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Abstract

NExT (Next Experiment Toolbox) is a system that provides guidance to the user during the
whole lifecycle of experiments in the life science domain. These are typically composed
out of many atomic complex and potentially long-running tasks, which are grounded by a
heterogeneous tool set.

This thesis extends NExT with a planning component for semi-automated composition
of OWL-S services while coping with non-determinism and incomplete knowledge. The
solution offers a set of non-standard planning features, namely synthesizing plan alterna-
tives, imprecise planning in cases of no or too few solutions, and planning with complex
goals and QoS optimization criteria. The concept decouples planning tasks from their prob-
lem solving. It proposes a novel approach to encode planning problems and user requested
cooperative planning features as PDDL 3.0 planning problems, and to allocate them to ap-
propriate distributed planners. Aside the deployment of state-of-the-art planners, planner
concepts for synthesizing plan alternatives and for dealing with the no-solution case are
shown.



Zusammenfassung

NExT (Next Experiment Toolbox) ist eine Applikation, welche den Benutzer während des
gesamten Ablaufs von Experimenten in angewandten Wissenschaften unterstützt. Experi-
mente bestehen aus vielen komplexen atomaren und teilweise zeitaufwendigen Aufgaben,
welche mittels heterogenen Tools bewerkstelligt werden.

Diese Diplomarbeit erweitert NExT mit einer Planungskomponente, welche halb-automatisiert
OWL-S Services zusammenstellt und gleichzeitig dem Nicht-Determinismus und unvollständi-
gem Wissen Rechnung trägt. Die Lösung bietet eine Reihe von aussergewöhnlichen Pla-
nungsfähigkeiten, nämlich Synthese von alternativen Plänen, ungenaues Planen in Fällen
von keiner oder zu wenigen Lösungen, und Planen mit komplexen Planungszielen und
Qualitäts-Optimierungskriterien. Das Konzept entkoppelt Planungsaufgaben von ihren
Problemlösungen. Ein neuer Ansatz wird vorgeschlagen, der Planungsprobleme und vom
Benutzer gewünschte kooperative Planungsfähigkeiten als PDDL 3.0 Planungsprobleme
kodiert, und der diese Probleme geeigneten verteilten Planern zuweist. Neben dem Ein-
satz von existierenden Planern werden Konzepte zu zwei weiteren Planern vorgestellt: der
eine generiert Planalternativen, der andere widmet sich dem Problem, dass keine Lösung
existiert.
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1
Introduction

Imagine one has a laboratory environment where scores of tasks, which are sometimes
very simple and similar and sometimes complex, have to be composed in a sequence in
order to carry out recurrent experiments. Moreover, tasks would have to be fulfilled at
different locations. One would wish that those experiment processes could be supported or
automated by computer help, i.e. processes could be modeled by a computer application,
executed in a process execution environment and reused once created, or the application
helps to automatically compose the needed tasks for a given experiment.

Michael Dänzer has followed this approach in his master’s thesis NExT - The NMR
Experiment Toolbox [Dänzer, 2005] by analyzing the research environment of NMR experi-
ments at the Institute of Physical Chemistry from the Swiss Federal Institute of Technology
(ETH) in Zurich. He mapped needed processes for those experiments and domain specific
properties to a process ontology in OWL-S, a Semantic Web service description language
capable of defining processes in a machine readable manner. Using the application NExT1,
processes can be composed and then be executed in a process execution environment. Fur-
thermore, the user can monitor and influence the execution.

This thesis extends the project NExT and addresses the issue of how processes can be
semi-automatically composed. The idea is to relieve the user from composing the necessary
process steps by hand, and to let the user profit from the proposed process plans which are
generated either from atomic processes or from existing and proven composite processes.
The proposed solution focuses on the integration of the user into the planning process and
thus enables planning with cooperative methods, i.e. it applies a set of non-standard plan-
ning features such as the synthesis of plan alternatives and imprecise planning. Equipped
with these features, it ensures a valuable support for the user.

1NExT is both the name of the master’s thesis and the name of the software project created by M. Dänzer.
Henceforth, the term NExT will be used to refer to the software application.
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1.1 Goal of the Thesis
The planner builds on top of the goals of NExT which in turn evaluate from the NMR

experiment domain. The development of the planner component targets the improvement
of experiment workflows and has to be aligned to their requirements.

Since the planner has to deal with pre-defined Semantic Web services, it should be capa-
ble of dealing with the typical wattles in the domain of Semantic Web services like potential
non-deterministic behavior of the services and the uncertainty about knowledge complete-
ness at the time of planning. While the automated composition of Web services is an emerg-
ing topic of high interest, the scope of the planner presented goes beyond that of pure Web
Service composition solutions as they normally exist. The planner namely focuses on some
specific additional sub-goals in order to seemly extend the NExT project:

• User Interaction
A main goal of the NExT Project is to guide the user at his work, for example dur-
ing plan composition. Since planning is a complex task and sometimes the planner
depends on the support of the user, for example in the scenario that no plan can be
found on a first attempt , the planner should interact with the user to successfully
optimize a planning problem and the resulting problem solution.

• Plan Alternatives
It is never guaranteed that a calculated plan, even if it is the optimal one for a given
problem, fits the requirements and wishes of the user – it lies in the nature of a hu-
man being to have an affinity toward making decisions upon proposed alternatives.
Therefore the planner should provide the user with some alternative plan proposi-
tions. If possible, the plan propositions should be annotated with some sort of quality
information.

• Imprecise Planning
Aside consistent plan solutions, the planner should calculate plans that are not fully
perfect and in cooperation with the user. This is necessary to not withhold the user
with a plan path direction only because some knowledge misses, or more probably
because the planner could not find a plan.

The concept presented in this thesis not only contributes to the project NExT in an ef-
fective way, but represents a practical and innovative solution for the field of composing
Semantic Web services with the help of planning techniques.
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1.2 Structure
Please find next short descriptions of all chapters to get a rough overview about the thesis

structure.

Section 2 gives insight into the motivation reasons of this thesis, namely NExT embedded
in the environment of NMR experiments, and the research topic of automated Web service
composition. Some background aspects are discussed as well to introduce the reader into
the problematics of the topics.

Section 3 lightens some fundamentals about problems arising in the domain of AI plan-
ning and explains selected planning techniques such as algorithms that are relevant for the
thesis.

Section 4 provides a collection of all accumulated assumptions, requirements and condi-
tions. They were obtained under different aspects, for example from NExT, deduced from
the thesis goals or from their analysis, and partially from design decision as well.

Section 5 is all about deciding which design concepts could best fulfill the requirements
demanded for the development of the planning component. It starts with an extensive
analysis of the thesis goals, evaluates several plausible design alternatives afterwards and
concludes with decisions in favor of a main concept.

Section 6 presents the proposed concept about the planning component. It explains fun-
damental principles influencing all other concepts, the various elements of the architecture
and its functions. It moves forward to describe mappings from OWL-S to PDDL. One Sec-
tion only attends to all details about AI planners, including their organization and some
concrete solutions. Sub-concepts are addressed at the end.

Section 7 gives an overview about the software parts that were implemented according
to the main concept in order to confirm assumptions and decision made with the concept.
A discussion about the results and other aspects is attached.

Finally, Section 8 concludes with a summary about the concepts in respect of the thesis
goals and some propositions for future work.
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Motivation

The major motivation comes from the underlying project NExT which targets the simpli-
fication and automation of the working conditions in the NMR experiments domain. Some
important work has already been done and some is open. An integration of a planner com-
ponent into NExT would greatly contribute to the project and help in achieving the defined
goals. (see Chapter 2.1)

Furthermore, the consolidation of Semantic Web services and planning techniques is
currently a striking topic of research. Several solutions have been presented that try to
merge the benefits from both domains. An analysis should therefore address the question
how far the approaches go, and it might be interesting to develop some new ideas. (see
Chapter 2.2)

2.1 Project NExT
[Dänzer, 2005] addresses the problems existing in the domain of NMR experiments and

presents an overall solution to them. The problems are mainly the lack of explicit domain
knowledge and the insufficient tool support. The latter can be described as following: For
most experiment tasks there exist tools, but most of them were developed for single aspects
only and thus have to be used in rather monolithic-like fashion. All of them have their own
specific interface and usage method. Furthermore, in some circumstances tools for certain
tasks do not even exist. Also, a corporate tool that could integrate these tools at least to
a certain degree for making process plans does not currently exist. In this heterogeneous
environment, the user is obliged to manually execute the various tools, to adapt his work
style to the peculiarities of the tools and to have the data of the experiments spread across
different locations.

The solution includes among others

1. a process model definition in OWL-S to formally describe processes in the NMR do-
main,
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2. a software solution (NExT) which allows (a) the definition of process plans for NMR
projects, (b) the execution of these in a (semi-) automated mode while the user is
guided through all stages, and

3. the knowledge exchange within the NMR community.

One fundamental approach to solve the problem was to analyze the processes of the
NMR experiments regarding the specificity frontier [Bernstein, 2000]. The specificity fron-
tier corresponds to the specificity spectrum of processes, ranging from highly specified
(fixed work processes) to highly unspecified (ad-hoc processes like e-mail communication).
The processes in the NMR experiments domain were identified either to be fully specifiable
or in case of changeable composite processes to have a specificity lying somewhere in be-
tween the two extremes. [Bernstein, 2000] presents ways to cope with processes of different
specificities: (1.) dividing the specificity frontier into sub-spectra and (2.) providing run-
time transfer-mappings between the sub-spectra. These key ideas were incorporated into
NExT by designing the process models according to them and by leaving the altitude of ei-
ther composing process plans by hand or requesting the software to propose automatically
derived process plan alternatives to the user. The procedure is known as the Mixed-Initiative
feedback loop [Veloso, Mulvehill, & Cox, 1997].

On one hand, parts of the software NExT have already been implemented, for example,
it is possible to create new experiment cases, to compose process plans and to execute and
monitor them. On the other hand, the implementation of a key aspect is open, namely
the software’s ability to provide the user with plan alternatives. Regarding the specificity
frontier, this would address the software support for under-specified process plans. There
are various approaches for a realization1:

• Synthesis of new process plans from scratch.

• Case-based reuse and adaption of existing process plans (case-based planning).

• Plan-merging: The problem is decomposed into sub-problems and solved separately
(for example by several distributed agents), whereon the resulting sub-plans are merged.

• Plan-rewriting: A single plan solution is repeatedly modified to get better solutions.

• Any combination of the above.

This thesis attends to the synthesis of new process plans by elaborating a planner based
solution.

1The classification is done from the point of view of the synthesis form, though case-based planning in the form
of pure reuse of existing plans [Spalzzi, 2001] might not be regarded as a synthesis. Mentioned are approaches
relevant for NExT, but there are others, for example situated planning which adapts planning according to the
need for reactivity by choosing planning layers with increasing reactivity and decreasing planning depth.
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To get an impression of the planner’s functions, let us consider the following sample
scenario: A user has created a new experiment case and is currently composing a process
plan in the composition editor. He first defines the tasks which have to be done in order to
achieve the experiment goals. He then starts with attaching some atomic process steps. He
decides to use the planner which could be due to various reasons:

• The user does not know how to continue the process step composition. So, the plan-
ner can help him find some solutions, if there exist some at all.

• The user has an idea of a process plan, but wants to check whether he overlooked a
solution that could be better than the one in his mind. The planner will find some
alternative solutions.

• The user wants to save time, regardless of the complexity of the experiment tasks.
The resulting plan is then used as template.

After the execution of the planner, it might be possible that no plan could be found or
that the found plan alternatives are not satisfying. In such a case, the user can relax some
constraints, for example mark a sub-goal that not necessarily has to be attained, or add
some new constraints, for example set the duration of process steps, in order to optimize
the retained plans. Subsequently, the planner is started again. The use case in Figure 2.1
abstracts all possible scenarios.

Recovering the issue about the specificities of processes, we remark that all just outlined
sub-scenarios dealt with processes that can be placed on the specificity frontier somewhere
between enough specified to be usable for planning and highly specified.



2.1 Project NExT 7

Use Case UC1: Plan Generation Process

Primary Actor: User
Stakeholders and Interests:
- User: Wants to find a plan.
- Research Group:
Preconditions:
Success Guarantee (Postconditions): A satisfying plan was found.

Main Success Scenario (or Basic Flow):
1. User decides to start the planner component.
2. User configures the planner.
3. System calculates 1-n plan solutions.
User repeats steps 2-3 until plans are enough satisfying.
4. User selects among the plan alternatives the most appropriate one.

Extensions (or Alternative Flows):
2a. User relaxes some domain, initial state or goal state constraints.
2b. User gives some additional information.
3a. System can’t find any plan solution.

1. System indicates the relaxation potential.
1a. User is interested in partial plans.

1. System provides the User with 1-n partial plans.
1b. User quits the plan generation process.

3b. System consumes too much calculation time;
eventually some plans are already calculated.
1a. System stops the calculation, if a timeout has been defined.
1b. User stops the planning process.

Use case format is according to [Cockburn, 2000].

Figure 2.1: Use Case: Plan Generation Process



2.2 Semantic Web Services and AI Planning Techniques 8

2.2 Semantic Web Services and AI Planning Techniques
The increasing need for application integration inside companies and more and more

between companies entails the request for a corresponding technical infrastructure. Web
services have jumped into the gap and could become popular thanks to their versatility
and platform independence. The business world has built on various W3C passed XML-
standards to describe Web services (WSDL). Unfortunately, service interfaces are of syntac-
tical nature, similar to those of remote procedure calls. This turned out to be a disadvantage
for several reasons: (1.) Web services have to be annotated with additional information
about their functionality and (2.) flows of Web services have to be manually defined in a
service flow specification language like PBEL4WS or WSCL. In other words, the definition
of Web services is very complex.

The Semantic Web community has developed Web service frameworks that build on top
of Semantic Web ontologies which bring semantical enrichment to Web services. For ex-
ample, by means of preconditions and effects world altering facts can be described. The
logical descriptions in the underlying ontologies and the possibility to reason about their
statements suggest the appliance of AI to automatically compose Web services. The combi-
nation of both techniques holds high potential and has stimulated the industry’s interests.

At the time of writing, Semantic Web services combined with the power of AI have rarely
been used in practice because Semantic Web services still leave some important questions,
such as security, unanswered. Furthermore, the combination is hardly trivial, due to the
fact of their diametrically opposed origins. While research on AI planning techniques has
concentrated during the last three decades on how world knowledge like objects and con-
straints can be reduced to minimal, deterministic and closed-world assumed representa-
tions in order to move the problem’s complexity to a machine computable dimension. Se-
mantic Web services followed the spirit of the World Wide Web and enables information
exchange and reasoning about resources in an open world. The semantic web is much
closer to the reality.

Bringing together these techniques is a big challenge which in turn yields some crucial
problems:

• Non-Determinism
The domain of Semantic Web services is highly non-deterministic due to several rea-
sons: Web services can fail or return different types of results on which the subse-
quent process execution might depend, or some relevant world facts can change dur-
ing process execution. These fully or partly unpredictable behaviors are the contrary
of what an offline planner normally wants to have. A classical planner prefers fully
predictable world changes.
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• Incomplete Knowledge
Planning techniques assume to have complete information about the initial world
state (closed world assumption). In reality much information is not given at planning
time but available at a later time. To this belongs the fact, “that in contrast to classical
planning, where all objects are available in the initial state and the actions change the
state of objects, web services create new objects at runtime” [Srivastava & Koehler,
2003].

• Complex Process Plans
Planning techniques normally generate plans with sequential order of the plan steps
(partial order planning is an exception). But in order to cope with the non-deterministic
behavior of Web services, a planner should be able to generate plans that include com-
plex control structures such as loops, choices, or even parallel execution [Giunchiglia
& Traverso, 1999]. The handling of exceptions and conditions could thus be compiled
into plans.

• Complex Goals
Planning techniques require explicit goal specifications. “Unfortunately, [..] explicit
goals are usually not available from an industrial perspective.” [Srivastava & Koehler,
2003] Goals often include inexplicit goals which get satisfied during the process plan
instead at the end of it. “For example, the explicit goal of a travel reservation process
is to perfectly organize the travel, while its (more or less) implicit goal is the creation
of the required travel documents in some data base.” [Srivastava & Koehler, 2003]

Several solutions have been proposed to the issue, most of them do a full automated
planning stage, i.e. with a given domain and problem specification they try to get out the
best possible plan. Since this approach corresponds to the hardest possible way, those so-
lutions normally succeed to solve one problem aspect very well, whereas other aspects are
rather suboptimally solved. There are mainly two critiques: (1.) It is questionable whether
it is necessary or even possible to find a perfectly suitable plan taking into account all con-
ditions and problems which could arise in future executions of Web services. (2.) Further-
more, not all goals might be known at the time of planning but evolve during execution of
the plan. In this context, [Srivastava & Koehler, 2004] argues that “Web services composi-
tion can not be seen as a one-shot plan synthesis problem defined with explicit goals but
rather as a continual process of manipulating complex workflows, which requires to solve
synthesis, execution, optimization, and maintenance problems as goals get incrementally
refined”.

I argue too, for both aspects, that a Web service composition problem is more complex
and depends on additional support from the user and on results of the continuous execu-
tion of the plan path as it has been calculated so far. The sub-goals of this thesis, namely (a)
user interaction, (b) plan alternatives and (c) compromised planning, follow that idea and
give a good starting position to see the Web service composition problem from a different
and promising angle.
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2.3 Related Work
At the time of writing, there is no project that could completely fulfill the goals of the plan-
ning component to be developed. Instead of that, several solutions have been presented to
the automated Web service composition problem, each of them with a slightly different fo-
cus. Next, the most relevant works are outlined, giving an idea of the different approaches.
The various planning techniques that could be used for the planning component are not
covered here since their research scope has a more general nature and they would require
a large effort to be usable in the project as-is.

2.3.1 SHOP2

SHOP2 [Sirin, Parsia, Wu, Hendler, & Nau, 2004] is a well-known representative of HTN
(Hierarchical Task Network) based planners for composing Semantic Web services. SHOP,
the predecessor of SHOP2, was one of the first out-of-the-box planning solutions for the
automated Web service composition.

