
Case-based Reasoner
for OWL-S Web Services

Diploma Thesis, February, 4, 2007

Simon Lützelschwab
of Kaiseraugst AG, Switzerland

Student ID: 99-718-934
simon.l@gmail.com

Supervisor: Michael Daenzer

Prof. Abraham Bernstein, PhD
Department of Informatics
University of Zurich
http://www.ifi.unizh.ch/ddis

Dynamic and Distributed
Information Systems

Acknowledgments

I would like to thank my supervising assistant Michael Daenzer for the numerous
discussions around the topic and for coping so well with my crazy ideas. He has done a
fantastic job steering this thesis in the right direction and ultimately made it what it is. I
would also like to thank Prof. Abraham Bernstein for giving me the opportunity to write this
thesis in the first place.

Abstract

This thesis explores a novel approach to use techniques found in Case-based Reasoner
Systems and apply them to the Semantic Web. In the context of the Web Service Ontology
OWL-S, a framework following the principles of Case-based Reasoning is introduced. A
suitable case structure is defined that builds the basis of the system. Furthermore, various
similarity strategies are implemented to determine the appropriate selection of suitable
cases based on the novel problem presented to the system. Similarity is measured using
semantic, syntactic and graph measurements. Additionally, different adaption strategies
are introduced to facilitate the reuse process. The framework's architecture allows for
custom extension of additional similarity and adaption strategies in the future.

Zusammenfassung

Diese Diplomarbeit versucht die Technik traditioneller Case-based Reasoner Systeme auf
das Gebiet des semantischen Webs anzuwenden. Ein auf den Prinzipien von Case-based
Reasoning basiertes Framework wird vorgestellt welches auf der Web Service Ontologie
OWL-S aufbaut. Eine angemessene Fallstruktur wird definiert, welche als Basis des
Frameworks dient. Des Weiteren werden verschiedene Ähnlichkeitsmasse eingeführt
welche bei der Auswahl der geeigneten Fälle dienlich sind. Ähnlichkeit ist gemessen
anhand des neuen Problems, das dem System übergeben wird und verwendet
semantische und syntaktische Ansätze als auch Methoden aus der Graphentheorie.
Zusätzlich werden verschiedene Adaptionsstrategien eingeführt welche die
Weiterverwendung der Fälle bewerkstelligen. Die Architektur des Frameworks erlaubt
individuell gefertigte Erweiterungen weiterer Ähnlichkeits- und Adaptionsstrategien.

Table of Contents
1 Introduction.. 7

1.1 Goal of the Thesis.. 8
1.2 Structure... 8
1.3 Target Audience... 8

2 Motivation.. 9
2.1 NExT – The NMR EXperiment Toolbox... 9

2.1.1 An exemplary Scenario... 9
2.1.2 The Concepts.. 10
2.1.3 User Guidance.. 10

2.2 Case-based Reasoning.. 11
2.2.1 History of Case-based Reasoning.. 11
2.2.2 Main Components and Features of Case-based Reasoning............................ 11

2.3 Semantic Web and OWL-S.. 13
2.3.1 The Semantic Web... 13
2.3.2 OWL-S.. 14

2.4 Related Work... 16
2.4.1 Case-based Reasoner: jColibri... 17
2.4.2 Matchmaker: OWLS-MX... 19
2.4.3 AI Planner: CASPER... 20
2.4.4 Conclusion.. 20

2.5 Personal Motivation.. 21
3 Design... 22

3.1 Overview.. 22
3.2 Recording Cases / Execution Trails... 22
3.3 Case... 25
3.4 Case Base and Indexing.. 27
3.5 Retrieve.. 27

3.5.1 Similarity Strategies.. 29
3.5.1.1 Semantic similarity... 29
3.5.1.2 Syntactic Similarity... 32
3.5.1.3 Graph Similarity... 32

3.6 Reuse... 33
3.7 Revising... 34
3.8 Retaining.. 34

4 Implementation.. 36
4.1 Overview.. 36

4.1.1 Used Technologies... 36
4.2 Framework... 37
4.3 Recording Cases / Execution Trails... 37
4.4 Case Base.. 39
4.5 Retrieve.. 40

4.5.1 OWL-S Graph... 40
4.5.2 Similarity Strategies.. 42

4.5.2.1 Semantic Matching.. 44
4.5.2.2 Syntactic Matching... 45
4.5.2.3 Graph Matching... 46
4.5.2.4 Future Implementations... 47

4.6 Reuse... 48
4.6.1 Adaption Strategy Simple.. 49

4.6.2 Adaption Strategy Copy.. 49
4.6.3 Adaption Strategy Insert.. 51

4.7 Revising... 52
4.8 Retaining.. 52

5 Evaluation.. 53
5.1 Setting.. 53
5.2 Approach.. 59
5.3 Test Cases... 60

6 Conclusion... 61
6.1 Summary.. 61
6.2 Future Work... 62

6.2.1 Case and Case Base.. 63
6.2.2 Evaluation... 63
6.2.3 Similarity Measures... 63
6.2.4 Adaption Strategies... 63
6.2.5 Revision and Retention... 64
6.2.6 Future Applications... 64

7 References.. 67
A Appendix – Case-based Reasoning.. 69

A.A Case-based Reasoning Criteria.. 69
A.B Advantages of Case-based Reasoning... 70

B Appendix - OWL-S.. 72
C Tools and Libraries... 74

C.A Eclipse... 74
C.B Mindswap OWL-S API... 74
C.C Simpack.. 74

1 Introduction

1 Introduction

The Internet has gained significant momentum over the past few years and has shaped
many aspects of each individual's daily life. Thanks to search engines such as Google1,
information is more easily accessible than ever before, allowing people to connect with
each other in ways that otherwise would not have been possible. This new form of
collaboration not only results in interesting projects such as Wikipedia2 but it has also had
a significant impact on today's science as shown by the progress made related to
prosopagnosia3. Though the Internet known today already serves as a helpful instrument,
we are far from reaching its true potential. Most of the information and services available
today are aimed at human users and consumed through a web browser. The increasing
popularity of Web Services and initiatives such as the Semantic Web will allow any
combination of communication between humans and software agents or fully automated
interaction between agents only.

“I have a dream for the Web [in which computers] become capable of analyzing all the
data on the Web – the content, links, and transactions between people and computers. A
‘Semantic Web’, which should make this possible, has yet to emerge, but when it does,
the day-to-day mechanisms of trade, bureaucracy and our daily lives will be handled by
machines talking to machines. The ‘intelligent agents’ people have touted for ages will
finally materialize.” - Tim Berners-Lee, 19994

The Semantic Web not only opens up new dimensions for scientists to collaborate with
each other, exchange knowledge, but it also enables to share resources across the globe.
Research fields such as Bioinformatics or BioNMR require the use of complex tools and
experiment set-ups where some tasks can run for several weeks. Today, scientists
researching in these areas have to invest a significant amount of effort into getting familiar
with the various tools and best practices, often by consuming the time of more
experienced researchers or by trial and error approaches [Daenzer 2005].

To allow scientists to focus their energy on their primary research goal and contribute to
their area, various software tools have been developed to assist in the creation of
experiment set-ups, and to allow them to share resources as described in [Daenzer 05]
and seen in MyGrid5 and Taverna6.
[Sankar and Simon 2004] describes Case-based Reasoning (CBR) as “a body of concepts
and techniques that touch upon some of the most basic issues relating to knowledge
representation, reasoning and learning from experience.” CBR represents a very simple,
but powerful technique to assist in solving novel problems based on past experience. In
the context discussed above, CBR can add significant value in shortening the time needed
to set-up new experiments and reduce the fault rate of new experiments when orientated
on what has worked in the past.

1 Google – http://www.google.com
2 Wikipedia – http://www.wikipedia.com
3 Face Blind – http://www.wired.com/wired/archive/14.11/blind.html
4 Semantic Web – http://en.wikipedia.org/wiki/Semantic_Web
5 MyGrid - http://www.mygrid.org.uk
6 Taverna - http://taverna.sourceforge.net/

7

1 Introduction

1.1 Goal of the Thesis
The goal of this thesis is to explore a novel approach to apply the concepts and techniques
known by CBR to the Semantic Web and Web Services described by OWL-S in specific.
Firstly, means to build a case base which will serve as the repository of past knowledge
are introduced. A new problem will then be presented to the system which will return a set
of best matching past cases based on various search criteria. Following different
strategies, these cases are then combined with the new problem and returned. The
system is developed to serve as a framework to facilitate the implementation of different
means for retrieving and adapting cases. Various strategies for both steps have been
implemented to serve as a basis and a proof of concept.

1.2 Structure
The structure of this thesis follows the design science thesis as outlined in [Bernstein
2005]: After highlighting the motivation, followed by a detailed description, an evaluation
part with a concluding discussion and some final remarks are presented.

Chapter 2 goes into the details about the initial motivation of choosing the concept of
Case-based Reasoning applied to OWL-S. It also introduces the context to which the
system is intended to be applied and presents related work.

Chapter 3 gives a more detailed introduction into the design aspects of the system.
Specifically, the main components – Case, Case Base, Retrieval, Reuse - of Case-based
Reasoning are outlined in the specific context of OWL-S. Furthermore, the basics for the
various similarity measurements and adaption strategies are outlined.

Chapter 4 describes the concrete implementation of the design aspects outlined in the
previous chapter. Various strategies for comparing and adapting cases are discussed in
the context of their actual implementation.

Chapter 5 discusses aspects of potential test cases that may be used to evaluate the
system. Different scenarios are presented along with the intended purpose of the tests and
what aspects of the system are tested.

Chapter 6 summarizes the achievements of this thesis and its accomplishments compared
to the initial goal. Additionally, an outlook of future work is presented.

1.3 Target Audience
This thesis has as its primary audience computer scientists who are interested in the field
of Semantic Web, Web Services, Matchmakers, Planners and last but not least, CBR.
Specifically, it is targeted towards the interested reader who wants to explore
matchmaking beyond the traditional purely semantic approaches based on past
experience. Additionally, individuals interested in the field of CBR might be able to explore
new applications. Last but not least, people interested in reading a few entertaining pages
that expand their horizon should feel encouraged to judge my literary qualities.

8

2 Motivation

2 Motivation

This chapter gives an overview of the initial motivation, presents NExT and also provides
an introduction to the principals of Case-based Reasoning, the Semantic Web and the
Web Service ontology OWL-S.

2.1 NExT – The NMR EXperiment Toolbox
Scientists working in the domain of Nuclear Magnetic Resonance (NMR) are facing
complex experiment set-ups, expensive and scarce resources and the lack of appropriate
Software support. Michael Daenzer took up the challenge to address many of these issues
and go beyond it. In [Daenzer2005], a summary of his findings as well as a detailed
proposal are presented. A semantically enriched and formal NMR process builds the basis
of NExT. Taking advantage of the extensibility of OWL-S, a Software framework
incorporates the planning process of new experiments, their documentation methods and
their execution and control. An important aspect of the framework is to support its users in
the design process of new experiment set-ups, which can be achieved by different
planning systems and/or problem solving systems.
In summary, NExT is addressing the following main objectives: process plan definition,
user guidance, process automation and knowledge exchange.

