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Abstract

Execution traces produced from instrumented code re-
flect a system’s actual implementation. This information
can be used to recover interaction patterns between differ-
ent entities such as methods, files, or modules. Some so-
lutions for the detection of patterns and their visualization
exist, but are limited to small amounts of data and are inca-
pable of comparing data from different versions of a large
software system. In this paper, we propose a methodology to
analyze and compare the execution traces of different ver-
sions of a software system to provide insights into its evolu-
tion. We recover high-level module views that facilitate the
comprehension of each module’s evolution. Our methodol-
ogy allows us to track the evolution of particular modules
and present the findings in three different kinds of visual-
izations. Based on these graphical representations, the evo-
lution of the concerned modules can be tracked and com-
prehended much more effectively. Our EvoTrace approach
uses standard database technology and instrumentation fa-
cilities of development tools, so exchanging data with other
analysis tools is facilitated. Further, we show the applica-
bility of our approach using the Mozilla open source system
consisting of about 2 million lines of C/C++ code.

1 Introduction

Dynamic analyses based on execution traces are used in
software testing, software performance analysis, distributed
and parallel systems evaluation, and to some extent also in
program comprehension and reengineering. One challenge
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with dynamic data is its size: simple scenarios can result
in very large execution traces. Because of that, researchers
have investigated compression techniques to cope with the
size challenge, e.g. [10].

In our previous work, we have investigated scenarios for
the Mozilla open source software system to investigate the
evolution of its features [6]. We instrumented the code and
analyzed the execution traces to find out the relevant func-
tions implementing a particular feature. This was combined
with change log and bug report information to discover all
kinds of change dependencies between features. This in-
formation was reflected onto the source base structure and
visualized for the analyzing engineer.

Execution traces have been used in program comprehen-
sion to facilitate understanding about interactions between
building blocks of a software system. Further, they have
been used to dynamically discover likely program invari-
ants that must be preserved when modifying and evolving
source code [5]. So far their full potential for coarse and
fine grained analysis of program evolution has not been ex-
ploited.

Research work in this area mainly focused on the visu-
alization of execution traces (information mural by Jerding
and Stasko [13]), detection of patterns in the resulting traces
for data reduction to overcome the problem of information
explosion and their representation as graph. While in re-
verse architecting dynamic information such as call graph
information is used to get a complete static picture of the ac-
tual implementation of a software system, execution traces
have not been exploited for detailed retrospective software
evolution analysis.

Most of the information recorded in execution traces is
captured also by profiling information. Thus, profiling in-
formation can be used to generate a call graph or to gain in-
formation about the invocation frequency of each method.
However, patterns of invocation are not recorded, i.e., it is
not possible to deduce how frequently a method C was in-
voked as A → C or B → C.
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As a further shortcoming, we identified the impossibility
to determine how these invocations are distributed over the
execution time, i.e., during which program execution phase
the invocation patterns emerge. Reason for the limited data
recording capabilities of “traditional” profiling is the infor-
mation explosion during program execution and the impact
on execution time if detailed data are gathered. But for a
significant number of software systems and their use cases,
these limitations can be neglected if data can be collected
using specific test environments.

In contrast to a call graph analysis of a single release of a
software system, in retrospective software evolution analy-
sis we are interested in the modifications applied to the soft-
ware system which describe the changes from one release to
another. We are interested in the occurrence of specific in-
vocation patterns between modules or files and their change
when different releases of a software system are compared.

We have seen the need for integrating dynamic informa-
tion in our previous work and propose an execution trace
analysis approach to support an engineer in tracking a sys-
tem’s evolution.

The contribution of this paper is a methodology to exploit
program execution traces for retrospective software evolu-
tion analysis and to provide different visualizations to sup-
port evolution analysis. For that, we use Mozilla, a multi-
million line open source software system to show the appli-
cability of our EvoTrace approach.