SHOP2 extracts decomposition methods from composite processes of OWL-S domain
ontologies and uses them to decompose a given planning problem to atomic process steps.
This process can be viewed as the specialization of pre-written composite processes which
results in a sequential process plan. In contrast to other HTN planners, SHOP2 plans for
tasks in the same order that they will later be executed. Hence, current state of the world
is known at each step in the planning process which enables the SHOP2s precondition-
evaluation mechanism to incorporate significant inferencing and reasoning power.

SHOP2 offers additional capabilities to optimize for certain variables such as costs due
to the fact that the planner considers the entire execution path. Since the decomposition
of composed processes is a straight forward approach for automated web service composi-
tion, SHOP2 has good performance attributes and scales well to large numbers of methods
and operators.

WSC-SHOP2 [Kuter, Sirin, Nau, Parsia, & Hendler, 2006] extends SHOP2 to support
information gathering during planning. It does so by querying the truth values of certain
atoms when there is not enough information in the knowledge base to determine their
values. The planning process does not need to wait for the responses of the services and
can continue planning while the service is still executing.

Software Used

SHOP2 was originally written in Lisp and was then also ported to Java (JSHOP2). The
sources are available under Open Source license.
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2.3.2 OWLS-Xplan

OWLS-Xplan [Klusch, Gerber, & Schmidt, 2005] allows for automatic composition of Se-
mantic Web services defined in OWL-S. The software component was developed in the
context of the SCALLOPS project2.

OWLS-Xplan is a hybrid planner based on state-space forward search and an additional
HTN like web service decomposition module. In order to achieve high performance, the
Fast-Forward planning system [Hoffmann & Nebel, 2001] was used and extended. The
HTN module helps to decompose composite Web services as they exist in domains with
partly or fully domain specific and detailed knowledge, and utilizes the necessary atomic
parts only (see Figure 2.2). This enables OWLS-Xplan to cope with domain-unspecific as
well as domain-specific planning problems, i.e. it is able to find solutions in either case.
The planner returns sequential plans and allows after the plan generation for exchanging
equivalent web services while optimizing plans by means of QoS metrics.

Source: [Klusch et al., 2005]

Figure 2.2: OWLS-Xplan: Use of decomposed processes

At the time of writing, OWLS-Xplan was not fully implemented yet. A complete version
should be available in February 2007.

Software Used

OWLS-Xplan’s data collection and optimization module is written in Java, whereas the
planner itself is a windows executable whose source files are not provided. A proprietary
language PDDXML according to PDDL is used to retain the extracted data from OWL-S
web services and domain knowledge. Since PDDXML has XML syntax, it “simplifies pars-
ing, reading, and communicating PDDL descriptions using SOAP” [Klusch et al., 2005].

2Secure Agent-Based Pervasive Computing, see http://www-ags.dfki.uni-sb.de/˜klusch/

scallops/

http://www-ags.dfki.uni-sb.de/~klusch/scallops/
http://www-ags.dfki.uni-sb.de/~klusch/scallops/
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2.3.3 WSPlan

WSPlan, the PDDL based tool [Peer, 2004], has been elaborated in the dissertation of
Peer. It treats the Web service composition problem as a whole and tries to take all aspects
into consideration. It argues that the diversity of the Web service domains is best addressed
by a flexible combination of complementary reasoning techniques and planning systems.

The presented tool decouples the different concerns like goal description, planning and
plan execution from particular planning technologies and implementations: A Web ser-
vice composition problem is first converted to an equivalent AI planning problem. Then
the most suitable planner is chosen for the particular planning task. The decoupling has
been further expanded in [Peer, 2005] to the three layer concept (Figure 2.3 illustrates the
collaboration of the three layers):

• Layer 3: Task Handling
Finds an executable path for a defined task.

• Layer 2: Replanning/Monitoring
Solves a Web service composition problem considering the typical issues like incom-
plete knowledge, non-deterministic behavior of operations and the construction and
the destruction of objects.

• Layer 1: Classical AI Planner
Constructs a sequential plan with complete knowledge and fully deterministic oper-
ations.

AI

Planner

AI

Planner

AI

Planner

Replanning
Strategy

Replanning
Strategy

Task framework
Layer-3:

Task handling framework

Layer-2:
Replanning framework

Layer-1:
classic AI planners

framework

goal + constraints

goal + constraints plan

goal satisfaction

Source: [Peer, 2006]

Figure 2.3: WSPlan: Three Layer Concept
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More specifically, layer two takes as input Web services defined in WSDL and marked
up with semantics on services and operations, and converts the given problem to PDDL.
At the same time, a table of causal links is created with whom the world state after a plan
step execution can be verified. The generated plan is then step wise executed and if the
causal links indicate an unexpected state, a replanning process is started.

WSPlan uses sensing sub-plans to get around the incomplete knowledge problem at plan-
ning time. A plan is calculated and if parts of it consist of services that only gather infor-
mation but do not alter the world state, these sub-plans are executed before all others (see
Figure 2.4). The resulted knowledge acquisition simplifies the further (re-)planning and
plan execution process.

A

B

D

E

C

B

DC

A

E

1. create initial
plan

2. execute
sensing subplan,

then re-plan

2 .. n-1

n. execute
final plan

Source: [Peer, 2005]

Figure 2.4: WSPlan: Sensing Sub-Plans

Software Used

The application was developed in Java and makes use of planners compiled for Linux and
sometimes for Windows too. The code is available under an Open Source license.
WSDL is used as the Web service description language and PDDL as the planner data
exchange language.

2.3.4 Web Service Composition Using ConGolog

Golog (alGOl in LOGic) [Levesque, Reiter, Lesperance, Lin, & Scherl, 1997] is a high
level logic programming language built on top of the Situation Calculus. Golog is a mix-
ture of imperative and declarative programming. It sequentially executes do-instructions
(actions). The configuration of these instructions is done by logical inferring. Therefore,
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a Golog agent consists of a program of do-instructions and a mechanism logical inferring.
ConGolog is an extension to Golog to support concurrent execution.

In [McIlraith & Son, 2002] ConGolog is used for the composition of Semantic Web ser-
vices. Instead of planning, the agent’s task is to execute a high-level program correspond-
ing to a plan. An interpreter is used to search for a way to execute the program. Since
logical reasoning relies very much on sufficient information and Semantic web is sensitive
in this respect, [Phan & Hattori, 2006] has extended the work, more precisely the interpreter
to support information gathering with search in an open world initial database.

Planning with ConGolog has an outstanding advantage: It manages the non-deterministic
behavior of Web services so to say by nature. The interpreter always tries to find the best
path independent of the current situation, i.e. it does not make any difference whether a
control construct like If-Then-Else has to be executed next, or the execution of a Web service
has failed, or simply a choice between different execution paths has to be made.

Software Used

Golog3 should be run on top of a Prolog interpreter or compiler. Different interpreters exist
in regard of Web service composition, two were mentioned above. In addition, a Golog
compatible Prolog software is needed, like ECLIPSE Prolog4 which is freely available under
Open Source license (Cisco-style Mozilla Public Licence).

2.3.5 A Model Based P lanner for Automated Composition of Se-

mantic Web Services

Planning as model checking was shown to be suited for domains of non-deterministic ac-
tions, partial observability, and complex goals [Giunchiglia & Traverso, 1999]. In [Traverso
& Pistore, 2004] a Web service composition solution is presented that uses planning as
model checking. It basically creates a new Web service that incorporates the behavior of all
participating domain Web services and separates out the relevant parts for achieving the
goals.

The solution translates OWL-S Web services (W1..Wn) into non-deterministic and par-
tially observable state-transition systems (EW1 ..EWn

) (see Section 3.1.1 for an explanation
of state-transition systems). Each service is thereby encoded to a separate state-transition
system having its state-based dynamic system that can evolve, i.e. change state, and that
can be partially controlled and observed by external agents. The actions created for the
state-transition system correspond to invocations and responses of atomic processes that

3Any further information and software can be found on http://www.cs.toronto.edu/cogrobo/main/

systems/index.html.
4see http://eclipse.crosscoreop.com/

http://www.cs.toronto.edu/cogrobo/main/systems/index.html
http://www.cs.toronto.edu/cogrobo/main/systems/index.html
http://eclipse.crosscoreop.com/
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<process: CompositePr ocess rdf:ID="Shipper">
<process: Sequence>

<process:AtomicProcess rdf:about="# DoShippingRequest" />
<process:CompositeProcess>
<process: IfThenElse>

<process: ifCondition rdf:resource="# ShippingPossible" />
<process: then>
<process:CompositeProcess>

<process: Choice>
<process:AtomicProcess rdf:about="# AcceptShippingOffer" />
<process:AtomicProcess rdf:about="# RefuseShippingOffer" />

</process:Choice>
</process:CompositeProcess>

</process:then>
</process:IfThenElse>

</process:CompositeProcess>
</process:Sequence>

</process:CompositeProcess>

<process: AtomicPr ocess rdf:ID="DoShippingRequest">
<process: Input rdf:ID="size">

<process:parameterT ype rdf:resource="# Size" />
</process:Input>
<process: Input rdf:ID="destination">

<process:parameterT ype rdf:resource="# Location" />
</process:Input>
<process: ConditionalOutput rdf:ID="price">

<process: coCondition rdf:resource="# ShippingPossible" />
<process:parameterType rdf:resource="# Cost" />

</process:ConditionalOutput>
<process: ConditionalOutput rdf:ID="duration">

<process: coCondition rdf:resource="# ShippingPossible" />
<process:parameterT ype rdf:resource="# Delay">

</process:ConditionalOutput>
<process: ConditionalOutput rdf:ID="na">

<process: coCondition rdf:resource="# NoShippingPossible" />
<process:parameterT ype rdf:resource="# NotAvailable" />

</process:ConditionalOutput>
</process:AtomicProcess>

<process: AtomicPr ocess rdf:ID="AcceptShippingOffer" ... >

<process: AtomicPr ocess rdf:ID="RefuseShippingOffer" ... >

destination: Location)
(size: Size,

ShippingPossible

ShippingPossible

START

DoShippingRequest

AcceptShippingOffer

AcceptShippingOffer.done

duration: Delay
price: Cost

RefuseShippingOffer

NoShippingPossible

ShippingPossible
RefuseShippingOffer.done

na: NotAvailable DoShippingRequest.done

DoShippingRequest.done

Figure 2.5: MBP: Sample translation from an OWL-S Web service to a state-transition system,
illustrated by a graph

were collected from atomic or decomposed composite processes of the specific Web service
and from any dependent processes which are involved in the interaction with that Web ser-
vice (see Figure 2.5 for an example). The translation is similar to [Narayanan & McIlraith,
2002], whereas the states of state-transition systems can be seen as the markings in the Petri
nets.

The new Web service W to be created has to operate in the environment of the combined
state-transition system Σ constituted by the state-transition systems ΣW1 ..ΣWn . The state-
transition systems can independently evolve over time and the planner’s task is, given a
composition goal G (defined in EAGLE which allows expressing goals as conditions and
sub-goals with preferences on the whole behaviour of a service), to generate a plan π that
controls the planning domain, i.e. interacts with the external services in a specific way such
that the evolutions satisfy the goal G (see Figure 2.6). The plan π contains imperative logic
in order to cope with the behavior of the environment of the new Web service W , and can
thus be translated to any language capable of expressing flows of executable processes like
BPEL4WS.

MBP (Model Based Planner) [Bertoli, Cimatti, Pistore, Roveri, & Traverso, 2001] is used
to generate plans based on the extracted state-transition systems and the complex goals.
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W1

Wn

G

such that
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Executable Process
(e.g., BPEL4WS)

W1

Wn
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Process
Models
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Systems

Composition Goal G

M
B
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  P

L
A

N
N

E
R

Σ Σ

Σ

Σ
π

π

Source: [Traverso & Pistore, 2004]

Figure 2.6: MBP: OWL-S based automated composition

MBP has proved to scale very well for large domains.

Software Used

The approach depicted uses MBP5which is available in binary form, currently for Linux
PCs, and for evaluation purposes only. The code of the translation itself is not available.

5MBP is availably on http://sra.itc.it/tools/mbp/, and NuSMV, on which MBP is based, on http:

//nusmv.itc.it/.

http://sra.itc.it/tools/mbp/
http://nusmv.itc.it/
http://nusmv.itc.it/


3
Background

In this chapter, I revisit some fundamentals that are relevant to this thesis. Whereas a
knowledge about Web services and Semantic Web services is assumed to be known for the
understanding of the thesis, planning techniques deserve to be lighted here a bit more in
details1.

A variety of features is asked from AI planning techniques, but due to the complexity
of planning there is not an all-in-one technique coping with all aspects. Rather several
different techniques exist for a certain problem. Following, some basic ideas of planning are
shortly covered. A selection of proved planning algorithms are appended. An introduction
into formalizing planning problems is given in Appendix A and a detailed description of
the Planning Domain Definition Language (PDDL) can be found in Appendix B.

3.1 Complexity of Planning
Planning is simply spoken the task to decide what actions should be used to achieve

some objectives in a particular environment. Planning is known to be a hard problem, due
to good reasons: Looking at the planning problem in the real world, we have uncertainty
about the effects of actions, i.e. we might know the normal effect, but we cannot predict
whether that case occurs. We do not have complete information about the environment,
for example some important information can miss at the beginning, and how can we say
for sure that the observed domain state is actually correct? External events or other agents
might alter the environment and thus affect the goal achievement. Another point is that we
might have time, resource or preference constraints or want to optimize for certain aspects.

Planning seems to be a challenge and it is really. Two approaches making planning
easier are discussed in this section. But before let us introduce a conceptual model of the
planning task for a common understanding.

1The theory about planning techniques depicted in this chapter emanate to a major amount from [Ghallab,
Nau, & Traverso, 2004] and [Russell & Norvig, 1995] which both give a wide-spread introduction. [Peer, 2005]
[Rao & Su, 2004] give a good overview about planning techniques usable for the automated composition of (Se-
mantic) Web services.
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3.1.1 Conceptual Model

System Σ corresponds the a state-
transition system. Source: [Ghallab et
al., 2004]

Figure 3.1: Conceptual model for planning

A conceptual model helps to understand the various concerns of a problem. The state-
transition system2 is commonly used as a conceptual model for the planning problem, illus-
trated in Figure 3.1.

The model distinguishes

• the state-transition system Σ that represents the world of the planning problem and
evolves according to the actions and events it receives,

• a controller which, given a description of the system Σ, provides an action a according
to some plan, and

• a planner which, given a description of the system Σ, an initial state and some objec-
tives, provides a plan.

Formally, the state-transition system is a 4-tuple Σ = (S, A,E, γ), where:

• S = {s1, s2, ...} is a finite set of states;

• A = {a1, a2, ...} is a finite set of actions;

• E = {e1, e2, ...} is a finite set of exogenous events;

• γ : S × (A ∪ E) → 2S is a state-transition function.

The system, more precisely the system’s state, evolves over time when actions or events
happen. The difference between actions and events lies in whether the controller has any
control over the execution. Whereas it can explicitly execute actions, events are based upon

2State-transition systems are actually theoretical models used in the automata theory and describe the possible
states of state based systems and the possible transitions between those states.
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on the internal dynamics of the system. If u is either an action a or an event e, and γ(s, u)
is not empty, one state s′ of a possible set of states will result.

The objectives can be described in different ways: either

• by a single goal state sg or a set of goal states Sg ,

• by some conditions, that the controller should avoid or pass some states, or should
stay at a certain state,

• by a utility function to be optimized, or

• by tasks that the system should perform.

Finally, the controller might not be able to fully observe the state of the system, so an
observation function η : S → O can model the set O = {o1, o2, ...} of possible observations.

3.1.2 Restriction of the Assumptions Made in the Conceptual Model

A planning problem taking into account all aspects of the state-transition system can be
much worse than NP-complete. In order to make planning easier, a first approach, which
is characteristic to classical planning, is to restrict the assumptions made in the conceptual
model.

Assumption Description

A0 Finite Σ The System Σ has a finite set of states.

A1 Fully Observable Σ One has complete knowledge about the state of Σ (also
about the initial state).

A2 Deterministic Σ For every state s and for every event or action u, | η(s, u) |
≤ 1, i.e. there is at most one resulting state.

A3 Static Σ The set E of events is empty, thus only controlled transi-
tions take place.

A4 Restricted Goals Only objectives specified as an explicit goal state sg or set
of goal states Sg are handled.

A5 Sequential Plans A solution plan is a linearly ordered finite sequence of ac-
tions.

A6 Implicit Time Actions and events have no duration; they have instanta-
neous state transitions.

A7 Offline Planning The planner plans for the given initial and goal states, re-
gardless of possible changes in Σ.

Table 3.2: Classical planning: restrictive assumptions
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Classical planning problems normally combine all eight restrictive assumptions. But
nevertheless, a planning problem is still very hard, in best cases NP-complete.

3.1.3 Modern Approach

Classical planning has mainly concentrated on domain independent algorithms, and has
normally taken the restrictive assumptions. The focus on domain independence was not
bad, since many effective algorithms have emerged and since domain dependent algo-
rithms, as contrary, can be applied to only a specific type of problems. Nevertheless, recov-
ering the need for making planning easier, another approach has become more important
with the ongoing International Planning Competitions (IPC) all two years: The idea is to
take advantage of the characteristics of a given problem domain, i.e. to provide the planner
with additional domain-specific knowledge and to extend a domain independent planning
engine with algorithm artifacts that can deal with the additional information in order to
support the planner engine. These extra information can be about process compositions
(harnessed for example by the hierarchical task network (HTN) planning), about non-
deterministic outcomes of actions (can be used for example with the planning by model
checking planning paradigm) or about time and resource constraints (which can be man-
aged by means of a scheduler integration).

Aside, some important progress could be achieved in the domain of classical planning
techniques, also thanks to the IPCs. These techniques are known under the term neoclassical
techniques.
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3.2 Planning Algorithms

3.2.1 State Space Planning

State space planning is a classical planning approach. The solution space is represented
as a connection graph consisting of states (nodes) and actions (connections) according to the
state-transition system. It mainly performs a search, either forwards beginning at the initial
state (progressive search) or backwards from the goal state (regressive search). The search
procedure, which is a typical element for the classical and neoclassical planning algorithms,
can usually be abstracted to a recursive procedure having following steps (u is a node):

Depth-first-search(u)
if Terminal(u) then return(u)
u← Refine(u)
B← Branch(u)
C ← Prune(B)
while C 6= Ø do

v← Select(C)
C ← C - {v}
π← Depth-first-search(v)
if π 6= failure then return(π)

return failure
end

Figure 3.2: Basic depth-first search
algorithm for state space planning

• a refinement step: modifies the collection of ac-
tions and/or constraints associated with u

• a branching step: generates child nodes for u

• a pruning step: removes unpromising child
nodes

• selection of a child node v

• calling the search procedure with v

The procedure is executed until the goal state is
reached, or backtracked if a dead path has been nav-
igated. The challenge of a search algorithm is to
choose the right child nodes and to recognize wrong
or cycling paths as early as possible. Several search
algorithms exist (for example depth-first search as il-
lustrated in Figure 3.2).