2.1.1 An exemplary Scenario
[Daenzer2005] describes an exemplary scenario to visualize the purpose and
functionalities of NExT which is reproduced in a shortened version below:

A spectroscopist starts his protein structure determination project by creating a new NMR
case and entering specific information known to him. He proceeds to open the workflow
editor which gives him the choice of using an existing template or starting from scratch. In
this particular scenario, it is assumed that an existing process plan is used that needs to
be adapted.
After performing the required adaption, additional data needed for the execution of the
experiment is entered and the execution process is initiated. During the execution, the
user receives feedback over various different media such as the user interface, email or
mobile text messages. In case of an error notification such as indication of a spectrometer
malfunction, the execution can be interrupted and a request to the system to provide
assistance on how to resolve the error can be issued. In this case, NExT suggests various
actions to be taken (e.g. to fine tune some of the spectrometers working parameters).
If at any point in the experiment the spectroscopist realizes that he has limited experience
with a certain procedure, he can run a reasoner engine to let him present similar cases
and documents dealing with this topic. Additional researchers can also remotely connect to
NExT servers in different laboratories and are able to view, change, invoke and monitor
the current projects on their own screen without a need to be physically present.
As a project evolves, the reasoners provided by NExT can provide the user with an
expanding number of hints, tips, clues and ideas. For example, when coming to a new
experimental problem, the system may present a list of alternative plans on how to
proceed from the current stage of the project based on past experience and various rules.

9

2 Motivation

After the experiment has been run successfully, the spectroscopist can deposit his case on
the worldwide case base to let other NMR spectroscopists benefit from his work.

2.1.2 The Concepts
NExT introduces formal models for NMR data, atomic and composite process
representations to achieve the four main objectives: process plan definition, user
guidance, process automation and knowledge exchange.
An experiment is reflected as a specific form of a composite process. A composite process
consists of any number of atomic processes. These atomic processes in turn reflect
various concrete tasks that can be controlled and executed by the system. Composite and
atomic processes consume and produce data that is either entered by the user, passed on
from preceding processes or outputted in some form.
NExT describes processes and data in a machine readable format in the sense of a formal
data and process model. OWL-S builds the basis of this model as it provides the quality of
formality and many similar concepts required such as representation of composite and
atomic processes and definition of data flows.
In NExT, the NMR process can therefore be represented as a OWL-S service.

2.1.3 User Guidance
[Daenzer2005] determined that user guidance in the context of NExT can be provided in
the following means:
Inductive support. Building on previous experiments, the user can gain insight into how
specific issues have been resolved in the past. This approach builds on techniques known
by Case-based Reasoning.

Deductive support. Properties, mostly logical, of single steps of possible executable
functions, are used to provide suggestions on possible chains and configurations. Artificial
Intelligence planning takes advantage of this specific approach.

Templates. Providing the user with appropriate templates helps to accelerate the design
process of experiments. Most modern Software provide users assistance in the form of
templates.

The focus of this thesis is to explore concrete implementations of offering the user
inductive support in the context provided by NExT.

10

2 Motivation

2.2 Case-based Reasoning

2.2.1 History of Case-based Reasoning
As mentioned in [Sankar and Simon 2004], the field of Case-based Reasoning (CBR) has
a relatively young history and has its origin in research being done in cognitive science.
The earliest contributions in this area were from Roger Shank and his colleagues at Yale
University. During the period 1977 to 1993, CBR research was highly regarded as a
plausible high-level model for cognitive processing. It mainly focused on problems such as
how people learn a new skill and how humans generate hypotheses about new situations
based on their past experiences. The objectives of these cognitive-based researches were
to construct decision support systems to help people learn. Many prototype CBR systems
were built during this period. Examples include Cyrus [Kolodner 1983], Mediator [Simpson
1985], Persuader [Sycara 1988], Chef [Hammond 1989], Julia [Hinrihs, 1992] and Protos
[Bareiss 1989]. Various CBR workshops were organized in 1988, 1989, and 1991 by the
U.S. Defense Advanced Research Projects Agency (DARPA). These events are
considered to have formally created the discipline of Case-based Reasoning. In 1993, the
first European workshop on Case-based Reasoning (EWCBR-93) was held in
Kaiserslauten, Germany. Since then, many international workshops and conferences on
CBR have been held in different parts of the world. Other major artificial intelligence
conferences, such as ECAI (European Conference on Artificial Intelligence), IJCAI
(International Joint Conference on Artificial Intelligence), have also had CBR workshops as
part of their regular programs.

2.2.2 Main Components and Features of Case-based Reasoning
A typical example to describe Case-based Reasoning can be taken from the medical
domain: It is assumed that physicians are using a system to perform medical diagnosis on
new patients based on past experience. The system holds a set of cases to make this past
experience accessible. For this system, a case can represent a person's symptoms
together with the associated treatments. When a doctor then examines a new patient, he
compares the person's current symptoms with those of earlier patients who had similar
symptoms. The treatment that these past patients have received is then used and modified
as necessary to suit the new patient.
The above example which can be extended to many different domains shows that a Case-
based Reasoner solves new problems by adapting solutions to older problems. Therefore,
CBR involves reasoning from prior examples: retaining a memory of previous problems
and their solutions and solving new problems by references to that knowledge. Generally,
a Case-based Reasoner will be presented with a problem, either by a user or by a
program or system. The Case-based Reasoner then searches its memory of past cases in
its case base and attempts to find a case that has the same problem specification as the
case under analysis. If the reasoner cannot find an identical case in its case base, it will
attempt to find a case or multiple cases that most closely match the current case.
In situations where a previous identical case is retrieved, assuming that its solution was
successful, it can be offered as a solution to the current problem. In the more likely
situation that the case retrieved is not identical to the current case, an adaption phase
occurs. During adaption, differences between the current and retrieved cases are first

11

2 Motivation

identified and then the solution associated with the case retrieved is modified, taking these
differences into account. The solution returned in response to the current problem
specification may then be tried in the appropriate domain setting.

The problem solving life cycle in a CBR system consist essentially of the following four
parts:

1. Retrieving
Similar previously experienced cases whose problems are considered to be similar
are selected.

2. Reusing
The cases are reused by either copying or integrating the solution from the retrieved
cases.

3. Revising
The retrieved solutions are revised or adapted to try to solve the new problem.

4. Retaining
The new solution is stored after being confirmed and validated.

The following figure shows a graphical representation of the typical CBR cycle:

12

Figure 1: CBR Cycle

2 Motivation

In many practical applications, the reuse and revise stages are often difficult to distinguish
and therefore, are often also referred to as a single stage called adaption. The adaption
process is usually a complicated process and strongly dependent on the general domain
knowledge. This process can be supported by implementing rules that are applicable to
the domain and therefore vary in their complexity. As an alternative approach, it could also
be considered to take advantage of such systems as AI planners to complement the
missing parts.

2.3 Semantic Web and OWL-S
“The Semantic Web is a web of data. There is lots of data we all use every day, and its not
part of the web. I can see my bank statements on the web, and my photographs, and I can
see my appointments in a calendar. But can I see my photos in a calendar to see what I
was doing when I took them? Can I see bank statement lines in a calendar?

Why not? Because we don't have a web of data. Because data is controlled by
applications, and each application keeps it to itself.

The Semantic Web is about two things. It is about common formats for interchange of
data, where on the original Web we only had interchange of documents. Also it is about
language for recording how the data relates to real world objects. That allows a person, or
a machine, to start off in one database, and then move through an unending set of
databases which are connected not by wires but by being about the same thing.”7

2.3.1 The Semantic Web
To achieve the goals of the Semantic Web, the following technologies are used which are
also included in the Semantic Web stack shown in figure 289.

▪ XML
Provides a surface syntax
for structured documents but
imposes no semantic
constraints on the meaning
of these documents.

▪ RDF
Is a simple data model for
referring to objects
("resources") and how they
are related.

▪ RDF-Schema
Is a vocabulary for
describing properties and
classes of RDF resources

7 Introduction to the Semantic Web on the W3C website - http://www.w3.org/2001/sw/
8 Figure from W3 website - http://www.w3.org/2004/Talks/1109-sb-gsaWebSci/slide14-0.html
9 Components description partially from Wikipedia - http://en.wikipedia.org/wiki/Semantic_Web

13

Figure 2: W3C Semantic Web stack

2 Motivation

with a semantics for generalization-hierarchies of such properties and classes.
▪ OWL

Adds more vocabulary for describing properties and classes: among others,
relations between classes (e.g. disjointness), cardinality (e.g. "exactly one"),
equality, richer typing of properties, characteristics of properties (e.g. symmetry),
and enumerated classes.

The Semantic Web has numerous advantages and is able to contribute with a number of
benefits in various scenarios. The main advantage is that it provides a common framework
to share data on the Web across application boundaries. This will not only allow R&D
scientists to exchange knowledge in a much more efficient way but also to automate many
tasks that are currently being done manually. The following figure visualizes the data
integration in Life Sciences10:

Figure 3: Data Integration in Life Sciences

2.3.2 OWL-S
“The Semantic Web should enable greater access not only to content but also to services
on the Web. Users and software agents should be able to discover, invoke, compose, and
monitor Web resources offering particular services and having particular properties, and
should be able to do so with a high degree of automation if desired. Powerful tools should
be enabled by service descriptions, across the Web service lifecycle. OWL-S (formerly
10 Figure taken from http://www.w3.org/2006/Talks/0927-Berlin-IH/Slides.html#(10)

14

2 Motivation

DAML-S) is an ontology of services that makes these functionalities possible.” [Martin et
al. 2004]
Based on the progress made in the Semantic Web effort, the DARPA Agent Markup
Language (DAML) Program developed a set of ontologies in the ontology language OWL
to describe Web services. OWL-S is therefore “a OWL-based Web service ontology, which
supplies Web service providers with a core set of markup language constructs for
describing the properties and capabilities of their Web services in unambiguous, computer-
interpretable form.”11 The goal is to facilitate the automation of Web service tasks,
including automated Web service discovery, execution, composition and interoperation.
OWL-S therefore defines a top-level ontology Service to provide the data needed to
discover and invoke, but it also allows composition and inter-operation of Web Services.
A service either consists of a single atomic process or a composite process. The process
model itself is formally described in OWL. The following figure shows selected classes and
properties of this model as described in [Martin et al. 2004]:

Figure 4: Top level of the process ontology

Each process can have parameters, preconditions and results. Parameters are either
inputs or outputs in any number and associated with a certain type such as string, integer,
book, ZIP or any other representation described in OWL. Preconditions are conditions that
need to be satisfied in order to execute the process. There is currently no defined standard
on how these conditions should be described formally. Examples of possible languages
used include Swrl, KIF, and PDDL. Results describe the outcome of the successful
execution of a process, in particular, the output in terms of information that is returned by
the process and the effects which are changed conditions in the world.
11 http://www.daml.org/services/owl-s/

15

2 Motivation

Each composite process has an appropriate control construct associated with it to
describe the execution path of the processes that belong to it. These control constructs
can be sequence descriptions of processes or more complex constructs such as If-Then,
Repeat-While etc. to control the execution flow.