The paper is organized as follows: Our EvoTrace ap-
proach is described in Section 2. In Section 3 we apply it
on a large Open Source Software system and present inter-
esting findings. Related work with respect to retrospective
software evolution analysis is discussed in Section 4, and
finally in Section 5 we draw our conclusions and indicate
future work.

2 Methodology

In this section we describe the methodology we use in the
EvoTrace approach to obtain evolutionary information from
execution trace data. EvoTrace currently comprises four
steps as depicted in Figure 1: (1) instrumentation, trace-
and map-data generation; (2) import from execution traces;
(3) sequencing invocations between modules; and (4) vi-
sualization. While the first step is development platform
dependent, the subsequent steps of EvoTrace use Perl, Java
and MySQL which are available for a number of OS plat-
forms. Next, we describe the data representation and import
process based on our implementation of EvoTrace. Though,
the process is tailored for our Linux development environ-
ment, other OSs can be used as well, provided that the re-
quired information is available.

The central element is a release history database
(RHDB) [7] that contains history information from version-
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Figure 1. Import and analysis process

ing systems such as CVS and bug tracking data together
with links to architectural information.

2.1 Instrumentation, trace- and map-data
generation

As noted by Hamou-Lhadj in [12] there exist three meth-
ods to generate traces of method calls: (1) insertion of
probes such as prints; (2) modification of the runtime en-
vironment such as Java; and (3) debugging to monitor pro-
gram execution. The first method is supported by the GNU
compiler collection (GCC) so only two functions–one for
entering and one for exiting–must be implemented. Ap-
propriate calls to these functions are then generated by the
compiler. After compiling and linking the application can
be tested.

For Mozilla we used a typical scenario in which a web
page from our web server was loaded. To avoid user interac-
tion with the application, the running program is terminated
via an externalQUIT signal when no more additional events
are recorded.

Before the trace information can be used in the further
analysis process, the recorded addresses must be mapped
onto method- and file-names. This is done with map data
generated from the two GNU tools ldd and nm. The first
tool, ldd, generates a mapping of base addresses for the
dynamic linked libraries. These base addresses are required
to determine the library for which a call was recorded. The
second tool, nm, lists symbols from object files with source
file name and line number information. Both outputs are
written to a map file so the mapping information together
with the trace data can be used in the following import pro-
cess.

2.2 Importing execution traces

Result of the import from the execution traces and map
file data are two separate database tables containing the re-
spective traces of each Mozilla release with linkage to ex-
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Table 1. Record format for trace data

Name Size Description
id 4 Unique ID for this event
callee 4 Text segment address of called method
caller 4 Call issuing address
type 1 Method enter e (call) or exit x (return)
threadid 1 ID of thread context
level 1 Invocation or recursion level
cvsitemid 3 ID of artifact in RHDB

isting artifacts in the Release History DB (RHDB). The im-
port is divided into two phases and accomplished via a Perl
script: (1) read map file information and try to find corre-
sponding artifacts in the RHDB; and (2) read the execution
trace information and add one record in the database for
each event in the trace file. After some experiments with
the trace data we decided to use the format depicted in Ta-
ble 1 for the database table which we called invocation se-
quence. The field sizes are specified in bytes. The trace
data, generated during execution of the testee, are stored in
the four fields: callee, caller, type, and threadid. The re-
maining fields are evaluated during the import by the Perl
script:

id: Is a unique identifier for each event assigned during
data import.

callee: The code address of the method invoked during
program execution from caller.

caller: This address determines the originating point of
an invocation in the execution trace. While the callee ad-
dress has a direct mapping to linker addresses, the caller
address maps to the code segment between methods and
thus is not directly usable. Instead, an application of the
caller address lies in the search of corresponding enter-exit
pairs. These pairs can be identified unambiguously within
a thread context via the 3-tuple callee-, caller-address and
invocation level.

type: Each event in the database is marked either with
’e’ for enter or ’x’ for exit of a method.

threadid: Every event requires information about the
corresponding thread context; otherwise traces are inter-
mixed.

level: The recursion level information is simply derived
from the type-field by counting enters and exits on a per-
thread basis. This information is added to simplify database
queries.

cvsitemid: From the import of release history data into
our RHDB, a mapping from source files to unique IDs al-
ready exists. With the symbol information from object files
we are able to map the callee-address to the corresponding
entry in the RHDB. This information is required to assign
the file information to modules.

