="myPackage" value="0" />

</Values>

</Metric>

Listing 5.12: Example of the output generated width the Metrics plug-in.

The easiest way to solve these problems is probably to fix the Metrics plug-in. For example it
is necessay to change the parsing of the methods, so that a method signature also contains the list
of arguments and not only the method name.

Chapter 6

Evaluation

In this chapter we describe the evaluation of our implemented FAMIX and Metrics export plug-
ins with a Java application.

6.1 Procedure

We evaluate our implemented plug-ins with the FAMIX export plug-in itself, especially with the
parser patviz and the FAMIX model. We had planned to use the open source software ArgoUML
1 for this task, but we were not successful in parsing this project. The problem was that the parser
(patviz) is very slow when it parses a large Java project. So we tried to parse the ArgoUML but
after twenty four hours the parser was very, very slow. It parsed a class and after the next twelve
hours it was parsing still the same class. Other tries with different memory settings of Eclipse
were no better. So we have decided to use the FAMIX export plug-in for this evaluation instead
of ArgoUML.

In this evaluation we execute the following steps:

1. We parse the FAMIX export plug-in to the FAMIX model and export it to the database.

2. We measure the plug-in with the Metrics plug-in.

3. We map the generated metrics with the FAMIX model and export it to the database too.

4. We use the Kiviat Visualizer to generate different graphs.

5. We answer the research questions, defined in chapter 3.

6.2 Preparing the data for the evaluation

The basis for this evaluation is a database with all the data needed. To create this data, we use our
FAMIX export and Metrics export plug-ins.

In a first step we parse the FAMIX export plug-in itself. To do this, we have to start the plug-in
and then we chose the complete Java project and start the parsing with the menu ”Parse AST to
Famix” in the context menu of the project. After this process we generate the different metrics
with the Metrics plug-in. Afterwards we select the Java project again and start the Metrics export
plug-in with the menu ”Export Metrics” in the context menu. The plug-in exports the metrics

1The ArgoUML project: http://argouml.tigris.org/

30 Chapter 6. Evaluation

generated with the Metrics plug-in, maps the metrics with the FAMIX model and stores the values
in the database.

We are ready to start the visualization with the Kiviat Visualizer.

6.3 Answering the research questions

6.3.1 A package view

What can a package say about software quality?

A Java project is divided into several packages. A package is a construct like a folder and it
contains classes or other packages. We start with our analysis at this level. This level provides a
good opportunity to get a first impression of a software system.

For our analysis we have chosen all the packages from the parser and the FAMIX model.
During our evaluation we analyse these packages and a part of the classes in these packages. We
have chosen these packages because they enable us to compare it with an older version.

To answer this question, we have selected the following packages:

• container

• famix

• javarsf

• model

• util

The packages seal and patviz are root packages and contain no classes, so we don’t have to
analyse these two packages.

If we have a look at figure 6.1 we can see that we have four packages with relatively high
metrics. This are the packages container, famix, javarsf and model. The packages famix and model
have a high Afferent Coupling (CA). To have a high CA is undesirable because with a high CA
there are many classes outside this package which depend on the classes in these packages. All
four packages on the left side also have a high Efferent Coupling (CE); classes from these packages
depend on the classes in other packages.

These two metrics are a hint, that it could be essential to move a number of classes from a
package to another package to reduce the CA and the CE.

With these diagrams we are also able to identify other information. We see that in the package
famix there are numerous interfaces (NOI) and as consequence the abstractness (RMA) increases.
To calculate the Normalized Distance (RMD), the RMA and the Instability (RMI) are used. So we
can see that we have a high RMD in the package container. This is not desirable, because this is a
hint of a bad package design.

The definition of RMD is [Mar94]:

RMD = |RMA + RMI − 1|

6.3 Answering the research questions 31

Figure 6.1: The metrics of the chosen packages.

32 Chapter 6. Evaluation

Package Number of classes

container 5
famix 5
javarsf 9
model 33
util 2

Table 6.1: Packages with the number of classes.

