

Concept and Architecture of a Pervasive Document Editing
and Managing System

Stefania Leone Thomas B. Hodel Harald Gall
University of Zurich, Switzerland University of Zurich, Switzerland University of Zurich, Switzerland

Department of Informatics Department of Informatics Department of Informatics
leone@ifi.unizh.ch hodel@ifi.unizh.ch gall@ifi.unizh.ch

ABSTRACT
Collaborative document processing has been addressed by many
approaches so far, most of which focus on document versioning
and collaborative editing. We address this issue from a different
angle and describe the concept and architecture of a pervasive
document editing and managing system. It exploits database
techniques and real-time updating for sophisticated collaboration
scenarios on multiple devices. Each user is always served with up-
to-date documents and can organize his work based on document
meta data. For this, we present our conceptual architecture for
such a system and discuss it with an example.

Categories and Subject Descriptors
C.2.4 Distributed Systems [Computer-Communication
Networks]: Computer System Organization, Distributed Systems,
Distributed Applications

General Terms
Management, Measurement, Documentation, Economics, Human
Factors

Keywords
Pervasive Document Editing and Management System, Computer
Supported Collaborative Work (CSCW), Collaborative Document

1. INTRODUCTION
Text documents are a valuable resource for virtually any enterprise
and organization. Documents like papers, reports and general
business documentations contain a large part of today’s (business)
knowledge. Documents are mostly stored in a hierarchical folder
structure on file servers and it is difficult to organize them in regard
to classification, versioning etc., although it is of utmost importance
that users can find, retrieve and edit up-to-date versions of
documents whenever they want and, in a user-friendly way.

1.1 Problem Description
With most of the commonly used word-processing applications
documents can be manipulated by only one user at a time: tools for
pervasive collaborative document editing and management, are
rarely deployed in today’s world. Despite the fact, that people strive
for location- and time- independence, the importance of pervasive
collaborative work, i.e. collaborative document editing and
management is totally neglected. Documents could therefore be

seen as a vulnerable source in today’s world, which demands for an
appropriate solution: The need to store, retrieve and edit these
documents collaboratively anytime, everywhere and with almost
every suitable device and with guaranteed mechanisms for security,
consistency, availability and access control, is obvious.

In addition, word processing systems ignore the fact that the history
of a text document contains crucial information for its management.
Such meta data includes creation date, creator, authors, version,
location-based information such as time and place when/where a
user reads/edits a document and so on. Such meta data can be
gathered during the documents creation process and can be used
versatilely. Especially in the field of pervasive document
management, meta data is of crucial importance since it offers
totally new ways of organizing and classifying documents: On the
one hand, the user’s actual situation influences the user’s objectives.
Meta data could be used to give the user the best possible view on
the documents, dependent of his actual information. On the other
hand, as soon as the user starts to work, i.e. reads or edits a
document, new meta data can be gathered in order to make the
system more adaptable and in a sense to the users situation and, to
offer future users a better view on the documents.

As far as we know, no system exists, that satisfies the
aforementioned requirements. A very good overview about real-
time communication and collaboration system is described in [7].
We therefore strive for a pervasive document editing and
management system, which enables pervasive (and collaborative)
document editing and management: users should be able to read and
edit documents whenever, wherever, with whomever and with
whatever device.

In this paper, we present collaborative database-based real-time
word processing, which provides pervasive document editing and
management functionality. It enables the user to work on
documents collaboratively and offers sophisticated document
management facility: the user is always served with up-to-date
documents and can organize and manage documents on the base of
meta data. Additionally document data is treated as ‘first class
citizen’ of the database as demanded in [1].

1.2 Underlying Concepts
The concept of our pervasive document editing and management
system requires an appropriate architectural foundation. Our
concept and implementation are based on the TeNDaX [3]
collaborative database-based document editing and management
system, which enables pervasive document editing and managing.

TeNDaX is a Text Native Database eXtension. It enables the
storage of text in databases in a native form so that editing text is
finally represented as real-time transactions. Under the term ‘text
editing’ we understand the following: writing and deleting text

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGDOC’05, September 21–23, 2005, Coventry, United Kingdom.
Copyright 2005 ACM 1-59593-175-9/05/0009...$5.00.

