

Enabling a mobile phone
to sense its surroundings

Integration of internal and external
sensors in a mobile phone

Diploma Thesis in Computer Science

 submitted by Robin Bucciarelli
 Zurich, Switzerland

 student number 99-700-320

 written at the Department of Informatics
 University of Zurich
 Prof. Abraham Bernstein, Ph.D.

 supervised by Peter Vorburger

 submitted on 05.01.2006

Integration of internal and external sensors 2

Abstract

In the era of wireless communication, so-called smartphones have inexorably pervaded

our way of live. Through their ubiquity, the user is exposed to recurrent interruptions,

oftentimes unwanted ones. Consequently, the question emerges whether and to what

extent a smartphone truly could become smart in order to minimize these interruptions.

To find an answer to this question, we enabled a smartphone with the possibility to

ascertain its own surroundings, that is to become context-aware.

The goal of this thesis is the preparation of an experiment approaching the vision of a

truly “smart” phone. This consists in the design, the implementation and the evaluation of

an application capable of collecting and persistently storing data originating from sensors

mounted in and around a smartphone.

Zusammenfassung

Im Zeitalter mobiler Kommunikation haben sogenannte Smartphones unaufhaltsam

unsere Lebensweise durchdrungen. Durch ihre Allgegenwart ist der Benutzer

wiederholten Störungen ausgesetzt. Folglich stellt sich die Frage, ob und inwiefern ein

Smartphone tatsächlich in der Lage sein könnte, selbständig diese Störungen zu

minimieren. Um darauf eine Antwort zu finden, wurde ein Smartphone in die Lage

versetzt, ein eigenes Kontextbewusstsein zu entwickeln.

Das Ziel dieser Diplomarbeit ist ein Experiment, welches der Vision eines wirklich

„smarten“ Smartphones einen Schritt näher kommt. Dies besteht aus dem Entwurf, der

Implementierung und der Evaluation eines Programms, welches Daten, die ihrerseits von

an und um das Smartphone angebrachten Sensoren stammen, sammeln und persistent

speichern kann.

Contents

1. Introduction... 4

1.1 Goal... 6
1.2 Thesis outline .. 7

2. Requirements .. 8
2.1 Future scenario.. 9
2.2 Key requirements .. 10

2.2.1 Unobtrusive application... 10
2.2.2 Intercept incoming calls... 10
2.2.3 Sensing the context .. 11

2.2.3.1 Internal sensors ... 12
2.2.3.2 External Sensors.. 14

2.2.4 Parallel processing of the data streams .. 16
2.2.5 Data logging / reasoning .. 16

3. Implementation ... 17
3.1 Generic architecture of a Palm OS application... 18

3.1.1 The event manager... 18
3.2 Related work ... 20
3.3 External Sensors.. 22

3.3.1 The serial manager... 22
3.3.2 Serial Port... 23
3.3.3 Bluetooth GPS ... 26

3.4 Internal Sensors... 28
3.4.1 Sound stream.. 28
3.4.2 Remaining Internal Sensors ... 31

3.5 Parallel processing of the data streams ... 33
3.6 Constraints and possible workarounds.. 35

3.6.1 Unobtrusive application... 35
3.6.2 Photo recording.. 36

4. Measurements ... 37
4.1 Audio... 37
4.2 GPS data stream.. 37
4.3 Sensorboard data charts .. 38
4.4 Battery consumption ... 42

5. Conclusions & Future Work ... 44
A The Treo 650 smartphone ... 46
B The Socket GPS receiver... 47
C Event notification framework.. 48

C.1 Launch functions .. 49
C.2 Notifications ... 51

D Sensorboard data stream ... 53

Chapter 1
1. Introduction

Introduction

o Goal

o Thesis outline

The way of life of many people has experienced a considerable acceleration since the

invention of mobile phones. These devices have become an integral part of everyday life,

accompanying us wherever we go. This ubiquity gives rise to a constant availability on

our part, thus exposing us to interruptions1. Most of the time, such an interruption

distracts us from an ongoing task and forces us to react to it. Due to the partially

dangerous nature of certain interruptions, e.g. while driving a motor vehicle, it would be

desirable to have a mobile phone able to decide whether to forward or block a call

depending on the user’s surroundings.

A typical scenario illustrating an unwanted interruption and the inconvenience caused to

the user is described in the following paragraph:

Mr. Sellars is an avid movie fan. He often goes to the movie theatre to watch the

newest motion-pictures. Normally he would turn off his mobile phone as soon as the

movie starts playing. But since he’s a doctor always on stand-by for possible

emergency duties, the mobile phone has to stay activated. The majority of calls he

receives during his visit to the movie theatre however don’t originate from his

workplace, causing nonetheless an unwanted distraction. In such situations Mr.

Sellars wishes nothing more than to possess a truly smart smartphone which knows

when and if to disturb its owner…some sort of artificial receptionist perhaps.

1 Interruptions caused by mobile phones include incoming calls and all sorts of messages (SMS, MMS,
etc.).

Introduction 5

In order to ascertain a user’s interruptability, one has to be aware of its context. A

possible definition of the term context is given in [Dey 01]:

Context is any information that can be used to characterize the situation of an
entity. An entity is a person, place, or object that is considered relevant to the
interaction between a user and an application, including the user and
applications themselves.

The human race has learned to intuitively sense one’s context. In social interactions, for

example, it is possible to detect the counterpart’s intentions by means of facial

expressions and gestures2. Context therefore is detectable by implicit and contiguous

information.

A machine, in our case a smartphone, first needs to gather information about its

surroundings in order to discern its context. To do that, it needs sensors capable of

delivering potentially useful information about the ever-changing environment.

2 Even in this case, the context can only be sensed if both dialogue partner originate from the same culture
area.

Introduction 6

1.1 Goal

The main focus of this thesis lays on the integration and the unification of all relevant

data streams into a single application, to gather data concurrently and if possible, as a

background process. This procedure constitutes the foundation to conduct the experiment,

which in turn converges on the vision of a truly “smart” phone. A smartphone, namely

the Treo 650 of Palm Inc.3, acts as the carrier of the controlling software as well as the

repository for the gathered data.

The data streams can be roughly divided into two categories: phone internal and external

sensors.

Internal sensors comprise all information that the device itself is able to gather. Ranging

from network information such as the signal strength, the roaming status and cell ID up to

downright data streams like the audio recorder and the photo camera.

External sensors on the other hand rely on third party hardware. In our case they

comprise a GPS device, connected via Bluetooth and a custom made sensorboard with an

extensive array of sensors on it. The sensorboard is a proprietary development of Peter

Vorburger at the Dynamic and Distributed Information Systems group, Department of

Informatics, University of Zurich. It is composed of multiple sensors which will be more

closely examined in the requirements section.

By integrating aforementioned data streams into the smartphone and storing them, in our

case, on an expansion card, we offer the possibility to conduct data mining on them at a

later date, which in turn will help predict how the smartphone reacts to interruptions such

as incoming calls.

3 Detailed information about the Treo 650 smartphone can be found in Appendix A.

Introduction 7

1.2 Thesis outline

After the brief general introduction into context awareness and the motivation behind this

thesis in Chapter 1, follows Chapter 2 describing a possible future working scenario,

from which an exhaustive listing of requirements is deduced.

Chapter 3 addresses the implementation part of the requirements with emphasis on the

integration of the data sensors. After an excursion into general application design follows

an in-depth presentation of the developed applications. A mention of constraints

encountered during the implementation phase concludes this chapter.

Measurements regarding hardware components (battery life) and evaluation and

presentation of the collected data constitute the subject matter of Chapter 4.

In the end, Chapter 5 summarizes the obtained achievements, mentions potential hot

spots where further work has to be done and gives an overview of future developments as

well as the author’s personal assessment on the project as a whole.

Chapter 2
2. Requirements

Requirements

o Overview

o Future scenario

o Key requirements

 Unobtrusive application

 Phone event interception

 Context detection

• Internal Sensors

• External Sensors

 Parallel processing

 Data logging

This chapter addresses the requirements needed to develop and implement an application

able to attain an understanding of its context by analysing various senor data thereupon

deducing the interruptability of a person. To understand the intention behind these

requirements, section 2.1 will briefly illustrate a vision of a possible future scenario based

upon this technology, followed by a closer look at the various key requirements in section

2.2.