Problem

This graph gives us a good overview of the package level but a number of questions remain
unanswered. When we look at the CE and NOC, we can see that we have the package famix with
a middle CE and low NOC and the package model with a high CE and also a high NOC. Table
6.1 shows the packages and the number of the classes in them. With this information we can
assume, but we are not sure, that almost all classes in the package famix must have a relatively
high number of these dependencies. But we are not able to make a prediction as to how this is in
the package model. We don’t know if we have only few classes which have a high dependency or
if we have many classes with a high dependency. We only know that the classes in this package
depend on a high number of classes in other packages.

We have the same problem with the CA. For example we don’t know on which classes in the
package famix the classes from other packages depend. Is it only one class, or more? We only
know that we have such a dependency.

Solution

It would be interesting to have an approximate number of the classes which are affected by the
CA or CE. The FAMIX export plug-in and the Metrics plug-in have the same data as base and so
it is possible to generate this number. The easiest way is probably to extend the Metrics plug-in.
For that purpose it is possible to introduce new metrics, one which counts the classes which are
the reason for the CA and one which counts the classes which are the reason for the CE.

With this new information it would be easier to decide if a package needs refactoring or not.
With these numbers it would be possible to see, which of the thirty - three classes in the package
model are liable for the CA and/or CE in this package.

It would be also interesting to visualize the dependencies between the packages with lines.
The larger the line, the larger the dependencies between the packages. This would also help to
identify candidates for possible refactoring.

6.3.2 Identifying large classes

Is it possible to find the large classes?

We go into the packages and analyse the classes. To get an overview of the size of these classes
we first create a simple overview using rectangles. With this method we are able to identify the
largest classes. To visualise these classes we have selected the number of methods (NOM) as
width and the number of attributes (NOF) as height. Figure 6.2 shows the result of this view.

With this method we can identify the largest classes which are: Class, BehaviouralEntity and
Model. Table 6.2 shows the number of methods and attributes of these tree classes. These classes
have more methods and attributes than all other classes. This is a hint that a class could have
many interactions with other classes. The large number of attributes is also a sign that a class has

6.3 Answering the research questions 33

Figure 6.2: The view with NOM as width and NOF as height.

Class Number of methods Number of attributes

Class 44 13
BehaviouralEntity 39 18
Model 33 13

Table 6.2: Classes with the number of methods and attributes.

many interactions with the rest of the system. If a system is designed properly, these attributes
can only be accessed with this class methods and not in another way.

Problems

The problem of a class with a high number of methods and attributes is that a class like this is
harder to maintain. This is because of the (probably) high interaction with the rest of the system.
If we change a method in this class, we have often to change other methods in other classes as
well.

With this view we can identify problematical classes and this view provides us with a use-
ful hint to look at these classes when we perform refactoring. Probably it is possible to reduce
the number of methods and attributes if we are able to split a class with so many methods and
attributes. But if the class has a certain function it is often not possible to split the class.

This view helps us to identify large classes, which means classes with a high number of meth-
ods and attributes. But we cannot see if such a class also has a large number of interactions with
the rest of the system.

34 Chapter 6. Evaluation

Solution To solve this problem we recommend choosing another view. A polymetric view with
drawn dependencies helps to identify the large classes and it also helps to detect the interaction
between the different classes. In this version of the Kiviat Visualizer it is unfortunately not pos-
sible to draw these dependencies. So we think that these enhancements will be a usful future
project.

6.3.3 Identifying complex classes

Is it possible to detect complex classes?

To get a better overview of these tree classes, we use polymetric views. We again use the number
of methods and the number of attributes. And this time we also use the Lack of Cohesion of
Methods (LCOM). Figure 6.3 shows the view with these three metrics. To allow us to compare we
have chosen the classes BehaviouralEntity, Class, Model and as the reference the class Claim.

We can see that the LCOM in our three classes is high. The compared class Claim has a smaller
LCOM. We know that is it better to have a low LCOM, because a high LCOM indicates low
cohesion. And if we have low cohesion, the complexity of a class increases. The goal of an
implementation is to have classes with good cohesion.