After importing and linking relevant information, the in-
vocation database is ready to serve queries. In our case
study (see Section 3) we give some examples for a quan-

titative evaluation. Next, we describe an analysis algorithm
for the detection of interactions between modules based on
the invocation sequence data.

2.3 Sequencing

We focus on invocations between different modules.
This reduces the amount of information to be displayed
and characterizes the communication between modules.
Thus we are interested in invocation sequences S1, S2 be-

Event [] events = new Event[MAX STACK];
events [0] = trace data ();
int cntevent = 1;
while ( more trace data ()) {

Event n = new Event( trace data ());
Event o = events [ cntevent−1]; // get old event
if ( n. level > o. level ) {

save diff module (o,n );
events [ cntevent ++] = n ; // save new event

}
else if ( n. level < o. level ) {

save diff module (o,n );
events[−−cntevent−1] = n; // replace old event

}
else { // same invocation level

events [ cntevent−1] = n ; // replace old event
o = events [ cntevent−2]; // get ‘‘ new’’ old event
save diff modules (o,n );

}
}

Figure 2. Java code for transition detection

tween modules Ma, Mb and their methods or functions
fa(), fb(), fc() such as S1 = Ma.fa(Mb.fa(); Mb.fb()) or
S2 = Ma.fa(Mb.fa(Mb.fb())). S1 exhibits two module
switches and S2 exhibits only one module switch. These
invocations are derived from the invocation data stored
in the invocation sequence table using the fields type,
cvsitemid and level. Since data are not represented
as graph in the database, we need to traverse the com-
plete content of the invocation sequence table which is
performed by a small Java program. Figure 2 shows the
(simplified) Java code which is used to detect the invoca-
tions between modules. To reveal the transitions between
the different modules a data structure holds information
about the invoked modules. For each change of invocation
level, the event pairs (new event in trace and old event on
stack) are compared. A change is checked and recorded
via the function save diff module(o,n). This func-
tion compares the module IDs and counts the transitions
within the program flow. Transitions within a method,
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i.e., on the same invocation level, are recorded with the
code in the else-branch. Here, the topmost element of
the stack is replaced with the new event. Then the two
elements on the stack are checked for different module
IDs. While the if-statements check for invokes and re-
turns such as Ma.fa(...Mb.fa(); ...) the last else branch de-
tects a series of invocations such as Mb.fb() and Mb.fc()
in Ma.fa(...Mb.fa(); ...Mb.fb(); ...Mb.fc(); ...). Every de-
tected transition—i.e., their respective module ID—is writ-
ten to a separate database table. Next, input data for visual-
izations are generated from this information.

2.4 Visualization

Currently, the visualization of results is used as substitute
for the comparator function until an efficient pattern detec-
tion algorithm such as [14] is implemented. As substitution,
we combine data from the two versions of execution traces
into diagrams so they can be compared visually. One major
problem for visualization are the deficiencies of the often
used Gantt charts for the presentation of 2 · 106 transitions
between modules within the usual viewing range. Conse-
quently, we had to reduce the amount of information. A
frequently used solution is the application of sub-sampling.
Since no constraints on the time-slots were given, we de-
cided to use twenty time-slots since it was most appropriate
for use in the generated diagrams.