2.4 Related Work
In this section, related work is presented and briefly summarized. Furthermore, the
description of each project is concluded by a comparison to the initial motivation.

2.4.1 Case-based Reasoner: jColibri
jColibri12 is a generic framework to build new Case-based Reasoning
systems. It has been developed by the Group for Artifical Intelligence
Applications (GAIA13) at the University of Madrid (Universidad
Complutense Madrid). The framework is a proposal of a domain
independent architecture named COLIBRI (Cases and Ontology Libraries Integration for
Building Reasoning Infrastructures). Its purpose is to assist in the design process of
knowledge intensive CBR (KI-CBR) systems. COLIBRI is based on knowledge acquisition
from a library of application-independent ontologies and the use of CBROnto which is
intended to be an ontology holding the common CBR terminology that guides case
representation and allows the description of flexible, generic and reusable CBR Problem
Solving Methods (PSMs) to solve the typical CBR tasks.
jCOLIBRI is a technological evolution of COLIBRI that incorporates into a distributed
architecture a DLs engine, GUI clients for assembling a CBR system from reusable
components and an object-oriented framework in Java. The design of the framework
comprises a hierarchy of Java classes plus a number of XML files organized around the
following elements:
▪ Tasks and Methods. XML files describe the tasks supported by the framework along

with the methods for solving those tasks.
▪ Case Base. Different connectors are defined to support several types of case

persistency, from the file system to a data base. Additionally, a number of possible
in-memory Case Base organizations are supported.

▪ Cases. A number of interfaces and classes are included in the framework to provide
an abstract representation of cases that support any type of actual case structure.

▪ Problem solving methods. The actual code that supports the methods included in
the framework. jCOLIBRI is designed to easily support the construction of (different
types of) CBR systems taking advantage of the task/method division paradigm
described. Building a CBR system is a configuration process where the system
developer selects the tasks the system must fulfill and for every task it assigns the
method that will perform the action. Ideally, the system designer would find every
task and method needed for the system at hand so that there would only be a need
to program the representation for cases. However, in a more realistic situation a
number of new methods and in some cases, new tasks, may be needed. Since
jColibri is designed as an extensible framework, new elements should smoothly

12 http://gaia.fdi.ucm.es/grupo/projects/jcolibri/index.html
13 http://gaia.fdi.ucm.es/index.html

16

2 Motivation

integrate with the available infrastructure when they follow the framework design.

In order to alleviate a framework instantiation effort, jColibri features a semiautomatic
configuration tool that guides the instantiation process through a graphical interface. This
interface is dynamically built to reflect the actual contents of the task/method ontology,
relying on the XML files describing task and method constraints and profiting from
reflection facilities implemented in Java. The configuration of a CBR system using this
interface consists of the following processes:

▪ Defining the case structure, the source for cases and the case base organization.
▪ While the system is not complete, selection of one of the tasks without a method

assigned, selection and configuration of a method for that task. At start-up the task
tree has only one element, CBRTask, which is solved by a decomposition method
that results in additional tasks. Task/method constraints are being tracked during
the configuration process so that only applicable methods in the given context are
offered to the system designer.

▪ Once the system is configured, the configuration code is generated so that a
running CBR system is available. The configuration tool also provides a default
interface for running the configured CBR system.

17

Figure 5: jColibri Architecture

2 Motivation

As jColibri presents an extensible framework and also supports using ontologies as
attributes of cases, it lacks the flexibility to present cases of flexible structure. However, it
will be interesting to see further progress of the framework and the author hopes it will find
its justified place amongst the CBR community.

2.4.2 Matchmaker: OWLS-MX
OWLS-MX14 is a hybrid OWL-S Web Service Matchmaker developed at
the German Research Center for Artificial Intelligence15 (DFKI) of
Saarbruecken, Germany.
OWLS-MX is a hybrid semantic Web service matchmaker that retrieves
services for a given query both written in OWL-S, and based on imported
ontologies in the described in OWL. For this purpose, the OWLS-MX
matchmaker performs pure profile based service IO-matching but combines logic-based
semantic matching with syntactic token-based similarity metrics to achieve better
performance. It uses the OWL-DL description logic reasoner Pellet for logic based filtering,
and the cosine, loss-of-information, extended Jacquard, and Jensen-Shannon information
divergence based similarity metrics for complementary approximate matching.
OWLS-MX computes the degree of semantic matching for a given pair of service
advertisement and request by successively applying five different filters: exact, plug in,
subsumes, subsumed-by and nearest-neighbor. The first three are logic based only
whereas the last two are hybrid due to the required additional computation of syntactic
similarity values.
The general matching algorithm used by OWL-S MX is described as follows in [Klusch et
al. 2006]: The OWLS-MX matchmaker takes any OWL-S service as a query, and returns
an ordered set of relevant services that match the query each of which annotated with its
individual degree of matching, and syntactic similarity value. The user can specify the
desired degree, and syntactic similarity threshold. OWLS-MX then first classifies the
service query I/O concepts into its local service I/O concept ontology. For this purpose, it is
assumed that the type of computed terminological subsumption relation determines the
degree of semantic relation between pairs of input and concepts. Auxiliary information on
whether an individual concept is used as an input or output concept by any registered
service is attached to this concept in the ontology. The respective lists of service identifiers
are used by the matchmaker to compute the set of relevant services that I/O match the
given query according to its five filters. In particular, OWLS-MX does not only pairwisely
determine the degree of logical match but syntactic similarity between the conjunctive I/O
concept expressions in OWL Lite. These expressions are built by recursively unfolding
each query and service input (output) concept in the local matchmaker ontology. As a
result, the unfolded concept expressions are including primitive components of a basic
shared vocabulary only. Any failure of logical concept subsumption produced by the
integrated description logic reasoner of OWLS-MX will be tolerated, if and only if the
degree of syntactic similarity between the respective unfolded service and request concept
expressions exceeds a given similarity threshold.

14 http://www-ags.dfki.uni-sb.de/~klusch/owls-mx/index.html
15 http://www.dfki.de/

18

2 Motivation

OWL-S MX extends the approach of matchmaking for Web Services by building a global
ontology and also by including syntactic algorithms in the matching process. It is, however,
not including the service's structure or single resources it is composed of as the focus is
on being a matchmaker application.

2.4.3 AI Planner: CASPER
CASPER16 (Continuous Activity Scheduling Planning Execution and Replanning) is a
product of the Jet Propulsion Laboratory17 which is a part of NASA. It uses iterative repair
to support continuous modification and updating of a current working plan in light of the
changing operating context. It uses AI technology for Planning and Scheduling, Planning
and Execution and Replanning. CASPER is being used in a range of projects including
autonomous spacecraft, autonomous rovers, ground communications station automation,
and uninhabited aerial vehicles.
Traditional batch oriented models of planning have shortcomings for spacecraft control.
Constructing a plan from scratch can be a computationally intensive process and onboard
computational resources are typically quite limited, so that it still may require considerable
time to generate a new operations plan. As a data point, the planner for the Remote Agent
Experiment (RAX) flying on-board the New Millennium Deep Space One mission takes
approximately four hours to produce a three day operations plan. RAX is running on a 25
MHz RAD 6000 flight processor and uses roughly 25% of the CPU processing power.
While this is a significant improvement over waiting for ground intervention, making the
planning process even more responsive (e.g., on a time scale of seconds) to changes in
the operations context would increase the overall time for which the spacecraft has a
consistent plan. As long as a consistent plan exists, the spacecraft can keep busy working
on the requested goals.
AI planners are powerful and flexible systems. However, they are very specific to the
domain they have been developed for. A typical planner takes three inputs: a description
of the initial state of the world, a description of the desired goal, and a set of possible
actions, all encoded in a formal language. The planner produces a sequence of actions
that lead from the initial state to a state meeting the goal.

It is often the case that the main goal needs to be separated in various intermediate steps.
As AI planners are certainly able to solve complex issues, the complexity also grows
exponentially the more steps are involved to achieve the goal. Initially, it is often the case
that these intermediate steps are unknown to the user facing the problem. The approach
of Case-based Reasoning also assists in this respect as past knowledge is reused.

2.4.4 Conclusion
The approaches presented in this section solve partial aspects of the problem area, but
none of these cover it in its entirety. Specifically, the following qualities need to be
satisfied: flexible case structure, structure of OWL-S services and uncertainty of how to
achieve the specific main goal.

16 http://www-aig.jpl.nasa.gov/public/planning/casper/
17 http://www-aig.jpl.nasa.gov/

19

2 Motivation

2.5 Personal Motivation
I possess a strong personal interest in the field of knowledge management, optimization
and automation of workflows and the Internet in general. With these interests in mind, I
was looking for a suitable use case and consulted the home of Dynamic and Distributed
Information Systems (DDIS)18 of the Institute of Informatics of the University of Zurich.
Michael Daenzer has been working on his project NExT [Daenzer 2005] and is looking for
an extension to provide such functionality in the context of his Toolbox application.
The Semantic Web represents a major milestone in the history of the Internet and has the
potential to significantly change our interaction with the Net and expand its usefulness
beyond what we know today. Unfortunately, one of the issues encountered today is that
the Semantic Web is in its early stages and there is lots of controversy about what
technology to use. Furthermore, there is still a lack of available tools for the automated
creation of semantically annotated data. Therefore, the flexibility offered by Case-based
Reasoning therefore seems to be a natural solution.

18 Home of DDIS - http://www.ifi.unizh.ch/ddis/

20

2 Motivation

3 Design

As outlined in the motivational chapter, the aim of the system is to provide inductive
support to the user. As the formal model chosen by NExT is based on OWL-S, it needs to
be able to interact with this specific technology.
In conclusion, this chapter describes the design aspects of implementing a Case-based
Reasoner system for OWL-S Web Services in the context of NExT.