A better way to find out something about the complexity is the metric Weighted Method per
Class (WMC). This metric indicates the complexity of a class. A higher value indicates a higher
complexity. If we also look at figure 6.3 we can see that when we have a high LCOM the WMC is
often higher than zero. The high LCOM can be also a good sign for the existence of complexity in
a class.

Problems

One Problem is that the LCOM indicates the complexity again, because it evaluates the cohesion.
A further problem is, that a big LCOM is not automatically bad and an LCOM with zero is not
automatically good. Why is this? This is a problem of this metric.

The definition of LCOM is [SRC94]:

LCOM = |P | − |Q| if |P | > |Q|

= 0 otherwise

P = number of pairs of methods which do not have a collective attribute.
Q = number of pairs of methods which have at least one collective attribute.

To illustrate this problem we create an example. Listing 6.1 shows a class with two attributes
and four methods. To get the different pairs and the P and Q we create table 6.3. If we count
the different methods we get P = 3 and Q = 3. When we calculate the LCOM the result is
LCOM = 0! But we can see that this is not really true.

public class C {

private int a;

private int b;

public int d() {

return a;

6.3 Answering the research questions 35

Figure 6.3: LCOM of the classes Claim and Class.

36 Chapter 6. Evaluation

Pairs of methods Collective attributes

d,e none
d,f none
d,g none
e,f b
e,g b
f,g b

Table 6.3: Methods and collective attributes.

}

public int e() {

return b;

}

public int f() {

return b * b;

}

public int g() {

return b * b * b;

}

}

Listing 6.1: Example class for the calculation of LCOM.

The other example is that an LCOM > 0 is not automatically bad. This may be the case when
we have a class which serves as a data object. Then we have a getter and a setter method and they
use the same attributes. But in this case this is not a problem.

A problem of the WMC is that this metrics are often used in different versions. A number of
versions do not count constructors or overridden methods.

Solution

The problem with the use of the LCOM is, that we don’t can see if a class with a high LCOM is
a data object or a common class. It is necessary that we have to perform the following (manual)
steps:

1. Identifying all classes with a high LCOM (and probably with a LCOM of zero).

2. Reading the documentation to identify data objects.

3. Removing the data objects from our list.

4. Having a short look at the rest of our list.

In this way we are able to identify more or less the classes with a really bad LCOM. During
refactoring we are able to reduce the LCOM of this classes.

But we can avoid these steps when we use the WMC. This is the better indicator for a complex
class. And to avoid the problems with this metric, it is enough to always use the same metrics
tool to build the metrics.

6.3 Answering the research questions 37

Figure 6.4: Metrics of the inheritance.

What can we say about inheritance?

With our tools we can visualise the metrics Depth of Inheritance Tree (DIT) and the number
of Children (NSC). Figure 6.4 shows our four classes with these metrics and the metrics NOM,
NORM and NOF as additional information to generate the graph.

We can see, that these classes have different DIT’s. We know that these classes have the fol-
lowing inheritance trees; see figure 6.4. And we can also see, which class has how many children.
To get an overview we can use table 6.4. This table shows us the values of these two metrics.

This two metrics can indicate a problem in the architecture of a software system. If the DIT
is very long, it is possible that architecture of this software system could be bad and the system
should be refactored. And for this reason is better to have a DIT which is not too long.

Problem

The problem with this view is that we don’t know the exact value of the DIT. This means we are
not able to say how many classes we have above an analysed class. We can only differentiate if
a class is in a inheritance tree or not, but not the depth of this tree. To estimate if an architecture
has problems or not, it is necessary to know the depth of a tree. The class with the maximum tree

38 Chapter 6. Evaluation

Class DIT (with java.Object) NSC

BehaviouralEntity 3 2
Claim 1 none
Class 4 1
Model 2 none

Table 6.4: Classes with the DIT and NSC.

needs the complete line, but we don’t know if this maximum has a value four, ten or even twenty.
The same is true about the NSC. We can only see if a class has many children or not. But we do

not know the values again. The question is also if this class has four, ten or even more children.
But we do not know this fact and we are not able to visualise these circumstances.