Based on this sub-sampling interval, we counted the
module transitions detected in the previous step and gener-
ated data sets for three different diagram types: (1) a Gantt
chart provides a good view on different phases of the pro-
gram execution. Different phases such as system initializa-
tion or user interface related activities can be distinguished;
(2) the “matrix” view emphasizes the quantitative aspect of
changes in invocations between modules. The two commu-
nication directions between entities are depicted separately;
and (3) for a more detailed view on the interaction between
modules we use Kiviat diagrams. In this view, the commu-
nication between one module with respect to other modules
is shown. A separate axis in the diagram is used for each of
the selected modules.

The diagrams are generated automatically via a Perl
script from the given data sets. Results are depicted in Fig-
ures 3, 4, and 5, respectively.

2.5 Optimizations

Next, we discuss some optimizations which we identi-
fied during the development of this approach and in relevant
literature.

Trace data compression: As pointed out by Hamou-
Lhadj and Lethbridge [12], a limiting factor is the problem
of size explosion. Size reduction through pattern matching

seems to be the most appropriate solution to this problem.
Deactivation of instrumentation—as sometimes proposed—
for certain files to reduce the amount of generated traces
would require detailed knowledge about the software sys-
tem to inspect because otherwise important invocation tran-
sitions could be lost. Another drawback of the deactiva-
tion solution is the required effort to manually enable or
disable instrumentation on a per method basis. To reduce
the amount of records the currently separate enter and exit
records can be merged since most of the information is re-
dundant. Aside from the size reduction extra lookups to find
a corresponding invocation pair are avoided.

Standard database technologies support fast access to
events of selected modules: If the analysis environment pro-
vides sufficient computing power and memory (� 3GHz
Pentium 4, � 1GB), database tables can be kept in mem-
ory. Thus the execution time for entries in ad hoc queries
ranges from fractions of a second to less than one minute
depending on whether an index can be used to resolve the
query.

Support for detection of sequences and patterns: One
field of future work is the detection of invocation patterns.
Detected patterns are a prerequisite for the implementation
of a fast comparator function of the version related trace
data.

Handling multiple versions of execution trace data: In
EvoTrace we use different database tables to handle the ex-
ecution traces originating from different version of the test
program. Inclusion of the version information into the ta-
bles would create a large amount of redundant information.

Linkage with existing release history information: This
linkage is required to facilitate the architectural evolution
analysis process which we already addressed in recent
work [15] where architectural and evolutionary dimensions
are merged into a single information space. The traces con-
tain a wealth of information which can be made available
via database queries for interactive visualization or retro-
spective evolution analysis.

3 Case study

As in our previous research [6, 7] we continue to use the
Mozilla Internet application suite as a representative and
challenging case study. Major reasons for that are the al-
ready existing RHDB with architectural and evolutionary
information and our experiences with Mozilla. Further-
more, results of this work have been integrated into the
RHDB to further augment the exploration of the software
evolution information space.

The current snapshot of the case study is based on ver-
sion 1.7 (released 2004-06-18) and version 1.4 (released
2003-07-01) of the Mozilla code base. Version 1.7 is used
because it is the latest version we have release history data.
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Table 2. Selected Mozilla modules and their
source code directories

Module Source Directories
MathML layout/mathml
New Layout Engine layout/base, layout/build, layout/html
XPToolkit content/xul, layout/xul
Document Object Model
(DOM)

content/base, content/events,
content/html/content,
content/html/document, dom

HTML Style System content/html/style, content/shared
XML content/xml, expat, extensions/xmlextras
XPCOM xpcom

Releases prior to 1.4 require an outdated version of the
GNU compiler collection (GCC), thus earlier releases are
not compilable with our currently installed version of GCC
(which was version 3.3.3 at that time).

For our work on the integration of the architectural and
evolutionary information [15] we used a subset of the avail-
able Mozilla modules which are related to web content rep-
resentation and layout. Table 2 lists the selected modules
which we used particularly for this case study.