41

(characters), copying & pasting text, defining text layout &
structure, inserting notes, setting access rights, defining business
processes, inserting tables, pictures, and so on i.e. all the actions
regularly carried out by word processing users. With ‘real-time
transaction’ we mean that editing text (e.g. writing a
character/word) invokes one or several database transactions so that
everything, which is typed appears within the editor as soon as these
objects are stored persistently. Instead of creating files and storing
them in a file system, the content and all of the meta data belonging
to the documents is stored in a special way in the database, which
enables very fast real-time transactions for all editing tasks [2].

The database schema and the above-mentioned transactions are
created in such a way that everything can be done within a multi-
user environment, as is usual done by database technology. As a
consequence, many of the achievements (with respect to data
organization and querying, recovery, integrity and security
enforcement, multi-user operation, distribution management,
uniform tool access, etc.) are now, by means of this approach, also
available for word processing.

2. APPROACH
Our pervasive editing and management system is based on the
above-mentioned database-based TeNDaX approach, where
document data is stored natively in the database and supports
pervasive collaborative text editing and document management.

We define the pervasive document editing and management system,
as a system, where documents can easily be accessed and
manipulated everywhere (within the network), anytime
(independently of the number of users working on the same
document) and with any device (desktop, notebook, PDA, mobile
phone etc.).

DB 3

RTSC 4

RTSC 1

RTSC 2

RTSC 3

AS 1

AS 3

DB 1

DB 2

AS 2

AS 4

DB 4

A

B

C

D

E

F

G

Figure 1. TeNDaX Application Architecture

In contrast to documents stored locally on the hard drive or on a file
server, our system automatically serves the user with the up-to-date
version of a document and changes done on the document are stored
persistently in the database and immediately propagated to all
clients who are working on the same document. Additionally, meta
data gathered during the whole document creation process enables

sophisticated document management. With the TeXt SQL API as
abstract interface, this approach can be used by any tool and for any
device.

The system is built on the following components (see Figure 1): An
editor in Java implements the presentation layer (A-G in Figure 1).
The aim of this layer is the integration in a well-known word-
processing application such as OpenOffice.

The business logic layer represents the interface between the
database and the word-processing application. It consists of the
following three components: The application server (marked as AS
1-4 in Figure 1) enables text editing within the database
environment and takes care of awareness, security, document
management etc., all within a collaborative, real-time and multi-user
environment. The real-time server component (marked as RTSC 1-
4 in Figure 1) is responsible for the propagation of information, i.e.
updates between all of the connected editors.

The storage engine (data layer) primarily stores the content of
documents as well as all related meta data within the database
Databases can be distributed in a peer-to-peer network (DB 1-4 in
Figure 1)..

In the following, we will briefly present the database schema, the
editor and the real-time server component as well as the concept of
dynamic folders, which enables sophisticated document
management on the basis of meta data.

2.1 Application Architecture
A database-based real-time collaborative editor allows the same
document to be opened and edited simultaneously on the same
computer or over a network of several computers and mobile
devices. All concurrency issues, as well as message propagation, are
solved within this approach, while multiple instances of the same
document are being opened [3]. Each insert or delete action is a
database transaction and as such, is immediately stored persistently
in the database and propagated to all clients working on the same
document.

2.1.1 Database Schema
As it was mentioned earlier that text is stored in a native way. Each
character of a text document is stored as a single object in the
database [3]. When storing text in such a native form, the
performance of the employed database system is of crucial
importance. The concept and performance issues of such a text
database are described in [3], collaborative layouting in [2],
dynamic collaborative business processes within documents in [5],
the text editing creation time meta data model in [6] and the relation
to XML databases in [7].