To expand our knowledge, we have to count the DIT or NSC manually.
And another problem with NSC is the metric itself. What is the meaning of a high NSC? A

high NSC indicates that the class has good reusability. But it can also indicate that this could be
an abuse of the inheritance. We do not which is true.

Solution

To solve this problem a possibility is to expand the function of the Kiviat Visualizer. It has to
count the DIT and NSC and to display these values. Then it is easy to identify the classes with
high values of DIT and/or NSC and to decide if it would be necessary to adapt the architecture
of a software system or not.

In our example it was relatively easy to estimate that the maximum could be four. But when a
software system has more classes, then it is not so easy to estimate the maximum number.

There is only one solution to the problem with the NSC. We have to examine the classes by
hand to find out if a high NSC is caused by good reusability or by the abuse of the inheritance.
Our tools can’t do it for us.

But with this tool we can immediately identify the classes, which need an accurate examina-
tion.

6.3.4 A method view

What are the large methods?

We go into the classes and look at the methods in general. To identify the largest methods, we
use the view showing all methods. We again use a view with rectangles. As metrics we have
selected the Method Lines of Code (MLOC) as width and the Number of Parameters (PAR) as
height. Figure 6.5 shows the result of this selection.

We can identify three different patterns:

1. We have a lot of methods with a low number of MLOC and PAR.

2. We have a lot of methods with a low number of MLOC but with a high number of PAR.

3. We also have methods with a relatively high number of MLOC and a high number of PAR.

If we look at the first type of this pattern, we can see that these methods are often getter and
setter methods, constructors or static methods. The second type of this pattern also often consists
of setter methods and of methods to add something (example: add Invocation). The third type of

6.3 Answering the research questions 39

Figure 6.5: The different sizes of the methods.

this pattern consists of methods which compute something. But we can also find (a few) getter
and setter methods.

With this view we can identify that the largest methods are:

• parse (1)

• parseFieldDecl (2)

• addAccess (3)

• setContent (4)

• print (5)

• fulfilClaim (6)

• getMethod (7)

• parse (8)

Problem With this view, we can identify the largest methods. And we can see that we have
in this case three different types of patterns which classify the methods. The problem is that we
also want to identify all important and not only the largest methods. That normally means that
the setter and getter methods are not very interesting because they often look like the example in
listing 6.2.

public void setName(String name){

this.name = name;

}

40 Chapter 6. Evaluation

public String getName(){

return name;

}

Listing 6.2: Common setter and getter methods.

Often setter and getter methods don’t do anything other than set and return a variable. So
these methods are not very interesting to examine. It would be practical not to see these ordinary
setter and getter methods.

A second problem is the fact that we can have different methods with the same name. If we
look at our list with the largest methods, we can see that we have found two large methods with
the same name: parse. But we don’t know which method belongs to which class. So we have to
check all methods by hand if we need to find out which methods could belong to which class.

Solution To avoid these problems, a possible solution is to extend the Kiviat Visualizer. To solve
the second problem, a selection of classes is needed. We would then be able to select a class and
we would get only a method list of the selected class or classes. Then the problem of methods with
the same name can be reduced. But this approach helps only if we don’t have overloaded methods
in the same class. If we have overloaded methods, we are not able to differentiate between this
methods. For this case it is probably better to display the entire method including the signature.

Example: we have a class with two methods with the name: show. At the moment, we have
the following list in the selector:

• show

• show

With the entire signature we have this list in the selector:

• show()

• show(int number)

With this version it is easier to identify a method than with the first version.
To solve the problem with the setter and getter methods two approaches are available:

• The Kiviat Visualizer has to provide the possibility to suppress getter and setter methods.
The user thus decides if these methods are important for him or not.

• Another is to suppress methods with a low number of MLOC. For example, the user can say
that he wants to display only methods with an MLOC greater than three. A common getter
or setter method has not more than three lines of code. See also our example in listing 6.2.

Can we identify the complex methods?

For the task ”Identifying complex classes” we select all four available metrics on the method level.
With the generated graph we choose to display the methods with high values; these are also the
two largest methods, identified in the last task. Figure 6.6 shows this method with all four metrics.