3.1 Overview
A Case-based Reasoner should essentially provide the four main tasks as outlined in the
previous chapter: retrieval, reuse, revision and retention. In order to have access to past
knowledge, the concept of a case needs to be defined as well as the collection and
organization of a set of these cases. Furthermore, the means to collect a specific case
need to be provided in order to be able to populate the cases with concrete content.
To retrieve and reuse cases, various strategies need to be considered. These steps are
taking advantage of the information recorded in a case to be able to determine the
proximity of a past case to a new one.
The relevant context of the NExT environment is built around the NMR Process as defined
in [Daenzer2005]. The NMR Process can formally be described as OWL-S service.
In order to retain past knowledge, the system needs to implement methods to be made
aware of such knowledge. NExT implements an execution engine to be able to execute
NMR processes. Any relevant data associated with the execution of a specific service
needs to be recorded and stored in a suitable fashion. These recorded executions build
the basis for the case base which represents the memory of the system.
The case base itself needs to expose individual cases that represent the recorded
information and present it in a fashion suitable to be compared against the new problem. It
also needs to make relevant information available to be able to adapt the old case to the
new case.

3.2 Recording Cases / Execution Trails
NMR Processes can be described as OWL-S Web Services. In order to execute a service,
data needs to be submitted to its inputs if any are required. The process associated with
the service is then executed with the corresponding data submitted to its inputs. In case
the process is an atomic process, the relevant data is returned in its outputs and the
execution is finished. On the other hand, if the process is a composite process, the control
construct associated with it determines the proceeding processes to be executed which
can either be atomic or composite in nature. A control construct may also be associated
with a condition that determines the execution flow.

21

3 Design

The following control constructs are defined in OWL-S:

Control Construct
Sequence

Split

Split+Join

Any-Order

Choice

If-Then-Else

Iterate

Repeat-While

Repeat-Until

Table 1: OWL-S Control Constructs

Corresponding to [Martin et al. 2004], a description of each control construct is given:

Sequence. A list of control constructs to be done in order.

Split. The components of a Split process are a bag of process components to be executed
concurrently. Split completes as soon as all of its component processes have been
scheduled for execution.

Split+Join. Here the process consists of concurrent execution of a bunch of process
components with barrier synchronization. That is, Split+Join completes when all of its
components processes have completed. With Split and Split+Join, we can define
processes that have partial synchronization (e.g., split all and join some sub-bag).

Any-Order. Allows the process components (specified as a bag) to be executed in some
unspecified order but not concurrently. Execution and completion of all components is
required. The execution of processes in an Any-Order construct cannot overlap, i.e. atomic
processes cannot be executed concurrently and composite processes cannot be
interleaved. All components must be executed. As with Split+Join, completion of all
components is required.

Choice. Choice calls for the execution of a single control construct from a given bag of
control constructs (given by the components property). Any of the given control constructs
may be chosen for execution.

If-Then-Else. The If-Then-Else class is a control construct that has properties ifCondition,
then and else holding different aspects of the If-Then-Else. Its semantics is intended as
“Test If-condition; if True do Then, if False do Else.''

Iterate. The Iterate construct makes no assumption about how many iterations are made
or when to initiate, terminate, or resume. The initiation, termination or maintenance
condition could be specified with a whileCondition or an untilCondition.

22

3 Design

Iterate is an "abstract" class, in the sense that it's not detailed enough to be instantiated in
a process model. It's defined to serve as the common superclass of Repeat-While,
Repeat-Until, and potentially other specific iteration constructs that might be needed in the
future.

Repeat-While and Repeat-Until. Both of these iterate until a condition becomes false or
true, following the familiar programming language conventions. Repeat-While tests for the
condition, exits if it is false and does the operation if the condition is true, then loops.
Repeat-Until does the operation, tests for the condition, exits if it is true, and otherwise
loops. Therefore, Repeat-While may never act, whereas Repeat-Until always acts at least
once.

The execution is finished when all relevant processes have been executed and the
appropriate output is returned.

The exact execution trail should be recorded including all processes used and the
concrete values of their corresponding inputs and outputs. The execution trail itself always
consists only of control constructs of the type sequence. When a service is executed, it's
concrete values define a specific execution flow for the particular value-data pair. The
following figure shows an example of a composite process using a If-Then control
construct and the resulting execution trail:

23

populate inputs with concrete data
get process associated with service
execute:
if process atomic

execute
else if process composite

get control construct associated with process
evaluate eventual conditions
get relevant processes
for each process {

populate appropriate inputs
go to execute

}

return output
Text 1: Pseudo code Execution

3 Design

The resulting execution trail of the example shown in the previous figure is a composite
process which consists of a sequence holding the atomic process of the Else control
construct. The same logic applies to control constructs of the type Repeat-While, Repeat-
Until, Split, Split+Join and Choice.

Services and processes can also hold preconditions which state under which conditions
they can be executed. A process will not execute properly unless its preconditions are
true. As previously noted, preconditions are represented as logical formulas in a formal
language such as Swrl, KIF, or PDDL. As there is currently no standard to describe
preconditions, they are currently neglected in the execution trail.

3.3 Case
A case represents an actual happening of the past. It needs to make this information
available in a form suitable to be reused and eventually adapted to the new problem. A
case is defined in a certain structure and holds the essential information to the specific
problem that has been solved with this case. In many practical Case-based Reasoning
applications, cases are usually represented as two unstructured sets of attribute-value
pairs that represent the problem and solution features. However, the intended purpose of a
Case-based Reasoning system greatly influences what and how it is stored.

24

Figure 6: Execution Trail of a Composite Process

3 Design

The intended purpose of this particular Case-based Reasoning system is to store
executed OWL-S Web Services. These execution trails serve as the solution of a particular
problem. The problem itself is implicitly encoded in the execution trail. The various inputs,
outputs and processes used, but also the initial graph of the original Web Service, are
ultimately defining the problem space.
Considering a Web Service takes two inputs of the type integer and returns one output of
the type integer, it can be assumed that this is a potential solution to a new problem which
is also using inputs of the type integer and returning an output of the type integer.
Especially in the domain of NMR, the graph defined by the original Web Service can also
hold useful information of the particular problem solved by this service. In NExT, a NMR
process can essentially reflect a complete experiment set-up which in turn is represented
by a service as defined in OWL-S. The structure of this experiment set-up can be used to
determine how closely the new problem is related to a previously executed experiment. To
perform a certain experiment, specific instruments need to be used which take a certain
amount of inputs and return a specific amount of outputs. In case of a composite
processes, the various control constructs used hold further information about the structure
of the experiment set-up. The following figure shows a simple example of a potential
experiment set-up that takes one input, passes this information to two subprocesses which
are executed consequentially and returns one output:

25

Figure 7: Structure of an Experiment Set-Up

Service

Composite
Process

Sequence

OutputInput

Atomic
ProcessInput Output

Atomic
ProcessInput Output

Composite Process with a Sequence

3 Design

OWL-S Web Services can contain any number of either atomic or composite processes
which again consist of atomic processes. Furthermore, composite processes can hold
various control constructs that define a specific path during execution and associate
parameter bindings which define the inter-process data flows. In [Martin et al. 2004], these
bindings are defined in a consumer-pull convention. This means that the data consuming
process has to indicate which data item it requires. A case needs to represent the exact
execution of a Web Service as happened at execution time. An additional important
property of a case is that it needs to have the flexibility of representing an arbitrary number
of processes of either nature and its potential bindings.

In summary, a case should hold the following information:

Element Information
Input Datatype

Output Datatype

Process Specific process (URI)

Input Bindings Inter-process data flow

Graph of executed service Structural representation

Table 2: Case Requirements

3.4 Case Base and Indexing
The case base consists of a set of cases that represent past knowledge. Regardless of the
format chosen to represent cases, the collection of cases itself also has to be structured in
a way that facilitates retrieval of the appropriate case when queried. Case indexing refers
to assigning indexes to cases for future retrieval and comparison. Indexes should be
predictive in a useful manner. This means that indexes should reflect the important
features of a case and the attributes that influence the outcome of the case, and describe
the circumstances in which a case is expected to be retrieved in the future.
Past knowledge in the context of this particular system means executed Web Services
described in OWL-S. The system should provide means to hold a case base and make
these cases accessible in a simple manner. The structure of the case base should be
simple and consistent within the OWL-S technology. Indexes should only be implemented
if they are required in this context or are necessary requirements to improve performance.

3.5 Retrieve
Case retrieval is the process of finding, within a case base, those cases that are the
closest to the current case. To carry out effective case retrieval, there must be selection
criteria that determine how a case is judged to be appropriate for retrieval and a
mechanism to control how the case base is searched. The selection criteria are necessary
to determine which is the best case to retrieve, by determining how close the current case
is to the cases stored.
The case selection criteria depend partly on what the case retriever is searching for in the
case base. Most often the case retriever is searching for an entire case, the features of

26

3 Design

which are compared to those of the current case. However, there are times when only a
portion of a case is being sought. This situation may arise because no full case exists and
a solution is being synthesized by selecting portions of a number of cases. A similar
situation is when a retrieved case is being modified by adopting a portion of another case
in the case base.
The selection criteria greatly influence what cases are selected and then used for
adaption. Existing cases with a higher degree of similarity compared to the current case
have a greater chance of being suitable for reuse. On the other hand, only considering
cases that are exact matches reduces the probability of returning any case. One of the
most important assumptions of Case-based Reasoning is “that similar experience can
guide future reasoning, problem solving and learning” [Sankar and Simon 2004].
The structure of the case defines the features available to be used to measure similarity
between the existing and new case. In particular, these attributes are the processes with
their various inputs and outputs as well as the structure of the original service.
In OWL-S, parameters – inputs and outputs – are defined by a unique URI. Furthermore,
every parameter has a type, specified using a URI. This is not the OWL class the
parameter belongs to, but a specification of the class (or datatype) that values of the
parameter belong to. The following table shows examples of possible parameter types:

Datatype URI
Non Negative Integer http://www.w3.org/2001/XMLSchema#nonNegativeInteger

Float http://www.w3.org/2001/XMLSchema#float

Price http://www.mindswap.org/2004/owl-s/concepts.owl#Price

Book http://purl.org/net/nknouf/ns/bibtex#Book

ZIP Code http://www.daml.org/2001/10/html/zipcode-ont#ZipCode

Table 3: Example of Datatypes for Parameters

Processes are either atomic or composite and are as well referenced using a unique URI.
A process itself does not hold much other useful information.
As previously described, the graph of the service holds information about the structure of
the service and eventual control constructs such as If-Then or loops.
Given the nature of the available information, appropriate similarity measures need to be
implemented to select similar cases that can be considered for reuse.
Potential approaches can be found in three main areas which are described in more detail
in the following subsection:

Type of Similarity Comparison
Semantic Semantic Datatype

Syntactic String-based URI

Graph Structure of Web Service

Table 4: Similarity Strategies

27

3 Design

3.5.1 Similarity Strategies
The system should implement different strategies to determine similarity between existing
cases and the new case. Furthermore, it should allow additional strategies to be added in
the future. As a basis, the various processes used by the Web Service and its Inputs
respectively Outputs should be considered.