Requirements 9

2.1 Future scenario

At first, we will examine how an ideal scenario looks like by means of a fictitious

example illustrating the semi-autonomous behaviour of our application during incoming

phone calls. The example subsumes the past and future work of several other diploma

theses in order to give the reader a comprehensive overview of the experiment in its

entirety.

Mr. Sellars is once again seated in his favourite movie theater watching a motion-

picture. This time though his cellular phone is equipped with our “Artificial

Receptionist4” application. During the movie the smartphone receives an

incoming call, which promptly gets intercepted by our application. Due to the

evaluation of the sensor data delivered by the device, the application successfully

identifies the surroundings the user stays in and sets the device’s profile to “do

not disturb” as per user request. But since Mr. Sellars is a doctor working in a

hospital always on stand-by for possible emergency duties, certain emergency

numbers always overrule the current settings thus allowing the call to be

forwarded. This time though the call originated from his mother-in-law’s cell

phone which got instantly blocked and rerouted to his answering machine for

later consideration.

The above mentioned experiment demonstrates the operating mode of our application in

collecting potentially useful information about a user’s context such as his current

activity, the surroundings he stays in etc. in a transparent and unobtrusive manner. The

gathered data thereon gets employed to analyse the user’s interruptability and thus can be

used to decide on an appropriate action, e.g. should the call be forwarded to the user or

rather be suppressed.

4 The term „Artificial Receptionist“ has been borrowed from [Vorburger 05]

Requirements 10

2.2 Key requirements

To achieve the result portrayed in our foregoing scenario, namely an application

officiating as an artificial receptionist able to decide which phone calls to forward to the

user based on information about its current context, we need to fulfil or at least

approximate a couple of key requirements subsequently specified.

2.2.1 Unobtrusive application

The application constantly gathers data from its sensors. In order not to disturb the user

by forcing him to interact with it, the application should run as a background process.

Moreover, an application running in the background allows for an unbiased collection of

data, increasing their significance for interruptability inference.

Additionally, in order to conserve storage capacity on the expansion card, sensor data

should be gathered in a temporary buffer during a predefined time-frame before an

incoming call occurs5. Within this time-frame the data streams should have the

continuing ability to gather data, even if the user starts a different application. If an

interruption occurs, thus stopping the gathering of sensor data, the application has to

resume the recording by itself and without perceivable indications.

2.2.2 Intercept incoming calls

In order to manage and control incoming calls, our application must have the ability to

intercept them before the operating system handles them by default. This step allows our

application to superimpose additional queries such as a triggered sampling process,

described in more detail in [Fornallaz 04] and in part implemented in [Donner 05],

whereby the user gets confronted with multiple dialogs regarding the disturbance level of

a call. Before answering the phone, the user has to estimate the importance of the call

based on the caller’s identity, followed by accepting or rejecting the call itself. After the

5 The exact amount of time needed to gather sufficient data for later interruptability inference has yet to be
defined. In [Fornallaz 04] the recording time for an audio file has to last at least 5 minutes, which could
lead to an overall recording time-frame of about 15 minutes.

Requirements 11

conversation a dialog appears prompting the user to rate the actual conversation regarding

its effective importance.

2.2.3 Sensing the context

Trying to predict a user’s context requires the collecting and evaluation of as many data

sources as possible, since neither the prediction relevance of the individual sensors nor

the algorithms needed for inference are currently known. We thereby have to tap all

sensors capable of providing potentially useful information on the smartphone itself (so-

called phone internal sensors) and on third party devices (so-called phone external

sensors)6.

In order to collect the data from various phone internal and external sensors, we need to

implement an application capable of receiving and storing the information safely and

reliably. The precondition thereof consists in exploring the types of data that can be

acquired by a smartphone. The following subsections describe these sensors in more

detail.

6 From now on the terms “data source” and “sensor” will be used synonymously.

Requirements 12

2.2.3.1 Internal sensors

As in part enumerated in [Fornallaz 04] following internal data sources are useful

indicators for interruptability.

• Cell ID

The Cell ID allows to detect the network cell in which the user currently is

located. Since the authorization to retrieve and use this information depends on

the respective telecommunications provider, an integration of this attribute has to

be considered as the case arises.

• Transmission signal strength

The transmission signal strength roughly measures the distance between the

device and the nearest antenna tower. The information gained by this value, used

concurrently with the Cell ID, permits to find out approximately where the device

resides inside a cell and whether it will shortly switch to an adjacent cell. Applied

to our framework, the combination of the signal strength, coupled with the cell ID

and some complementary information basically suffices to identify a frequently

attended location, such as one’s office workplace, with a high degree of accuracy.

• Calendar entries

The integration of calendar entries, most notably as supplementary information

during a phone call, allow to incorporate possible appointments into the

evaluation of the user’s interruptability.

• History log

The history log consists of a queue or array in which all user actions on a

smartphone are recorded, thus allowing to gather statistical data on various device

features for additional interruptability inference. Although artificially created, it

has all the properties characteristic of an internal sensor.

• Date and time

The attachment of date and time values to gathered data allows for a

chronological sorting of the recorded sessions.

Requirements 13

• Sound recording

Audio data gets collected in the form of a stream, which continually stores

information in a wave file on an expansion card of the smartphone. Depending on

the desired sound quality and bandwidth constrictions, properties such as

modulation and sampling rate can be adapted to suit one’s needs The

characteristics of the audio stream will be covered in more detail in the

implementation section.

• Still images

This internal sensor has its use in spotting motion detection by means of frame

differencing algorithms as described in [Zurfluh, 04]. With still images, the only

possibility to detect motion is given by taking at least two consecutive snapshots.

Another purpose of image capturing is the measurement of brightness. The

brightness level of the image can offer clues as to where the device is located. The

respective brightness values vary depending on whether the individual has put the

device in a pocket or left it on a table [Fornallaz 04]. These findings, as used in

the SenSay project [Siewiorek 03], provide a basis to decide whether the user

should be interrupted [de Simoni 05].

Requirements 14

2.2.3.2 External Sensors

The external sensors consist of a GPS receiver and a custom made sensorboard with a

wide array of sensors on it. These external data sources, or external sensors, are

connected to the smartphone on the one hand via Bluetooth (in case of the GPS receiver)

and on the other hand by a serial connection through the multi-connector interface. Figure

1 depicts the smartphone with attached external sensorboard.

Figure 1: The Treo 650 smartphone with attached sensorboard

• GPS receiver7

The global positioning system (GPS8) receiver allows to detect a user’s exact

location and hence his surroundings. The external GPS device transmits its data

via the wireless Bluetooth protocol to the smartphone. Devices using Bluetooth do

not have to be pointed at one another, the distance between devices can reach 100

metres, the speed of transmission up to 2.1 Mbit/s, and the data passed can be

encrypted and secure. Despite these powerful features, the battery consumption is

relatively low9. For further information regarding Bluetooth consult

https://www.bluetooth.org/ and [Roth 02].

7 Detailed information about the Socket GPS receiver can be found in Appendix B.
8 The Global Positioning System is a satellite navigation system used for determining one's precise location
and providing a highly accurate time reference almost anywhere on Earth or in Earth orbit. It uses an
intermediate circular orbit (ICO) satellite constellation of at least 24 satellites.
http://en.wikipedia.org/wiki/Gps (Accessed December 2005)
9 http://www.palmos.com/dev/tech/bluetooth/ (Accessed December 2005)

Requirements 15

• Sensorboard

The sensorboard is an experimental prototype board containing a full set of sensor

chips. The sensor array is composed of a 3-D accelerometer measurement unit [1],

a 3-D gyroscope measurement unit [2], a magneto-resistive sensor [3] able to

create a digital magnetic compass, three gas measurement units [4] capable of

detecting trace amounts of carbon monoxide (CO) / methane (CO4), alcohol and

liquefied petroleum gas respectively, and a temperature measurement unit [5].

In addition, the board features an RS-232 compliant interface capable of

communicating with various devices such as Notebooks, PDAs and of course,

smartphones. Coupled with the GPS client, the sensorboard might allow the

extraction of navigation relevant information from people’s motion data as

specified in the approach adopted by [Tschanz 05].