We can see that we have the metric McCabe Cyclomatic Complexity (VG). This metric is a
good sign for the complexity of a method. We know that a value over ten is not desirable [HS96]
and if this is the case, refactoring of this method is recommendable.

The other metric which can indicate a probably complex method, is the Nested Block Depth
(NBD).

6.3 Answering the research questions 41

Figure 6.6: Searching for complex methods.

Problem The problem in this case is that we can see that we have a high VG, but as in the other
views, we don’t know what is the number of the VG. Is the number of VG four, ten, or more? We
need a better basis to make a decision as to whether refactoring is needed or not. Otherwise the
VG is probably relatively low but we think that refactoring is needed because the view ”shows”
us a high VG.

Solution To get more information it is desirable to show the values in the graph. With this
values, the decision to do a refactoring or not, is easer to do. This values helps us to estimate if we
have the critical fronter already passed or not. It is also possible to watch a number of endangered
methods. So it is possible to react before the effort to do a refactoring rise extreme.

6.3.5 An evolution view

Can we say something about evolution?

Yes, it is possible to make a statement about the evolution. But: In this version of the Kiviat
Visualizer it is not possible to display more than one release at the same time. So we are forced to
create an individual graph for each release.

To display a metric, the Kiviat Visualizer normalises the value. For this reason it is not possible
to make an exact statement. But when we view figure 6.7 we can see that something has changed.
We don’t know which of these three metrics has changed, but we can assume that at least the
NOM doesn’t have the same values in both releases.

That is all what we can say about the evolution. We can say that something has changed, but
we are not able to say what has changed.

Solution To get more information it is necessary to expand the Kiviat Visualizer. It is essential
that it can display more than one release at the same time. Because this involves a great deal of
work, we didn’t expand the Kiviat Visualizer for this thesis.

42 Chapter 6. Evaluation

Figure 6.7: An attempt to visualise the evolution.

Chapter 7

Conclusion and future work

7.1 Conclusion

Software maintenance is an important task in the software cycle. To assist this task, many tools
and methods have been developed. These tools are often bound to a certain language. Each
language needs its own tools to do this work. An approach was to create a language-independent
meta-model to share the data between different tools written in different languages.

For this thesis we used the FAMIX meta model which was designed as an object-oriented and
language-independent model. We were able to use the FAMIX implementation of Coogle. This
meant that we were not forced to implement the entire model, but only a number of adjustments
to our requirements. To parse a Java Project into the FAMIX model we used the parser patvitz
which was also used in Coogle.

This thesis describes the implementation of our two plug-ins and the subsequent evaluation.
The first plug-in generates and stores the FAMIX model in a relational database. The second
exports the generated metrics of the Metrics plug-in, maps the metrics with the FAMIX model
and also stores it in the relational database. To store all the generated data we used Hibernate, an
object/relational persistence and query service.

We learned that Hibernate is a powerful tool. But it requires considerable effort to learn the
correct handling of this tool. Furthermore we found out obliged to realise that the parser is very
slow and we therefore conclude that at the moment it is not possible to parse a really large Java
project with this parser.

Our second tool, the Metrics export plug-in, works fine. But we also have a number of prob-
lems with it: not so much with the tool itself, but with the Metrics plug-in. This plug-in maps
the methods of an inner class incorrectly and if a class has overloaded methods it is not possible
to differentiate between these methods. Our Metrics export plug-in obtains data which is not
absolutely correct or complete and cannot always map these metrics correctly.

After the implementation we created a complete FAMIX model of our FAMIX export plug-in
and used it for the evaluation. To visualise the data we used the Kiviat Visualizer. With this tool
we are able to draw different graphs, based on the generated metrics. In this evaluation we have
also answered a catalogue of research questions.

Because of a number of technical limitations of the Kiviat Visualizer, not all questions have
been answered satisfactorily. And unfortunately there was not enough time to adapt the Kiviat
Visualizer. But we can say that the ArchView approach, on which this visualisation is based, is
a promising approach. We were also able to learn a lot about the FAMIX export plug-in with a
premature visualisation tool.