Figure 2 depicts the core database schema. By connecting a client to
the database, a Session instance is created. One important attribute
of the Session is the DocumentSession. This attribute refers to
DocumentSession instances, which administrates all opened
documents. For each opened document, a DocumentSession
instance is created. The DocumentSession is important for the real-
time server component, which, in case of a

42

is beforeis after

Char
(ID)

has

TextElement
(ID)

starts
with

is used
by

InternalFile
(ID)

is in includes

created
at has

inserted
by inserted

is active

ir

ir

CharacterValue
(Unicode)

has

List
(ID)

starts starts
with

ends ends with

FileSize

has

User
(ID)

last read by

last written by

created
at

created by

Style

DTD
(ID)

is used
by uses

uses is used
by

Authors

ar
e

ha
s

Description

Password

Picture

UserColors

UserListSecurity

has

ha
s

has

has

has

has

FileNode
(ID)

re
fe

re
nc

es
 /i

s
re

fe
re

nc
ed

 b
y

is dynamic DynStructure

NodeDetails

has

ha
s

is NodeType

is parent
of

has
parent

ha
s

Role
(ID)

created
at

cr
ea

te
d

cr
ea

te
d

by

Name
has

Description

is user

Name

has

has

main role

FileNodeAccessMatrix
(ID)has

is

AccessMatrix

read option

grand option

write option

co
nt

ai
ns

ha
s

ac
ce

ss

Times

opened … times with … by

co
nt

ai
ns

 /
is

 p
ar

t o
f

ir

ir

is
...

 a
nd

 in
cl

ud
es

Lineage
(ID)

references

is after

is before

CopyPaste
(ID)

references

is in

is copy
of

 is a copy
from

hasCopyPaste
(ID)

is activeLength has

Str (Stream)
has

inserted by / inserted

RegularChar

StartChar EndChar

File

ExternalFile

is from

URL

Type
(extension)

is of

Title

has

DocumentSession
(ID)

is opened
by

ha
s

op
en

ed

ha
s

op
en

ed

Session
(ID)

is
 c

on
ne

ct
ed

 w
ith

launched by

VersionNumber

us
es

has

read option
grand option

write option

ends with is used
by

is in has

is unique

DTD (Stream)
ha

s

has Name

Column
(ID)

has set on

On/off

is
 v

is
ib

le
 …

 fo
r

false

LanguageProfile
(ID)

has

contains

Name

Profile

Marking
(ID)

has
parent

internal

is copy
from

hasRank

is onPosition

starts
with

ends with

is logical style

is itemized

is italic
is enumerated

is underline

is

is part of

Alignment

Size has

Font has

hasColor

is bold

has

uses

ElementName

StylesheetName

is
us

ed

by

Process
(ID)

is running by OS

is web session

MainRoles

Roles has

has

Timestamp
(Date, Time)

cr
ea

te
d

at

Timestamp
(Date, Time)

Timestamp
(Date, Time)

Timestamp
(Date, Time)

Timestamp
(Date, Time)created

at

Type
has

Port

IP
has

has

MessagePropagator
(ID)

Picture
(Stream)

Name

Picture
(ID)

has

contains

LayoutBlock WorkflowBlockLogicalBlock

contains

BlockDataType

has
property

BlockData is of

WorkflowInstance
(ID)

is
 in

TaskInstance
(ID)

has
parent

Timestamp
(Date, Time)

Timestamp
(Date, Time)

Timestamp
(Date, Time)

Timestamp
(Date, Time)

last modified at

completed at

started at

created
at

is on

has

Name

created by

has
attached

Comment

Typeis of

Timestamp
(Date, Time)

Timestamp
(Date, Time)

Timestamp
(Date, Time)

created
at

started at

<< last modified at

is

Category

Editors

ha
s

Status
has

Timestamp
(Date, Time)

<< status last modified

Timestamp
(Date, Time)

is due at

DueType

ha
s

Timezone
has

Noteshas

SecurityLevel

ha
s

se
t

Timestamp
(Date, Time)

<< is completed at

is
 fo

llo
w

ed
 b

y

Task
(Code)

Descriptionhas

Indent

references

ha
s

 b
ee

n
op

en
ed

 a
t .

..
byTimestamp

RedoHistory

is before

is after

references

hasCharCounter

is inhas

has

Offset

ActionID
(Code)

Timestamp
(Date, Time)

in
vo

ke
d

at

invoked
by

Version
(ID)

is
 b

ui
ld

fro

m

ha
s cr

ea
te

d
by

archived

has

Comment

Timestamp
(Date, Time)