3,4cm

5,9cm

front

back

�

�

�

�

�
�

Figure 2: The sensorboard with muti-connector for the Treo 650

Requirements 16

2.2.4 Parallel processing of the data streams

The data generated by both internal and external sensors has to be received and processed

in parallel. In other words, our application must have the ability to manage all incoming

streams simultaneously. Since most internal sensors, such as Cell ID, signal transmission

strength etc., provide individual values, it is a straightforward matter to retrieve them

shortly before an incoming call and store them on the expansion card. The data streams,

namely the audio, the GPS and the sensorboard stream on the other hand need to

continuously gather data, all at the same time. Since both the GPS and the sensorboard

stream are dependent on a serial connection to receive data, it is crucial that the serial

manager is able to handle multiple connections.

2.2.5 Data logging / reasoning

To be able to gather and analyse the data later on, it is crucial to correctly integrate the

sensors and to permanently store its values. As we will see in the implementation phase,

all the relevant data can be safely stored on an expansion card, located on the device

itself. The size of the storage space on such an expansion card can reach several

Gigabytes, thus allowing the gathering of large amounts of data10. The data thereafter

gets transferred to a desktop machine, where computationally expensive machine

learning algorithms sift through it, trying to detect patterns useful for interruptability

inference11.

10 Due to resources constraints on contemporary smartphones, our application is concerned purely with the
logging of data. Online reasoning is therefore currently inapplicable.
11 For further information concerning reasoning and data mining consult [Donner 05].

Chapter 3
3. Implementation

Implementation

o Generic aArchitecture

 Event Manager

o Related Work

o External Sensors

 Serial Manager

 Serial Port

 Bluetooth GPS

o Internal Sensors

 Sound stream

 Remaining Internal Sensors

o Parallel Data Stream Processing

o Constraints & Possible Workarounds

This chapter takes up the requirements mentioned in the previous chapter and analyses

them from a technical point of view. The emphasis thereby lies on the implementation of

various applications capable of gathering and storing data streams originating from

internal and external sensors located on a smartphone such as, in our case, the Treo650

from Palm Inc12.

After a brief overview of the general architecture of a Palm OS application follows an in-

depth description of the structure and workings of the applications used to control both

internal and external sensors. To tie in with the comprehensive description in the

requirements chapter, section 3.2 will give an overview of the related work already done

by other students to show the reader which part of the overall architecture these

applications belong in.

12 http://www.palm.com/us/products/smartphones/treo650/ (Accessed December 2005)

3. Implementation 18

3.1 Generic architecture of a Palm OS application

Writing an application for smartphones running on Palm OS requires a different approach

in comparison to desktop applications. On the one hand the user interacts differently with

the smartphone, having a limited amount of time to expect an output from the device. It is

therefore crucial to develop applications with preferably short execution times and

intuitive user interfaces. In addition there is the issue of power and memory to be

considered, both of which are available only in short amounts on the device itself.

Having said that, let us proceed to the actual setup of a Palm OS application. A Palm OS

application does not have a start and exit command like a desktop application. It rather

gets accessed by so-called launch codes. These launch codes can either be triggered by an

explicit user request or in response to some other user action. An additional way to

launch an application is given by so-called notifications, which react on certain system-

level events or application-level events. In order to make use of notifications the

application must be specifically registered to receive them. Instead of the nonexistent exit

command, a Palm OS application terminates when the user requests another application.

3.1.1 The event manager

The main interface between the Palm OS system software and the application consists of

the event manager. The event manager is responsible for the behaviour the application

displays in answer to user input or system events, thus making it the key administrator of

the running application. The modus operandi of the event manager can be described as

follows: after receiving the launch code the application starts with a startup routine,

followed by the event loop and finally exiting with the stop routine. The event loop is

thereby responsible for administering the fetching and dispatching of events, taking

advantage of the default system functionality as appropriate. Events comprise all system

level events and user interactions which force the operating system to respond to them.

The pen tap on a form is an example of a user event. Figure 3 exemplifies a control flow

in a typical application. 13

13 http://www.palmos.com/dev/support/docs/palmos/PalmOSCompanion/EventLoop.html#1004923
(Accessed December 2005)

3. Implementation 19

SysHandleEvent

Is
this a

System
event?

`Process the event

Get an event from
the event queue

SysHandleEvent

MenuHandleEvent

Is
this a

System
event?

Did
the user

tap a
menu?

Process the event

Process the event

SysHandleEvent

Is
this a

System
event?

`Process the event

ApplicationHandleEvent

FormDispatchEvent

Is
this a

frmLoad
event?

Did
the form

handle the
event?

Load the form

Perform default
system processing

Send the event to
the current form

Figure 3: A control flow in a typical application

3. Implementation 20

3.2 Related work

An exhaustive survey on related work regarding the field of context awareness and

mobile technology in general is given in [Fornallaz 04] and [de Simoni 05]. This section

focuses on antecedent work directly related to our context sensing application.

In order to conduct the experiment leading to our working scenario portrayed in chapter

2, we have to gather all kinds of data originating from various sensors located both on the

smartphone itself and on external devices connected to the smartphone via various

protocols. After having collected and safely stored the data on the handheld, it gets

relocated to a desktop machine, where the preprocessing takes place.

The first concept of an application acting as a centralized recorder of various data streams

during an ongoing sampling session can be found in [Fornallaz 04]. It is built upon the

standard Symbian application scheme and mainly allows to store the data in a folder

containing a timestamp and metadata required for the sampling session. Figure 4 provides

an insight into the context sampling procedure. The device hosting the application

consisted of the Sony Ericsson P800 based on Symbian OS7.

Data Capturing

Session Start

Audiostream / GPS / Sensorboard
>> Recording Incoming Call Phone Event

[Data Streams] [SD Card]
[Logic] Data Storage

Figure 4: Sampling session sequence

Due to constraints regarding hardware limitations and fragmentary API support, both the

underlying device and thus the operating system had to be changed. After testing several

smartphone manufacturers and the operating systems their devices were based on, the

choice fell on the Treo 600 from Palm Inc. and thus on the Palm OS. In [deSimoni 05]

the context recorder architecture has been ported to the Palm operating system,

complementing the functionality missing in the previous version. Despite the improved

3. Implementation 21

support of the new operating system a few key features, such as the audio stream and the

Bluetooth protocol, could still not be implemented, partially because of missing API

and/or hardware support on the test device itself.

The main focus of the following section consists in presenting the applications

responsible for the integration of newly added sensors such as the internal sensors in

general, the GPS client, the sensorboard and the audio recorder.

3. Implementation 22

3.3 External Sensors

The array of external sensors comprises the proprietary sensorboard and the GPS

receiver. This section addresses the design and implementation of applications capable of

gathering and storing data deriving from these sensors. The Palm OS serial manager, on

which both data streams rely on, will also briefly be introduced.

3.3.1 The serial manager

An important aspect of the Palm OS architecture regards the serial manager, since both

the sensorboard and the Bluetooth stream depend on it. The Palm OS serial manager is

responsible for byte-level serial I/O and control of the RS-232, IR, Bluetooth or USB

signals. It additionally manages multiple serial devices with minimal duplication of

hardware drivers and data structures. This feature makes it possible to bundle our data

streams in one application. Figure 5 shows the layering of communication software with

the serial manager and hardware drivers.14

Applications

Libraries / System Code

Serial Manager API

68328
Serial
Driver

16C650A
Serial
Driver

Other
UART
Devices

Virtual
Drivers

Other Serial
Comm Devices

Figure 5: Layering of communication software

14 http://www.palmos.com/dev/support/docs/palmos/PalmOSCompanion2/SerialCommunication.html
(Accessed December 2005)

3. Implementation 23

3.3.2 Serial Port

The most crucial data stream to be integrated consists of values deriving from the sensors

on our custom made board. The board is connected to the smartphone through a multi-

connector using serial communication via a RS-232 connection15 as depicted in figure 6.

16,5cm 5,9cm

2,4cm

Figure 6: The sensorboard attached to the smartphone via the multi-connector

To correctly receive a data stream over the serial port Palm OS requires a number of

conditions to be fulfilled, namely the specification of an interface, the definition of a baud

rate16 and the explicit opening and closing of the serial port itself. The syntax to open the

port looks as follows:

// open port
#define SERIAL_PORT serPortCradleRS232Port
err = SrmOpen(SERIAL_PORT, gBaudRate, &gPortId);

The baud rate can be set to one of the following values depending on bandwidth

consumption: 2400, 4800, 9600, 19200, 38400, 57600, 115200. After careful adjustments

the baud rate is currently set at 38400. This setting allows a clean data transmission even

when the bandwidth consumption reaches full capacity, e.g. when all data streams are

activated. After a brief negotiation routine on both the smartphone and the sensorboard, a

connection gets established. The ensuing data stream flows into the smartphone where it

gets buffered and gradually forwarded to a text file. The buffering procedure uses a time-

constrained window to transfer data into a variable located on the smartphone itself.