3.1 Data collection

Before data collection can start some preparation
work of the testee has to be done. Both source
code versions of Mozilla are instrumented via the
-finstrument-functions compiler option provided
by GNU compiler collection. This option generates instru-
mentation code for entry to and exit of functions. Just after
function entry and just before function exit, the following
profiling function will be called with the address of the cur-
rent function and its call site [16]. Returns from methods
can be recorded with a similar C function.

void __attribute__
((__no_instrument_function__))

__cyg_profile_func_enter
(void *callee, void *caller)

To avoid conflicts with instrumentation functions the
attribute no instrument function has to be ap-
plied. This prevents their recursive invocation. Another
source of conflict is Mozilla’s thread library nsprpub.
We require some functions of this library to determine the
thread context under which the instrumentation function is
executed. For this library we completely disabled code in-
strumentation. After this preparation step, both program
versions were compiled using the same compiler and con-
figuration options.

To avoid interference through user interactions, we im-
plemented a shell script which automatically starts the ap-
plication with the specified test-parameters and terminates

the application after a predefined timeout period. As test-
scenario we use a copy of a page of the W3C’s MathML
test suite which we placed on our web server1. Differences
in the resulting execution traces due to network indetermin-
istic can be neglected since the selected modules are not re-
lated to network communication. As timeout when the ap-
plication shall receive the QUIT signal we determined one
second where no events are recorded to be sufficient.

Additionally, preloading of web-pages, changes to the
page cache and the URL visit history are causes for dif-
ferences in the execution traces, especially when running
different versions of the program. To minimize these im-
pacts, we used three test-runs in a row whereas only the
results of the last one is used (the test-runs two and three
produced traces with a similar number of events). To avoid
conflicting interactions with the window manager of our
test-system, we used a separate X-Window server without
any window manager functionality. During test-runs the ap-
plication window is redirected to this separate server while
trace data are stored on the local disk drive.

Currently, we used the C printf-function to record
each enter or exit event. The snippet below depicts the data
format produced by the instrumentation function:

e0x8cede20m0x8cedf09t0x8f26548

Four types of information are recorded: (1) the event-type
(enter or exit); (2) the callee address; (3) the caller address
(starting at ’m’); and (4) the thread context (starting at ’t’).

3.2 Post-processing and quantitative results

After the import of the raw data into the database via
a Perl script, we can obtain first quantitative results with
simple SQL queries. The results are listed in Table 3 for
both Mozilla versions.

The binary file of version 1.7 is large compared to ver-
sion 1.4 but the code seems to be leaner and produces less
execution trace events. Even though listed as exact num-
bers, the number of events vary slightly between test-runs
since network communication or the OS timing is not de-
terministic.

The number of different start addresses of invocations
found in the execution traces is given by callee addresses.
This differs from number of methods—number of different
methods signatures found in object files—which is based on
the symbol information delivered by nm. Differences orig-
inate from C++ language constructs and internal manage-
ment tasks of the runtime library. The caller addresses lists
the number of different addresses from where methods have
been invoked. To assign traces to the correct thread context
we record the thread ID at each event. Consequently, the

1http://www.infosys.tuwien.ac.at/staff/mf/test/iwpc05/math3.xml
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Figure 3. Execution trace for Mozilla modules as Gantt diagram

Table 3. Basic results from trace data

Mozilla Version 1.4 Version 1.7 ∆%
Binary size 82,109,017 101,012,842 +23
Number of events 23,878,728 18,822,452 -21
Callee addresses 12,077 11,644 -3.6
Caller addresses 41,962 37,011 -12
Number of threads 4 5 +25
Deepest call nesting 153 164 +7.2
Number of methods 11,940 11,563 -3.2
Number of files 868 850 -2.1
Files from modules 403 396 -1.7

number of threads reflects the total number of different IDs
found.

One aspect not covered by “traditional” profiling is the
nesting level. With deepest call nesting we give the deepest
level of invocations found in the execution traces. During
the import phase the callee address information is combined

with the symbol information from object files. Here, the
number of files represents the number of successful maps to
source files. In a post-processing phase, we then identified
those files which belong to the modules we are interested in
(files from modules). This speeds up later data analysis.