<<
 c

re
at

ed
 a

t

UndoHistory
(ID)

starts

ends

ha
s

Name

cr
ea

te
d

by

Name

has
is before

is after

<< references

CharCounter
has

is in

created
at

Timestamp

is active

created
by

is used
by

Offset

ha
s

created
at

Timestamp

Index
(ID)

la
st

 m
od

ifie
d

by Lexicon
(ID)

is
 o

f

Frequency

is

oc
cu

rri
ng

is stop word

Term

is

is in

ends with

starts
with

<< original starts with

WordNumber

SentenceNumber

ParagraphNumber

Citatons

has

is in

is

is in

is
 te

m
po

ra
ry

is in

ha
s

Structure

ha
s

ElementPath

cr
ea

te
d

at

Timestamp

<< describes

SpiderBuild
(ID)

is updated

is deleted

Timestamp
(Date, Time)

<<
 la

st
 u

pd
at

ed
 a

t

has validated structure <<
 n

ee
de

d
to

 in
de

x

Time
(ms)

IndexUpdate

ne
xt

 u
pd

at
e

in

ha
s

in
de

xe
d

is
 ru

nn
in

g
by

 O
S

la
st

 u
pd

at
e

enabled

Timestamp

Time
(s)

Documents

StopCharacter

Description

Character

Value
(ASCII)

is sentence stop

is paragraph stop

Name

has

is

is

OptionsSettings

show information show warningsshow exceptions

do lineage recording

do internal lineage recording
ask for unknown source

show intra document
lineage information

are set
for

X

X

X

VirtualBorder
(ID)

is
on

ha
s

{1, 2}

{1, 2}

ir

ir

UserMode
(Code)

UserMode
(Code)

Figure 2. TeNDaX Database Schema (Object Role Modeling Diagram)

change on a document done by a client, is responsible for sending
update information to all the clients working on the same
document. The DocumentId in the class DocumentSession points
to a FileNode instance, and corresponds to the ID of the opened
document. Instances of the class FileNode either represent a
folder node or a document node. The folder node corresponds to a
folder of a file system and the document node to that of a file.
Instances of the class Char represent the characters of a
document. The value of a character is stored in the attribute
CharacterValue. The sequence is defined by the attributes After
and Before of the class Char. Particular instances of Char mark
the beginning and the end of a document. The methods
InsertChars and RemoveChars are used to add and delete
characters.

2.1.2 Editor
As seen above, each document is natively stored in the database.
Our editor does not have a replica of one part of the native text
database in the sense of database replicas. Instead, it has a so-called
image as its replica. Even if several authors edit the same text at the
same time, they work on one unique document at all times. The
system guarantees this unique view.

Editing a document involves a number of steps: first, getting the
required information out of the image, secondly, invoking the
corresponding methods within the database, thirdly, changing the
image, and fourthly, informing all other clients about the changes.

2.1.3 Real-Time Server Component
The real-time server component is responsible for the real-time
propagation of any changes on a document done within an editor to
all the editors who are working or have opened the same document.

When an editor connects to the application server, which in turn
connects to the database, the database also establishes a connection
to the real-time server component (if there isn’t already a
connection). The database system informs the real-time server
component about each new editor session (session), which the real-
time server component administrates in his SessionManager. Then,
the editor as well connects to the real-time server component. The
real-time server component adds the editor socket to the client’s
data structure in the SessionManager and is then ready to
communicate.

Each time a change on a document from an editor is persistently
stored in the database, the database sends a message to the real-time
server component, which in turns, sends the changes to all the

43

editors working on the same document. Therefore, a special
communication protocol is used: the update protocol.

Update Protocol
The real-time server component uses the update protocol to
communicate with the database and the editors. Messages are sent
from the database to the real-time server component, which sends
the messages to the affected editors. The update protocol consists of
different message types. Messages consist of two packages:
package one contains information for the real-time server
component whereas package two is passed to the editors and
contains the update information, as depicted in Figure 3.

|| RTSC || Parameter | … | Parameter|| || Editor Data ||

 Protocol between database system and
real-time server component

Protocol between real -time server
component and editors

Figure 3. Update Protocol

In the following, two message types are presented:

||u|sessionId,...,sessionId||||editor data||

u: update message, sessionId: Id of the client session

With this message type the real-time server component sends the
editor data package to all editors specified in the sessionId list.
||ud|fileId||||editor data||

ud: update document message, fileId: Id of the file

With this message type, the real-time server component sends the
editor data to all editors who have opened the document with the
indicated file-Id.