3.5.1.1 Semantic similarity
Semantic similarities are important in the application of Web Service matchmaking.
“DAML-S and its Service Profile take up the challenge of representing the functionalities of
web services. This paper [Massimo et al. 2002] contributes to this challenge by describing
a matching engine that allows matching of advertisements and requests on the bases of
the capabilities that they describe. This is a major improvement on current technology that
allows only location of services based on keyword matching. Indeed we show how the
matching engine can be used to improve the functionalities of existing web service
repositories such as UDDI.” [Massimo et al. 2002].

Relevant to the Case-based Reasoner application is the distinction of different matching
degree. [Massimo et al. 2002] define the following matching criteria whereas outR defines
the output of the requester and outA the output of the advertised service:

Exact. If outR=outA then outR and outA are equivalent, which is labeled as exact.
Secondly, if outR subclassOf outA then the result is still exact under the assumption that
by advertising outA the provider commits to provide outputs consistent with every
immediate subtype of outA. This is like to say that, given the ontology fragment in the
following figure, the provider, by advertising NMR resource, commits to provide
probehead, spectrometer and sample. If instead it provides only spectrometer, then a
better strategy would be to restrict its advertisement to the latter.

Figure 8: Fragment of the NMR Resource Ontology

28

3 Design

Plug in. If outA subsumes outR then outA is a set that includes outR, or, in other words,
outA could be plugged in place of outR19. For example, a service that provides - any type
of - NMR resource could be of use for another service that expects spectrometer. This
rule acknowledges that there is a weaker relation between outR and outA in this case,
than in the exact case above: we can expect that a service that advertises an output of
NMR resource provides some type of resource, but we cannot expect that it provides
every type of spectrometer.

Subsumes. If outR subsumes outA, then the provider does not completely fulfill the
request. The requester may use the provider to achieve its goals, but it likely needs to
modify its plan or perform other requests to complete its task.

Failure. Failure occurs when no subsumption relation between advertisement and request
is identified.

19 subclassOf in DAML also defines a subsumption relation, therefore the exact match defined above is also
based on the subsumption relation. The rules for plug in matching apply when the concepts are not the
same and no subclassOf relation holds.

29

3 Design

Following the pseudo code of the matching algorithm as defined in [Massimo et al. 2002]:

The approach presented above can be applied in a similar fashion to determine semantic
similarity in the application of the Case-based Reasoner system: the new case can be
regarded as the service requester and the old case as the service advertiser. Additionally,
instead of limiting the matching to the service's inputs and outputs only, the inputs and
outputs of each single process can be matched using the algorithm presented above.

30

Main control loop:
match(request) {
recordMatch= empty list
for all adv in advertisements do {

if match(request, adv) then
recordMatch.append(request, adv) }
return sort(recordMatch)

}

Algorithm for output matching:
outputMatch(outputsRequest, outputsAdvertisement) {
globalDegreeMatch= Exact
for all outR in outputsRequest do {

find outA in outputsAdvertisement such that
degreeMatch= maxDegreeMatch(outR,outA)
if (degreeMatch=fail) return fail
if (degreeMatch<globalDegreeMatch)
globalDegreeMatch= degreeMatch
return sort(recordMatch)

}

Rules for the degree of match assignment:
degreeOfMatch(outR,outA):
if outA=outR then return exact
if outR subclassOf outA then return exact
if outA subsumes outR then return plugIn
if outR subsumes outA then return subsumes
otherwise fail

Text 5: Pseudo Code of Matching Algorithm for Web Services

3 Design

3.5.1.2 Syntactic Similarity
Inspired by OWL-MX20 and the limitations imposed by the current state of the Semantic
Web on relying purely on semantic matching, traditional methods of content-based
information retrieval (IR) can be considered. Each resource in a OWL-S ontology is
described by a unique URI. Often, these URIs are chosen by humans and hold a certain
degree of useful information. The following table shows examples of URIs used in OWL-S
ontologies and the resource they describe:

URI Description
http://www.mindswap.org/2004/owl-s/1.1/AmazonBookPrice.owl#BookPrice Price of a book
http://www.mindswap.org/2004/owl-s/1.1/AmazonBookPrice.owl#BookInfo Information about a book
http://www.daml.org/services/owl-s/AmazonWS/1.1/AWSProcess.owl#AmazonProcess Process model of a composite

process used in a Web Service
consisting of three processes:
Shopping for book process,
browsing for book process and
a shopping cart process

Table 6: URIs of Resources in Web Services

OWL-MX takes advantage of this approach to enhance a semantic matchmaking
application using implicit information: “These approaches [standard means of description
logic reasoning] do not exploit semantics that are implicit, for example, in patterns or
relative frequencies of terms in service descriptions as computed by techniques from data
mining, linguistics, or content-based information retrieval (IR). The objective of hybrid
semantic Web service matching is to improve semantic service retrieval performance by
appropriately exploiting means of both crisp logic based and approximate semantic
matching where each of them alone would fail.” [Klusch et al. 2006]

Resources in OWL-S are identified through a unique URI. A URI can be regarded as a
string representation. Thus, different string-based measurements can be used to calculate
similarity between two URIs to determine a match. Appropriate string measurements need
to be selected to perform the comparison. Furthermore, the strings need to be prepared in
such a fashion that only relevant information is considered for the comparison to reduce
noise and improve accuracy.

3.5.1.3 Graph Similarity
An OWL-S Web Service can be described as a labeled and directed graph. This graph can
be used to measure similarity between two different Web Services. In particular, the
similarity of the structure can be of useful information to determine whether there is a
significant relation. The representation of the OWL-S service can be reduced to emphasize
the structural information. Specifically, the following information is of importance:

▪ Number of inputs and outputs of a process
▪ Composition of composite processes

20 See previous chapter - Related Work

31

3 Design

Significant similarity between two graphs of OWL-S services can be used as an indicator
of relevancy. [Baggenstos 2006] describes similarities between graphs in detail.

3.6 Reuse
Reuse or case adaption is the process of transforming a solution retrieved into a solution
appropriate for the current problem. A number of approaches can be taken to carry out
case adaption:
▪ The case returned could be used as a solution to the current problem without

modification.
▪ The steps or processes that were followed to obtain the earlier solution could be

rerun without modification, or with modifications where the steps taken in the
previous solution are not fully satisfactory in the current solution.

▪ Where more than one case has been retrieved, a solution could be derived from
multiple cases or, alternatively, several alternative solutions could be presented.

The system should implement various strategies to perform the adaption process. Again, it
should also be able to allow future strategies to be implemented.
The following strategies should be implemented:

Strategy Description
Simple The best matching case is returned unaltered

Copy The existing case is extended by adding the full old case

Insert The existing case is extended by adding parts of the old
case

Table 7: Adaption Strategies

The major challenge connecting cases with each other is to find the appropriate entry
points and the correct bindings. The bindings are clearly defined in within a case.
However, once parts or single processes of a case are used and combined with an
existing fragment, the appropriate bindings need to be determined. The system should
attempt to make best guesses in terms what the most likely bindings are. This should be
achieved by taking advantage of the various similarity strategies offered by the system.

32

3 Design

The following table shows the pseudo code to determine bindings:

If the similarity between parameters does not meet a specified threshold, the two
processes can not be connected with each other and the attempt has failed.

3.7 Revising
Once an appropriate solution has been generated and returned, there is some expectation
that the solution will be tested in reality. To test a solution, it has to be considered both the
way it may be tested and how the outcome of the test will be classified as success of
failure. This means that some criteria need to be defined for the performance rating of a
proposed solution. Using this real-world assessment, a Case-based Reasoning system
can be updated to take into account any new information uncovered in the processing of
the new solution. This information can be added to a system for two purposes: fist, the
more information that is stored in a case base, the closer the match found in the case base
is likely to be; second, adding information to the case base generally improves the solution
that the system is able to create.

The task of revision in the context of NExT is mostly achieved through user interaction.
The user ultimately decides whether the produced new solution is applicable or not. Often
times, the system is also unable to perform the adaption fully automatically without user
feedback. The user interaction is not within the scope of this thesis as it presents less
challenges. Revising is therefore not pursued further.

33

get outputs of previous process
get inputs of connecting process
for all outputs do {

for all inputs do {
determine best match input, output

}
if threshold met {

add binding best match input to output
else {

throw exception
}

}

Text 8: Pseudo Code Add Bindings

3 Design

3.8 Retaining
Learning may occur in a number of ways. The addition of a new problem, its solution, and
the outcome to the case base is a common method. The addition of cases to the case
base will increase the range of situations covered by the stored cases and reduce the
average distance between an input vector and the closest stored vector. A second method
of learning in a Case-based Reasoning system is using the solution's assessment to
modify the indexes of the stored cases or to modify the criteria for a case retrieval. If a
case has indexes that are not relevant to the specific context in which it should be
retrieved, adjusting the indexes may increase the correlation between the occasions when
a case is actually retrieved and the occasions when it ought to have been retrieved.
Similarly, assessment of a solution's performance may lead to an improved understanding
of the underlying causal model of the domain that can be used to improve adaption
processing. If better ways can be found to modify cases with respect to the distance
between the current and retrieved cases, the output solution will probably be improved.
When applying Case-based Reasoning systems for problem solving, there is always a
trade-off between the number of cases to be stored in the case library and retrieval
efficiency. The larger the case library, the greater the problem space covered. However,
this would also downgrade system performance if the number of cases were to grow
unacceptably high. Therefore, removing redundant or less useful cases to attain an
acceptable error level is one of the most important tasks in maintaining Case-based
Reasoning systems.
The central idea of Case-based Reasoning maintenance is to develop some measures for
case competence, which is the range of problems that a Case-based Reasoning system
can solve. Various properties may be useful, such as the size, distribution, and density of
cases in the case base; the coverage of individual cases and the similarity and adaptation
knowledge of a given system. Coverage refers to the set of problems that each case could
solve, and reachability refers to the set of cases that could provide solutions to the current
problem. The higher the density of cases, the greater the chances of having redundant
cases. By expressing the density of cases as a function of case similarity, a suitable case
deletion policy could be formulated for removing cases that are highly reachable from
others.
Another reason for Case-based Reasoning maintenance is the possible existence of
conflicting cases in the case library due to changes in domain knowledge or specific
environments for a given task. For example, more powerful cases may exist that can
contain inconsistent information, either with other parts of the same case or with original
cases that are more primitive. Furthermore, if two cases are considered equivalent, or if
one case subsumes another by having more feature criteria, a maintenance process may
be required to remove the redundant cases.
The task of retention is dependent on the revision task as only revised solutions should be
retained. Retention and case maintenance is therefore not studied in more detail for this
particular application at this time.

34

3 Design

4 Implementation

This chapter takes the findings outlined in the design chapter and translates them into
concrete implementations. Various approaches are discussed and highlighted. The
implemented system should be regarded as a framework of proof of concept, but also as a
basis for future related work.