We recommend strongly to completing this approach and accomplishing all the tasks neces-

44 Chapter 7. Conclusion and future work

sary to ameliorate these tools.

7.2 Future work

To ameliorate these tools we recommend carrying out the following steps:

1. Refactoring the FAMIX parser to enhance the speed.

2. Correction of the wrong parsings and incomplete method generation in the Metrics plug-in
(open source).

3. (Partially) amelioration of the Kiviat Visualizer as suggested in chapter 6, to obtain more
significant graphs.

We are sure that with these corrections and adaptations the ArchView approach will become
a powerful method to analyse software.

Appendix A

Abbrevitations

All abbrevitations of the metrics generated with the Metrics plug-in.

Metric Description

CA Afferent Coupling
CE Efferent Coupling
NOC Number of Classes
NOI Number of Interfaces
RMA Abstractness
RMD Normalized Distance
RMI Instability

DIT Depth of Inheritance Tree
LCOM Lack of Cohesion of Methods
NOF Number of Attributes
NOM Number of Methods
NORM Number of Overridden Methods
NSC Number of Children
NSF Number of Static Attributes
NSM Number of Static Methods
SIX pecialization Index
WMC Weighted methods per Class

MLOC Method Lines of Code
NBD Nested Block Depth
PAR Number of Parameters
VG McCabe Cyclomatic Complexity

Appendix B

Content of the CD

File Description

FamixExport.jar This archiv contains the source code of the FAMIX Export plug-in.
MetricsExport.jar This archiv contains the source code of the Metrics export plug-in.
KiviatVisualizer This archiv contains the source code of the premature Kiviat Visualizer
FamixExport.sql This file contains the generated data of the FAMIX Export plug-in.
Famix.sql This file contains the generated data of the FAMIX parser and

FAMIX model (The version of Coogle).
SealPlatform.pdf This document in Adobe Portable Document Format.
Abstract.pdf The abstract of the thesis in English.
Zusfsg.pdf The abstract of the thesis in German.

Appendix C

The complete FAMIX model

This chapter contains the complete extended FAMIX model. In this model are also listed not
used classes. This is for the reason of completeness. The three classes are: InterfaceRealization,
InheritanceDefinition and TypeGeneralization. Instead of these classes we have created the three
classes: Inheritance, Subtyping and Generalization. How described in 4.2.4 the reason is to simplify
the handling with hibernate. The three unused classes can be declared as deprecated.

50 Chapter C. The complete FAMIX model

Figure C.1: The complete extended FAMIX model (Part 1).

51

Figure C.2: The complete extended FAMIX model (Part 2).

52 Chapter C. The complete FAMIX model

References

[CR04] Tarja Systä, Jianli Xu, Claudio Riva, Petri Selonen. UML-based Reverse Engineering
and Model Analysis Approaches for Software Architecture Maintenance. IEEE Inter-
national Conference on Software Maintenance (ICSM’04). IEEE 1063-6773/04, 2004.

[EB00] John Davey, Elizabeth Burd, Steven Bradley. Studying the Process of Software Change:
an analysis of software. evolution. Seventh Working Conference on Reverse Engineer-
ing 2000, pages 232 - 238, IEEE 1095-1350/00, 2000.

[EG04] Kent Beck, Erich Gamma. Eclipse erweitern. pages 35 - 36, Addison-Wesley, 2004.

[EJC90] James H. Cross II, Elliot J. Chikofsky. Reverse Engineering and Design Recovery: A
Taxonomy. pages 13 - 17, IEEE Software 0740-7459/90/0100/0013, 1990.

[FdB] J. Jacob, A. Stam, L. van der Torre, F.S. de Boer, M.M. Bonsangue. Enterprise Architec-
ture Analysis with XML. Proceedings of the 38th Hawaii International Conference on
System Sciences - 2005, IEEE 0-7695-2268-8/05.

[Fou] Eclipse Foundation. Welcome to Eclipse - Workbench User Guide.