Properties

State space planning algorithms generate sequen-
tial plans. Thanks to their rather simple base structure, they have been reused many times
and extended to become fast and solid planning representatives nowadays (e.g. SGPlan 5
[Hsu, Wah, Huang, & Chen, n.d.]).

Heuristics

The thought behind heuristics is that search should be guided to first explore the most
promising solutions. A heuristic function h(n) expresses the relative desirability of the
candidate node n. A sample h(n) estimates the minimal cost from node n to a final node.
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Considering the abstract search procedure, the child node having the minimum value for
h(n) is selected first. To extend a typical depth-first search algorithm as shown in Figure
3.2 for heuristics, Select(n) would have to be exchanged by argmin{h(n) | n ∈ C}.

Heuristics have first been used for state space planning [McDermott, 1996] only, and
have then been applied to other techniques such as partial order planning, too. There are
several approaches for the heuristic evaluation (e.g. A* as shown in Figure 3.3), a favored
one is the usage of a relaxed planning graph.

Q← initial node
C ← empty
repeat

if Q is empty, return failure
n← first element of Q, Q← rest(Q)
if n is a final node, return n
if n /∈ C, or has lower cost that its copy in C then

add n to C
S← succ(n)
S← sort(S,f )
Q← merge(Q,S,f )

(Q is ordered in increasing order of f(n) = g(n) + h(n))
endif

endrepeat

Figure 3.3: A* algorithm is a state space search algorithm with a heuristic
function f(n) that sums the costs of the path from the initial node to the
candidate node (g(n)) and the estimated costs of the path from the candidate
node to the goal node (h(n)). It maintains a list Q with all passed nodes in
increasing order of f(n), and branches with the first node of Q. It guarantees
to find the optimal solution, but consumes much space for the maintenance of
the list Q.

3.2.2 Partial Order Planning

Partial order planning (POP) can be seen as searching in the space of partial plans. The
partial plans are thereby the nodes of the connectivity graph. A partial plan can be defined
as a five-tuple: P = (A,O,L,OC,UL), where3:

• A is a set of actions,

• O is a set of ordering constraints over A, for example ai ≺ aj ,

• L is a set of causal links over A
(a causal link is of the form ai

p−−→ aj and denotes a commitment that the precondi-
tion p of action aj will be supported by an effect of action ai),

3A complete description of the POP algorithm can be found in [Weld, 1994].
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• OC is a set of open conditions
(an open condition is a precondition of an action in the partial plan which has not yet
been achieved), and

• UL is a set of unsafe links
(a causal link ai

p−−→ aj is unsafe if an action ak exists such that a) ¬p ∈ Eff (ak) and
b) O ∪ {ai � aj � ak} is consistent).

The algorithm starts with a partial plan built by means of the domain actions, the initial
state and the goal state. The partial plan and all resulting partial plans are refined by repeat-
edly resolving the open conditions and unsafe links (flaws), until all actions are partially
ordered in O.

Properties

POP is based on the least commitment principle. The plans returned correspond to the
partial orderings of O.

3.2.3 Planning Graph Based Planning

Planning graph based planning is a mixture between state space and partial order plan-
ning. It uses a special connection graph called Planning Graph: “A Planning Graph encodes
the planning problem in such a way that many useful constraints inherent in the problem
become explicitly available to reduce the amount of search needed.” [Blum & Furst, 1995].
It simplifies the planning problem by ignoring some constraints, for example it ignores the
deletion of facts as actually caused from action effects.

The planning graph is a directed layered graph, whereas a proposition layer and an
action layer alternate (see Figure 3.4). Starting with a proposition layer Pi=0 consisting of
the initial state propositions, the succeeding action layer Ai contains all actions applicable
to Pi. Layer Pi+1 takes over all propositions from layer Pi (virtually by no-op actions) and
all effects from layer Ai. The planning graph levels off, i.e. after a layer Pk (fix point) all
layers are identical. A valid plan may exist as soon as a proposition layer contains all goal
propositions and when they are pair-wise non-mutex. If this is not the case when reaching
the fix point, no plan exists. Inconsistent relations that occur because of the constraint
relaxation are marked as mutual exclusions (see Figure 3.6): Two actions are mutex if (a) an
effect of one negates an effect of the other (inconsistent effects), one deletes a precondition
of the other (interference), or if (b) they have mutex preconditions (competing needs). Two
preconditions are mutex if one is the negation of the other or all ways of achieving them
are mutex (inconsistent support).

The planner Graphplan presented in [Blum & Furst, 1995] uses then a recursive search
strategy to extract a plan from the graph. The plans generated have a sequential total order
but may have several actions per step, so that those could be executed in parallel (a sample
plan extraction from a planning graph can be seen in see Figure 3.5).
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Properties

A planning graph can be constructed in polynomial complexity (time and space), and
is thus often used for heuristics (called a relaxed planning graph). Graphplan finds the
shortest-parallel plan, is sound and complete, and will terminate with failure if there is no
plan.

Graphplan has a rather specific algorithm, and while the planning graph technique has
proved to excel in STRIPS domains, it results in a trade-off concerning extendibility: It
is possible to extend Graphplan by mechanisms supporting new features (ADL [Koehler,
Nebel, Hoffmann, & Dimopoulos, 1997], sensing actions [Weld, Anderson, & Smith, 1998],
temporal planning [Long & Fox, 2003], and others), but at the risk of deteriorating the
Graphplan behaviour due to later implications with extensions [Long & Fox, 2003].

P 0 A0 P 1 A1 P 2 A2 P 3P 0 A0 P 1 A1 P 2 A2 P 3

P0..Pn are proposition layers, A1..An action layers.

Figure 3.4: Planning Graph: Basic Structure Figure 3.5: Planning Graph: Plan Extraction

Inconsistent Effects Interference Competing Needs Inconsistent Support

Figure 3.6: Planning Graph: Mutual Exclusions



4
Requirements

This chapter lists the detailed requirements for the development of the planner com-
ponent prototype. The requirements are available in a categorized form. Each require-
ment is weighted with priority label expressing its importance in an ordinal scale from
low, medium to high. The requirements are separated in a traditional way [Glinz, 2005]
into functional (Section 4.2) and non-functional requirements (Section 4.3).

It should be mentioned that requirements might have an inexplicit definition origin,
i.e. they were not listed during the first requirements specification process, but are either
derived from other requirements, or have arisen with the analysis of the major goals. In the
latter case, the deduced requirements were marked as such in Section 5.1.

The first section starts by revisiting the environment of NExT in order gain transparency
regarding the requirements specification.

4.1 Assumptions
Having outlined the motivation and objectives of the NExT project, I have not mentioned

yet any of its technical details. These technical details do not necessarily have to be seen
from an implementation perspective. In fact, they have a not negligible influence on the
requirements engineering for the planning component. On one side, they define base re-
quirements for an integration of the planning component into NExT, and on the other side,
they may show a possible discrepancy between the concepts of NExT and their implemen-
tation we should care about.

• Composite Processes:
Considering the NExT’s process model, it envisages a distinction between atomic
and unchangeable composite processes for the ground level of the process hierarchy.
These basic operations correspond to experimental steps and are described in OWL-S
again either as atomic or composite processes. At the time of writing, all experimental
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steps are realized as atomic processes, and a complete composition structure does not
exist. So a planner implementation cannot rely only on composite processes.

• Numeric Fluents:
In a planning model, numeric fluents represent function symbols that can take an in-
finite set of values. They are referenced either in preconditions or effects of actions.
Regarding an OWL-S process model, they are modeled as property values of their
class instances, and get related to by preconditions and effects as well. The question is
not whether an implementation is possible in OWL-S, because it is in different ways,
but whether an implementation has been designed in NExT. Currently, numeric flu-
ents are not directly supported by NExT, but are very likely to be implemented next,
namely by means of the annotation language constructs of OWL. Therefore support
for numeric fluents should be required.

• Simple Plan Structurings:
When the user decides to use the planning component for retrieving some alternative
plans, NExT expects primarily plans with simple structurings such as a sequence.

4.2 Functional Requirements

4.2.1 Thesis Goals

The purpose of this section is to describe the sub-goals and their direct induced require-
ments in terms of the development of the software.

ID Requirement Priority

RA1 Interactive plan finding
The planner invites the user to refine the planning problem in
several cycle runs until the resulting plans correspond to his best
wishes. For that purpose, on one side it receives information from
the user by letting him configure the planning problem, on the
other side it gives back a qualitative feedback on planning runs.
An infrastructure should be provided which supports this session
like interaction.

high
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RA2 Planning for alternative plans
Several plan alternatives are calculated, and information about
each alternative is provided concerning:
- plan length
- the quality of the plan
- other meta information (e.g. some numeric values for optimisa-
tion purposes)

high

RA3 Imprecise planning

– Imprecise planning involves the relaxation of domain and prob-
lem constraints (conditions, actions, types matching) to increase
the solution space.

high

- In case that no plan can be found, the planner should be able to
find some useful suggestions for a possible plan.

high

RA4 Ease of integration into a process execution environment high
The planner provides an interface that can be accessed by the pro-
cess execution environment. It can greatly account for a good inte-
gration by:
– allowing asynchronous communication which decouples the

components, especially with regard to concurrency,
– maintaining a communication session.

RA5 Offline planning. high
The user should be provided with plan alternatives before any Web
services have been executed. This means that the planner should
not depend on results of a Web service execution, but should be
able to do planning offline. If necessary, Web services that only out-
put state-less information or whose execution does not have any
influence on the active experiment environment can certainly be
executed.

RA6 Replanning. medium
While executing a process plan which was calculated from the
planner, it could be necessary to do a replanning step. A replan-
ning capability would enable to continue the used planning prob-
lem, i.e. the instantiated planning problem, and to partially update
the planning domain or problem, respectively.
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4.2.2 Description Language for Semantic Web Services

A description language for Semantic Web services should fulfill some requirements in
order to be usable in conjunction with planning techniques and in order to cope with the
sub-goals given in this thesis.

Requirement Priority

RB1 Formal definition of preconditions and effects.
The planner component relies on the formal definition to be able to
convert them to appropriate logic clauses.

high

RB2 Extension ability to annotate language entities like services or types.
Extensibility of language entities or the possibility to annotate them
would help to add optimisation or quality of service related informa-
tion on resource consumption, duration, performance and any other
quality aspect.

medium

RB3 Existing API to read and write service descriptions.
This would highly facilitate the process of retrieving the necessary
information from service descriptions.

medium

RB4 Process composition capability.
The planner needs compositional control constructs in order to de-
scribe process plans. At least a sequential control construct should
be supported.

high

RB5 Process composition capability for complex plans.
This emphasizes the above defined requirement with the support
for more complex control constructs like parallel, if-then-else, repeat-
until execution. They enable for example the description of parallel
plans.

low
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4.2.3 Planner Features

The next requirements define the demands made to the planning engine after having
decided the main concept (Section 5.2).

Requirement Priority

RC1 Support for basic planning features, and artifacts of domain and
planning problem description languages:
- STRIPS-like descriptions high
- disjunctive preconditions high
- conditional effects high
- time constraints† low
- resource constraints low

RC2 Numeric fluents that would enable for example resource
constraints†

medium

RC3 Generation of plans that contain control constructs (split/join,
if/then/else, repeat/until, ..)

low

RC4 Global constraints:
- soft goals: preferences which don’t have to be satisfied in either
case.

high

- optimization critera like QoS information (for example on a nu-
meric base)

medium

RC5 Managing non-determinism medium

RC6 Managing partial observability: The planner has incomplete knowl-
edge and has ways to cope with that problem, for example by means
of information gathering.

low

RC7 Probabilistic actions (actions that have a probability distribution for
their possible resulting states)

very low

† In case these features are not implemented, the proposed architecture should allow for these features with
minimal hassle.
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4.3 Non-Functional Requirements

4.3.1 Performance Requirements

CPU Time

Performance is not a killer criterion, but an important one. The benefit of a planner built
upon the idea of user interactivity exists only, when a user actually does not have to wait
too long for the plans to be generated.

Planning corresponds to one of the hardest computational problems existing (see Section
3.1), usually only solvable in exponential computation steps. Following the nature of plan-
ning algorithms is analyzed to gain transparency about which parameters actually affect
the computational complexity.

The variables having the most impact on the computational complexity are (a) the com-
plexity of the domain and problem (i.e. constraints) which are more or less given (depend-
ing on whether the planner plans for a imprecise solution or not), (b) the dimension of
the domain and problem (for example the number of actions) which is also given and can
hardly be minimized, and (c) the target quality of a plan in the sense whether a plan is a
time-first solution or an optimal solution for the problem. Optimal plans are harder to find
and thus consume more calculation time.

In order to minimize the time consumption, it might be useful to investigate in a so-
lution which is capable of distributing the computational load across processors and/or
machines.

Memory

Non-transient memory such as hard disk space can unlimitedly be used. For transient
memory, one should keep in mind that several planning processes could be executed in
parallel and thus consume large amounts of memory.

4.3.2 Quality Requirements

Quality of Architecture

The architecture of the planner component should be designed with state of the art de-
sign methods such as decoupling of high cohesion parts for modularity and separating
interfaces from implementations. Reusability and extensibility are factors that should also
be considered.
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4.3.3 Constraints

Concurrency

The planner should be designed to be executable in parallel from the same planning
requester, i.e. from the same NExT instance.

Programming Language

The API of the planning component should at least be available in Java, but the more is
developed in Java the better, since NExT is developed too in Java and the overall mainte-
nance of the code would thus be easier.

Platform

Linux is mandatory since NExT will run with high probability on research servers which
normally use Linux. The support for the Windows platform is very useful for testing and
performance measuring purposes.



5
Design Evaluation

The goal of this chapter is the evaluation of different approaches that come into ques-
tion as problem solutions. It is a trade-off of their benefits and their disadvantageous
consequences. Section 5.1 analyzes the main goals as well as the sub-goals in details to
crystallize the relevant evaluation aspects, and pre-evaluates partial approaches by giving
recommendations. Section 5.2 evaluates several design alternatives and puts the decision
for a main concept in a nutshell. Section 5.3 addresses some special aspects and evaluates
corresponding sub-concepts.

5.1 Goals Analysis
Let us revisit the major goals: Aside the main goal of the conception of a planning com-

ponent based on pre-defined Semantic Web services, there are the sub-goals:

• focus on the user interaction,

• planning for several plan alternatives, and

• imprecise planning in case no plan can be found or the user wants other solutions.

Examining these goals, there is to the best of my knowledge no existing solution that
could deal with all of them or is generic enough to be configured until it suits. Therefore,
all aspects are analyzed following with respect to the evaluation in Section 5.2.

5.1.1 User Interaction

A central idea of user interactivity (requirement RA1) is the overall control lying in the
user’s hands instead in those of NExT or any of its sub-layered components, i.e. the user
triggers a process execution and can interrupt the execution at any time. In addition, he
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can tell NExT to run only one experimental process step, like in debug mode. When he in-
vokes the planning feature, he wants to obtain a set of propositions about plan alternatives,
and there should be no need for the planner to have to execute any processes in order to
retrieve the plans and more generally to alter anything in the world of an experiment case.
The depicted scenario looks like an obvious case for offline planning, where the planner is
detached from the dynamics of the world and works offline. In contrast to it, online plan-
ning would mean that the planner evolves its plan by executing the next plan steps and by
adapting the current plan to an eventually unexpected world state. Let us discuss the two
alternatives:

• Quasi-online planning by means of a runtime integration

There are several interesting planners in the field of automated Web service compo-
sition that make use of online planning (for example a ConColog based planner like
[Phan & Hattori, 2006]). Online planning brings with it a smart solution for the prob-
lem of non-determinism of services and for the lack of domain knowledge, since it
aligns its execution path according to the current world state and can thus react on
world changes or new constraints. Because the process execution control should not
lie in the hands of the planner component as explained above, the only way to go
would be an integration of the planner’s process execution and monitoring mecha-
nism with the process execution logic of NExT. So, granted that the user has utilized
the planner and has chosen one of the proposed plan alternatives, an execution of a
plan step would come along with an assimilation to the planner’s process execution
control. Apart from the fact that such a tightly coupled integration would increase
the complexity of an architectural design and require some changes to NExT itself, an
integration might be questionable if the underlying planning engine had a fix control
logic or was based on a completely different language such as ConGolog.

• Offline planning combined with consistency checking and replanning:

Offline planning is – simply spoken – nearer to the mind of user interactivity: the
planner does its job when asked and returns the control (and hopefully some plans) to
NExT, i.e. to the user. There are two issues arising with the nature of offline planning:

– Consistency checking
Imagine the user has asked the planner for several plan propositions and is now
continuously executing one chosen plan. The plan which he uses now was cre-
ated offline some time steps before, and is based upon the world state at that
past time point. In the meantime, the world state might have altered in a differ-
ent way as the planner has planned. Depending on whether the plan is a simple
linearly ordered set of process steps or has built-in control constructs to deal
with some possible different flows, the plan might become inconsistent. NExT
is therefore most probably obliged to do a consistency check and possibly to ap-
pend a replanning step. So, offline planning is associated with the characteristic
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of iteratively consistency checking and replanning after a process execution. (→
requirement RA6)

– Information gathering
Web services can be separated into pure information gathering services1 and
services that may alter the world state. The execution of services of the former
type is a good way to complement the initial knowledge with the additionally
queried information ([Kuter et al., 2006] and [Peer, 2004] both take advantage of
this approach). Unfortunately, offline planning restricts the abilities of a plan-
ner, and the planner might not have the permission to execute any processes
anymore, even if they are of the information gathering type. To overcome that
issue, either NExT should gather the information from relevant Web services on
its own initiative and incorporate it into the domain knowledge – the difficulty
here lies in how to decide which services should be queried and for what actu-
ally –, or the planner component provides NExT with accurate instructions on
which services should be queried and for what. The latter approach makes more
sense since the planner component does a wide spread analysis of the domain
and its services in terms of planning anyway.