Class Model
Figure 4 depicts the class model as well as the environment of the
real-time server component. The environment consists mainly of the
editor and the database, but any other client application that could
make use of the real-time server component can connect.

ConnectionListener: This class is responsible for the connection to
the clients, i.e. to the database and the editors. Depending on the
connection type (database or editor) the connection is passed to an
EditorWorker instance or DatabaseMessageWorker instance
respectively.

EditorWorker: This class manages the connections of type ‘editor’.
The connection (a socket and its input and output stream) is stored
in the SessionManager.

SessionManager: This class is similar to an ‘in-memory database’:
all editor session information, e.g. the editor sockets, which editor
has opened which document etc. are stored within this data
structure.

DatabaseMessageWorker: This class is responsible for the
connections of type ‘database’. At run-time, only one connection
exists for each database. Update messages from the database are
sent to the DatabaseMessageWorker and, with the help of
additional information from the SessionManager, sent to the
corresponding clients.

ServiceClass: This class offers a set of methods for reading, writing
and logging messages.

tdb.mp.editor tdb.mp.database

tdb.mp.mgmt

EditorWorker

DatabaseMessageWorker

SessionManager

MessageHandler

ConnectionListener

ServiceClass

MessageQueue

tdb.mp.listener tdb.mp.service

junit.tests

1

*

1

*

1 *

1
*

1*

1

*

Editors Datenbanksystem 1

2

1

*

1

*

1

*

TCP/IP

Figure 4. Real-Time Server Component Class Diagram

2.1.4 Dynamic Folders
As mentioned above, every editing action invoked by a user is
immediately transferred to the database. At the same time, more
information about the current transaction is gathered.

As all information is stored in the database, one character can hold a
multitude of information, which can later be used for the retrieval of
documents. Meta data is collected at character level, from document
structure (layout, workflow, template, semantics, security,
workflow and notes), on the level of a document section and on the
level of the whole document [6].

All of the above-mentioned meta data is crucial information for
creating content and knowledge out of word processing documents.

This meta data can be used to create an alternative storage system
for documents. In any case, it is not an easy task to change users’
familiarity to the well known hierarchical file system. This is also
the main reason why we do not completely disregard the classical
file system, but rather enhance it. Folders which correspond to the
classical hierarchical file system will be called “static folders”.
Folders where the documents are organized according to meta data,
will be called “dynamic folders”. As all information is stored in the
database, the file system, too, is based on the database.

The dynamic folders build up sub-trees, which are guided by the
meta data selected by the user. Thus, the first step in using a
dynamic folder is the definition of how it should be built. For each
level of a dynamic folder, exactly one meta data item is used to. The
following example illustrates the steps which have to be taken in
order to define a dynamic folder, and the meta data which should be
used.

As a first step, the meta data which will be used for the dynamic
folder must be chosen (see Table 1): The sequence of the meta data
influences the structure of the folder. Furthermore, for each meta
data used, restrictions and granularity must be defined by the user;
if no restrictions are defined, all accessible documents are listed.
The granularity therefore influences the number of sub-folders
which will be created for the partitioning of the documents.

44

As the user enters the tree structure of the dynamic folder, he can
navigate through the branches to arrive at the document(s) he is
looking for. The directory names indicate which meta data
determines the content of the sub-folder in question. At each level,
the documents, which have so far been found to match the meta
data, can be inspected.

Table 1. Defining dynamic folders (example)

Level Meta data Restrictions Granularity

1 Creator Only show documents
which have been created
by the users “Leone” or
“Hodel” or “Gall”

One folder per
creator

2 Current
location

Only show documents
which where read at my
current location

One folder per
task status

3 Authors Only show documents
where at least 40% was
written by user ‘Leone’

Each 20% one
folder

Ad hoc changes of granularity and restrictions are possible in order
to maximize search comfort for the user. It is possible to predefine
dynamic folders for frequent use, e.g. a location-based folder, as
well as to create and modify dynamic folders on an ad hoc basis.
Furthermore, the content of such dynamic folders can change from
one second to another, depending on the changes made by other
users at that moment.

3. VALIDATION
The proposed architecture is validated on the example of a character
insertion. Insert operations are the mostly used operations in a
(collaborative) editing system. The character insertion is based on
the TeNDaX Insert Algorithm which is formally described in the
following. The algorithm is simplified for this purpose.