4.1 Overview
The focus of the implemented system is on the following parts:

1. Recording OWL-S services
2. Developing a generic frame work for a Case-based Reasoner for OWL-S
3. Developing an appropriate structure of a case
4. Designing a case base
5. Implementation of similarity measures between cases
6. Implementation of adaption strategies

4.1.1 Used Technologies
The framework is implemented in Java and tries to keep as close as possible to OWL-S for
any persistent information storage. It uses functionality provided by two main APIs which
are briefly described in more detail below.

Mindswap OWL-S API
The framework is taking advantage of the functionality provided by the OWL-S API
developed by MINDSWAP which is a group of people working with Semantic Web
technology inside the MIND LAB at University of Maryland Institute for Advanced
Computer Studies.
The OWL-S API provides a Java API for programmatic access to read, execute and write
OWL-S service descriptions. The API supports to read different versions of OWL-S (OWL-
S 1.1, OWL-S 1.0, OWL-S 0.9, DAML-S 0.7) descriptions. The API provides an
ExecutionEngine that can invoke AtomicProcesses that has WSDL or UPnP groundings,
and CompositeProcecesses that uses control constructs Sequence, Unordered, Split, If-
Then-else and RepeatUntil.

35

4 Implementation

SimPack
The Department of Informatics at the University of Zurich has developed a similarity
measurement toolkit called SimPack21. Various measurement approaches are included to
compare strings, vectors, sequences, trees and graphs. In addition, the package
implements the measures from the SecondString22, the SimMetrics23, and the OWLS-MX24
projects.

4.2 Framework
The core of the framework is the class OWLSCaseBasedReasoner which loads the case
base and implements the main methods to retrieve and reuse cases.

The following UML diagram shows an overview:

After the OWL-S Case-based Reasoner has been initialized, a new case in the form of an
OWL ontology can be presented to the system to initiate the retrieval of appropriate cases.
A subsequent call of the reuse method then attempts to apply various adaption strategies
on the previously selected cases.
The OWL ontology needs to be a valid OWL-S description, but does not have to be
complete in the sense that it is executable.

4.3 Recording Cases / Execution Trails
The functionality of the Execution Trail is to store all relevant information that will be used
to do the matching against new cases. As a means to store this information, a new
standard OWL-S Service ontology is created. The main reason behind choosing this
format is to be able to take advantage of the various tools that are available to interact with
OWL-S ontologies. Furthermore, this allows to seamlessly build on top of the OWL-S API

21 http://www.ifi.unizh.ch/ddis/SimPack.html
22 http://secondstring.sourceforge.net/
23 http://www.dcs.shef.ac.uk/~sam/simmetrics.html
24 http://www-ags.dfki.uni-sb.de/~klusch/owls-mx/index.html

36

Figure 9: UML Diagram of OWL-S Case-based Reasoner

4 Implementation

and easily use the Pellet25 reasoner to perform semantic matching. Potentially, this also
has the advantage that the recorded cases can be executed again.
The resulting service wraps the executed service and its components. The used processes
are stored in a sequence which may consist of sub-sequences depending whether the
process is atomic or composite. Furthermore, the various inputs and outputs, if any, are
replicated as well. These are then also associated with the specific values used in this
particular execution and stored in the parameter valueData. Additionally, to maintain a
reference to the original ontology used, the label property is used to store the respective
URI.
The flexibility of the underlying Web Ontology Language OWL allows to extend this
concept to include other custom data that may be required.

Example of a recorded trail of the simple Web Service #DictionaryService26 (only the
service description, the profile and the associated process are shown:

<?xml version="1.0"?>
<rdf:RDF
 xml:base="http://www.ifi.unizh.ch/ddis/ont/owl-s/trails/ExecutionTrail-1169902906765.owl#">
 <service:Service rdf:ID="ExecutionTrailService">
 <rdfs:label>http://www.mindswap.org/2004/owl-s/1.1/Dictionary.owl#DictionaryService</rdfs:label>
 <service:presents>
 <profile:Profile rdf:ID="ExecutionTrailProfile"/>
 </service:presents>
 <service:describedBy>
 <process:AtomicProcess rdf:ID="Process1"/>
 </service:describedBy>
 </service:Service>

Text 9: Example of the Service of an Execution Trail

 <profile:Profile rdf:about="#ExecutionTrailProfile">
 <service:presentedBy rdf:resource="#ExecutionTrailService"/>
 <profile:hasInput>
 <process:Input rdf:ID="Input1">
 <rdfs:label>http://www.mindswap.org/2004/owl-s/1.1/Dictionary.owl#InputString</rdfs:label>
 <process:parameterType rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"
 >http://www.w3.org/2001/XMLSchema#string</process:parameterType>
 <process:valueData>hello</process:valueData>
 </process:Input>
 </profile:hasInput>
 <profile:hasOutput>
 <process:Output rdf:ID="Output1">
 <rdfs:label>http://www.mindswap.org/2004/owl-s/1.1/Dictionary.owl#OutputString</rdfs:label>
 <process:parameterType rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"
 >http://www.w3.org/2001/XMLSchema#string</process:parameterType>
 <process:valueData rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >1) A loud exclamation; a call to invite attention or to incite a person or an animal; a shout. 2)
To cry out; to exclaim with a loud voice; to call to a person, as by the word halloo. 3) To encourage with
shouts. 4) To chase with shouts or outcries. 5) To call or shout to; to hail. 6) An exclamation to call
attention or to encourage one.</process:valueData>
 </process:Output>
 </profile:hasOutput>
 <rdfs:label>[null]</rdfs:label>
 <profile:textDescription>[null]</profile:textDescription>
 </profile:Profile>

Text 10: Example of the Profile of an Execution Trail

25 http://pellet.owldl.com/
26 http://www.mindswap.org/2004/owl-s/1.1/Dictionary.owl#DictionaryService

37

4 Implementation

 <process:AtomicProcess rdf:about="#Process1">
 <rdfs:label>http://www.mindswap.org/2004/owl-s/1.1/Dictionary.owl#DictionaryProcess</rdfs:label>
 <j.0:hasPerform>
 <process:Perform rdf:ID="Perform1"/>
 </j.0:hasPerform>
 <process:hasInput rdf:resource="#Input1"/>
 <process:hasOutput rdf:resource="#Output1"/>
 <service:describes rdf:resource="#ExecutionTrailService"/>
 </process:AtomicProcess>
 <process:Perform rdf:about="#Perform1">
 <process:process rdf:resource="#Process1"/>
 </process:Perform>
Text 11: Example of the Composite Process of an Execution Trail

The OWL-S API allows to add a listener to its execution engine to be notified when certain
events happen. The following table shows the events of notification and their description:

Event Description
ExecutionFailed Called when the execution fails due to an

exception

ExecutionFinished Called after the execution of a process
finishes

ExecutionStarted Called before the execution of a process
starts

Table 12: OWL-S API Execution Engine Events

To record the execution, a custom listener has been implemented to retain such
information as executed process and specific values consumed by its inputs. The recorded
trail is then on-the-fly compiled into an OWL-S ontology.

4.4 Case Base
The case base constitutes of the different cases that have previously been recorded. To
advertise the different cases, the case base maintains an ontology TrailList.owl which
imports the ontologies associated with the different cases. This allows to continue to purely
rely on OWL to store the data that is need.

<?xml version="1.0"?>
<rdf:RDF >
<owl:Ontology rdf:about="http://www.ifi.unizh.ch/ddis/ont/owl-s/trails/TrailList">
<owl:imports rdf:resource="http://www.ifi.unizh.ch/ddis/ont/owl-s/trails/ExecutionTrail1.owl"/>
<owl:imports rdf:resource="http://www.ifi.unizh.ch/ddis/ont/owl-s/trails/ExecutionTrail2.owl"/>
<owl:imports rdf:resource="http://www.ifi.unizh.ch/ddis/ont/owl-s/trails/ExecutionTrail3.owl"/>
<owl:imports rdf:resource="http://www.ifi.unizh.ch/ddis/ont/owl-s/trails/ExecutionTrail4.owl"/>
</owl:Ontology>
</rdf:RDF>

Text 13: Example of TrailList.owl

38

4 Implementation

In order to make the cases accessible, the trail list ontology is loaded into a
OWLKnowledgeBase27 object of the OWL-S API. Once read into the knowledge base, a
reference of each case is kept internally.

4.5 Retrieve
The following figure shows the UML diagram as an overview of the similarity measures
used and its structure:

4.5.1 OWL-S Graph
In order to take advantage of the similarity measures for graphs provided by SimPack, a
graph in the form of a AbstractGraphAccessor has to be provided. SimPack is designed to
be easily extended and its structure allows for custom accessors to use its various
similarity functions. In SimPack, a graph is represented as set of directed and labeled
nodes. See [Baggenstos 2006] for further details regarding graph representation in
SimPack.
As only the structure and its elements of the graph is relevant, the OWL-S service is
presented as a simple, directed graph with its elements as labels. However, SimPack
would also allow to use semantics as it can hold any object to represent the label of a
node. In this particular case, strings in the form of Service, AtomicProcess,
CompositeProcess, Input, Output, Sequence, IfThenElse etc. are used.

27 http://www.mindswap.org/2004/owl-s/api/doc/javadoc/org/mindswap/owl/OWLKnowledgeBase.html

39

Figure 10: UML Diagram Similarity

4 Implementation

The following illustration shows a few examples of graph representations of various OWL-
S services:

Figure 11: Graph Representations of various OWL-S Services

40

4 Implementation

4.5.2 Similarity Strategies
The various similarity strategies are implemented inheriting from a super class which is
implemented in the form of an interface. The following methods need to be implemented
by the concrete realizations of the various similarity strategies:

public interface Similarity {

// implements method to compare parameters
public double compareParameter(Parameter oldParameter, Parameter newParameter);

// implements method to compare inputs
public double compareInput(Input oldInput, Input newInput);

// implements method to compare outputs
public double compareOutput(Output output, Output newOutput);

// implements method to compare processes
public double compareProcess(Process oldProcess, Process newProcess);

// implements method to compare OWLS Graph
public double compareGraph(OWLSGraph oldGraph, OWLSGraph newGraph);

}

Text 14: Interface Similarity

The OWL-S Case-based Reasoner uses the CBR Factory to retrieve the names of the
classes of the various implemented similarity strategies. These classes are then
instantiated during runtime and used to perform the comparison of the new case with the
existing cases.
To perform the actual comparison of the old case and the new case, each input, output
and process is compared with each other. The way of comparing is determined by the
various strategies that have been implemented. The following pseudo code shows the
similarity loop:

The determination of the best matching cases is based on the assumption that the more
matches are found in an existing case, the more suitable it is for reuse. For example, if the
new case uses a string as its input, the more inputs of type string an existing case uses,
the more suitable it will be. Therefore, the implemented similarity algorithm uses the
different similarity strategies to measure the similarity between the old case and the new
case and returns a weighted average of the matches relative to the total amount in the old
case. For example, to compute a similarity measurement of the inputs between an old
case and a new case:

41

For each Similarity Strategy
get Similarity Inputs oldCase, newCase
get Similarity Outputs oldCase, newCase
get Similarity Processes oldCase, newCase
get Similarity Graph oldCase, newCase

Text 15: Similarity Loop

4 Implementation

Let A be the set of inputs of the old case and B the set of inputs of the new case. C then is
the intersection of A and B holding any inputs that are present in both the old and new
case as determined by the different similarity strategies:

A∈ InputsOldCase , B∈ InputsNewCase ,C=A∩B (4.1)

The similarity of inputs is then calculated as the relative mean of the population of C over
the population of A:

Sim Inputs=
C 
A (4.2)

The same logic is applied to determine the similarity of outputs and processes. Inputs,
outputs and processes (IOPs) are then weighted to provide an overall similarity measure
for IOPs. The following table shows the current weights assigned:

Type Weight
Inputs 0.6

Outputs 0.3

Process 0.2

Table 16: IOP Weights

The reasoning behind assigning different weights is based on the assumption that inputs
are in most cases a given starting point. Outputs can potentially undergo an additional
transformation afterwards and there might be different processes that perform the same or
similar tasks. However, the weights can easily be customized if needed.