The offline planning variant is clearly favored over online planning since it fits better for
the principle of user interactivity inherited from NExT. For both issues arising with offline
planning, there are decent solutions. (→ requirement RA5)

Offline planning combined with continuous consistency checking and replanning is a
good way to deal with the non-deterministic behavior of Web services, since the system
may immediately react on new circumstances such as altered world facts, new information
or changed goals.

5.1.2 Plan Alternatives

If the user invokes the planner component, he should be provided with some alterna-
tive plans (requirement RA2). Before analyzing possible realizations, some aspects are dis-
cussed in more detail while making some assumptions.

• Plan representation

A plan is not equal to a plan, because they can have different representations, even
if they describe the same plan solution. First of all, they can be described in different
languages, such as PDDL or OWL-S. Secondly, they may have different action struc-
turings. Considering the resulting plans of state-of-the-art planners, we may have
plans consisting of plan steps that are either totally ordered – linearly (e.g. state space
planning) or complex by means of control constructs (e.g. planning by model check-
ing) – or partially ordered (e.g. partial order planning). The format does not play a

1In the AI planning domain, such services are known as sensing actions.
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role because any format can be consistently transformed to NExT’s process definition
language OWL-S as long as the language the plan is described in is not more expres-
sive than OWL-S. The structurings of plan steps however have a wide span ranging
from a sequence to complex nested structures. Theoretically, all existing linearly or-
dered plan solutions could be represented as one single complex structured plan. But
the latter version is not exactly what a user intends to receive when he asks for al-
ternatives. Therefore, I assume that the user should be provided with – if possible
– at least a handful plans which have a simple structuring of plan steps such as a
sequence. I argue that the fast understanding of the proposed simple plans helps the
user to get an optimal overall idea of the possible execution paths (→ requirement
RB4). If the user is interested in receiving a plan which involves a complete struc-
ture of the solution space, the planner might provide with him an additional complex
plan for this case. The generation of a complex plan would be an optional feature (→
requirement RB5).

• Conditional versus non-conditional process outputs

One point should be mentioned in addition. If we assume to have only processes
with non-conditional outputs (including effects) and for simplicity, processes to be
atomic, we will exactly have two execution outcomes of services: (1) a Web service
has successfully returned the outputs, or (2) the service or any other involved party
has failed. If we further assume the successful execution to be the normal scenario,
we have no problem to search for different simple, mostly sequentially ordered plans,
provided that such solutions exist, and select among these the few best. Let us now
go ahead to the case when we have processes with several conditional outputs and
effects, and we can not predict which outcome will emerge, neither now nor at the
time of their executions. Since we have to take into account all possible outcomes,
many considerations of process inter-dependencies would be necessary to meet the
goal constraints in either case and we would automatically come up with one or two
complex plans. And it turns out that a division of a complex plan is not trivial, i.e.
every division might danger the plan’s guarantee to reach the goal state. A possible
way out could be the usage of imprecise planning.

• Quality information of a plan

To facilitate the user’s choice of a plan, the plans should be assigned with additional
information like the quality of the plan or how the plan could be retrieved.
(→ requirement RA9)

• Optimization

Optimization is a useful technique to find the optimal solution according to some
optimization criteria, but is contrary to the generation of alternative plans. Planning
with optimization normally finds only the single optimal solution automatically.
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Approaches

Now, let us investigate how the requirement of plan alternatives can be fulfilled. Nor-
mally, planners plan for a single plan. Optimal planners (for example planners based on
the planning as satisfiability technique) search indeed explicitly for the best single solution.
Having said that, it does not necessarily mean that the underlying algorithms would not
be able to generate several plans within the same planning run. Apart from optimal plan-
ners which plan for only one solution as a matter of principle, several planning algorithms
suggest possibilities. There are three distinct approaches coming into my mind to produce
multiple plan alternatives:

• Extension of AI planning algorithms

This approach addresses the roots of the problem and comes along with the idea
of using the hidden abilities of a planner algorithm to produce several plans at the
same time. As explained above, we analyze only sub-optimal planners that generate
primarily sequential plans. A realization should guarantee to produce several plan
alternatives, provided they exist. Algorithms coming into question are state space
planning with a rather breadth-first like search, Graphplan, partial order planning
and planning as model checking.

Taking an existing algorithm may have the consequence that planning features like
sub-goal specifications would have to be implemented in addition. Therefore it might
be useful to choose an algorithm of which either some extensions already exist or
which can be extended without any hassles.

• Evaluation of complex plans

In the second approach, planners first generate plans upon which several plan al-
ternatives can be extracted afterward. The original plans should thus have either a
simple structuring with additional information enabling plan variations or a com-
plex structuring, so that an extraction for alternatives is possible. But let us assume
we have an original plan which is large, i.e. consists of many actions, and which is
weakly constrained, i.e. actions may be arranged in many different ways, the suc-
ceeding extraction could result in a huge pile of plan alternatives. This would help
the user in no way, and a randomly selection of a limited amount of plans is just as
useless. The only way to go is to combine the plan extraction with a re-analysis of the
planning problem in terms of plan quality evaluation.

• Using several planners in parallel

The last approach simply intends the usage of several planners in parallel. They
are engaged with the same planning problem to concurrently produce some plan
alternatives. This approach is the simplest among the presented, but has a drawback:
How can be guaranteed that the different planners actually do not return exactly the
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same plan alternative? To cope with that issue, the planning problem is either slightly
differently configured for each planner (for example one planner might be configured
to take some additional constraints into account), or the set of used planners should
be selected as a mixture of diverse planning algorithms. A good differentiation for the
latter would be the usage of a few sup-optimal planners combined with one optimal
planner.
Another issue is performance. Running several planners in parallel might consume
more CPU time than an extended single planner. Having said that, this issue has to
be seen proportional, i.e. running three native compiled planners may still be faster
than a complex Java bytecode planner.

All three approaches are usable, however, some have explicit advantages. The approach
of using several planners in parallel comes of the best, because it suggests a simple but
effective architecture and enables the integration of other approaches. For example, one
could think of developing an additional AI planner that fits in the multiple-planner archi-
tecture.

Diminution of the Solution Space

Retrieving a sizable amount of plans is a nice feature. Loosing track of too many plans is
less desirable. In such a case, it is of course possible to select only the best plans according
the their quality measures. This might however have the effect that some imperfect plans
which could actually have good user ratings are phased out. That is why the user is given
a possibility to add constraints in order to be able to produce exactly those plans that corre-
spond to his preferences. These constraints may be state trajectory constraints, constraints
with numeric fluents or any other imaginable global constraints. (→ requirement RB5)

Let us recover the complex goal requirement for automated Web service description as
described in Section 2.2. The main idea behind it is that additional constraints have to be
taken into account which are not expressible by goal states, for example the condition to
pass a specific state. The setup of additional constraints, especially state trajectory con-
straints, can be used to define those complex goals of Web service planning problems.

5.1.3 Imprecise Planning

Imprecise planning (requirement RA3) generally spoken helps to enlarge the solution
space and is used for certain cases. These cases are (see Figure 5.1):

• Case 1: No plan could be found

The planner component was not able to find any plan solution in a first run. Either
a plan actually exists but could not be found by the used planning algorithms (this
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Figure 5.1: Enlargement of the solution space with imprecise planning

can happen with sub-optimal planners, for example a forward state space based al-
gorithm could trap into a local minimum). Or, what is more probable, there exists no
solution. This may occur because of one of the following reasons (there may be some
other reasons not listed here, including those that originate from the listed):

– Reason A: Mutual exclusions (see Section 3.2.3):
The actions may not be assembled in a way (while complying with the precon-
dition and effect constraints) such that all goals can be fulfilled.

– Reason B: Unreachable goal atoms:
There may be some goal atoms that can not be satisfied by any of the available
actions.

– Reason C: Unsatisfiable global constraints:
Some global constraints, like for example state trajectory constraints or goal con-
straints with numerical fluents, may make the planning problem unsolvable.

– Reason D: Incomplete knowledge:
Missing information prevents the application of actions. It may be seen as a
sub-reason for reason B.

• Case 2: User wants other solutions

The planner component has returned some alternative plan solutions, possibly these
are even all existing solutions. But the user is not satisfied yet and wants to get some
others. This may be the case when the user has an idea of another possible solution
that has not shown up yet, or when he is interested to know any plausible solutions
that are not visible on the first sight and wants to play around by switching on and
off some constraints or goals to explore them.

Approaches

A first approach for imprecise planning addresses only the first case, whereas the con-
secutively presented approaches have a more general nature and can be applied in both
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cases.

• Problem analysis and partial results

First, we consider only the case no plan could be found, since it is a very specific prob-
lem. The user may want to get an explication why no plan could be found. The
provided information about the reasons can at the same time be seen as hints for the
user how he can adapt the domain in such a way that a replanning step would find a
plan. On the other hand, the user might already be satisfied with a partial result, for
example with a partial plan.

– Hints for the user
Some reasons have been listed above. For reason A, we might collect all pre-
conditions related to their actions that prevent the actions from being linked, or
simply list the goals that can not be fulfilled. For reason B, we can only list the
unsatisfiable goals. With the global constraints (reason C), we might intuitively
search for all those that either block for sure or have a critical influence. The
question is here whether these constraints can be sorted out so easily.
A good starting point is to provide the user with a list of unsatisfiable or com-
peting goals.

– Partial results
Partial results could be provided as partial plans, one (or several) starting at
the initial state, and another (some others) backwards from the goal state (see
Figure 5.2 for an illustration). State-space planning for example could be used to
retrieve the two plan types. It would search forward and backwards, based on
heuristics, until an abort condition holds.

Hints for the user are regarded as more important than partial results.

• Constraints relaxation

Another approach applicable in both cases is to relax some constraints. The decision
on which constraints to relax mainly depends on whether a relaxation makes sense
(for example the relaxation of an action’s precondition could danger its proper exe-
cution) and on how complicated the definition of a relaxation constitutes to the user.
Constraints coming into question are:

– Goal state constraints: Some goal state constraints could be relaxed by changing
them to soft goals that do not have to be fulfilled in either case. One could think
of a penalty weight for a not satisfied soft goal.

– Global constraints: They could be relaxed in the same way as the goal state
constraints.

– Temporal and resource constraints: These constraints may locally or globally be
unsatisfiable, and may be relaxed separately.
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Figure 5.2: Find best forwards chained and backward chained partial paths

• Similarity matchings

A third approach is the idea of performing object matchings in a more generous kind,
i.e. if the similarity of two objects reaches a certain threshold, they can be matched.
Following, the application of similarity matchings in the domain of OWL-S is dis-
cussed.

In ontologies we can measure the similarity between concepts [Bernstein, Kaufmann,
Kiefer, & Bürki, 2005]. A concept is a RDFS/OWL class which has properties with
either primitive typed or complex typed (with concepts) values, and is based on ar-
bitrary super-concepts. The similarity between two concepts can intuitively be mea-
sured by their distance within a directed acyclic graph representing a multiple in-
heritance framework of ontologies. For querying data in a similar way as with data-
mining, it may be sufficient to have a close common ancestor concept. Let us now
analyze an OWL-S process definition. We have preconditions and effects consisting
of atomic facts about the world state which in turn have variables that are bound to
concepts during a process execution. The variable binding requires most probably ex-
actly the declared types, and the application of similarity matchings to them may be
critical for the proper execution of the service. Continuing, we have inputs and out-
puts which represent non-physical objects and whose content normally is not known
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by a planner. I assume, by ignoring preconditions and effects: an input requirement
with a given type must be satisfied by an object containing at least all data that is
semantically expected and defined by the type, and an output object must at least
produce all data that is semantically expected and defined by its type. A success-
ful process execution can otherwise not be guaranteed. Having assumed this, let us
now further focus on the types of inputs and outputs. Literal data types such as text
can not be used for similarity matchings since we do not have any semantics about
their content. With OWL concepts it looks different. We have all semantics about the
object type and could thus say that the input object must be of the same concept or
of an unrestricted sub-concept of the required concept. An issue arises when taking
preconditions and effects into account: They may relate explicitly to input or output
parameters (for example an effect could set the type of an instantiated output object).
More analysis is therefore needed to find a proper appliance of similarity matchings
to OWL-S processes in respect of planning.

Summarizing, imprecise planning should be applied with the techniques of relaxing con-
straints and in the case of no-solution by providing the user with information about the
reasons.
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5.2 Evaluation of a Main Concept
Before moving to the evaluation, let us briefly summarize the results of the goals analysis

in the previous Section:
– User interaction turns out to be best addressed by an offline planning approach com-

bined with iteratively consistency checking and replanning.
– Plan alternatives should be generated mainly by the usage of different AI planners.

An AI planner developed by adapting some existing AI algorithms could be optionally
plugged-in.

– Imprecise planning can be realized by relaxing constraints and, in the no-solution case,
by providing the user with hints.

When we consider the sub-goals plan alternatives and imprecise planning, we come up with
a mixture of different planning tasks necessary to realize them. These planning tasks are
further supplemented by the techniques for diminishing the solution space, namely the
setup of additional constraints and optimization.

Having the facts and all other requirements in mind, we set about evaluating concrete
solution candidates for a main concept. Generally, it can be said that an adaptation of a
quasi finished solution, like a Web service composition solution, requires less effort than
a development with a mixture of some existing tools, and not to mention much less effort
than a complete development from scratch. Therefore I start by evaluating first complete
existing solutions. If they turn out to be not usable, I will focus on mixed solutions, i.e.
self-developed solutions that make use of other techniques.

5.2.1 Evaluation of Existing Solutions

Pre-Evaluation

To make the evaluation process more effective, a pre-evaluation is inserted before the
main evaluation of existing solutions. A pre-evaluation helps to sort out some alternative
solutions. We do so by considering the following aspects:

Support for Atomic Processes

As assumed in Section 4.1, atomic processes must be supported. So all planners that rely
on fully composed processes only, do not come into question as solutions. These are: pure
HTN-based planners (e.g. SHOP2), and solutions that encode process flows, for example
as Petri-Nets or similar networks, and extract some plans upon them.

Offline Planning
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All solutions that are restricted to online planning can not be used (see Section 5.1.1).
This concerns all ConGolog based planners.

Main Evalutation

We have a wide spectrum of different tasks (see Section 5.1) that have to be implemented
in the main concept in any form, even if we reduce them to the smallest subset of the
absolutely necessary tasks. It might thus be interesting to see whether any of the existing
solutions could be adapted in a worthwhile manner.

• OWLS-Xplan

OWLS-Xplan [Klusch et al., 2005] is a complete solution for transforming any OWL-S
Web services to the typical AI planning language PDDL and for planning upon them.
An advantage is the support for domain-specific (with composite processes) and
domain-unspecific (with atomic processes) planning problems. In addition, it is pos-
sible to optimize a plan by means of QoS metrics. Unfortunately, the implementation
was not finished at the time of writing, and the sources of the planning algorithm
itself were not available so that the other planning tasks could not be integrated so
easily. OWLS-Xplan thus does not come into question as a solution.

• WSPlan

WSPlan [Peer, 2004] represents an overall solution for the Web services composition
problem. It decouples a planning task by using different AI planners. This fantastic
idea supported by the fact that all sources are available under an Open Source license
makes WSPlan interesting to be used as a base architecture and to be extended by
the missing planning tasks. A small problem could arise because WSPlan assumes to
have the control over the service execution in order to combine the planning process
by step-wisely executing and monitoring the planned Web services. Another flaw is
that it is currently only compatible with WSDL as Web service description language.
Whereas the semantics of Web services have been taken into account (they are actu-
ally retrieved from semantical annotations to WSDL), any compositional aspects are
disregarded.

• MBP-based planner

MBP-based planners in the domain of Web service composition, like [Traverso & Pi-
store, 2004], are nice solutions as they are able to deal with the peculiarities of the
domain probably the best among the existing solutions. A MBP-based planner maps
all relevant flows to one complex plan, so in order to generate alternative plans, this
plan would have to be analyzed for extracting plans. It should be noted that the
software MBP is currently only available for Linux systems and only as binary exe-
cutables, and uses a PDDL dialect called NuPDDL which is compatible with PDDL
version 2.1 but not with the newer ones. So additionally required planning features
can not so easily be implemented but would rather have to be developed separately.
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The presented solutions do not cover all planning tasks, especially those that generate
alternative plans or address the no-solution case. Further, the preconditions for a guided
user interaction completely miss, and for most solutions, an underlying application logic
supporting the different planning tasks misses, too.

5.2.2 Evaluation of a Self-Developed Solution

Regarding the previous evaluation, it turns out that regardless of what alternative one
chooses, each of them has to be extended by a sizable amount of features. For this rea-
son, one might just as well develop a solution based on a mixture of different AI planning
techniques. A development from scratch with the guide of one or several AI planning al-
gorithms might however be too extensive in terms of time and complexity. The problems
with it are that (1.) handling the different planning tasks with only one or two planning
algorithms might not be sufficient in all likelihood since the tasks are simply too different,
and (2.) trying to mix the algorithms into one compact solution might cause negative im-
plications due to the incompatibilities of some algorithms when used in combination (ex-
tensions of a planning graph algorithm are an example). The development would spread
out to the implementation of a number of different planning algorithms.

Therefore, rather than trying to defeat the complete problem solving of the different plan-
ning tasks by one compact solution, a solution should be considered which assigns the
planning tasks to appropriate problem solvers, i.e. general or specialized AI planners.

• We have different planning tasks not solvable with just one compact solution. So
allocate a planning task to the AI planner made for it, possibly to several of them.

• Adapt the planning component to requirements for planning features by adapting an
existing AI planner or by adding another one.

Summarized, we have a decoupling of planning tasks from different implementations
of their problem solving, i.e. different AI planners. Such a design highly contributes to the
flexibility of the planning component and facilitates later extensions. Another advantage
is the ability to include existing AI planners as problem solvers. The promising approach
was thus chosen as a basic design principle in favor of a main concept for a self-developed
solution.