3.3 Visualization

After the generation, filtering and first quantitative eval-
uation of the test-data, we visualized the results for evo-
lution tracking. As described in the previous section, we
divided the execution traces into twenty different intervals
for sub-sampling. This is sufficiently small to distinguish
different types of interaction phases but is large enough to
create “readable” visualizations. While the interval size is
more relevant for the first diagram type we present here, it
is of minor relevance for the other two.
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Figure 4. Interval-based tree-ring invocations for Mozilla modules as matrix view

3.3.1 Gantt diagram

One well known form for visualization of execution traces
are Gantt diagrams which are well suited to study interac-
tions on a very fine grained level. Since our EvoTrace ap-
proach is designed to reveal coarse changes in system inter-
action, we use a “reduced” form of the Gantt diagram type
where the invocations are sketched. In Figure 3 this modi-
fied diagram type is depicted with the filtered invocation se-
quences of Mozilla 1.4 (a) and Mozilla 1.7 (b) respectively.
In both diagrams the invocation frequencies between mod-
ules are divided into six classes: > 50%, > 25%, > 10%,
> 5%, > 2.5% and � 2.5% whereas invocations of the
last class are not shown. Invocations are depicted as lines
with different shapes representing their frequency between
modules.

When visually comparing diagrams (a) and (b) the differ-
ences in invocation intensity between the modules Other
and XPCOM are significant. This was surprising, since we
did not expect such extreme changes. Interesting to see are
also the mutual invocations between Other and XPCOM.
But this is an expected result since Other contains all other
modules we did not explicitly identify.

Roughly, four phases can be distinguished: (A) prelude;
(B) user interface related activities–XPToolkit is the
cross-platform user interface; (C) an intermediary phase;
and (D) content related activities including MathML. The
main differences are that phase (A) begins in version 1.7
two time-slots earlier compared to version 1.4 and that the
intermediary phase (C) can be clearly identified. Remark-
able is also the strong communication path in slot 7 from
module XPCOM to XPToolkit which appears in both ver-
sions.

3.3.2 Matrix view

To overcome the problem of clutter in our Gantt diagram,
we developed a specific matrix view, which supports the
visualization of invocations as cross product between mod-
ules. Callers are placed on the horizontal axis and callees
are placed on the vertical axis. For instance, to find the in-
vocations from XPCOM to HTML Style System can be
found by going to column 6 and move up till row 4. Dur-
ing the development of this view we noticed, that presen-
tation quality suffers from the wide spread of invocation
frequencies that can differ by an order of magnitude of 5.
As solution, we introduced five frequency classes accord-
ing to the overall maximum number of invocations. Each
class has a fixed size so we get data sets with maximum
value ∈ [0.2, 0.4, 0.6, 0.8, 1.0]. The data are then scaled to
the desired size during diagram generation. As the forth di-
mension in our visualizations we have the time dimension.
We decided to use a tree-ring scheme based on grayscale2

to depict the twenty intervals: dark gray indicates the first
interval–most inner ring–and light gray indicates the last in-
terval. Since the values are scaled to different maxima—one
maximum for each Mozilla version—sizes between both
diagrams must be compared via absolute values from the
database. A quick comparison indicates that the communi-
cation in version 1.7 is more distributed compared to ver-
sion 1.4 of Mozilla. In contrast to Figure 3 where the
changes in the invocation frequencies are not directly recog-
nizable, the matrix type view depicted in Figure 4 supports
perception of these changes in an intuitive way.

2A colorized version is available via http://www.infosys.tuwien.ac.at/
staff/mf/test/iwpc05/matrix-view.html
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Figure 5. DOM related invocations in Mozilla 1.4 (left) and 1.7 (right)

Striking is the high number of invocations between
XPCOM and Other in Figure 4.(a) whereas Figure 4.(b)
shows a more “balanced” characteristic. Another interest-
ing result is that communication starts earlier in version
1.7—e.g., XPCOM - HTML Style System—compared
to the predecessor version (which is also supported by the
Gantt diagrams). This can be interpreted in such a way, that
the system has been optimized and web pages are now de-
livered faster to the user.