3.1 Insert Characters Algorithm
The symbol c stands for the object ”character”, p stands for the
previous character, n stands for the next character of a character
object c and the symbol l stands for a list of character objects.

c = character

p=previous character

n = next character

l = list of characters

The symbol c1 stands for the first character in the list l, ci stands
for a character in the list l at the position i, whereas i is a value
between 1 and the length of the list l, and cn stands for the last
character in the list l.

c1 = first character in list l

ci = character at position i in list l

cn = last character in list l

The symbol β stands for the special character that marks the
beginning of a document and ε stands for the special character
that marks the end of a document.

β=beginning of document

ε=end of document

The function startTA starts a transaction.

startTA = start transaction

The function commitTA commits a transaction that was started.

commitTA = commit transaction

The function checkWriteAccess checks if the write access for a
document session s is granted.

checkWriteAccess(s) = check if write access for document session
s is granted

The function lock acquires an exclusive lock for a character c and
returns 1 for a success and 0 for no success.

lock(c) = acquire the lock for character c

success : return 1, no success : return 0

The function releaseLocks releases all locks that a transaction has
acquired so far.

releaseLocks = release all locks

The function getPrevious returns the previous character and
getNext returns the next character of a character c.

getPrevious(c) = return previous character of character c

getNext(c) = return next character of character c

The function linkBefore links a preceding character p with a
succeeding character x and the function linkAfter links a
succeeding character n with a preceding character y.

linkBefore(p,x) = link character p to character x

linkAfter(n,y) = link character n to character y

The function updateString links a character p with the first
character c1 of a character list l and a character n with the last
character cn of a character list l

updateString(l, p, n) = linkBefore(p cl)∧ linkAfter(n, cn)

The function insertChar inserts a character c in the table Char
with the fields After set to a character p and Before set to a
character n.

insertChar(c, p, n) = linkAfter(c,p) ∧ linkBefore(c,n) ∧
linkBefore(p,c) ∧ linkAfter(n,c)

The function checkPreceding determines the previous character's
CharacterValue of a character c and if the previous character's
status is active.

checkPreceding(c) = return status and CharacterValue of the
previous character

The function checkSucceeding determines the next character's
CharacterValue of a character c and if the next character's status is
active.

45

checkSucceeding(c) = return status and CharacterValue of the
next character

The function checkCharValue determines the CharacterValue of a
character c.

checkCharValue(c) = return CharacterValue of character c

The function sendUpdate sends an update message
(UpdateMessage) from the database to the real-time server
component.

sendUpdate(UpdateMessage)

The function Read is used in the real-time server component to
read the UpdateMessage.

Read(UpdateInformationMessage)

The function AllocatEditors checks on the base of the
UpdateMessage and the SessionManager, which editors have to
be informed.

AllocateEditors(UpdateInformationMessage, SessionManager) =
returns the affected editors

The function SendMessage(EditorData) sends the editor part of
the UpdateMessage to the editors

SendMessage(EditorData)

In TeNDaX, the Insert Algorithm is implemented in the class
method InsertChars of the class Char which is depicted in Figure
2. The relevant parameters for the definitions beneath, are
introduced in the following list:

- nextCharacterOID: OID of the character situated next to the
string to be inserted

- previousCharacterOID: OID of the character situated
previously to the string to be inserted

- characterOIDs (List): List of character which have to be
inserted

Thus, the insertion of characters can be defined stepwise as
follows:

Start a transaction.

startTA

Select the character that is situated before the character that
follows the string to be inserted.

getPrevious(nextCharacterOID) = PrevChar(prevCharOID) ⇐
Π After ϑOID = nextCharacterOID(Char))

Acquire the lock for the character that is situated in the document
before the character that follows the string which shall be inserted.

 lock(prevCharId)

At this time the list characterOIDs contains the characters c1 to cn
that shall be inserted.

characterOIDs={ c1, …, cn }

Each character of the string is inserted at the appropriate position
by linking the preceding and the succeeding character to it.