I continue by analyzing the planning tasks with regard to possible solutions for their
problem solving. The synthesis of plan alternatives can be established (1a) by the usage
of several planners in parallel, or (1b) by a single AI planner that is capable of it. Looking
at imprecise planning in the no-solution case, a usable solution in any form for it does
not exist and since it corresponds to a highly specific problem, it is best addressed (2a) by
an independent AI planner. Imprecise planning in all other cases can be achieved either
(3a) by one or more specific AI planners which concentrate on that aspect, maybe amongst
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others, or (3b) by formulating the problem solving of the required features as a problem for
existing, well-known planning techniques, what would enable to let the planning problem
be solved by any AI planner, provided it supports the used features. The latter approach is
particularly interesting because it perfectly fits into the concept of using several AI planners
as problem solvers.

For each planning task, I have outlined some solution variants about concrete AI plan-
ner designs. Following, they are summarized to more compact partial solutions:

Partial solution: Comments concerning design:

1. Usage of several AI planners in paral-
lel, no matter whether these planners
are self-developed or are taken from
existing. (1a)

Corresponds to the most general case regard-
ing the principle of separating planning tasks
from problem solvers. For the usage of exist-
ing AI planners, it may be necessary to con-
vert an OWL-S planning problem to a plan-
ning language such as PDDL. See the discus-
sion below.

2. A special imprecise planning based
planner for the no-solution case. (2a)

Can be designed as described in Section 5.1.3.

3. Encoding the imprecise planning func-
tionalities to be used with other plan-
ning techniques, i.e. with other AI
planners. (3b)

This interesting approach is discussed below.

4. A compact self-developed solution.
(1b, eventually 3a)

Solution variants 1b and 3a are combined be-
cause a development of two completely sep-
arate solutions is looked as too time consum-
ing. The idea behind it is to concentrate pri-
marily on 1b, and optionally on 3a, since the
imprecise planning case is already treated by
the above solution. Possible realizations are
evaluated in Section 5.2.3.

As already mentioned, solution 3 should further be analyzed. In order to encode a plan-
ning problem, which should be solved by imprecise planning features such as constraints
relaxation, as a planning problem that can be solved with existing and well-known plan-
ning techniques, a planning problem definition language is required which enables the
specification of planning problems for the usage with the aimed features. Further, if one
intends to forward planning problems to existing AI planners as in solution 1, such a lan-
guage is needed ditto. PDDL offers itself as a language, since it has become a widely used
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and accepted planning language and allows to express planning problems with sophisti-
cated planning features. Considering imprecise planning, constraints relaxation for exam-
ple could be encoded by the Preferences specification feature of PDDL 3.0.

A special compiler is needed additionally that not only converts OWL-S planning prob-
lems into PDDL, but also takes imprecise planning features into account. The converter
used in OWLS-Xplan [Klusch et al., 2005], which is also available as a stand-alone com-
ponent, extracts domain and problem information by parsing text lines of XML files, and
converts them to PDDXML files. Since it does not quite seem to be suitable, I decided to
develop a converter from scratch, but with the guide of the OWLS-Xplan converter.

Finally, regarding user interaction, the design decisions that have been made do not have
any influence on it. User interaction is combined with offline planning. To enable the
user to setup a planning problem to be solved with special planner features like imprecise
planning according to his ideas, I decided a planning problem to be stateful, i.e. it should
be session-like configurable and should accompany the user during a planning process.

5.2.3 Evaluation of a Self-Developed AI Planner

This section evaluates an AI planner that fits in the design of separating planning tasks
from problem solvers. It should primarily generate alternative plans, and secondly sup-
port the imprecise planning features. The presented approaches would be self-developed
solutions, possibly with support of other solutions.

• State space planning:

State space planning provides a rather simple algorithmic base structure which is a
good starting point for an own development and for extensions. It has proved, in
conjunction with a heuristic function, to be one of the most successful AI planning
techniques, and there are several planners (e.g. Metric-FF [Hoffmann, 2003]) whose
source code is freely available and could be used as a guide. Unfortunately, state
space planning is normally combined with depth-first search which is not compati-
ble with the generation of plan alternatives. An adaptation of the A* heuristic search
algorithm [Russell & Norvig, 1995, page 96] is a possible solution, but would have to
be evaluated for feasibility. The algorithm is following shortly explained:

The algorithm would be similar to the A* heuristic algorithm with beam search (keep-
ing only a certain amount of nodes in the plan list Q). In contrast to A*, it would select
the n best nodes of Q to branch, and in order to increase the diversity of resulting plan
alternatives, the path valuation would take an additional positive weighted param-
eter, namely the degree of diversity between the path of the candidate node and the
path of the first selected node, i.e. paths that are completely different to the best paths
may get a higher chance to be selected. The algorithm would terminate not before n
alternatives have been found, provided they exist.
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• Planning graph based planning:

A planning graph has the property to reveal parallel executable actions. This could
be used to rapidly recognize the planning problem’s potential to have plan alterna-
tives. A plan extraction could generate alternative plans thanks to the locally parallel
actions. The question is whether the plan alternatives, having rather minor differ-
ences, are enough decisive for the user. To gain more diverse alternatives, the plan
extraction algorithm would have to be changed completely.
A critical point is the difficulty of extending the Graphplan algorithm in a compatible
way [Long & Fox, 2003].

• Partial order planning: (POP)

POP is interesting due to the least commitment principle. It generates valid plans
that are defined by only the absolutely necessary constraints to be valid, for example
ordering constraints. So, a plan can then be interpreted in various ways, and in our
scenario, could be used to extract several plan alternatives.
The question is, as already discussed in Section 5.1.2, whether a plan extraction turns
out to be as simple as one might guess, or whether it does not rather result in a com-
plete re-analysis. Another aspect is, POP has recently become surprisingly compet-
itive with other state-of-the-art planners [Nguyen & Kambhampati, 2001], but lags
behind concerning new planning features. For example, there are no implementation
propositions yet for the planning features introduced with PDDL 3.0, that would be
necessary to encode constraint relaxations.

• Planning as model checking

Planning as model checking mainly adapts the idea of verifying temporal formulas
that formalize semantical domain properties to planning domains. It is especially
effective in connection with the composition of Web services, since the underlying
temporal logic like CTL allows to define non-deterministic behavior and partial ob-
servability. Another interesting aspect is the fact that the basic planning as model
checking algorithm as presented in [Giunchiglia & Traverso, 1999] can be modified
in order to generate automatically all potential solutions. However, the approach is
relatively new in the planning research and thus lacks extensions to new planning
features as proposed by the PDDL.

State space planning is chosen for a self-developed AI planner due to its advantages and
in consideration of existing algorithms and extensions.
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5.3 Evaluation of Sub-Concepts
Sub-concepts address features that are not directly subject of the thesis goals, but can

greatly support the main concepts. Following, the sub-concept for a load balancing design
is evaluated.

5.3.1 Load Balancing

The planning component is subject to time critical computations. Aside the usage of
appropriate planning techniques, load balancing can help to slacken the problem. For an
incorporation of a load balancing support, there are several architectural approaches, three
are mentioned following, starting with the big picture and getting increasingly more fine
grained:

1. Distribution of the planning component as a whole, i.e. the library is put on sev-
eral machines and provides an access interface according to a common distributed
communication framework like RMI.

2. Distribution of single parts of the planning component.

3. Considering even smaller code fragments, algorithms that support parallel process-
ing and their distribution could increase the performance by means of a grid infras-
tructure.

The first approach mainly depends on whether the overlying application layer NExT
supports remote interface access. And it has one big disadvantage: The API methods of
the planning component have to be accessed and configured with complex objects as argu-
ments, like ontology instances. For a distribution, those object structures would have to be
serialized which causes additional time consumption as well as increased network load.

The second approach is interesting when regarding the AI planners as the library parts
to be distributed, since these AI planners can easily be treated as atomic components and
normally, several of them are executed anyway in parallel for a single planning run. So
there is no difference for the planner engine. Only, the AI planners have to be prepared for
their distribution by means of an encapsulation and an assignment with an interface. The
serialization aspect is negligible since the AI planners are supplied with pre-compiled data
which has a simple format structure such as plain text.

The third approach can be disregarded because most of the existing planning tools are
only locally executable. There are of course exceptions (for example the GridSAT solver
[Chrabakh & Wolski, 2004] or the SAT4SATIN solver2 [Wrzesinska, Maassen, Verstoep, &
Bal, 2005] based on SAT4J).

2SAT4SATIN is based on SAT4J, which is a satisfiability library for Java (see http://www.sat4j.org/).

http://www.sat4j.org/
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The second approach was chosen due to the reasons mentioned. Nevertheless, a later
implementation of the first approach is still possible by adapting the interface as well as
the communication type between NExT and the planning component.

A design of a load balancing implementation has typically some characteristics, for ex-
ample static versus dynamic: static load balancing is a pre-execution task distribution
based on a prior knowledge, dynamic load balancing can adapt to changes in its target
systems [Bustos, 2003]. On the spectrum between static and dynamic, different techniques
line up and intermix. Whereas the former uses rather a centralized control for load measur-
ing and resource allocation, the latter has autonomous node components acting upon their
situated knowledge. A ground idea for a dynamic system is to have mobile components,
i.e. time- and location-transparent components, so that they can be executed at the location
providing the right amount of resources in terms of the global resource balance. An in-
ferred requirement is the ability to serialize the components. Since most of the AI planners
are native applications and a wrapping to JNI is not an alternative due to the additional
time efforts that become necessary, and a dynamic load balancing in general would be an
overkill for the requirements, a rather simple implementation with a centralized, static load
balancing is preferred.



6
Concepts and Design

This chapter presents all concepts as a solution to the thesis goals and requirements. By
starting with an overview, Section 6.1 that covers the main concept with its principles. I
will then successively go into more detail in the following sections. Section 6.2 describes
the most important elements of the architecture, Section 6.3 explains all aspects about the
OWL-S process mapping to PDDL, Section 6.4 is all about AI planners and Section 6.5 about
encoding planning features. Finally, Section 6.6 covers some sub-concepts that can be seen
as separate but supporting concepts.

6.1 Main Concept
The main concept is based on two piles on which all other concepts build up. These are

(1.) the decoupling of planning problem solving by the usage of different AI planners and
(2.) cooperative planning. Figure 6.1 illustrates them from a static perspective.
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Figure 6.1: Architectural overview from an abstract, static perspective
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• Decoupling the planning problem solving by using different AI planners:

As described in Section 5.1 we have plenty of different planning tasks. And in order
to gain most flexibility, their problem solving is decoupled by concrete solutions: A
planning problem is given to the planning component by accessing a unique inter-
face, what results in a planning task. Behind the scenes, there is a pool of different AI
planners, and the planning task is allocated to a selection of appropriate planners. Of
course the user has the possibility to influence the choice of planners by configuring
a planning problem, nevertheless, it is mainly the responsibility of the planning com-
ponent to have a strategy for making the right choice.
The usage of different AI planners makes it possible in a simple way to generate
several alternative plan solutions by executing a mixture of planners with diverse
underlying planning techniques.

• Cooperative planning:

It is about letting the user as well as the planning component cooperate in regard to
the problem solving of a planning problem. It may often be the case that one party
needs the support from the other (for example the planning component was not able
to find a solution, so it might provide the user with information about the reasons), or
one party can help to find a more accurate and satisfying solution (for example if the
user has a picture of a solution in his mind the planning component does not find, he
will then be able to configure an existing planning problem according to his ideas).
Cooperative planning is a superordinate idea for particular other concepts:

– Stateful interaction:
In order to provide an infrastructure for the interaction between the user and the
planning component that supports cooperative planning, the interaction type
should be stateful, i.e. an object representing a planning problem (we call it a
OwlsPlanningProblem instance) accompanies the user during the planning pro-
cess and holds all ontologies and configurations that have been set. A planning
process does not necessarily consist of only one planning run, but can have sev-
eral runs in order to optimize the planning problem until the planning results
correspond to the users expectations. For that purpose, the OwlsPlanningProb-
lem instance can be updated and configured.

– Imprecise planning:
Imprecise planning is required for cases where the solution space has to be en-
larged (see Section 5.1.3 for that issue). It should help the user to find other
solutions. In case of no potential solution, the user is provided with hints. In all
other cases in contrast, the user should give some hints by means of the config-
uration, for example what constraints to relax.

– Setup of additional constraints:
If a planning problem has too many potential or irrelevant plan solutions, the
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setup of additional constraints will help to diminish the solution space (see Sec-
tion 5.1.2 for details). It is again the user who knows which constraints should
be set.

– Optimization:
The user might want to retrieve one optimal plan, so the planning component
optimizes a planning problem according to pre-defined optimization criteria
and returns the found solution.

The last three presented methods, namely imprecise planning, setup of additional
constraints, and optimization, can all be arranged on a linear spectrum expressing
their degrees of variation of the solution space, ranging from the reduction of the so-
lution space to one solution (optimization), to the enlargement (imprecise planning)
of it. See Figure 6.2 for the arrangement of all methods.
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1 Hints for the user are actually not plan solutions, but the planner intends with them the
achievement of several solutions.

2 Planning for alternative plans corresponds to the normal case, and it aims at generating n
solutions.

Figure 6.2: Spectrum of solution space variations

• Compilation of planning problems and cooperative planning features:

A compilation of a planning problem into an intermediate planning problem defini-
tion language like PDDL supports the usage of different AI planners and cooperative
planning features in an optimal way because of following reasons:

– An intermediate language (PDDL) standardizes the exchange of planning prob-
lems between the planning component and the AI planners, and enables the
simple integration of existing AI planners.

– It allows to encode features of certain cooperative planning methods (imprecise
planning in the general case, setup of additional constraints and optimization)
as problem specified in the intermediate language.
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6.2 Architectural Elements
The concept intends a flexible call and data flow structure in order to optimally support

the principles described above. The structure of elements involved in a planning process
call is similar to that of the data flow. A basic flow could be summarized as following:

1. NExT: invokes the planning component to solve a planning problem after having set
the necessary OWL-S ontologies and configurations,

2. OwlsPlanningProblem: collects all necessary data and prepares them according to
the configuration,

3. Compiler: compiles a prepared planning problem into a planning specific description
language (PDDL), taking into account cooperative planning features,

4. Dispatcher: dispatches the compiled planning problem to appropriate AI planners,

5. AiPlanners: solve the planning problem,

6. Converter: translates plans described in a planning specific language (PDDL) back to
OWL-S, and

7. OwlsPlanningProblem: prepares plans by adding meta-data such as plan quality val-
ues.

Asynchronous message exchange is used for the planning component’s interface access,
especially for the invocation of the planning runs. The elements and their functionalities are
described in detail below, starting from the invoker side with NExT. Various AI planners
are covered separately in Section 6.4. Figure 6.3 gives an overview about the processing
units and the intermediate data flows.

OwlsPlanningProblem and OwlsPlanningRuntime

An OwlsPlanningProblem instance represents the stateful object for the user interaction
and can be opened at a OwlsPlanner instance (the entry point of the planning component).
It is designed to let the user set the different OWL-S ontologies, namely arbitrary domain,
initial and goal ontologies, and to let him configure the planning problem. If he starts a
planning run on the planning problem, an OwlsPlanningRuntime instance will be created
and will be run as a separate thread. With the configuration, the user is able to setup in-
formation about: general properties (time-out behavior), constraints relaxation, additional
constraints, all kind of optimization information (QoS variables and weights, grounding
weights), and others.
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During a planning process, the components have two functions:

• Preparation of planning domain and problem data:
This step collects all relevant processes, all types and properties dependent of the pro-
cesses, and finally all individuals with their property values. These data are stored
in tables for fast lookup. Another important task is the elaboration of a list of plan-
ning technique requirements: Based on the current state of the planning problem,
i.e. whether this is the first planning run or not, and – if not – whether some plans
could already be retrieved, and based on the configurations, different requirements
for the planning problem solving arise. For example, if the planning problem was
supposed to be optimized for certain aspects, the planning problem solving might
require support for numeric fluents.

• Preparation of plans:
As soon as some plans have been produced and converted back to OWL-S, the com-
ponents calculate QoS values as defined in the configuration. They help the user to
decide which plan alternative he wants to use. These values are then assigned to the
plans among other information.

Compiler / Converter

They are both components that divide the entire data flow into two areas concerning
description languages, namely one in which the planning problems and plans are described
in OWL-S, and the other containing the compiled planning problems or plans described in
an intermediate language (PDDL).

• Compiler:
It compiles domain and problem representations. The most probable case is the com-
pilation to PDDL. Since planning problem description languages are normally less
expressive than OWL-S and some important information may be lost, a compilation
to such a language brings with it a sophisticated translation mechanism that helps
to translate all relevant parts and to annotate elements for a later reverse translation
of corresponding plans. In addition, cooperative planning features are encoded as
well. A sample compilation to PDDL, which can be used for other planning specific
languages as a guide, is explained in Section 6.3.

• Converter:
The converter translates plans back to adequate plans described in OWL-S with the
help of annotations and the original OWL-S planning problem.

Dispatcher

The Dispatcher mainly forwards a prepared planning problem to appropriate AI plan-
ners according to the list of required planning techniques. In more details, it performs
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following steps:

1. based on the requirements list for planning techniques, it collects all suitable AI plan-
ners, i.e. AI planners that support the required features,

2. since the collected AI planners may expect different languages for the planning prob-
lem definition, it runs the Compiler to retrieve all necessary planning problem for-
mats, and

3. it dispatches the compiled planning problems to the AI planners in an asynchronous
way.

6.3 Compilation of an OWL-S Planning Problem to PDDL
This Section addresses the sample conversion of a planning problem defined in OWL-S

to PDDL. The compilation of cooperative planning features is treated separately in Section
6.5.

First of all, compositional aspects cannot be represented in PDDL. Therefore if the Com-
piler is supposed to find some composite processes, they will have to be mapped in some
way to atomic PDDL actions. And this is done in two ways:

1. a composite process is mapped as-is to a PDDL action,

2. a composite process is decomposed in order to be able to use the resulting sub-
processes for further mappings.

These two steps are recursively performed until only atomic processes result which can be
mapped anyway. Simple processes are expanded to either an atomic or a composite pro-
cess. The idea behind the described procedure is taking into account the QoS annotations of
processes of both types. It might namely be possible that a composite process has proved
to perform very well (e.g. it is reliable and fast) and to represent a good combination of
other services such that it may be further treated as a template process.

The behavior of this decomposition procedure can be setup by means of configurations,
i.e. one can set a maximum recursion depth or advice that composite processes should not
be mapped directly to PDDL actions. Or it is possible to let the processes be annotated with
QoS values in order to express a preference for atomic processes over composite process,
or vice-versa.