Additionally, the graph of the the old case and the new case is compared using SimPack's
graph similarity method. This is described in more detail below.

If the overall similarity of the IOPs and the graph similarity reach a certain threshold, the
specific case is remembered and will be reused.

42

4 Implementation

The following pseudo code shows the main loop of the comparison:

4.5.2.1 Semantic Matching
Semantic matching is mainly performed on the various parameters of the old case and
new case. Each input and output has a specific datatype. Therefore, based on the fact that
parameters in OWL-S hold a semantic meaning, the algorithm presented in [Massimo et
al. 2002] is adapted to compute a similarity measurement between two parameters.
The same matching types as used by [Massimo et al. 2002] are implemented and
assigned a value so that:

0sim1 (4.3)

The following table shows the type of matches and their corresponding weight assigned:

Type of Match Weight
Exact 1.0

Subsume 0.75

Plug In 0.5

Fail 0.0

Table 18: Type-Weight Matrix

To perform the datatype reasoning, the Pellet reasoner is used. Pellet is an open-source
OWL-DL reasoner written in Java, originally developed at the University of Maryland's
Mindswap Lab. Pellet is based on the tableaux algorithms developed for expressive
Description Logics (DL). It supports the full expressivity OWL-DL including reasoning
about nominals (enumerated classes). In addition to OWL-DL, Pellet supports all the
features proposed in OWL 1.1, with the exception of n-ary datatypes.

The type of a process is either atomic or composite. This information does not hold useful
meaning to determine a match. Therefore, processes are compared using their unique URI
to determine a match.

43

For each old case
get Similarity oldCase newCase
for each similarity match {

similarityIOPs = (similarityInputs * inputsWeight)
+ (similarityOutputs * outputsWeight)
+ (similarityProcesses * processesWeight);

if(similarityGraph >= graphThreshold
&& similarityIOPs >= IOPsThreshold) {

consider oldCase for reuse
break;

}
}

Table 17: Main Loop Case Similarity

4 Implementation

4.5.2.2 Syntactic Matching
The URIs of the elements to be compared are used as string representations to compute
similarities. Traditional methods of content-based information retrieval have been used.
SimPack contains a number of measurements implemented that are applicable to strings.
Specifically, the following three measurements are used:

Cosine Similarity
Cosine similarity is a common vector based similarity measure. Whereby the input string is
transformed into vector space so that the Euclidean cosine rule can be used to determine
similarity. The cosine similarity is often paired with other approaches to limit the
dimensionality of the problem. For instance with simple strings a list of stopwords are used
to exclude from the dimensionality of the comparison. In theory this problem has as many
dimensions as terms exist.

simcosOld , New =
Old⋅ New

∥ Old∥2
2
⋅∥ New∥2

2
(4.4)

with standard TFIDF term weighting scheme, and the unfolded URI of the old case Old
and new case New are represented as n-dimensional weighted index term vectors Old
and New respectively.

Old⋅ New=∑
n

i=1

w i , Old×w i , New ,∥X∥2=∑in w 2
i , x

 and w i , x denotes the weight of the i-th

index term in vector X.

Extended Jaccard Measure
The binary Jaccard coefficient measures the degree of overlap between two sets and is
computed as the ratio of the number of shared attributes Old AND New to the number
possessed by Old OR New .

simEJ Old , New =
Old⋅ New

∥ Old∥2
2
∥ New∥2

2
− Old⋅ New (4.5)

with standard TFIDF term weighting scheme.

Jensen Shannon Measure
The measure is based on the information-theoretic, non-symmetrical Kullback-Leibler
divergence measure. It measures the pairwise dissimilarity of conditional probability term
distributions between the URI of the old case and new case.

1
2 log 2∑i=1

n

h pi ,Old h pi , New−h  pi ,Old pi , New (4.6)

with probability term frequency weighting scheme: pi, Old denotes the probability of the i-th
index term occurrence in the URI of the old case and h(x) = -x log x.

44

4 Implementation

SimPack has implemented the above measurements and makes them available.

Before the URIs are used for comparison, they are unfolded and common terms are
removed. The following table shows common terms that are either removed or replaced:

Term(s) Action
Http, www, .owl Removed

[0..9] Removed

/, #, ., _, - Replaced with white space

Table 19: URI Term Processing

Strings are further unfolded as much as possible. For example, words are commonly
joined by using capitalization. For example, BookStore will be split into the two terms Book
and Store.

Additionally, the resulting strings are stemmed using the Porter Stemming28 algorithm. The
algorithm tries to reduce terms to its stem. The algorithm is given an explicit list of suffixes,
and, with each suffix, the criterion under which it may be removed from a word to leave a
valid stem. The main purpose of using stemming is to improve performance of the
similarity measures introduced earlier. Additionally, the implemented version of the Porter
Stemming algorithm uses a list of common stop words which are removed completely.

The result of the three similarity measures are added with each other and the actual
similarity returned as an average:

0simCosine ,sim Extended Jaccard ,sim JensenShannon1 (4.7)

sim Inputs , simOutputs ,sim Processes=
simCosinesimExtended Jaccardsim JensenShannon

3
(4.8)

0sim Inputs ,simOutputs , simProcesses1 (4.9)
The three similarity measures are expected to perform more or less equally. The main
reason for taking the average of all three is to demonstrate how different measurements
can be easily implemented. It has to be noted, that using Java's Reflection API, any
similarity measurement provided by SimPack accepting either two strings or an
IsequenceAccessor29 object can be used.

4.5.2.3 Graph Matching
As previously introduced, the graph represents the structure of a Web Service described in
OWL-S. Comparison of the structure allows to respect the number of parameters used in a
Web Service, but also the structure of the various control constructs in a composite
process. The graphs are compared in a manner that the smaller graph is searched in the
bigger graph.
To compare the graph similarity of the old case and the new case, the Valiente's maximum

28 http://www.tartarus.org/~martin/PorterStemmer/def.txt
29 See SimPack.api.Interface ISequenceAccessor

45

4 Implementation

common subgraph algorithm is used. SimPack implements this algorithm and exposes it in
the class MaxCommonSubgraphIsoValiente30. The result is a measurement of the
similarity of the two graphs:

0simGraph1 (4.10)

4.5.2.4 Future Implementations
As described earlier, future implementations of different similarity measurements can be
added by inheriting from the super class and implementing the relevant concrete methods
to perform the similarity measures. The newly added class can then be announced in the
CBR Factory which will make it available to the system.

30 See SimPack.measure.graph.MaxCommonSubgraphIsoValiente

46

4 Implementation

4.6 Reuse
The following figure shows the UML diagram of the various adaption strategies
implemented:

Figure 12: UML Diagram Adaption

A interface declares a single method adapt() accepting a new and old case as its
parameters. Concrete instantiations then implement the various adaption strategies that
will be performed. The framework attempts to apply one strategy. If an exception occurs,
the next strategy is tried.

47

4 Implementation

Currently, the following strategies are implemented in the order shown in the following
table:

Order Strategy Description
1 Insert The existing case is extended by adding parts of the old

case

2 Copy The existing case is extended by adding the full old case

3 Simple The best matching case is returned unaltered

Table 20: Overview Adaption Strategy

As seen in the table above, the default strategy is to return the old case unaltered if all
other strategies fail.

4.6.1 Adaption Strategy Simple
This strategy returns the old case unaltered. The basic assumption of Case-based
Reasoning is that past knowledge can be used to solve new problems. In this most basic
case, it is assumed that the old case is presented to a user which may get inspiration of
the case presented to solve his existing problem. Due to the fact that this case has
previously been selected during the retrieve process, the system determined a certain
relevance to the new case.

4.6.2 Adaption Strategy Copy
This strategy tries to append the selected old case to the new case as a whole. It takes the
first process of the old case and tries to allocate correct bindings to the last process of the
new case. To determine matching Output-Input bindings, the various implemented
similarity strategies are leveraged. In case no matching binding can be established, an
exception is thrown and the attempt to append the old case to the new one is considered
as failed.

48

4 Implementation

The following figure illustrates the strategy described above:

49

Figure 13: Adaption Strategy Copy

4 Implementation

4.6.3 Adaption Strategy Insert
The approach in this strategy is to search for the first occurrence of the last process of the
new case in the old case. If a match has been found, the remaining processes of the old
case are appended to the new case. In the same fashion, the various similarity strategies
implemented are used to determine a match. In case no match is found, an exception is
thrown and the process aborted.
The following figure illustrates the insertion strategy:

Figure 15: Adaption Strategy Insert

50

4 Implementation

4.7 Revising
In the context of NExT, the user is taking the task of validating the proposed solution and
this functionality is therefore not implemented.

4.8 Retaining
This aspect of the Case-based Reasoning system is less interesting and due to its
dependency of the revising task not implemented.

51

4 Implementation

5 Evaluation

This chapter describes a possible evaluation approach to test the performance of the
implemented system.

5.1 Setting

Case Base
A suitable case base should be built. The cases should be representative of a specific
domain. In addition, the cases should consist of various degrees of complexity in terms of
the amount of parameters, processes, and control constructs, used. The case base should
then be filled with additional random cases to add noise to the system.