For each character ci of characterOIDs:

insertChar(ci, p, n)

Whereas ci ∈ { c1,…, cn }

Check if the preceding and succeeding characters are active or if it
is the beginning or the end of the document.

checkPreceding(prevCharOID) = IsOK(IsActive,
CharacterValue) ⇐ Π IsActive, CharacterValue (ϑ OID =

nextCharacterOID(Char))

checkSucceeding(nextCharacterOID) = IsOK(IsActive,
CharacterValue)⇐ Π IsActive, CharacterValue (ϑ OID =

nextCharacterOID(Char))

Update characters before and after the string to be inserted.

updateString(characterOIDs, prevCharOID, nextCharacterOID)

Release all locks and commit Transaction.

releaseLocks

commitTA

Send update information to the real-time server component

sendUpdate(UpdatenMessage)

Read update message and inform affected editors of the change

Read(UpdateMessage)

Allocate Editors(UpdateMessage, SessionManager)

SendMessage(EditorData)

3.2 Insert Characters Example
Figure 1 gives a snapshot the system, i.e. of its architecture: four
databases are distributed over a peer-to-peer network. Each
database is connected to an application server (AS) and each
application server is connected to a real-time server component
(RTSC). Editors are connected to one or more real-time server
components and to the corresponding databases.

Considering that editor A (connected to database 1 and 4) and
editor B (connected to database 1 and 2) are working on the same
document stored in database 1. Editor B now inserts a character
into this document. The insert operation is passed to application
server 1, which in turns, passes it to the database 1, where an
insert operation is invoked; the characters are inserted according
to the algorithm discussed in the previous section. After the
insertion, database 1 sends an update message (according to the
update protocol discussed before) to real-time server component 1
(via AS 1). RTCS 1 combines the received update information
with the information in his SessionManager and sends the editor
data to the affected editors, in this case to editor A and B, where
the changes are immediately shown.

Occurring collaboration conflicts are solved and described in [3].

4. SUMMARY
With the approach presented in this paper and the implemented
prototype, we offer real-time collaborative editing and management
of documents stored in a special way in a database. With this
approach we provide security, consistency and availability of
documents and consequently offer pervasive document editing and
management. Pervasive document editing and management is
enabled due to the proposed architecture with the embedded real-

46

time server component, which propagates changes to a document
immediately and consequently offers up-to-date documents.
Document editing and managing is consequently enabled anywhere,
anytime and with any device.

The above-descried system is implemented in a running prototype.
The system will be tested soon in line with a student workshop next
autumn.

REFERENCES
[1] Abiteboul, S., Agrawal, R., et al.: “The Lowell Database

Research Self Assessment.” Massachusetts, USA, 2003.
[2] Hodel, T. B., Businger, D., and Dittrich, K. R.: “Supporting

Collaborative Layouting in Word Processing.” IEEE
International Conference on Cooperative Information
Systems (CoopIS), Larnaca, Cyprus, IEEE, 2004.

[3] Hodel, T. B. and Dittrich, K. R.: "Concept and prototype of a
collaborative business process environment for document
processing." Data & Knowledge Engineering 52, Special
Issue: Collaborative Business Process Technologies(1): 61-
120, 2005.

[4] Hodel, T. B., Dubacher, M., and Dittrich, K. R.: “Using
Database Management Systems for Collaborative Text

Editing.” ACM European Conference of Computer-
supported Cooperative Work (ECSCW CEW 2003),
Helsinki, Finland, 2003.

[5] Hodel, T. B., Gall, H., and Dittrich, K. R.: “Dynamic
Collaborative Business Processes within Documents.” ACM
Special Interest Group on Design of Communication
(SIGDOC) , Memphis, USA, 2004.

[6] Hodel, T. B., R. Hacmac, and Dittrich, K. R.: “Using Text
Editing Creation Time Meta Data for Document
Management.” Conference on Advanced Information
Systems Engineering (CAiSE'05), Porto, Portugal, Springer
Lecture Notes, 2005.

[7] Hodel, T. B., Specker, F. and Dittrich, K. R.: “Embedded
SOAP Server on the Operating System Level for Ad-hoc
Automatic Real-Time Bidirectional Communication.”
Information Resources Management Association (IRMA),
San Diego, USA, 2005.

[8] O’Kelly, P.: “Revolution in Real-Time Communication and
Collaboration: For Real This Time.” Application Strategies:
In-Depth Research Report. Burton Group, 2005.

47