[GCG00] Robyn R. Lutz, Gerald C. Gannod. An Approach to Architectural Analysis of Product
Lines. pages 548 - 557, Association for Computing Machinery, Inc. 1-58113-206-9/00/6,
2000.

[HS96] Brian Henderson-Sellers. Object-Oriented Metrics. pages 92 - 99, Prentice Hall, 1996.

[Ive05] Will Iverson. HIBERNATE - A J2EE Developer’s Guide. pages 1 - 15, Addison-Wesley,
2005.

[Lan02] Michele Lanza. The evolution matrix: Recovering Software Evolution using Software
Visualization Techniques. Association for Computing Machinery, Inc., 1-58113-508-
4/02/006, 2002.

[Leh97] M. M. Lehman. Laws of Software Evolution Revisited. Department of Computing,
Imperial Collage, London, 1997.

[LV05] Jarke. J. van Wijk, Lucian Voinea, Alex Telea. CVSScan: Visualization of Code Evolu-
tion. pages 47 - 56, Association for Computing Machinery, Inc. 1.59593-073-6/05/0005,
2005.

[Mar94] Robert C. Martin. Oo Design Quality Metrics - An Analysis of Dependencies. Object
Mentor Inc., 1994.

54 REFERENCES

[MCC97] Stephen G. Eick, Mei C. Chuah. Glyphs for Software Visualization. Fifth Iternational
Workshop on Program Comprehension 1997, pages 183 -191, IEEE 1092-8138/97, 1997.

[ML03] Stéphane Ducasse, Michele Lanza. Polymetric Views - A Lightweight Visual Approach
to Reverse Engineering. IEEE Transactions on Software Engineering, pages 782 - 795,
IEEE 0098-5589/03, September 2003.

[Par92] B. Parker. Introducing EIA-CDIF: The CASE Data Interchange Format Standard. Pro-
ceedings of the Second Symposium on Assessment of Quality Software Development
Tools, pages 74 -82, 1992. IEEE 0-8186-2620-8/92, 1992.

[Pin05] Martin Pinzger. ArchView - Analyzing Evolutionary Aspects of Complex Software Systems.
PhD thesis, Vienna University of Technology, 2005.

[RCS03] Grace A. Lewis, Robert C. Seacord, Daniel Plakosh. Modernizing Legacy Systems Soft-
ware Technologies, Engineering Processes, and Business Practices. page 10, Addison-Wesley,
2003.

[Sag06] Tobias Sager. Coogle - A Code Google Eclipse Plug-in for Detecting Similar Java
Classes. Master’s thesis, Department of Informatics, University of Zurich, 2006.

[SD99a] Patrick Steyaert, Serge Demeyer, Sander Tichelaar. FAMIX 2.0 - The FAMOOS Infor-
mation Exchange Model. Technical report, Software Composition Group, University of
Berne Neubrückstrasse 10, CH- 3012 BERNE, September 07, 1999.

[SD99b] Sander Tichelaar, Serge Demeyer, Stphane Ducasse. Why FAMIX and not UML? UML
Shortcomings for Coping with Round-trip Engineering. Technical report, Software
Composition Group, University of Berne Neubrückstrasse 10, CH- 3012 BERNE, 1999.

[SD05] Laura Ponisio, Stéphane Ducasse, Michele Lanza. Butterflies: A Visual Approach to
Characterize Packages. 11th IEEE International Software Metrics Symposium (MET-
RICS 2005), IEEE 1530-1435/05, 2005.

[SRC94] Chris F. Kemerer, Shyam R. Chidamber. A Metrics Suite for Object Oriented Design.
IEEE Transactions on Software Engineering, pages 476 - 493, IEEE 0098-5589/94, 1994.

[Sys] JBoss Enterprise Middleware System. Hibernate reference documentation 3.0.5.

[Tic99] Sander Tichelaar. FAMIX Java Language plug-in 1.0. Technical report, Software Com-
position Group, University of Berne Neubrückstrasse 10, CH- 3012 BERNE, August 31,
1999.

[TR02] René Krikhaar, Tobias Rötschke. Architecture Analysis Tools to Support Evolution of
Large Industrial Systems, 2002.