Next, we give a more detailed view of one selected soft-
ware module with respect to invocations with other mod-
ules.

3.3.3 Detailed module view using Kiviat diagrams

As result of the EvoTrace approach, we obtain multidimen-
sional data sets. To overcome some of the limitations of the
previous views, we decided to use Kiviat diagrams for a de-
tailed view on the communication between modules. Two
diagrams covering a range of 180° each, face by face, al-
low a quick comparison of specific module data between
two releases. Based on the experiences with the wide value
range we sorted values in ascending order and limited the
result set to the six most frequent invoked module pairs.
Further modifications concern the scaling of the data sets

during diagram generation. For data representation we use
a 4-dimensional dataset. The actual value of each data point
in the diagram is determined by the following scaling for-
mula:

vk,a,b,s =




2
maxF if 2F < 1
1 if 2F = 1
1 + 0.01 ∗ s if 2F > 1

whereas max is the overall maximum of F , and

F =
∑
s�n

fk,a,b,s

is the cumulated value if invocations between module Ma

and Mb for version k of Mozilla over the time-slots s � n
(n ∈ {0, 1, ..., 19}). Division of the maximum by a constant
factor together with the 2F > 1 branch, reduces the biasing
effect of “spikes” in the final diagram.

The resulting diagram for moduleDOM is depicted in Fig-
ure 5 whereas the DOM - XPToolkit, XPCOM - DOM, and
DOM - XPCOM are reduced in size (2F > 1 branch). In
contrast to the matrix view, the data sets for the different re-
leases are scaled with a common factor. Thus both sides of
of the diagram are directly comparable. Our example graph
indicates for the modules DOM and XPToolkit that com-
munication has doubled. Especially during the center pe-
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riod (light area) the increment was substantial. This percep-
tion is supported by data from the database where 50,190
invocations for version 1.4 and 105,001 for version 1.7
have been recorded. Further interesting are the delays when
communication starts with relevant modules. Examples for
early communication (inner dark area) in version 1.4 are
DOM - XPCOM (both directions) and DOM - Other, respec-
tively. Compared to version 1.7 no significant changes can
be found for these modules. As a counter example with re-
spect to scheduling information, we refer to the pair HTML
Style System - DOM where communication starts late
in both program versions.

Another interesting area of application is the deduction
of uses relationships. This is facilitated by this diagram
type, since results are sorted by frequency and further sub-
divided than in the Gantt diagram or Matrix view. As de-
picted in Figure 5 most communication takes place in a sin-
gle direction between modules. Counter example is DOM -
XPCOM where communication is shown to happen in both
directions.

3.3.4 Discussion

With a traditional database approach large amounts of trace
data can be handled efficiently, the database queries are sim-
ple to implement and access via standard SQL query inter-
face for third party tools is possible. Another advantage
is that storing the program traces in the RHDB supports
fast retrieval and detection of a system’s interaction patterns
without losing context related detail information. During
our experiments access speed was not in issue. The detec-
tion of invocation sequences of a single trace with more than
19 · 106 events using a Java program and MySQL database
on a Pentium 4, 2.8GHz, 1GB takes less than 5 minutes,
which we considered reasonably fast. If a speed up for pat-
tern detection is required, the problem space can be nicely
partitioned via invocation levels.

Though some of the results can be achieved with data
from conventional profiling as well, focus of the EvoTrace
approach is the evaluation of program traces for evolution
analysis. Our visualizations provide insights into changes
on arbitrary detailed level to track the changes between sys-
tem releases.