Experiments however have shown, that the only relevant factor which influences the

15 RS-232 is a standard for serial binary data interconnection between a DTE (Data terminal equipment)
and a DCE (Data communication equipment). It is commonly used in computer serial ports.
http://en.wikipedia.org/wiki/RS-232 (Accessed December 2005)
16 baud is a measure of the "signaling rate" which is the number of changes to the transmission media per
second in a modulated signal. It is named after Émile Baudot, the inventor of the Baudot code for
telegraphy
http://en.wikipedia.org/wiki/Baud_rate (Accessed December 2005)

3. Implementation 24

speed of the data transfer, is comprised of the baud rate itself. The simplified buffering

procedure looks as follows:

err = SrmReceiveWindowOpen(gPortId, &serialBufferP,
&numBytesWindow);
 freeSpace -= numBytesWindow;
 if (numBytesWindow > 0) {
 MemMove(receiveBufferP, serialBufferP,
(Int32)numBytesWindow);
 }
err = SrmReceiveWindowClose(gPortId, numBytesWindow);

The buffered data gets displayed on the screen of the smartphone to allow an examination

of the incoming sensor values. A text field, which relays user input to the sensorboard

furthermore permits to switch specific sensors on and off on the board itself. The changes

in values are displayed in real time.

Figure 7: The serial application establishing a connection with the sensorboard

While being displayed on screen, the data additionally gets rerouted onto a text file on an

expansion card for permanent storage and further analysis on desktop platforms. The raw

data consists of an array of twelve triple-digit hexadecimal values representing the

various sensor readings such as temperature, acceleration etc. as depicted in table 1. For

an exhaustive description of the capabilities of the sensorboard consult [Tschanz, 2005].

3. Implementation 25

FFA,F9C,FAA,FAB,88F,A5B,A4C,1FF,1FC,FFB,00E,009
FFB,A58,A47,1FF,207,005,003,009,FA1,FB5,879,A5A
FFA,FB0,F9A,FA6,85A,A4F,A49,1F6,1EC,00B,004,00D
FFB,003,00A,A48,1EF,1FB,011,FFB,FFB,FB0,850,A4D
FFA,FA1,FC0,FBF,859,A4A,A3D,1EE,1FA,003,011,FFB
FFB,00A,002,84F,A4E,A3C,1F4,1FF,008,009,00B,A50
FFA,F9D,FA5,FA2,82D,A3F,A3E,1F8,1FF,005,011,A46
FFA,FB0,F9A,FA6,85A,A4F,A49,1F6,1EC,00B,004,00D
FFB,003,00A,A48,1EF,1FB,011,FFB,FFB,FB0,850,A4D
FFB,A58,A47,1FF,207,005,003,009,FA1,FB5,879,A5A
FFB,003,00A,A48,1EF,1FB,011,FFB,FFB,FB0,850,A4D
FFA,FA1,FC0,FBF,859,A4A,A3D,1EE,1FA,003,011,FFB
FFB,00A,002,84F,A4E,A3C,1F4,1FF,008,009,00B,A50
FFA,F9D,FA5,FA2,82D,A3F,A3E,1F8,1FF,005,011,A46
FFB,A58,A47,1FF,207,005,003,009,FA1,FB5,879,A5A
FFA,FB0,F9A,FA6,85A,A4F,A49,1F6,1EC,00B,004,00D
FFB,003,00A,A48,1EF,1FB,011,FFB,FFB,FB0,850,A4D

Table 1: Hexadecimal sensorboard output

The serial application additionally features a status field which notifies the user of the

connection status and, if connected, of the amount of data transferred. On top of that it

informs the user with customized error messages of possible connection problems.

3. Implementation 26

3.3.3 Bluetooth GPS

The integration of the GPS signal via Bluetooth has a similar implementation as the one

on the sensorboard. Both actually rely on the serial manager architecture. To successfully

integrate the GPS stream though the additional Palm OS Bluetooth SDK had to be used.

The SDK allows access to the certified SIG Bluetooth stack, thus allowing for a device

independent implementation of applications using this technology. Another fundamental

difference between the RS-232 and the Bluetooth connection is the master-slave

architecture Bluetooth uses to negotiate a communication between two devices.

Furthermore a device discovery is launched for first-time connections. This allows the

application to differentiate between trusted and merely connected devices, therefore

consequently increasing security17.

Figure 8: GPS connection procedure and incoming data stream

The application acts as the Bluetooth master device and is capable of launching a

discovery to detect nearby slave devices. Furthermore it is able to differentiate between

trusted and untrusted devices18. Only after the GPS device has successfully been

identified as slave, can a connection be established. The procedure bears resemblance to

the sensorboard connection as following source code demonstrates.

17 In an automated data gathering application, the device discovery can be omitted by inserting the
Bluetooth device’s signature into the sourcecode directly.
18 Devices and services have different security levels. For devices, there are 2 levels, "trusted device" and
"untrusted device". A trusted device, having been paired with one’s other device, has unrestricted access to
all services.

3. Implementation 27

// Find and open the Bluetooth library
if(SysLibFind(btLibName, &gBtLibRefNum)) {
 err = SysLibLoad(sysFileTLibrary, sysFileCBtLib, &gBtLibRefNum) ;
 if(err) {
 ErrFatalDisplay("Unable to load the Bluetooth stack");
 return err;
 }
}
err = BtLibOpen(gBtLibRefNum, false);
gBtLibOpen = true;

// Read the data from the serial port
receivedBytes = SrmReceive (gBtPortId, (void *)bufP, count, 10,
&err);
if (!receivedBytes) {
 MemPtrFree(bufP);
 return;
}

The ensuing data stream gets both displayed on screen and stored onto a text file on the

expansion card analogue to its sensorboard counterpart. The data stream makes use of the

NMEA19 0183 standard, which is a standard protocol used by GPS receivers to transmit

data. The output is RS-232 compatible and transmits data with 4800 bps, 8 data bits, no

parity and one stop bit. Sentences beginning with the $GP token are used to identify GPS

data as illustrated in table 2.

$GPGGA,000020.998,0000.0000,N,00000.0000,E,0,00,50.0,0.0,M,0.0,M,0.0,0000*7C
$GPGSA,A,1,,,,,,,,,,,,,50.0,50.0,50.0*05
$GPRMC,000020.998,V,0000.0000,N,00000.0000,E,0.000000,,101102,,*03
$GPGGA,000021.998,0000.0000,N,00000.0000,E,0,00,50.0,0.0,M,0.0,M,0.0,0000*7D
$GPGSA,A,1,,,,,,,,,,,,,50.0,50.0,50.0*05
$GPRMC,000021.998,V,0000.0000,N,00000.0000,E,0.000000,,101102,,*02
$GPGGA,000022.998,0000.0000,N,00000.0000,E,0,00,50.0,0.0,M,0.0,M,0.0,0000*7E
$GPGSA,A,1,,,,,,,,,,,,,50.0,50.0,50.0*05
$GPRMC,000022.998,V,0000.0000,N,00000.0000,E,0.000000,,101102,,*01
$GPGGA,000023.998,0000.0000,N,00000.0000,E,0,00,50.0,0.0,M,0.0,M,0.0,0000*7F
$GPGSA,A,1,,,,,,,,,,,,,50.0,50.0,50.0*05
$GPRMC,000023.998,V,0000.0000,N,00000.0000,E,0.000000,,101102,,*00
$GPGGA,000024.998,0000.0000,N,00000.0000,E,0,00,50.0,0.0,M,0.0,M,0.0,0000*78
$GPGSA,A,1,,,,,,,,,,,,,50.0,50.0,50.0*05
$GPRMC,000024.998,V,0000.0000,N,00000.0000,E,0.000000,,101102,,*07

Table 2: GPS receiver output

19 NMEA stands for National Marine Electronics Association. The official website can be found at
http://www.nmea.org/. A comprehensive syntax description of the NMEA 0183 standard is located in
http://www.kh-gps.de/nmea.faq (Accessed January 2006).

3. Implementation 28

3.4 Internal Sensors

Internal sensors are features located on the smartphone itself, adapted to provide

information in addition to the data sources deriving from the external sensors. This

section describes the applications developed to retrieve and store the relevant

information.