Now let us look at the mappings of the various elements of an OWL-S planning problem
definition to PDDL elements. To illustrate the mappings, the “Babel Fish Translator” Web
service from the Mindswap website1 is taken as example. A summary of all mappings is
shown in Table 6.1.

1See http://www.mindswap.org/2004/owl-s/services.shtml for the source file. The Babel Fish
Translator, known as the AltaVista Babel Fish Translator, is a simple text translator Web service. It was lightly

http://www.mindswap.org/2004/owl-s/services.shtml
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OWL-S / SWRL Ô PDDL domain PDDL problem

Class( ID, subClassOf ) Ô type( name=ID, type=subClassOf )

Property( ID, domain, range ) Ô predicate( name=ID, variables={
{name=“?domain”, type=domain},
{name=“?range”, type=range}} )

Process( ID ) Ô action( name=ID )

– hasInput( ID, parameterType ) – precondition: literal( name=“agentKnows”, {?p} )
– ?p = parameter( name=ID, type=parameterType )

– hasPrecondition( ID,
SWRL-Condition )

– precondition: formula=SWRL-Condition
– parameters for all SWRL-variables

– hasOutput( ID, parameterType ) – effect: literal( name=“agentKnows”, {?p} )
– ?p = parameter( name=ID, type=paramterType )

– hasEffect( ID,
SWRL-Expression )

– effect: formula=SWRL-Expression
– parameters for all SWRL-variables

Individual( ID, class ) Ô object( name=ID, type=class )

Description( class, property, value ) Ô fact for init state: literal(
name=class, {property, value} )

Table 6.1: Mapping of OWL-S elements to PDDL

We start with the domain description file in PDDL. For that purpose, we first map rele-
vant OWL Classes to PDDL types. The class hierarchy is therewhile copied, too:

OWL-S PDDL domain

XMLSchema ”&xsd;#string”
Class ”#SharedObject” subClassOf ”#Thing”
Class ”#Language” subClassOf ”#SharedObject”
Class ”#SupportedLanguage”

subClassOf ”#Language”

(:types string SharedObject - object

Language - SharedObject

SupportedLanguage - Language)

OWL Properties (object properties and datatype properties) are triples (class, property,
value) and are mapped to PDDL predicates (atomic propositions):

extended to be used as example.
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OWL-S PDDL domain

ObjectProperty canBeTranslatedTo
domain=”#SupportedLanguage”
range=”#SupportedLanguage”

DatatypeProperty isLanguageOfText
domain=”#Language”
range=”&xsd;#string”

(:predicates

(canBeTranslatedTo

?domain - SupportedLanguage

?range - SupportedLanguage)

(isLanguageOfText

?domain - Language

?range - string))

Things are getting more delicate when we move to the mapping of processes. We have
two distinct types of parameters, namely:

1. parameters representing facts of the world, that are required to satisfy a precondition
or that can be altered by effects, and

2. inputs and outputs which represent non-physical knowledge such as a translated text
produced as an output.

The elements of the former type can directly be mapped to its equivalent elements in PDDL
since they are described in SWRL as well-formed first-order like formulae. For the lat-
ter type, we should keep in mind that PDDL does not allow for describing non-physical
knowledge. What we can say is: a planner knows an input. Inputs are semantically treated
as knowledge preconditions and outputs as knowledge effects. For that reason, a predicate
agentKnows is introduced with one variable that can either be bound to an input or an out-
put parameter. The explained differentiation was used in [Narayanan & McIlraith, 2002]
in the context of the analysis of Situation Calculus aspects, and is successfully applied in
[Klusch et al., 2005].

OWL-S PDDL domain

AtomicProcess ”BabelFishTranslatorProcess”
- hasInput ”#InputString” type=”&xsd;#string”
- hasInput ”#InputLanguage” type=”#Language”
- hasInput ”#OutputLanguage” type=”#Language”
- hasOutput ”#OutputString” type=”&xsd;#string”
- hasPrecondition ”#SupportedLanguagePair”

SWRL-Condition:
propertyPredicate=”#canBeTranslatedTo”
args=”#InputLanguage”, ”#OutputLanguage”

- hasPrecondition ”#TextInInputLanguage”
SWRL-Condition:

propertyPredicate=”#isLanguageOfText”
args=”#InputLanguage”, ”#InputString”

- hasEffect ”#TextInOutputLanguage”
SWRL-Expression:

propertyPredicate=”#isLanguageOfText”
args=”#OutputLanguage”, ”#OutputString”

(:action BabelFishTranslator

:parameters (

?InputString ?OutputString - string

?InputLanguage ?OutputLanguage

- Language)

:precondition (and

(agentKnows ?InputString)

(agentKnows ?InputLanguage)

(agentKnows ?OutputLanguage)

(canBeTranslatedTo

?InputLanguage ?OutputLanguage)

(isLanguageOfText

?InputLanguage ?InputString))

:effect (and

(agentKnows ?OutputString)

(isLanguageOfText

?OutputLanguage ?OutputString)))
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Moving forward to the mapping of PDDL problem relevant elements, we have OWL
Individuals that can be described as PDDL objects.

OWL-S PDDL problem

Language ”#English”
Language ”#Dutch”
..

(:objects

English Dutch .. - Language

.. )

And finally all property values defined by means of OWL Descriptions may be used to
describe the initial fact base, i.e. predicates are instantiated by assigning initial values to
them.

OWL-S PDDL problem

Description ”#English”
canBeTranslatedTo=”#Dutch”

Description ”#English”
canBeTranslatedTo=”#French”

..

(:init

(canBeTranslatedTo English Dutch)

(canBeTranslatedTo English French)

.. )

Having outlined a general example mapping, it should be mentioned that there are
several other elements not existing in all planning problems:

• Conditional Outputs:
If actions have conditional outputs and/or effects, each conditional output/effect
group is separately expressed in PDDL by means of the effect clause when which
defines that some effects are only applied if a certain condition holds.

• Time and Resource Constraints:
The mapping of time and resource constraints requires that the Converter knows
how they are defined for OWL-S processes. That is why the technique used to define
them (e.g. with OWL annotations) has to be declared in the configurations. Resource
constraints and other numeric constraints are mapped to numeric expressions, condi-
tions and effects (PDDL 2.1 level 2). Time constraints in turn are mapped to durative
actions (PDDL 2.1 level 3). Durative actions might not be supported by all planners.

• Optimization:
Any numeric fluents, for example resource variables, that should be optimized, i.e.
either minimized or maximized, are assembled to one variable which is then globally
optimized. In PDDL, an optimization is described by metrics (PDDL 2.1 level 2). A
weighting of the respective variables is therefore necessary and can be established by
means of the configurations.
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6.4 AI Planners
After having discussed how a planning problem is preprocessed, we will throw a glance

at the engine of the planning component, at the AI planners. We need a potpourri of plan-
ners in order to solve the various planning tasks. Based on the organization of useful AI
planner solutions as proposed in Section 5.2.2, I differentiate between following four types:

1. usage of existing AI planners,

2. a special imprecise planning based planner for the no-solution case,

3. encoding of cooperative planning features to be used with other AI planners, and

4. a compact self-developed solution.

Optimization

Planning for alternative plans

Relaxation of constraints

Setup of additional constraints

Hints for the user in the no-solution case

Diminution
of the solution

space

Enlargement
of the solution

space

Solution space variations
by cooperative planning methods:

Planner for no-
solution case

M
D

P

Self-developed
solutions

AI planner
based on state
space planning

Existing
AI planners

S
G

P
la

n
5

Figure 6.4: AI planner solutions regarding cooperative planning methods

Every solution has its own domain of application. And thanks to the flexible base archi-
tecture, several of them can used in combination. For example solution 3 might encode a
planning problem by taking into account some constraint relaxations. The compiled plan-
ning problem might then be dispatched to two existing AI planners (solution 1) and to a
solution of type 4. Figure 6.4 clarifies the application domains of the listed solution types.
The four solutions theoretically allow, when considering the fact that solution 1 enables to
integrate any imaginable planner, to implement an interesting amount of problem solving.
This thought has to be seen in relation because some combinations may be incompatible.
Taking the above example, a plugged-in existing AI planner that does not support the fea-
tures of PDDL 3.0 might only be partially usable with solution 3.

For solution 1 it should be mentioned that a good mixture of AI planners, i.e. planner
based on different planning techniques, should be used in order produce plan alternatives.
Solutions 2 and 4 are presented in the following subsections. Solution 3 is separately ex-
plained in Section 6.5.
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6.4.1 Planner for No-Solution Case

The planner designed for the no-solution case (see Section 5.1.3) mainly concentrates
on providing the user with useful information as hints. The solution has insofar a rather
analytic nature. It is based on the creation of a relaxation planning graph and on the subse-
quent extraction of information. Following, two cases of no solution and the extraction of
the relevant reasons (mutual exclusions and unreachable goal atoms) are explained by means
of the “Babel Fish Translator” Web service.

For illustration purposes, the BabelFishTranslator planning problem is simplified to only
have propositions for the languages the texts are written in or translated to. Further, the
translator is capable of translating the language pairs: (English Swedish) (English Spanish)
(Swedish Norwegian) (Spanish Catalan). Given a text in English, we search for a plan that
incorporates the translation of the text to Norwegian, Catalan and Greenlandic.

In order to find unreachable goal atoms, one simply takes the fix point layer of the
planning graph and lists all missing goal propositions. In Figure 6.5, as shown with our
example, there is one missing, namely Greenlandic, i.e. the translation to Greenlandic.
The planner would therefore return the information that the goal Greenlandic can not be
satisfied.

P0 A0 P1 A1 Pk=2 A2 P3

English English

Spanish

Swedish

English

Catalan

Swedish

Norwegian

Spanish

English

Catalan

Swedish

Norwegian

Spanish

Layer P2 is the planning graph’s fix point. The goal Greenlandic has not appeared
up to this layer.
Note: Actions are shown only the first time they are applicable to a proposition
layer, but are in fact applicable to all subsequent proposition layers.

Figure 6.5: Extraction of unreachable goal atoms

In order to find competing goals, the planner analyzes the mutual exclusions of the plan-
ning graph. In the example planning problem, we assume that a translation eliminates the
original text (the documents might be secret and there must be only one exemplar for each
content). It turns out, as highlighted in Figure 6.6, that the translations to Norwegian and
Catalan are mutex, i.e. they can not be performed at the same time within a plan. So the
planner would return the information that Norwegian and Catalan are competing goals.
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P0 A0 P1 A1 Pk=2 A2 P3

Catalan

¬Swedish

¬English

Catalan

Spanish

English English English

Norwegian

Spanish Spanish

¬Spanish

¬English ¬English

Swedish

¬Spanish

¬Swedish

Swedish Swedish

English

Norwegian

In Layer P2, the goal propositions Norwegian and Catalan are mutex, because all
ways to achieve them are mutex.
Note: Actions are shown only the first time they are applicable to a proposition
layer, but are in fact applicable to all subsequent proposition layers.

Figure 6.6: Extraction of competing goals

Unsatisfiable global constraints can be determined in a similar way, but the original plan-
ning graph has to be extended to handle the respective features. The planning graph tech-
nique was chosen because – thanks to the relaxation principle – it clarifies reachability of
propositions and other constraints and shows mutual exclusive relations between actions
or between propositions. The relaxation can be applied to other aspects as well. [Long &
Fox, 2003] provides a planning graph extension for temporal aspects while being compati-
ble to the original planning graph to a maximum amount, and thus can be used to analyze
temporal constraints.

6.4.2 AI Planner Based on State Space Planning

The feature of synthesizing plan alternatives is mainly addressed by the usage of several
AI planners in parallel. By using a good mixture of AI planners that have different under-
lying planning techniques, it should be possible to synthesize a couple of different plans.
However, it does not guarantee for it. For example, if there are two potential plan solutions,
one of which is a optimal solution in terms of plan length and one of which is significantly
worse, all AI planners may come up with the first plan. In this case, the sub-optimal so-
lution is ignored though it might correspond to an interesting solution in the eyes of the
user. In order to have a solution which for sure returns some alternative plans, a solution
is following presented which does so.
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Q← initial node
C ← empty
A← empty
repeat

if Q is empty, return failure
b← first element of Q, Q← rest(Q)
T ← Q
T ← sort(T , f − wsim ∗ fsim(n, b))
B← first k elements of T , or T
for i := 1 to length(B)

n← first element of B, B← rest(B)
if n is a final node then

A← A ∪ {n}
if length(A) = k, return A

endif
if n /∈ C, or has lower cost that its copy in C then

add n to C
S← succ(n)
S← sort(S,f )
Q← merge(Q,S,f )

(Q is ordered in increasing order of f(n) = g(n) + h(n))
endif

endfor
endrepeat

Figure 6.7: Modified A* search algorithm

The proposed solution is based on state space planning with heuristics. State space plan-
ning actually does not directly suggest to be used for generating plan alternatives, since
common state space planners mostly use a depth-first search algorithm. This algorithm
concentrates on exploring rapidly promising paths while loosing track of the big picture of
the solution space. Aside depth-first search, there are many others, for example breadth-
first search which first explores all neighboring nodes and makes fast planning more dif-
ficult. In contrast, the A* algorithm [Russell & Norvig, 1995, page 96] is lying somewhere
in between the mentioned search algorithms, since it maintains a global list of partial solu-
tions. However, by always taking the best node of the list, some potential solutions might
easily be overlooked. I therefore propose a slight modification of the A* algorithm with
beam search (limited list of partial plans) in three ways (the complete algorithm is shown
in Figure 6.7):

1. for branching, select the k best or all nodes of Q, whereas k corresponds to the aimed
number of plan alternatives,

2. for the above selection, copy a temporal list T from Q, and reorder it by taking an
additional negative weighted parameter which is defined as a function measuring
the degree of similarity between the path of the first selected node b and the path of
the node n to be valued, and
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3. terminate not before k solutions were found or Q is empty.
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Iteration 2: List Q contains already two paths from
iteration 1. The path to node E has a better heuris-
tic value than the path to node A, because a plan
through E is shorter than a plan through A. The Fig-
ure illustrates the branching upon the two nodes E
and A.
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Iteration 3: Without the usage of the specially or-
dered list T , the nodes G and F would have been cho-
sen to branch and the plan through node N would
have been ignored. The figure illustrates the purpose
of the re-ordered list T, namely it considers plan solu-
tions with different and possibly sub-optimal paths.

Figure 6.8: Two sample iterations of the modified A* algorithm

The first extension tries to conquer more paths at the same time in regard of solution al-
ternatives. The second extension addresses the issue of overlooking some branches. Figure
6.8 illustrates both aspects with two sample iterations of the algorithm’s repeat loop. The
algorithm uses a heuristic function fsim(n, b) that calculates the similarity of two paths,
namely those belonging to the first best chosen node b from Q and to the candidate node n,
by comparing their path elements. The paths to be compared can be represented as vectors
~xn and ~xb containing either the nodes or the actions of the paths. One simple method to
measure the similarity regarding computational simplicity is to count the number of identi-
cal nodes or actions and set the resulting value in proportion to the averaged total number
of nodes or actions, respectively. Another possibility is to use the Jaccard measure which
measures the ratio of the number of shared elements.

Using a similarity measure function, which has too much impact on the node selection
in comparison to the heuristic function, might make the algorithm inefficient. The reason
is that the algorithm would concentrate on finding paths, the main thing they are differ-
ent, instead of trying to achieve the goal state. On the other side, a too low impact could
disregard the idea of exploring all possible paths. The similarity measure function is thus
additionally weighted to adjust its impact.

The algorithm presented is flexible in terms of extensions. Regarding the heuristic func-
tion, it is untouched and thus can be exchanged by any existing heuristic function, for
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example one which is based on relaxed planning graphs.

6.5 Encoding of Cooperative Planning Features
Cooperative planning is linked to the formulation of respective planning features as

planning problems in a planner specific language such as PDDL. The encoding for several
cooperative planning methods is described in this Section. Cooperative planning makes in-
tense use of configurations, for example when the user wants to relax a planning problem,
wants to set-up additional constraints or wants to optimize it. Until now, the configurations
were treated as black box and thus are first briefly explained.

Planning Problem Configuration

The configuration is an important element regarding the support for user interaction and
cooperative planning. The shown configuration fragments should not be seen as imple-
mentational artifacts, but rather as a way of illustrating how the gap between the planning
requirements of the user and the problem solving by AI planners is bridged.

Configurations are simple, textual key-value-pairs. Definitions of particular configu-
ration elements, for example a definition of an OWL-S process annotation mapping, are
separated from their activations. This allows the user to separately define configuration el-
ements and switch them on and off. The listing below illustrates the mapping definitions of
OWL-S process annotation. “processes.annotation.duration” is thereby one configuration
element, whereas “processes.annotations” activates it.

The mapping definition of OWL-S process annotations have additional parameters that
describe in details how an annotation should be used for planning. Different types of an-
notations exist. Most common types are QoS values which split into utility (type=“utility”)
and costs (type=“costs”) values. Their relative QoS importance can be defined separately
as QoS weight (“qos weight”). They are used for to cases:

1. for calculating quality information of a plan like the total utility and costs of all pro-
cesses of the plan, and

2. to optimize a planning problem for an optimal plan solution.

processes.annotations = duration, accessibility, energy-consume
processes.annotation.duration.declaration = owl_annotation
processes.annotation.duration.ref_name = "#ProcessDuration"
processes.annotation.duration.type = costs
processes.annotation.duration.qos_weight = 0.5
processes.annotation.accessibility.declaration = owl_annotation
processes.annotation.accessibility.ref_name = "#QoS_Accessibility"
processes.annotation.accessibility.type = utility
processes.annotation.accessibility.qos_weight = 2.0
processes.annotation.energy-consume.declaration = owl_annotation
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processes.annotation.energy-consume.ref_name = "#EnergyConsume"
processes.annotation.energy-consume.type = costs

Setup of Additional Constraints

Additional constraints help to diminish the solution space. Possible constraints are func-
tion constraints, constraints for the grounding types of OWL-S processes, or state trajectory
constraints. State trajectory constraints can be defined according to the declaration of plan
constraints in PDDL 3.0. The configurations may be extended to support other constraint
types.

constraints = energy-consume-constr, grounding-constr
constraint.energy-consume-constr.type = function_constraint
constraint.energy-consume-constr.ref_name = energy-consume
constraint.energy-consume-constr.value = "< 10"
constraint.grounding-constr.type = owls_grounding_constraint
constraint.grounding-constr.value = java

Relaxation of Constraints

Relaxation of constraints helps to enlarge the solution space. The relaxations presented
here concentrates mainly on the relaxation of goal predicates. They can be assigned with
an additional penalty cost, in order to express their relative importance. Apart from goal
predicates, it is of course possible to relax all kind of constraints that have been setup ex-
plicitly by means of configurations, e.g. state trajectory constraints. This would allow to
take into account the relative importance of these constraints.

relaxations = soft-goals1, soft-goals2
relaxation.soft-goals1.type = goal_predicate
relaxation.soft-goals1.value = Greendlandic
relaxation.soft-goals1.penalty = 3
relaxation.soft-goals2.type = goal_predicate
relaxation.soft-goals2.value = Norwegian, Catalan
relaxation.soft-goals2.penalty = 5, 6

Optimization

An optimization strategy is defined by means of several optimization elements and a
composition of arbitrary of them. In PDDL, an optimization for a planning problem is
defined with the metrics feature (PDDL 2.1 level 2).

optimizations = qos
optimization.qos.metrics = annotations(duration, accessibility)
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6.6 Sub-Concepts

6.6.1 Information Gathering

Information gathering was primarily stated as a useful feature in conjunction with impre-
cise planning. It should help to complement a knowledge pool with missing information
and thus higher the chance of finding some solutions. However, information gathering is a
feature that can be used more generally in nearly all cases and anytime during a planning
procedure. The feature is following explained in details.