4 Related Work

Most related work we have seen so far, track the evo-
lution of software systems by relying on static information
about software artifacts or correlate the source code changes
and programmer information. For instance, Ball, Eick et al.
have proposed such approaches in [1, 3, 4]. Other reverse
engineering approaches take the dynamic execution behav-
ior into account and try to infer certain program characteris-

tics based on these traces. In [9], for instance, Gschwind et
al. present an approach that allows one to identify how cer-
tain features within a program are implemented. This ap-
proach is based on execution traces and interactive program
queries during the program’s runtime. A similar approach
is taken by the Smiley system presented in [8]. For this
system, Goldman uses wrappers to log the interaction be-
tween an application and its external dynamic link libraries
(DLL). This work facilitates the understanding of interac-
tions between COTS where no source code is available.

In [17] Wilde et al. describe how runtime profile infor-
mation can be used to map features onto source code. In
earlier work of our group we used these technique as well.
The reason we are using execution traces is that—compared
to profiling information—execution traces contain more rel-
evant information such as thread data or interaction pat-
terns. The work closest to the work presented in this pa-
per was presented by Collberg et al. in [2]. In their paper,
they present an approach that takes possible executions into
account by analyzing the evolution of the program’s call-
graph through static analysis. This is accomplished by gen-
erating call graphs for the different versions of the program,
merging these call graphs, and finally highlighting the dif-
ferences between the call graphs.

Analyzing the differences in the call graph, however, still
falls short in getting a glimpse of the typical runtime be-
havior of the program to be analyzed since the call graph
does not give any information about how frequently certain
functions are being invoked and hence does not give a huge
insight into the communication patterns between different
parts of the program. This is especially the case if call-back
functions are being used which cannot be easily identified
on the basis of the call graph.

Other related work was presented by Jerding et al. [14]
and Hamou-Lhadj et al. [11]. Both present different but
similar techniques to identify patterns and similarities in
execution traces. This allows them to compress execution
traces and store them in a more compact form. In [12]
Hamou-Lhadj et al. provide a survey about other trace ex-
ploration tools and techniques. None of these approaches,
however, analyze the differences between different execu-
tion traces. In the future, however, we plan to use such
compression techniques to analyze the differences on a finer
grained level and to identify the similarities and differences
between the traces of different releases.

5 Conclusions and Future Work

Dynamic information expressed in execution traces of
a software system can be used to understand some evolu-
tion aspects, especially in pointing a software engineer to
locations in a system that may be critical for maintenance
activities. Comparing execution traces is a simple but ef-
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ficient way to gain information about changes in the “as-
implemented” architecture without the need to have access
to the source files. The extracted information can be used to
recover interaction patterns between different entities such
as methods, files, or modules.

In this paper, we proposed a methodology to analyze and
compare the execution traces of different versions of a soft-
ware system to provide insights into its evolution. We re-
cover high-level module views that facilitate the compre-
hension of each module’s evolution in relation to others.
EvoTrace allows us to track the evolution of particular mod-
ules and present the findings in three different kinds of vi-
sualizations: Gantt diagrams, Matrix views and Kiviat dia-
grams. Based on these graphical representations, we have
shown that certain aspects such as invocation structures be-
tween modules can be tracked and comprehended quite ef-
fectively.

We showed the applicability of our approach using the
Mozilla open source system consisting of about 2 MLOC in
C/C++. For example, we have been able determine the evo-
lution from a “dispatcher” oriented communication in ver-
sion 1.4 to a more direct communication between software
modules in version 1.7.

Execution trace data are another cornerstone for software
evolution analysis. The properties of execution traces, such
as detailed information about “scheduling” data, invocation
patterns, call frequency, nesting levels, or threading, can
complement results gained from release history and archi-
tectural analysis. Further research will have to show how
dependencies between these three dimensions can be ex-
ploited.

For future work, we plan to integrate existing pattern de-
tection approaches to reduce the amount of information and
improve the comparability of different software versions.
Further, we want to develop an automatism to compute dif-
ferences for given execution traces which would allow us a
more focused analysis.
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