3.4.1 Sound stream

The Treo smartphone has a two-speaker audio architecture. One speaker, called the

receiver, is mostly dedicated to telephony sound and is tuned to voice frequency. The

other, the external speaker, is mostly dedicated to system sounds and is tuned to

polyphonic sounds [palmOne 04]. In our case we have modified the receiver to act as a

recording device. The structure of the recording application resembles a conventional

recorder. It has the ability to start a recording, to pause it and to stop it completely. The

ensuing sound stream gets stored in a file with the .wav ending on the expansion card

alongside the other data streams. The parameters defining the quality of the recorded

streams can be chosen from a wide array of configuration options such as the choice of

modulation, a mono-stereo selector, bitrate etc. These settings will be discussed in more

detail later on in this chapter.

The design of the application is quite straightforward considering the rather intricate

implementation underneath. It consists of a button to start a recording of the audio

stream. A timer keeps track of the already elapsed time, while the stop button halts the

recording and closes the audio stream. Figure 9 shows the audio stream controls.

3. Implementation 29

Figure 9: Soundstream recorder during a recording session

The Palm OS sound manager API offers mono and stereo recording capabilities.

Important to keep in mind though is the fact that a stereo recording automatically doubles

the data amount to be stored on the expansion card while only marginally improving the

recording itself.

The sample type and sample rate are two additional parameters allowing to adjust the

recording quality. The sample type can be set to 8bit or 16bit. The higher the bit depth the

more subtler changes in volume become audible. The sample rate on the other hand

defines the amount of samples that are being recorded per second20. The unit is measured

in kHz (thousand samples per second). A formula able to calculate the transfer rate of an

audio stream in Kilobytes per second is given in figure 10.

[] []
[]1

1

10244
/ −

−

⋅⋅
⋅

=
bitKByte

bitSampleTypesSampleRatesKByte

Figure 10: Audio stream formula

20 A sample is the smallest amount of information in a digital recording. It corresponds to a value of the
analog signal.

3. Implementation 30

These settings can easily be altered by changing the few key variables located in the

global variables section of the main application file. In case of the SerBTSound

application the main file is SerBT.c. A listing of all modifiable sound stream parameters

is outlined in the PlayerInfo struct21.

typedef struct _PlayerInfo {
 UInt32 sampleRate; // 8000/11025/16000/...
 UInt16 blockAlign; // Mostly there for ADPCM
 UInt32 dataSize; // Size of the data chunk(in bytes)
 UInt32 bufferSize; // Requested buffer size
 UInt32 actualSize; // Real buffer size
 Int32 streamVolume; // Volume [0..2048]
 SndStreamMode streamMode; // Input/Output
 SndFormatType streamFormat; // sndFormatPCM/sndFormatIMA_ADPCM
 SndStreamWidth streamWidth; // sndMono/sndStereo
 SndSampleType sampleType; // UInt8....
 SndStreamRef streamRef; // Our stream reference

 Char fileName[64]; // File name
 FileType fileType; // VFS/Memory
 union {
 FileRef fileRef; // File ref for VFS
 FileHand fileHandle; // File Handle for File Streaming
 };

 UInt16 volumeRef; // Card ref
 Char directory[256]; // The SD/MMC card audio directory
 PlayerState playerState; // IDLE/PLAYING/PAUSED...
} PlayerInfo;

Table 3: Sound stream struct definition

21 The struct keyword is used to declare a new data-type by means of grouping variables together.

3. Implementation 31

3.4.2 Remaining Internal Sensors

Palm Inc.’s PhnLib API library allows to retrieve a wide array of information concerning

the status of the smartphone’s connection to the network. Since these sensors do not have

to gather data continually like streams, they can be accessed and stored just before or

after an incoming call has occurred. Figure 11 depicts an application capable of retrieving

parameters from the network in real-time22. For simplicity’s sake it is called

InternalSensors and is composed of a main screen displaying the requested network

information according to the parameter list provided.

At first the application checks which cellular technology the network uses, GSM or

CDMA. CDMA, short for Code-Division Multiple Access, is a digital cellular

technology that uses spread-spectrum techniques. It is a method of multiple access that

does not split up the channel by time (as in TDMA), or frequency (as in FDMA), but

instead encodes data with a certain code associated with a channel. GSM on the other

hand uses TDMA. Short for Time Division Multiple Access, TDMA is a technology for

delivering digital wireless services using time-division multiplexing (TDM). It works by

dividing a radio frequency into time slots and then allocating slots to multiple calls. In

this way, a single frequency can support multiple, simultaneous data channels. CDMA

competes with GSM technology for dominance in the cellular world. After the network

identification, the application retrieves the wanted data from the mobile provider and

displays it on the main screen23.

The actual parameter selection, displayed on the application’s main screen, can be

expanded arbitrarily by additional values provided by the API and according to possible

requirement changes24.

22 As of this writing, the Palm Inc. API does not provide a function able to retrieve the Cell ID as
mentioned in the requirements section.
23 In the integrated application, there will be no need to display the values on screen. The data will be
collected and directly stored on the expansion card just before or after a call has occurred.
24 For an exhaustive list of available network parameters consult the PhnLib library in Palm Inc.’s API
reference guide.

3. Implementation 32

Figure 11: The Internal Sensors application

3. Implementation 33

3.5 Parallel processing of the data streams

After successfully having integrated the external as well as the internal sensors with their

respective data streams in standalone applications, the crucial part now consisted in

merging the streams into a single application, thereby allowing it to gather data in a

concurrent fashion. To do that, each standalone application had to be transformed into a

module capable of interacting with the remaining ones. The next step consisted in

providing a uniform interface connecting the module cluster with the underlying serial

and event managers of the operating system.

Both the serial and the event manager are able to process the data streams concurrently

and to write the data on the expansion card in real-time, thus making the integration

project a success.

The resulting application is called SerBTSound25 and consists of a graphical user interface

(GUI), which allows to control the recording activities of all data streams. It additionally

displays the incoming data in text fields for the user to see, thus allowing a closer

monitoring of the received values, especially the ones originating from the sensorboard.

From a graphical point of view the integration of the individual data streams into a single

GUI was a straightforward matter. The respective standalone GUIs had to be stripped of

any unnecessary elements to be able to fit on one single screen measuring 160x160 pixel

as figure 12 illustrates.

25 The name is a composite of the main data stream labels Serial, Bluetooth and Sound.

3. Implementation 34

Figure 12: GUI of all integrated data streams

3. Implementation 35

3.6 Constraints and possible workarounds

Even though the Palm operating system has evolved and the new device offers some new

features, there are still unresolved issues that need to be addressed in future work. The

most relevant new feature is the ability of the Treo 650 to exchange data via the

widespread Bluetooth protocol, thus allowing for the integration of our GPS client. The

improved APIs of Palm OS version 5.4 furthermore allowed to successfully embed the

internal audio stream and the external sensorboard stream via the serial connection.

3.6.1 Unobtrusive application

A few key requirements still could not be implemented as planned in the

conceptualization phase. One of the specifications regards the execution of the

application as a background task. This requirement implies a multithreading architecture,

which the current Palm OS is not able to provide26. Even though the underlying hardware

supports multithreading, there are no APIs available to the programmer. Only the

upcoming operating system from Palm Inc, codenamed Cobalt is capable of

multithreading and multitasking. The transition to this new operating system however

will be a hesitant one27. Currently the only company to produce a smartphone based on

the Palm OS Cobalt platform looks to be a Singapore company with its Zircon Axia

A10828.

To bypass this constraint, a possible workaround would consist in setting up a cleverly

devised structure of system and event notifications allowing to approximate a background

process with as few interruptions in the data gathering process as possible. Since we can

not execute two applications simultaneously, we need to have a mechanism in place that

26 As of this writing, the current Palm OS version running on the Treo 650 is Garnet v5.4.
http://www.palm.com/us/products/smartphones/treo650/details.epl (Accessed December 2005)
27 Palm’s President Ed Colligan refused to commit to producing Palm Cobalt devices in 2005. In an
interview with NewsWireless.net, he states "Nobody knows when we'll start the shift to Cobalt, OS 6, or on
which devices. For now, we're saying that we've built the functionality we need into the Treo and the
Tungsten T5 and there's no need to confuse developers by switching. I'm not even prepared to commit us to
a change next year, or the year after, at this stage."
http://www.palmzone.net/modules.php?name=News&file=article&sid=298 (Accessed December 2005).
28 http://www.smallbizpipeline.com/164301458 (Accessed December 2005)

3. Implementation 36

consistently restarts our data gathering tool each time an interruption occurs. Event

notifications coupled with specific functions able to switch between applications

autonomously allow the build-up of an approximated background process. A more

exhaustive outlook into this framework is given in appendix C.