We assume to have a planning problem, including (1) processes, some of them which
are of the information-gathering type only and any others that might alter the world state,
and (2) an initial knowledge base consisting of facts and of untyped data the software
only knows. Further, we do not care about the completeness of the knowledge base. The
information gathering feature is organized to be either optionally switched on for planning
runs or to be invoked explicitly. So the user might switch it on and do a planning run. Plans
are normally synthesized, but the information gathering feature additionally collects all
information retrieval processes that are for sure or may be relevant for the execution of the
resulted plans or for further planning. NExT can then execute them in order to retrieve the
information. This could have several consequences: (a) Some information has missed and
its acquisition allows now for finding some plan solutions, (b) the obtained information
may indicate an inconsistency of the plans, or (c) the user may given the opportunity to
profit from the planners’ increased reasoning capabilities and from better plan solutions.
In such cases a replanning step would be necessary.

6.6.2 Load Balancing

The concept of using several planners in parallel gives the impression that the computa-
tional load would rise enormously. On the first sight this is correct, and thus load balancing
makes a contribution to making the software more scalable. On the other hand, the par-
allelism of computations just leverages the concept in respect of load balancing, since it
allows to distribute the computational load.

In order to explain the load balancing architecture, the AiPlannerManager helper class
is first introduced.

AiPlannerManager

Since a plant of different planners possibly on several platforms may be used to tackle a
solving of a planning problem, somebody is needed who manages all these diligent helpers.
And this is exactly the task of the AiPlannerManager. It has the overview about installed
planners any time, it instantiates them to let them plan, and is responsible to provide in-
formation about the planners such as supported features or required domain and problem
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description formats. The Dispatcher does actually not address AI planners directly, but
rather asks the AiPlannerManager for suitable planners.

Load Balancing Concept

A load balancing mechanism is incorporated to make the application more scalable. A
major reason for it is the usage of several AI planners in parallel. Among different possi-
bilities, load balancing was decided (see Section 5.3.1)

1. to be applied to the execution of AI planners corresponding to the most time critical
part and

2. to be realized in a rather simple centralized and static fashion.

The Active Object design pattern [Lavender & Schmidt, 1995] lends itself for a design.
Looking at an object that should be executed distributed and concurrently, the pattern
decouples the method’s execution from the method’s invocation, so that execution and
invocation can take place at different locations, and introduces concurrency by using asyn-
chronous method invocation and a scheduler for handling requests. An active component
consists of the following components:

• a proxy which provides an interface towards clients with publicly accessible methods

• a method request representing a method invocation from the client

• an activation queue where the methods requests are stored

• a scheduler which decides which pending request to execute next

• a servant being the implementation of the active object

• a future with whom clients can obtain the results of a method’s execution

AiPlannerManagers and AI planners are designed as active objects and can be freely
distributed. A special Dispatcher takes care of all available AiPlanningManagers, no matter
on which computer they are located. It acts as a proxy when the conventional Dispatcher
searches for appropriate AI planners.



7
Implementation

A prototype of a design helps to recognize whether the assumptions and decisions about
a design are correct or not. Further, it clarifies critical aspects which could danger a design
decision. And this is exactly what the prototype of the planning component architecture
targets at. A complete prototype was not developed, but rather some critical parts. This
chapter first gives an overview about the implementation, and then focuses on specific
aspects and gives feedback on whether the design is feasible or has to be further evaluated.

7.1 Overview
The global organization is basically done according to the design (see Figure 7.2 for the

dynamic aspects). All components and sub-components were organized in four package
groups, and three abstraction layers (Figure 7.1 illustrates the packages and their depen-
dencies):

• Component Interface / OwlsPlanner
This part can be seen as the heart of the planning component. On one side, the whole
communication between NExT and the planning component is transacted by an API
with interfaces. On the other side, this software part is a concrete implementation of
the API, controls all planning processes and makes use of the other packages. In more
detail, it maintains planning problems, prepares them for a plan finding and executes
appropriate AI planners.

• Planning Engine (AI Planners)
The planning engine is responsible for all concrete planning jobs. It manages all AI
planners and allocates the necessary infrastructure for planning.

• Models
We have one input model (OWL-S), and several intermediate models (e.g. PDDL) to
be used for the AI planners. This package group provides a set of needed model and
basic converters.
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Models

OWL-S PDDL

Utilities

LoggingConfiguration

PlanningEngine

PlannerManagement

OwlsPlannerAPI OwlsPlannerImpl

OwlsPlanner

PlannerAdapters

Figure 7.1: Package overview and dependencies

• Utilities
The utilities packages contain components used by all software parts.

7.2 Components

7.2.1 API / User Interaction

A major goal of the concept was the support for a continuous user interaction. It was
therefor interesting to see how the user interactivity could be realized by an API.

Technically, the user interactivity is mainly established by providing a stateful class
OwlsPlanningProblem (see Figure 7.3), which accompanies the user during the whole
planning process. An instance of it can be created by the OwlsPlanner, which in turn is
created by the OwlsPlannerFactory class. It lets the user set all domain and problem
ontologies, and configure the planning problem. The configuration is implemented as a
simple hash table of key-value text pairs. It is possible to import or export the complete
configuration.
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NExT OwlsPlanner

OwlsPlanning-
Problem

OwlsPlanning-
Runtime

Compiler Dispatcher

openPlanning-
Problem

create

setOntologies,
setConfiguration

plan(OwlsPlanningListener)

run

compile

PddlPlanningDomain,
PddlPlanningProblem

dispatch

AiPlanner
A

AiPlanner
B

create

create
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run

run

planningEnded(AiPlannerEvent)

OwlsPlanningRuntime

notifyPlanningEvent(OwlsPlanningEvent)

prepareData
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convert(PddlPlan)

OwlsPlan

preparePlan

The execution of a planning process is twofold asynchronously decoupled from its invocation by creating and
running an OwlsPlanningRuntime instance and AiPlanner instances as separate threads.

Figure 7.2: UML sequence diagram of a planning process
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OwlsPlannerFactory

+getFactory():OwlsPlannerFactory
+createPlanner():OwlsPlanner

OwlsPlannerFactory

+getFactory():OwlsPlannerFactory
+createPlanner():OwlsPlanner

<<interface>>
OwlsPlanner

+createPlanningProblem():OwlsPlanningProblem

<<interface>>
OwlsPlanner

+createPlanningProblem():OwlsPlanningProblem

<<interface>>
OwlsPlanningProblem

+setProperty(name:String,value:String):void
+getProperty(name:String):String
+getProperties():Properties
+setProperties(props:Properties)

+addDomainOntology(OWLOntology ontology);
+removeDomainOntology(OWLOntology ontology):void
+getDomainOntologies():List<OWLOntology>
+updateDomain():void
+setInitialOntology(init:OWLOntology):void
+getInitialOntologies():List<OWLOntology>
+setGoalOntology(goal:OWLOntology):void
+getGoalOntologies():List<OWLOntology>

+plan(lis:PlanningListener):OwlsPlanningRuntime
+planImprecisely(PlanningListener lis):OwlsPlanningRuntime

<<interface>>
OwlsPlanningProblem

+setProperty(name:String,value:String):void
+getProperty(name:String):String
+getProperties():Properties
+setProperties(props:Properties)

+addDomainOntology(OWLOntology ontology);
+removeDomainOntology(OWLOntology ontology):void
+getDomainOntologies():List<OWLOntology>
+updateDomain():void
+setInitialOntology(init:OWLOntology):void
+getInitialOntologies():List<OWLOntology>
+setGoalOntology(goal:OWLOntology):void
+getGoalOntologies():List<OWLOntology>

+plan(lis:PlanningListener):OwlsPlanningRuntime
+planImprecisely(PlanningListener lis):OwlsPlanningRuntime

<<interface>>
OwlsPlanningRuntime

+waitFor(long ms):void
+getException():Exception
+isPlanning():boolean
+getPlans():List<OwlsPlan>
+stop():void

<<interface>>
OwlsPlanningRuntime

+waitFor(long ms):void
+getException():Exception
+isPlanning():boolean
+getPlans():List<OwlsPlan>
+stop():void <<interface>>

OwlsPlan

+getOwlsPlan():CompositeProcess
+getUtility():Double
+getCosts():Double
+getPlanLength():Integer

<<interface>>
OwlsPlan

+getOwlsPlan():CompositeProcess
+getUtility():Double
+getCosts():Double
+getPlanLength():Integer

<<interface>>
OwlsPlanningListener

+notifyPlanningEvent(event:OwlsPlanningEvent):void

<<interface>>
OwlsPlanningListener

+notifyPlanningEvent(event:OwlsPlanningEvent):void

OwlsPlanningEvent

+getType():int
+getPlans():OwlsPlan[]
+getException():Exception
+getExecutionTime():long
+getAiPlannerEvent():AiPlannerEvent

OwlsPlanningEvent

+getType():int
+getPlans():OwlsPlan[]
+getException():Exception
+getExecutionTime():long
+getAiPlannerEvent():AiPlannerEvent

creates

creates

returns

requires

returns

returns

0..n

Figure 7.3: API classes and interfaces used for the user interaction

User interaction is supported by asynchronous communication as proposed in the de-
sign. If the user starts a planning run, an OwlsPlanningRuntime instance is returned. It
is a runtime object, i.e. it provides all up-to-date information from the planning run and
allows to immediately stop the process. The user is notified by an OwlsPlanningEvent

as soon as a AI planner is has found some plans, was unable to or if its execution has failed
due to another reason.

7.2.2 Models

Models of planning problems or solutions are intensively used for data exchange and
conversion. An implementation based on the principles of simplicity and reusability thus
assigns each model with a unique identifier and enables their automatic conversion to other
models. All models are serializable.

The PDDL model was completely implemented as tree of different classes and the hier-
archy structure was adapted from the PDDL version 3.0 specification. Figure 7.4 shows the
model part Action. The lexer and parser tool ANTLR was used to translate textual model
representations to PDDL models.
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<<interface>>
Effect

AbstractFormula

Formula.And

Formula.Or

Formula.Not

Formula.Imply

Formula.Exists

Formula.Forall

Formula.Comp

Formula.Predicate

Formula.Preference

<<interface>>
Fluent

AbstractFluent AbstractEffect

Fluent.BinaryOp

Fluent.MultiOp

Fluent.Function

Fluent.Neg

Effect.AssignOp

Effect.When

Effect.Predicate

Effect.FunctionAssign

Effect.TimedInitialFluent.Number

Fluent.IsViolated

<<interface>>
Formula

Action

name:String

Precondition

Effect

TypedList

Parameters

1

1

1

Figure 7.4: Model implementation for a PDDL action specification

7.2.3 AI Planner Infrastructure

AI planners need a sub-layered infrastructure to perform successfully. The infrastructure
should enable to plug-in them as external components, also if they are native compiled, and
to separately configure them. Since AI planners are a central element of the software and
are part of multiple-planners idea, it was important to realize such an infrastructure.

An instantiated planning component library has a planners directory for placing in the
different AI planners, each in separate directory. The planners directory is either specified
relatively to the planning component’s library file (owls-planner.jar) or absolutely. Each
planner specific directory consists of a mandatory configuration file and optional libraries
that are automatically loaded by an extra class loader. The configuration file provides in-
formation about the name of the AI planner, the supported features and models, and can
at the same time be used to configure the planner, for example set-up some command line
options.

Every AI planner has to implement the AiPlannerFactory and the AiPlanner inter-
face. In order to create an AI planner instance, AiPlannerManager invokes the factory’s
createPlanner method with the properties of the configuration file as argument. Figure
7.5 shows all involved classes and interfaces, including the AiPlannerEvents which have
to be created by the AI planner for a proper interaction with planning component.
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<<interface>>
engine.planners.AiPlanner

+execute(
domain:models.Domain, problem:models.Problem,
config:Map<String, String>, 
lis:AiPlannerListener):AiPlannerControl

+getName():String
+getId():String

<<interface>>
engine.planners.AiPlanner

+execute(
domain:models.Domain, problem:models.Problem,
config:Map<String, String>, 
lis:AiPlannerListener):AiPlannerControl

+getName():String
+getId():String

<<interface>>
engine.planners.AiPlannerFactory

+createPlanner(descriptor:AiPlannerDescriptor, 
id:String):AiPlanner

<<interface>>
engine.planners.AiPlannerFactory

+createPlanner(descriptor:AiPlannerDescriptor, 
id:String):AiPlanner

<<interface>>
java.io.Serializable

<<interface>>
engine.AiPlannerControl

+stopPlanning():void

<<interface>>
engine.AiPlannerControl

+stopPlanning():void

engine.AiPlannerDescription

+getProperty(name:String):String
+getName():String
+getFactoryClass():String

engine.AiPlannerDescription

+getProperty(name:String):String
+getName():String
+getFactoryClass():String

engine.AiPlannerEvent

+getType():int
+getPlannerName():String
+getPlannerId():String
+getExecutionTime():long
+getPlans():models.Plan[]
+getException():Exception

engine.AiPlannerEvent

+getType():int
+getPlannerName():String
+getPlannerId():String
+getExecutionTime():long
+getPlans():models.Plan[]
+getException():Exception

<<interface>>
engine.AiPlannerListener

+planningEnded(event:AiPlannerEvent):void

<<interface>>
engine.AiPlannerListener

+planningEnded(event:AiPlannerEvent):void
requires

returns

creates

creates

requires

Figure 7.5: AI planner adapter classes and interfaces

7.2.4 Load Balancing

Local balancing, corresponding to a sub-concept, attracts the interest because its fea-
sibility would emphasize the usage of several planners in parallel. Following, the load
balancing implementation is explained in detail.

Two classes were implemented as active objects (AOs) to be used in conjunction with the
framework ProActive [Baduel et al., 2006]: It is firstly every AI planner implementation
(i.e. the different implementations of the AiPlanner interface), and secondly the class
AiPlannerManager. Every AiPlannerManager singleton instance of an involved ac-
tive computer is registered by means of a registry service (e.g. Jini registry service) and
bound to an absolute address. The Dispatcher instance looks them up, i.e. those which
are available, and forwards a planning request not only to the local AiPlannerManager
instance but to all AOs found. A dispatch strategy defines to which AiPlannerManager

AOs it should dispatch. A dispatch decision depends on whether they support the asked
planning features and whether their system has sufficient free memory and CPU resources.
The Dispatcher instance obtains AiPlanner instances as AOs from the AiPlannerManager
AOs. It then has full control over the AI planners: it can execute them and since the execu-
tion is decoupled due to the asynchronous invocation, it can also stop them anytime.

The AiPlannerManager AO does not have a scheduler implementation since the
methods executed remotely consume practically no processor time and the default FIFO
based scheduler is sufficient. A AiPlanner implementation does not have a scheduler
implementation either because it has mainly one method. Instead, it has to take care to
immediately return a AiPlannerControl object which allows the planner caller to stop
it.
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Figure 7.6: Distribution of the AI planning load: a static view of the involved components

The implementation was successfully tested. The application of a load balancing strategy
turned out to be a relatively uncritical implementation job.

7.3 Discussion
Some parts of the software could already be implemented and can emphasize the correct-

ness of the design until now. On the other side, a testing of a full planning run is currently
not possible. Several aspects are discussed following in more detail:

• User interaction
An API was implemented according to state-of-the-art patterns to enable the user in-
teraction. Stateful objects and asynchronous communication with the listener-event
mechanism are quality arguments of the API. The configuration is deliberately im-
plemented as primitive key-value text pairs to enable ease of usage, but it could be
useful to add more intuitive methods for the setting of configurations.
A final statement can not be made, until the user interaction was intensively tested
from within NExT.

• Plan alternatives
The generation of plan alternatives mainly builds on the multiple-planners idea. Whereas



7.3 Discussion 76

this idea allows to plug-in any imaginable AI planner, it must be evaluated whether
the current usage of only existing AI planners is sufficient to produce satisfying alter-
natives.

• Cooperative planning
Apart from the no-solution case, most cases correspond to known and solvable prob-
lems, e.g. optimization or relaxation of constraints by means of PDDL planning fea-
tures. On the other hand, some example planning problems were used to theoreti-
cally test the correctness of the concepts. But more testing is needed, especially with
process examples from the NMR experiment domain.

• Usage of several AI planners in parallel
In this respect, some important effort has already been made, namely the implemen-
tation of relevant parts. Factoring out the aspect of plan alternatives, one can say that
the design was feasible and effective.



8
Conclusions

8.1 Summary
The goal of the thesis was the concept elaboration for an architecture of a planning com-

ponent that semi-automatically creates plans based on pre-defined OWL-S processes. Great
store was set on:

• focus on user interaction,

• generation of plan alternatives, and

• imprecise planning in case of no or too few solutions.

Aside, different design alternatives should have been evaluated first, and a prototype
should confirm the design decisions.