3.6.2 Photo recording

An application to capture and store pictures has already been implemented. It is capable

of capturing an image with a resolution of up to 640x480 pixels (VGA). The captured

image then gets displayed on the smartphone’s screen. The only problem lies in the

missing functionality to persistently store a captured image either on the expansion card

or in the memory of the smartphone itself. Even after repeated attempts by means of

different approaches, a satisfactory solution still has to emerge.

Using alternative image manipulation libraries, it could be possible to extract the raw data

directly from the smartphone’s buffer, without the need to convert it to a standardized

format, such as jpg, first.

Chapter 4
4. Measurements

Measurements

o Audio

o GPS

o Sensorboard Charts

o Battery Consumption

This chapter addresses the properties of the collected and stored data pertaining to

consistency and quality. In order for the data to be suitable for data mining later on, it has

to be properly gathered and stored. The data then gets transferred to a desktop computer,

where the preprocessing takes place. Preprocessing allows to conduct a feature extraction

operation on raw audio, image and sensor data as described in [de Simoni 05]29. The last

section briefly touches the topic of battery consumption in order to estimate the durability

of a continuous recording session.

4.1 Audio

In both their theses [Fornallaz 04] and [de Simoni 05] have exhaustively evaluated and

analysed audio data by means of frequency and spectrometry analysis, thereby acting out

various scenarios to determine the data’s eligibility as a possible context analysis

candidate. Audio data seem to be an adequate candidate for context analysis.

4.2 GPS data stream

The GPS client establishes a connection to the smartphone via the Bluetooth protocol

stack. Since both the Bluetooth connection negotiation sequence and the GPS data

originating from the device employ standardized send and receive procedures with

integrated failsafe mechanisms preventing data loss, the quality and usability of the

gathered data can be assumed to be very high and thus definitely usable.

29 The data processing functions currently taking place on desktop machines should in the future be
relocated onto the smartphone itself.

4. Measurements 38

4.3 Sensorboard data charts

The sensorboard sends a continuous data stream through the serial connection without

flow control mechanisms to regulate its output. It is therefore crucial that the receiving

end of the stream, in our case the incoming serial buffer of the smartphone, is capable of

correctly receiving and storing the incoming data. For an in-depth look regarding baud

rates and balancing issues consult Appendix D.

In order to envision what the sensorboard values look like when arranged in an organized

fashion, this section gives a visual foretaste of several graphs deriving from sensor data.

The sensors have been specifically targeted to allow a corresponding reaction to

manifesting itself on the graph.

The gas sensor for example, which measures the carbon monoxide and/or methane gas

content in the air, has been subjected to a car ride around the city. The result can be

observed in figure 13.

Figure 13: Gas Sensor

The temperature sensor on the other hand, has been tested with a soldering gun as

primary heat source. The peaks in the graph clearly delineate the heating up of the sensor

due to a threefold pass with the soldering gun.

4. Measurements 39

Figure 14: Temperature sensor

In order to try out the magnetic sensors, at first they have been subjected to a multitude of

movements in different directions, recognizable on the first half of the diagram.

Afterwards, a blackboard-magnet has been moved in sweeping motions over the sensor

array at various speeds, thus explaining the jittery course of the second half of the chart.

Figure 15: Magnetic Sensors

4. Measurements 40

The gyroscopes30 and the accelerometers31 have undergone multiple motion tests; namely

a circular motion of 180° on all three dimensional plains (x,y,z axes) as depicted in

figures 16 and 17. The value leap at the beginning of the diagram in the gyroscope charts

is caused by the activation of the sensors. It has no meaning for the actual measurement.

Figure 16: Accelerometers

30 A gyroscope is a device for measuring or maintaining orientation, based on the principle of conservation
of angular momentum. In physics the angular momentum of an object with respect to a reference point is a
measure for the extent to which, and the direction in which, the object rotates about the reference point.
http://en.wikipedia.org/wiki/Gyroscope (Accessed December 2005)
31 An accelerometer is a device for measuring acceleration. An accelerometer inherently measures its own
motion. http://en.wikipedia.org/wiki/Accelerometer (Accessed December 2005)

4. Measurements 41

Figure 17: Gyroscopes

4. Measurements 42

4.4 Battery consumption

An important factor when conducting experiments on mobile devices is battery

consumption. All the more if the smartphone additionally has to provide power to

external devices such as, in our case, the sensorboard. On standby, Palm Inc. guarantees a

standard battery life of 300 hours for the Treo 650 smartphone. During continuous

talking, the battery life shrinks to 5 hours. In order to find out the battery consumption of

the various streams, measurements have been made in an interval of 30 minutes each, for

9 hours straight.

The following graph shows the battery consumption over time with three different

configuration settings. The all streams-setting activates, as the name suggests, all

available streams (sensorboard-serial / GPS / audio / data storage onto SD Card / rest).

The sensorboard only and sound only-settings should be self-explanatory. The battery

consumption of the GPS and the residual internal sensors is practically inconsequential.

All measurements pertaining the sensorboard were done with switched off gas sensors.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0h 1h 2h 3h 4h 5h 6h 7h 8h 9h

time [h]

po
w

er
 [%

]

all streams

sensorboard
only
sound only

4. Measurements 43

Figure 18: Battery Consumption

Starting from a fully charged battery, a recording session with all data streams turned on,

lasts about 9 hours. The sensor consuming the most power turns out to be the audio

recorder with an average battery drain of 4% per half an hour, followed by the

sensorboard with a constant 2% per half an hour. There is no difference in power

consumption whether the sensors on the board are turned on or off, which in this case

means that the smartphone itself is the biggest battery consumer. Table 4 illustrates the

various power usages in mAh.

 power usage
sensors switched off ~50mA

sensors switched on (no gas) ~55mA

sensors switched on (with 1 gas sensor) ~150mA

sensors switched on (with 2 gas sensor) ~250mA

Table 4: Power usage in mAh

The battery pack of the Treo 650 has a charge of 1800mAh, which over a period of 9

hours corresponds to a usage of about 200mAh. If additionally to the already running

sensors, both gas sensors get activated, the battery life of the Treo last half as long, that is

approximately 4 hours. In order to prolong the battery life, the gas sensors can be

switched on sporadically and for short periods of time32.

32 Approximately 1 minute, because it takes about 20-30 seconds to heat up the sensor in order to be ready
for reliable measurements.

Chapter 5
5. Conclusions & Future Work

Conclusions & Future Work

Chapter 2 has specified the requirements needed in order to implement an application

capable of sensing context. Most of those requirements have successfully been met. A

few, while definitely feasible, still need to be implemented. Others can not be

implemented in compliance with the requirements, due to either hardware or software

constrictions. In such cases, unorthodox methods in form of workarounds have to be

adopted wherever possible.

The following listing gives an overview of past achievements, current work in progress

and future workarounds.

Already implemented and working functionality

• Framework for session recording
The ContextRecorder application developed by [Fornallaz 04] and implemented
by [de Simoni 05] offers a solid framework in which to embed internal as well as
external sensor streams.

• Sensorboard integration
The sensorboard successfully sends data at different baud rates, which the Treo
650 receives and stores.

• GPS integration
The smartphone receives the GPS data stream by the use of the wireless Bluetooth
protocol and also stores it.

• Audio recording
Audio streams can be recorded with various degrees of quality depending on
parameter settings such as bit depth, sample rate and the number of channels used.
The recording thereafter gets stored in a wav-compatible format.

• Integration of various smartphone-internal sensors
By accessing Treo specific phone libraries, several sensors could additionally be
integrated.

Conclusions & Future Work 45

Future work

• Phone event interception
The theoretical API structure to implement this functionality is available.
However, only empirical tests will show if the API truly allows to completely
intercept an incoming phone call.

• Multithreading and background processing
As stated earlier, the current Palm OS version on which the Treo 650 runs, does
neither support multithreading nor background processing. The workaround
proposal described in Appendix C could be able to bypass this restriction.

• Persistent storage of image data
Currently it is possible to employ the camera API to take pictures and display
them on the screen, but not to persistently store them. It could be feasible to
circumvent this constraint by means of a workaround.

Personal assessment

In order to enable the smartphone to be aware of context, it has to be capable of gathering

as much data about its surroundings as possible. Sensors, external as well as internal,

provide this opportunity. The more sensors the application is able to integrate, the better

are the chances of finding relevant data. So far we have been able to successfully

integrate the majority of sensors at our disposal, with the exception of the camera on the

smartphone33.

Another important aspect deciding on the success of the project encompasses the

background processing, that is the multithreading capability of the application. Even

though multithreading is not supported by the current operating system, the framework of

event notifications described in Appendix C has a sound probability to circumvent this

barrier.

In case of a successful interception of incoming phone calls34, the project should have an

excellent prospect of success.

33 The image capturing application has for the most part already been implemented. The only missing
functionality consists in storing the captured image onto the expansion card, a problem that could be
solvable by bypassing the problematic API functions.
34 The API to implement this functionality are readily available according to the Palm Inc. API reference.

Appendix A
A The Treo 650 smartphone

The Treo 650 smartphone

The test device on which the data gathering application runs is the Treo 650 smartphone
from Palm Inc. It has built-in audio and video recording capabilities, is equipped with an
UART interface ideal for receiving data from our sensorboard and features a quite
extensive API support, thus allowing for a high flexibility concerning the programming.
The Treo 650 is a pen based smartphone running on the Palm operating system v5.435.

35 For further information concerning the Treo 650 visit http://www.palm.com. To acquire additional
information regarding the OS, visit http://www.palmsource.com. (Accessed December 2005)

specifications

wireless radio
• GSM/GPRS model: 850/900/1800/1900 MHz world
phone

processor
• Intel™ PXA270 312 MHz processor

memory
• 23MB user-available stored non-volatile memory
(22MB multi-lingual)

battery
• Removable rechargeable lithium ion battery
• GSM/GPRS model: Up to 6 hours talk time and up to
300 hours standby time

operating system
• Palm OS® 5.4

weight
• 178 grams

display
• Colour TFT touch-screen
• 320 x 320 resolution
• 16-bit colour (displays over 65,000 colours)

expansion
• Supports SD, SDIO and MultiMediaCards

• Bluetooth wireless technology

Appendix B
B The Socket GPS receiver

The Socket GPS receiver

The GPS receiver provides its data via the Bluetooth protocol directly to the Treo 650
smartphone. The data stream is NMEA-0183 (v2.30) compatible, which allows to add
GPS position technology to any application capable of parsing that standard. Thanks to
the wireless transfer method, the device can unobtrusively be stashed into a jacket pocket
for example, while conducting outdoor measurements36.

36 Consult the manufacturer’s website for further information regarding the Socket GPS receiver.
http://www.socketcom.com/product/GP0820-521.asp (Accessed January 2006)

specifications
size
• 50 x 84 x 20 mm

power
• Removable rechargeable lithium ion battery with 5V
DC input charging circuit (650 mA)

operation time
• Default: 9 hours after full charge, continuous mode,
25°C

accuracy
• Position: 10m, RMS, 25m CEP without SA
• Velocity: 0.1 m/sec without SA
• Time: 1 microsecond synchronized to GPS time

channels
• 16 Channels all-in-view tracking

antenna type
• Built-in Ceramic patch antenna

dynamic conditions
• Altitude: < 18,000 m
• Velocity: < 515 m/sec
• Acceleration: < 4 g

Appendix C
C Event notification framework

Event notification framework

As described in the implementation section, the operating system currently running on

the Treo 650, does not support multithreading. Due to the fact that the running

application quits as soon as a new one gets started, it becomes difficult to implement the

data gathering application as a background process. To be able to obtain meaningful data

none the less, we need to construct a workaround capable of influencing the event-driven

operation method of the OS itself37.

The key to an event-driven notification framework lies in the ability to launch Palm OS

applications based on certain events occurring on the system38. An application launches

when it receives a launch code. Upon receiving the launch code, the application

initializes itself, it then goes into an event loop, and exits by means of a deinitialization.

The default launch code is sysAppLaunchCmdNormalLaunch, allowing the application to

start in the foreground with a full functioning GUI. There is a whole array of customized

launch codes ready to use39. The two key functions allowing to launch an application

from inside another one, and most importantly, to restart the previous application after

the invoked one has quit, are the SysAppLaunch function and the SysUIAppSwitch

function subsequently delineated.

37 This framework is mostly a theoretical construct. While most key features should be viable to implement,
the framework has to be tested as a whole subsequently.
38 A Palm OS application does launch when the user requests it, but it may also launch in response to some
other user action, such as a request for the global find facility.
39 For a complete listing of available launch codes consult
http://www.palmos.com/dev/support/docs/palmos/PalmOSCompanion/AppStartupAndStop.html#998407
(Accessed December 05)

C. Event notification framework 49

C.1 Launch functions

SysAppLaunch Function

Purpose Launch a specified application as a subroutine of the caller

Declared In SystemMgr.h

Prototype

Err SysAppLaunch (
 UInt16 cardNo,
 LocalID dbID,
 UInt16 launchFlags,
 UInt16 cmd,
 MemPtr cmdPBP,
 UInt32 *resultP
)

Parameters

→ cardNo, dbID
The card number and ID of the resource database of the
application to launch.

→ launchFlags
Set to 0.

→ cmd
Launch code.

→ cmdPBP
Launch code parameter block.

← resultP
The value returned from the application's PilotMain()
routine.

Table 5: SysAppLaunch Function

SysAppLaunch can be used to send specific launch codes to other applications and have

control return to the calling application when finished. Making the invoked application a

subroutine of the caller has its disadvantages though. For instance no global variables can

be accessed. In addition, if the application has multiple code segments, no code outside of

the first segment can be accessed, therefore diminishing our options considerably.

A slightly different and more promising approach is offered by SysUIAppSwitch. This

function tries to make the current application quit, subsequently invoking the application

specified by the card number and database ID with full privileges and hence access to

global variables40.

40 The only way to launch an application without restrictions can be achieved by using the
sysAppLaunchCmdNormalLaunch code utilized by SysUIAppSwitch.

C. Event notification framework 50

SysUIAppSwitch Function

Purpose Try to make the current UI application quit and then launch the UI
application specified by card number and database ID.

Declared In SystemMgr.h

Prototype

Err SysUIAppSwitch (
 UInt16 cardNo,
 LocalID dbID,
 UInt16 cmd,
 MemPtr cmdPBP
)

Parameters

→ cardNo
Card number for the new application; currently only card 0
is valid.

→ dbID
ID of the new application's resource database.

→ cmd
Action code (launch code).

→ cmdPBP
Action code (launch code) parameter block.

Table 6: SysUIAppSwitch Function

The code example shows how to programmatically launch an application, let’s call it the

TargetApp, from our own application.

static void MainGotoApplication()
{
 LocalID theDBID;
 UInt theCardNo;
 DmSearchStateType theSearchState;

// Grab the id of the application we want to launch (the TargetApp)
 DmGetNextDatabaseByTypeCreator(true, &theSearchState,
sysFileTApplication, sysFileTargetApp, true, &theCardNo, &theDBID);

// Launch the new app.
 SysUIAppSwitch(theCardNo, theDBID, sysAppLaunchCmdNormalLaunch,
NULL);
}

C. Event notification framework 51

C.2 Notifications

The launch code driven approach has one major flaw that needs to be eliminated.

SysAppLaunch allows us to invoke subroutines of other applications limiting the

operations available. At the same time our application always stays in the foreground,

thus making a reasonable user interaction with the device’s other applications practically

impossible. SysUIAppSwitch on the other hand exits the current application, starts the

target application, and if desired, restarts the invoking application. The problem is the

same as in SysAppLaunch, namely the starting point. Both functions have to be invoked

from our own application, forcing to start our application manually after each interruption
41.

Notifications complement the framework by patching aforementioned flaw. Applications

can receive notifications and launch when certain system-level events or application-level

events occur. Notifications are similar to application launch codes, but differ from them

in two important ways:

1. Notifications can be sent to any code resource, such as a shared library or a
system extension. Launch codes can only be sent to applications. Any code
resource that is registered to receive a notification is called a notification client.

2. Notifications are only sent to applications or code resources that have specifically
registered to receive them, making them more efficient than launch codes. Many
launch codes are sent to all installed applications to give each application a chance
to respond42.