The concept was developed for two different scopes, namely primarily to be used as a
planning component for the process management system NExT in the NMR experiments
domain, and additionally as an overall solution for the Web service composition problem.

A detailed analysis of the goals has shown that a set of different planning features is
necessary to deal with all goal aspects and that an incorporation of corresponding plan-
ning techniques into a compact solution turns out to be an undertaking since specialized
planning algorithms tend to be incompatible when being integrated with each other. It was
not surprisingly to see existing Web service composition solutions concentrating on some
of the required planning aspects only. An extension of one of them would amount to a
self-developed solution.

Therefore, using low coupling and reusability as fundamental principles, a concept was
chosen that separates different planning tasks from concrete planning implementations,
i.e. from specialized planning techniques. It enables on one side the generation of several
plan alternatives quasi by nature, and on the other side the integration of arbitrary specific
planners that can be selected to solve a given planning task.
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User interaction is supported by asynchronous communication, i.e. by planning offline
and by immediately returning the control to the user, and by a stateful object that represents
a planning problem of an NMR experiment case the user is working at. The user configures
the planning problem and plans with it, but it is the planning component’s task to forward
the planning problem to appropriate planners.

The concept intends a flexible compilation of a planning problem into the planning
language PDDL or any other compatible language, in order to encode different planning
task functionalities and in order to optimally support the planning problem solving by the
subsequent planners.

Taking a planning result of a couple of plan alternatives as the normal case, we may have
the case of no or too few solutions, so the user’s demand would be to get more solutions
what corresponds to the idea of imprecise planning, or we may have too many or imper-
fect solutions and the user might wish a containment. All these variations of the solution
space are tightly coupled to the user’s preferences and were thus realized as the concept of
cooperative planning.

Imprecise planning is addressed in two ways: (1) If a planning problem has no potential
solution, an analysis of it with the help of an extensible planning graph yields reasons, (2)
generally, it is possible to configure constraints relaxations on all imaginable constraints.

The diminution of the solution space can be attained by setting up additional con-
straints such as state trajectory constraints, and by configuring optimization criteria based
on weighted QoS values of processes and on other values.

Considering the typical problems of automated Web service composition, most of them
could be addressed thanks to the concept. Non-deterministic behavior is handled by iter-
atively consistency checking and replanning after a process execution of plan step. Incom-
plete knowledge can be complemented by the information gathering feature that searches
for all relevant information retrieval processes in order to query the missing world facts.
Complex plans can be defined by the setup of additional constraints.

Finally, a load balancing concept was developed to make the software, especially with
regard to the parallel execution of different planners, more scalable.

The prototype was not completely implemented, but rather parts of it to proof some
concept aspects. The API was realized to see how the user interaction can be established
by interfaces. A complete PDDL model was created based on a flexible interface/class
hierarchy to be able to compile planning problems into it. Concerning the parallel execution
of different planners, a plug-in system like infrastructure for planners and a load balancing
mechanism was implemented. The listed parts could successfully be implemented and
confirm the concept ideas so far.
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8.2 Future Work
Having developed and presented a complete concept for a planning component accord-

ing to specific goals, I consider some ideas for future work that might complement or ex-
tend the concept. Though the planning component can not be seen as a complete software
system with several sub-components, it offers the plugging-in of other components, i.e.
AI planners which fit into the architecture. Whereas the basic concepts look very promis-
ing and does not primarily have to be enhanced, various additional AI planners solutions
could be considered separately. This Section thus concentrates mainly on the later type of
extensions.

8.2.1 AI Planners

As already mentioned, the architecture of the planning component enables the easy in-
tegration of other AI planners. Considering cooperative planning and the spectrum of
different solutions space variations, we may think about planners that support any sub-
set of the various cooperative planning methods. Following, some plausible extensions
are described. In Figure 8.1, these extensions are arranged on the solution space variation
spectrum.

Optimization

Planning for alternative plans

Relaxation of constraints

Setup of additional constraints

Hints for the user in the no-solution case

Diminution
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Figure 8.1: Additional AI planner solutions regarding cooperative planning methods

Partial Results Planner

It may often be the case that a given planning problem has no potential solution. In such
a case, the user should be provided with some reason which he can interpret as hints. If this
solution turned out to be not sufficient, i.e. users might wish to obtain more results, one
could envisage the development of a partial results planner. It may return partial results in
the form as described in Section 5.1.3 or of any other type.
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Evaluation of Existing AI Planners

A major goal of the thesis is the synthesis of plan alternatives. The presented concepts
intend several ways to address that problem, including the usage of several planners. A
simple way to extend the overall capability of the planning component is to plug-in ex-
isting AI planners. Therefore, one might evaluate all plausible planners, eventually with
minor adaptations. In connection with the International Planning Competitions (IPC) re-
searchers are stimulated to develop outstanding new planners. This is a promising fact:
Since these planners may have additional features, they could optimally be integrated and
would highly contribute to planning component usability.

One point should be noted. When intending the integration of existing AI planners in
order to mainly produce plan alternatives, one should keep in mind that they possibly
output the same solutions. An evaluation for the purpose of plan alternatives should thus
rather be seen as an exact analysis of the planners concerning their planning techniques
and supported planning features. On the other hand, if one looked for a specific feature
such as the generation of complex plans, this would not have to be taken into account.

Extension of the MDP

The Model Driven Planner (MDP) [Bertoli et al., 2001] is based on planning as model
checking and would theoretically enable the production of plan alternatives [Giunchiglia
& Traverso, 1999]. Currently it does not. The planner supports all features of PDDL 2.1
and some additional features for uncertainty. The latter features could be used to produce
complex plans if a user demands them. Anyway, the planner has interesting properties
and one could therefore think about an developing an extension in regard to the alternative
plans feature. Since the planner is not available under Open Source license, the extension
should be considered to be developed in cooperation with the authors.

8.2.2 Load Balancing

Load balancing is a sub-concept that was enabled by the separation of planning tasks
from different problem solvers, and that in turn supports the planning component regard-
ing performance. An interesting fact is that in the environment of NExT, i.e. the computa-
tional chemistry science environment, specialized computer programs are used to calculate
the structures and properties of molecules and solids. The programs have high computa-
tional complexity and thus are normally run on grids to distribute the load. This theoret-
ically permits the planning component to distribute the AI planners’ load on such grids.
The load balancing architecture would have to be modified, possibly in such a way that the
planning component could be adapted to some grid environment on-the-fly.



A
Formalization of a Planning
Problem

A planning domain has to be formalized in order to be understandable by a planner.
Domain theories address that issue by defining the rules of the domain operations (for ex-
ample preconditions). There exist several methods to represent domains. Most of them
follow the model of the state-transition system, as described in Section 3.1.1. They have
different levels of expressiveness, and range from simple add- and delete-lists of propo-
sitions (for example with STRIPS) to logical formulations in first-order logic (for example
Situation Calculus or Event Calculus) (see Figure A.1). Pure logic based approaches pro-
vide precise semantics and the ability to reason about the domain, but are expensive in
terms of computational complexity.

Low
Expressiveness

High
Expressiveness

Situation
CalculusSTRIPS ADL

'00 '02 '04 '06

PDDL Versions

Figure A.1: The Expressiveness of Description Languages

The choice of a formal planning problem representation is thus always a trade-off be-
tween the expressiveness of general logical formalism and computation complexity of rea-
soning with that representation. A logical consequence for AI planners which use an ex-
pressive description language (like for example PDDL in the version used for the IPC 2006)
is the tendency towards a specialization of the planners on specific subsets of the language
features.

In this section, some common representation methods are captured.
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A.1 STRIPS
STRIPS [Nilsson, 1982] corresponds to the classical representation scheme and has taken

over the name from an early automated planning system STRIPS (Stanford Research Insti-
tute Problem Solver), where it originally has been used. It takes all restricted assumptions
listed in Section 3.1.2.

STRIPS uses a languageLwith notations derived from first-order language: L has a finite
set of predicate and constant symbols, and some additional symbols and expressions. It is
based on logical atoms, that can have a true or a false value within some interpretation.
Operators change the truth value of the atoms.

A state s is a set of ground atoms and is represented by:

• atomic propositions, that are either positive (an atom p holds in s iff p ∈ s) or nega-
tive. An example of a state:
On(A,B), On(C, Table), Clear(B), Handempty(), Holding(C)

The elements of an operator representation are:

• preconditions: a conjunctive list of literals (positive or negative atoms). The operator
o is applicable in state s if the set of literals precond(o) can be satisfied by s (s |=

precond(o)).

• effects: a conjunctive ADD-list (effects+(o)) of literals to be added to the world state
and a conjunctive DELETE-list (effects−(o)) for those to be removed.

Example of an operator description in STRIPS:

(def-strips-operator (pickup ?x)

(pre (handempty) (clear ?x) (ontable ?x))

(add (holding ?x))

(del (handempty) (clear ?x) (ontable ?x)))

A.2 ADL
ADL (Action Definition Language) [Pednault, 1989] generalizes STRIPS by extending the

restricted set of formulas supported by STRIPS. The extensions include the formalization
of preconditions and effects as first-order formulae, and the support of conditional effects.
In addition, the language L is extended by functions symbols, so functions can be used to
specify fluents on a numeric basis. Functions have the drawback that a planning problem
might become undecidable.
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Example for negated and quantified formulas, and for conditional effects:

(def-adl-operator (move ?x ?old ?new)

(pre (and (on ?x ?old)

(not (?old = ?new))

(not (exists (?z) (on ?z ?x)))

(not (exists (?z) (on ?z ?new)))))

(add (on ?x ?new))

(del (on ?x ?old))

(forall (?z) (implies (above ?x ?z) (del (above ?x ?z))))

(forall (?z) (implies (above ?new ?z) (add (above ?x ?z)))))

Example for functions (fluents):

(def-adl-operator (store-in-room ?x ?r)

(pre (> (load-capacity (floor-material ?r)) (weight ?x)))

(update (storage-capacity ?r)

(- (storage-capacity ?r) (base-area ?x))))

A.3 Situation Calculus
Situation Calculus [McCarthy & Hayes, 1969] is a first-order language for representing

states and actions that change states. It introduces the notion of situation in order to provide
one logical theory for all domain states , in contrast to most other representation techniques
which use a logical theory for every state. Thereby the whole expressive power of a first-
order language can be used, for example the usage of axioms describing general behaviours
of the domain. On the other side, it has a critical weakness: Situation Calculus reasons
explicitly about changes in a domain, but it can not deduce the non-effects (things that
remain unchanged) of actions. A way out are successor state axioms [Reiter, 2001].

Each atom takes an extra situation argument for the state s in which it is true. For exam-
ple:

on(A,B, s) A is on B in situation s
weight(Fred, s) = 100 Freds weight in situation s

Actions are represented as terms in the same first-order language the states are described
in. If α is a variable denoting an action, do(α, s) is the situation resulting from the execution
of α in situation s. Action preconditions are represented as action precondition axioms by
means of a predicate Poss. For example:
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∀r∀l∀l′∀s(Poss(move(r, l, l′), s) ↔ at(r, l, s))

Action effects are represented as action effect axioms. For example:

∀r∀l∀l′∀s(Poss(move(r, l, l′), s) → at(r, l′, do(move(r, l, l′), s))

A.4 PDDL
PDDL (Planning Domain Definition Language) [Ghallab et al., 1998] introduced at the

first IPC 1998 for standardization purposes, takes a middle way between high-expressiveness
associated with computation complexity and unrealistic, simple representations1. The lan-
guage was built on ADL and since continuously extended to enable more realistic domain
descriptions (see Appendix B for more details).

1Actually ADL already targeted at offering a description language in the middle between STRIPS and the
Situation Calculus concerning expressiveness. But PDDL goes one step further and incorporates the ideas of the
modern planning approach (see Section 3.1.3).



B
PDDL - The Planning Domain
Description Language

B.1 History
The Planning Domain Description Language [Ghallab et al., 1998] has been developed

in the context of the first International Planning Competition (IPC) 1998, originally from
Drew McDermott. The language was necessary to have a standardized planning domain
and problem description language for the competition. The IPC 2000 specification was sig-
nificantly reduced, and closer to what most planning systems actually support. Since then
it was continuously extended for the IPCs. The language is based on ADL (for proposi-
tions) and UMCP (for actions). The language is in the meantime widely accepted and used
for the exchange of planning problems.

The IPC 2002 has changed in a way the previous objectives due to the complaint in some
research communities that the competitions have focused too much on artificial bench-
mark problems instead on tackling real problems that might have longer term interest [Fox
& Long, 2002]. The organizers have realized the danger of putting off participants with
potential good technologies and have pointed on meeting real challenges.

B.2 Elements of a PDDL Planning Problem Definition
The description is separated into two parts, 1. one for the description of parameter-

ized actions that characterize domain behaviors (domain description), and 2. another for
the descriptions of specific objects, initial conditions and goals that characterize a prob-
lem instance (problem description). A domain description can be used for several problem
descriptions, but not vice-versa.
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The notation is Lisp like. The grammar of PDDL is defined in extended BackusNaur
form (EBNF) and is available under http://zeus.ing.unibs.it/ipc-5/bnf.pdf
for PDDL version 3.0.

Actions may have parameters (syntax: ?parametername). These are variables standing
for terms and are bind during the grounding of actions to object instances of the problem
instance. The pre- and post-conditions of actions are expressed as logical propositions con-
structed from predicates and logical connectives.

Requirements
Since many planners may support only a subset of the features describable in PDDL, a list
of requirements defines the needed features for a planning problem. Some commons are
listed below:

:strips only the most basic features of STRIPS
:typing support for typing (of action parameters and functions)
:fluents using functions definitions: arithmetic preconditions and effects

with assignment operators
:adl all ADL features (STRIPS/typing plus negative/disjunctive/quan-

tified preconditions, equality, conditional effects)

B.2.1 Domain Description

The domain description contains the definition of all language constructs referenced in
the actions (for example types, predicates, functions) and the definition of the actions itself.
The structure of a simple domain description looks as following:

(define (domain DOMAIN_NAME)

(:requirements [:strips] [:typing] [:adl] ...)

[(:types TYPE_A1 ... TYPE_AN - object

TYPE_B1 ... TYPE_BN - SUPERTYPE

...)]

(:predicates (PREDICATE_1_NAME [?A1 ?A2 ... ?AN])

(PREDICATE_2_NAME [?A1 ?A2 ... ?AN])

...)

(:action ACTION_1_NAME

[:parameters (?P1 ?P2 ... ?PN)]

[:precondition PRECOND_FORMULA]

[:effect EFFECT_FORMULA])

http://zeus.ing.unibs.it/ipc-5/bnf.pdf
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(:action ACTION_2_NAME ...)

...)

B.2.2 Problem Description

The problem definition contains mainly the objects of the problem, the initial state and
the goals. See following basic structure:

(define (problem PROBLEM_NAME)

(:domain DOMAIN_NAME)

(:objects OBJ_1 OBJ_2 ... OBJ_N)

(:init ATOM_1 ATOM_2 ... ATOM_N)

(:goal CONDITION_FORMULA)

...)

B.3 Extensions

B.3.1 Version 2.1 (IPC-3 2002)

Of the five levels proposed, levels 1-3 have been accepted and were affiliated as new
features for the IPC 2002 [Fox & Long, 2002]. The three levels are:

• Level 1

– ADL planning
Corresponds the the STRIPS/ADL fragment of PDDL IPC-2 2000.

• Level 2

– Numeric Expressions, Conditions and Effects
Numeric expressions are constructed from primitive numeric expressions using
arithmetic operations.

– Plan Metrics
Plan metrics define for what a planning problem is evaluated. They are defined
by means of a numeric expression. Example:
(:metric minimize (total-fuel-used))

• Level 3
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– Durative Actions
Durative actions explicitly represent time and durations. Whereas logical change
is considered to be instantaneous (discretized durative actions), numeric values
may change over the interval of an action (continuous durative action).
The modeling of temporal relationships in a discretized durative action is done
by means of temporally annotated conditions and effects. An annotation of a
condition makes explicit whether a condition must hold at the beginning, at the
end, during the action, or any combination of them. An annotation of an ef-
fect makes explicit whether an effect is immediate (at the action’s beginning) or
delayed (at the action’s end).

B.3.2 Version 2.2 (IPC-4 2004)

PDDL version 2.2 [Edelkamp & Hoffmann, 2004] introduces derived predicates and
timed initial literals.

• Derived Predicates
Derived predicates enable the handling of domain axioms. The instance of a derived
predicate is true if the rule of the form if formula(x) then predicate(x) can be derived.
They are not affected by any of the actions. For example:

(:derived (above ?x ?y)

(or (on ?x ?y)

(exists (?z) (and (on ?x ?z)

(above ?z ?y)))))

• Timed Initial Literals
Timed initial literals are syntactically a very simple way of expressing deterministic
unconditional exogenous events: They represent facts that will become true or false
at time points that are known to the planner in advance. For example:

(:init

(at 9 (shop-open))

(at 20 (not (shop-open)))

)
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B.3.3 Version 3.0 (IPC-5 2006)

The extensions introduced in PDDL version 3.0 [Gerevini & Long, 2006] address mainly
the definition of more sophisticated goals.

• Plan Constraints
Plan constraints are state trajectory constraints, which are constraints on the structure
of the plans. They can be hard, to be used to express control knowledge or restrictions
on the valid plans for a planning domain and/or for a specific planning problem, or
soft, to be used to express preferences that affect the plan quality, without restricting
the set of the valid plans. The following example shows some hard trajectory con-
straints:

(:constraints (and (sometime (at coffee-room))

(sometime (and (at coffee-room)

(coffee-time)))) )

• Preferences
Soft goals and soft constraints are preferences, i.e. conditions marked as such, whose
opportunity cost is expressed by a penalty weight. Normally, not all specified pref-
erences can be satisfied, and identifying the best subset of preferences that can be
achieved is an extra difficulty to deal with in the planning progress. The violation
penalties are defined by means of the metrics to be optimized. Following example
illustrates the combination of preference marks and the metric construct.

(:goal (and (finished job1)

(finished job2)

(finished job3))

(preference reviewing (reviewed paper1)) )

(:constraints (and (preference break

(sometime (at coffee-room)))

(preference social

(sometime (and (at coffee-room)

(coffee-time))))) )

(:metric minimize (+ (* 5 (total-time))

(* 4 (is-violated social))

(* 2 (is-violated break))

(is-violated reviewing)) )
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