Applications have the choice to register only for needed notifications. This approach

lowers the communication overhead allowing for a more flexible configuration

depending on the circumstances. Table 7 enumerates a selection of available

notifications43. In our case, we always want to be notified of system as well as application

level events, especially when our application is not running. For that purpose we need to

register our notification listeners upon receiving the sysAppLaunchCmdSystemReset

launch code. This procedure guarantees our application to be notified of arbitrary events

even when not running or after system resets.

41 After a system restart, caused by a crash or a dead battery for example, the user explicitly has to restart
our application. Due to forgetfulness or lack of knowledge, this situation could easily lead to a prolonged
shutdown of our data gathering application without the user noticing.
42 http://www.palmos.com/dev/support/docs/palmos/PalmOSCompanion/AppStartupAndStop.html#998657
(Accessed December 05)
43 For a full listing of available notifications consult the Palm OS Programmer’s API Reference.

C. Event notification framework 52

Constant Description

kTelTelephonyNotification A telephony event has occurred.

sysExternalConnectorAttachEvent A device has been attached to an external
connector.

sysExternalConnectorDetachEvent A device has been detached from an
external connector.

sysNotifyAppLaunchingEvent An application is about to be launched.

sysNotifyAppQuittingEvent An application has just quit.

sysNotifyCardInsertedEvent An expansion card has been inserted into
the expansion slot.

sysNotifyCardRemovedEvent An expansion card has been removed from
the expansion slot.

sysNotifyDeviceUnlocked The user has unlocked the device.

sysNotifyEarlyWakeupEvent The system is starting to wake up.

sysNotifyEventDequeuedEvent
An event has been removed from the event
queue with EvtGetEvent.

sysNotifyGotUsersAttention The Attention Manager has informed the
user of an event.

sysNotifyHelperEvent An application has requested that a
particular service be performed.

sysNotifyIdleTimeEvent The system is idle and is about to doze.

sysNotifyLateWakeupEvent The system has finished waking up.

sysNotifyNetLibIFMediaEvent The system has been connected to or
disconnected from the network.

sysNotifyResetFinishedEvent The system has finished a reset.

sysNotifySleepNotifyEvent The system is about to go to sleep.

sysNotifySleepRequestEvent The system has decided to go to sleep.

sysNotifyVolumeMountedEvent A file system has been mounted.

sysNotifyVolumeUnmountedEvent A file system has been unmounted.

Table 7: Notification Constants

Appendix D
D Sensorboard data stream

Sensorboard data stream

The sensorboard sends a continuous data stream through the serial connection without

flow control mechanisms to regulate its output. It is therefore crucial that the receiving

end of the stream, in our case the incoming serial buffer of the smartphone, is capable of

correctly receiving and storing the incoming data. As described earlier in the generic

Palm OS architecture section of chapter 3, the event manager is responsible for the

periodic checking of the event queue and the ensuing handling of possible event

occurrences. The frequency with which the event manager checks for new events can be

indicated in system ticks and is illustrated in following code extract44.

void AppEventLoop(void) {
 do {
 //The second parameter of the EvtGetEvent function defines the
 //amount of system tick per scan cycle
 EvtGetEvent(&event, 1);
 if (SysHandleEvent(&event) == false) {
 if (MenuHandleEvent(0, &event, &error) == false) {
 if (AppHandleEvent(&event) == false) {
 FrmDispatchEvent(&event);
 }
 }
 }
 } while (event.eType != appStopEvent);
}

Table 8: The application event loop

Since the size of the receiving buffer consists of a fixed value, the only two parameters in

a position to influence the data stream are composed of the sensorboard baud rate and the

system tick parameter. Experiments with various baud rates and system tick settings have

delivered inconclusive results. The receiving accuracy of the raw sensorboard values is

difficult to predict and control. Hence there could arise the need for a parser in the future,

which, located between the receiving buffer and the storage routine, would be capable to

44 A system tick is a Palm device internal time measurement unit. The Treo 650 apparently has a value of
approximately 100 system ticks per seconds (although this number can vary up to ± 0.9 ticks per second).

D. Sensorboard data stream 54

 trim the incoming data stream regardless of baud rate, but accepting a minor loss in data

throughput due to.trimming attrition.

Table 9 shows a series of measurements on raw sensorboard values as they are stored in a

text file on the expansion card. The samples are ordered by baud rate. The recording per

sample lasted exactly 10 minutes.

baud rate file size (kB) sensor output

9600 112

38400 982

115200 321

Table 9: Sensorboard data stream given various baud rates

As can be seen by the alignment of the values in the sensor output screenshots on the

right side of the table and by the size of the recording samples, there seems to be no

correlation between the baud rate and the quality of the stored data at a constant system

tick. The currently most promising baud rate seems to be at 34800 bits per second. It

shows an organized data structure as well as the highest data throughput of all the

samples.

List of Figures

Figure 1: The Treo 650 smartphone with attached sensorboard....................................... 14
Figure 2: The sensorboard with muti-connector for the Treo 650.................................... 15
Figure 3: A control flow in a typical application.. 19
Figure 4: Sampling session sequence ... 20
Figure 5: Layering of communication software.. 22
Figure 6: The sensorboard attached to the smartphone via the multi-connector 23
Figure 7: The serial application establishing a connection with the sensorboard............. 24
Figure 8: GPS connection procedure and incoming data stream...................................... 26
Figure 9: Soundstream recorder during a recording session... 29
Figure 10: Audio stream formula.. 29
Figure 11: The Internal Sensors application ... 32
Figure 12: GUI of all integrated data streams... 34
Figure 13: Gas Sensor... 38
Figure 14: Temperature sensor ... 39
Figure 15: Magnetic Sensors .. 39
Figure 16: Accelerometers.. 40
Figure 17: Gyroscopes .. 41
Figure 18: Battery Consumption... 43

List of Tables

Table 1: Hexadecimal sensorboard output.. 25
Table 2: GPS receiver output.. 27
Table 3: Sound stream struct definition .. 30
Table 4: Power usage in mAh... 43
Table 5: SysAppLaunch Function .. 49
Table 6: SysUIAppSwitch Function ... 50
Table 7: Notification Constants .. 52
Table 8: The application event loop.. 53
Table 9: Sensorboard data stream given various baud rates ... 54

Bibliography

[de Simoni 05] Frederic de Simoni.

Auf dem weg zum wirklich smarten smartphone: Anbindung
interner und externer sensorik zur kontexterfassung.
Diploma thesis in computer science
University of Zuurich, 2005

[Dey 01] Dey A.K.
 Understanding and using context
 appeared in: Personal and Ubiquitous Computing, Vol.5

[Donner 05] Donner Manuel
 Heterogenität von Benutzergruppen in mobilen, kontextbewussten
 Anwendungen
 Diploma thesis in computer science
 University of Zurich, 2005

[Fornallaz 04] Fornallaz, J.

Fundamental Implementation for Context Sampling on Mobile
Phones
Diploma thesis in computer science
University of Zurich, 2004

[Foster 05] Lonnon R. Foster and Glenn Bachmann
 Professional Palm OS Programming
 Indianapolis, USA, 2005, Wiley Publishing Inc.

[palmOne 04] palmOne, Inc.
 Developer Guide
 2004, PDF, p.27
 http://developers.palm.com/pe/index.jsp

[Roth 02] Roth, J.

Mobile Computing – Grundlagen, Technik, Konzepte.
Heidelberg, 2002, dpunkt Verlag

Bibliography 58

[Siewiorek 03] Siewiorek, D., Smailagic A., Furukawa, J., Moraveji N., Reiger K.,

Shaffer J.
SenSay: A context-aware mobile phone
School of Computer Science
Carnegie Mellon University, 2003
http://www-2.cs.cmu.edu/~aura/docdir/sensay_iswc.pdf

[Tschanz 05] Stephan Tschanz

Towards a framework for an inertial navigation system: position
and velocity extrapolation of motion-based data

 Diploma thesis in computer science
 University Zurich, 2005

[Vorburger 05] Peter Vorburger, Abraham Bernstein and Alen Zurfluh

The Artificial Receptionist: Anticipating a Person’s Phone
Behavior
Department of Informatics, University of Zurich
MCMP-05, 2005.

[Zurfluh 04] Zurfluh, A.

The artificial secretary.
Diploma thesis in computer science
University of Zurich, 2004