The following cases should be recorded:

Recorded Case #1

▪ Atomic process with one input and one output

52

Figure 16: Recorded Case #1

5 Evaluation

Recorded Case #2

▪ Atomic process with two inputs and one output

53

Figure 17: Recorded Case #2

5 Evaluation

Recorded Case #3

▪ Composite process with one input and one output, using a sequence of three
processes

54

Figure 18: Recorded Case #3

5 Evaluation

Recorded Case #4

▪ Composite process with one input and one output, using an If-Then-Else control
construct with a subsequent composite process, consisting of two atomic processes

55

Figure 19: Recorded Case #4

5 Evaluation

New Cases
Suitable new cases should be designed that will be presented to the system. These cases
should be related to the cases that are held in the case base. Following the recorded
cases, the new cases below should be created:

New Case #1

▪ Atomic process with one input and one output

New Case #2

▪ Atomic process with two inputs and one output

56

Figure 21: New Case #2

Figure 20: New Case #1

5 Evaluation

New Case #3

▪ Composite process with one input and one output, using a sequence of two
processes

57

Figure 22: New Case #3

5 Evaluation

New Case #4

▪ Composite process with one input and one output, using an If-Then-Else control
construct

5.2 Approach
In one scenario, the evaluation should test that the system is selecting the appropriate
cases, and the implemented similarity measures are performing as expected. As a result,
the system will be presented with various new cases and is expected to return the
recorded case most similar to the new case.
In another scenario, the system's ability to adapt cases should be tested. This is achieved
by evaluating the combination of the selected case and the new case.

58

Figure 23: New Case #4

5 Evaluation

5.3 Test Cases
The following scenarios should be tested:

Test Case Similarity
The purpose of this test case is to evaluate that the system is selecting the appropriate
cases from the case base.
Each new case should be presented to the system individually, and the set of selected
cases should be evaluated against the expected selection. The following table shows the
various new cases and the expected outcome:

Presented Case Selected Cases
New case #1 Recorded case #1

New case #2 Recorded case #2

New case #3 Recorded case #3

New case #4 Recorded case #4

Table 21: Evaluation Table Test Case Similarity

Test Case Adaption
The purpose of this test case is to evaluate the system's ability to adapt cases from its
case base.
Assuming the system performed as expected in the previous test case, the outcome of
adaption should be as in the following table:

Presented Case Performed Adaption
New case #1 Return recorded case #1 unaltered

New case #2 Return recorded case #2 unaltered

New case #3 Return recorded case #3 unaltered

New case #4 Return recorded case #4 unaltered

Table 22: Evaluation Table Test Case Adaption

59

5 Evaluation

6 Conclusion

6.1 Summary
The goal of this thesis is to apply the techniques and concepts known by Case-based
Reasoning, to the Semantic Web and Web Services described in OWL-S.
A framework has been introduced that follows the typical design of any Case-based
Reasoner, with a focus on the more challenging tasks retrieval and reuse of cases.

A summary of the main components and achievements of this thesis follows:

Case and Case Base
Firstly, a suitable case structure that is able to capture executed OWL-S Web Services has
been developed. This serves as the basis of the memory of the Case-based Reasoner. To
take advantage of the expressiveness of the Web Language OWL and to remain
compatible with OWL-S, the specific cases themselves are maintained as OWL-S Web
Services. This allows for the design of a flexible case structure and has the advantage that
past cases could be executed again as they have taken place in the past.
Furthermore, a case base which holds the relevant cases has been developed. The case
base itself is again compatible with OWL-S and allows for a seamless build on the same
technology.

Retrieve
Various similarity strategies have been implemented to retrieve similar cases from the
case base. These have been measured against a novel potentially unknown problem to
the system. Different approaches have been explored to enhance the system's capability
to measure similarity. Specifically, the following areas have been taken advantage of:

Semantic Web
The Semantic Web and and the Web Language OWL allow powerful reasoning
capabilities to make statements about relationships between resources.

Information Retrieval
The area of information retrieval provides powerful algorithms for automatic text analysis
that can complement a purely semantic approach. Implicit information present in the URI
of resources, can be exploited by applying techniques from content-based information
retrieval.

Graph theory
In addition to focusing on single resources only, the information held by the overall
structure of the Web Service represented. This is a labeled, directed graph which allows
for the creation of relevant statements in terms of similarity. Techniques such as subgraph
isomorphism can be applied to determine whether there exists a structural relation
between two graphs.

60

6 Conclusion

In addition to the similarity approaches defined above, the system allows for the
implementation of custom made similarity measures. These can easily be plugged into the
existing framework.

Reuse
Selected cases in the retrieval task are further processed, applying different adaption
strategies in an effort to complement the novel case with existing ones. Various degrees of
complex strategies are applied in a descending order:

Insert
Parts of each previously selected case are extracted so that they can be added to the new
case. The approach is to complement the new case with a relevant part of the existing
one.

Copy
This strategy tries to complement the new case with the existing case as a whole. The
existing case then attempts to be added to the end of the new case.

Simple
In case the previously mentioned strategies fail, the selected existing case is returned
unaltered.

Similar to the approach of similarity strategies, the system is built to allow for additional
strategies implemented in the future.

The feasibility of applying powerful techniques and concepts of Case-based Reasoning to
the Semantic Web and OWL-S Web Services has been demonstrated. As the Semantic
Web is more widely accepted and more applications take advantage of its advantages
such as NExT, Case-based Reasoning can add significant value. Case-based Reasoning
is based on the principle that past knowledge is useful to help solve novel situations. This
approach is closely related to how humans often solve problems, and therefore a process
that can be adopted naturally. It will be interesting to see further progress being made in
this respect as more applications evolve and the Semantic Web is more of an everyday
reality.

6.2 Future Work
This thesis hopefully helps foster the progress of the Semantic Web in general and the
application of Case-based Reasoning to the Semantic Web specifically. The framework
introduced should serve as a basis and proof of the concept that Case-based Reasoning
techniques can be applied to the Semantic Web. The remainder of this chapter highlights
particular aspects where the system can be improved and enhanced. It also provides an
outlook of how it can be used in a future where the Semantic Web is widely adopted.

61

6 Conclusion

6.2.1 Case and Case Base
Holding a case in OWL-S allows for taking full advantage of the functionality provided by it.
At present, various features have not been taken advantage of. Specifically, preconditions
of processes are not recorded due to a lack of uniformity. However, once settled on a
standard, the addition of preconditions will be beneficial for the accuracy of the system in
order for it to produce more robust results.
In terms of retrieving appropriate cases, the case base's performance could suffer when it
holds a substantial amount of cases. Means of building an appropriate index based on
specific features, may have to be introduced to accelerate the retrieval process at a certain
size to allow realistic performance.

6.2.2 Evaluation
It has been demonstrated that basic principles of Case-based Reasoning can be applied to
Web Services described in OWL-S. Due to today's lack of wide availability of various Web
Services described in OWL-S, an extensive evaluation of the specific similarity
measurements and adaption strategies has not been performed. As briefly described in
Chapter 5, a suitable case base needs to be built and systematically tested against new
cases to be able to make significant statements about its performance.

6.2.3 Similarity Measures
In addition to the implemented similarity measurements, alternative ways should be
explored. Once a substantial test case base has been developed, an overall ontology
could be built following the approach of OWL-MX to perform a combination of semantic
and syntactic matching based on different thresholds. SimPack also provides a number of
additional string based similarity measurements, that have not been explored in the current
implementation. Undergoing a thorough evaluation, these additional measurements may
prove superior to the currently chosen ones under certain circumstances, or may act
complementary. Additionally, graph-based measurement can be enhanced to respect not
only structural similarity, but also consider specific labels for each resource. This also
implies that not only recorded Web Services should serve as a basis for the case base, but
the original version of the Web Service.

6.2.4 Adaption Strategies
Additional complexity can be added to the currently implemented strategies. Specifically,
parts of different cases should be able to contribute to more sophisticated combinations
instead of limiting the adaption process to a single case. Furthermore, more complex rules
can be added to cover a wider variation of adaption. Another interesting approach is to use
such concepts found in AI planners to perform parts of the adaption process. Such
systems should be highly suitable to bridge the gap between two incompatible resources
on various levels.

62

6 Conclusion

6.2.5 Revision and Retention
An integral part of a Case-based Reasoner should be the revision and retention of cases.
In the context of NExT, user feedback should determine the quality and usability of the
produced result by the Case-based Reasoner. Depending on the outcome, such newly
generated cases should be added to the existing repository of cases to serve in the future.
This allows the system to evolve over time and improve its competence, coverage and
reachability. However, to not over specialize the system, it should also undergo regular
maintenance in which cases may be generalized and duplicates removed.

6.2.6 Future Applications
Today's reality reflects a sparse application of the Semantic Web in the vast space of the
Internet. Certainly the Internet itself is considered a young and emerging technology,
which has already impacted many different aspects of our everyday lives. In the past,
many regarded the Semantic Web as the next version of the Net. Reality proved to be
slower, and today Web Applications using techniques such as AJAX are considered to be
the Web 2.0. As the Internet evolves to Web 3.0, the Semantic Web should be an integral
part of it. In such an environment, automated agents will be able to interact seamlessly
with human agents and almost contribute equally. Applications will be exposed and made
accessible over the Internet by either humans or automatic agents. An application, similar
to the one introduced in this thesis, can advertise its Case-based Reasoning capabilities
as a service to help solve new problems based on existing Web Services advertised by
other parties.

63

Index of Figures
Figure 1: CBR Cycle... 12
Figure 2: W3C Semantic Web stack... 13
Figure 3: Data Integration in Life Sciences... 14
Figure 4: Top level of the process ontology.. 15
Figure 5: jColibri Architecture... 17
Figure 6: Execution Trail of a Composite Process.. 24
Figure 7: Structure of an Experiment Set-Up... 25
Figure 8: Fragment of the NMR Resource Ontology.. 28
Figure 9: UML Diagram of OWL-S Case-based Reasoner... 36
Figure 10: UML Diagram Similarity... 39
Figure 11: Graph Representations of various OWL-S Services... 40
Figure 12: UML Diagram Adaption... 47
Figure 13: Adaption Strategy Copy.. 49
Figure 14: Adaption Strategy Copy.. 49
Figure 15: Adaption Strategy Insert.. 50
Figure 16: Recorded Case #1.. 52
Figure 17: Recorded Case #2.. 53
Figure 18: Recorded Case #3.. 54
Figure 19: Recorded Case #4.. 55
Figure 20: New Case #1... 56
Figure 21: New Case #2... 56
Figure 22: New Case #3... 57
Figure 23: New Case #4... 58
Figure 24: Top level of the service ontology... 71

64

Index of Tables
Table 1: OWL-S Control Constructs... 23
Table 2: Case Requirements.. 27
Table 3: Example of Datatypes for Parameters.. 28
Table 4: Similarity Strategies.. 28
Table 5: Pseudo Code of Matching Algorithm for Web Services.. 31
Table 6: URIs of Resources in Web Services.. 32
Table 7: Adaption Strategies.. 33
Table 8: Pseudo Code Add Bindings.. 34
Table 9: Example of the Service of an Execution Trail... 38
Table 10: Example of the Profile of an Execution Trail... 38
Table 11: Example of the Composite Process of an Execution Trail.................................. 39
Table 12: OWL-S API Execution Engine Events ... 39
Table 13: Example of TrailList.owl.. 39
Table 14: Interface Similarity.. 42
Table 15: Similarity Loop.. 42
Table 16: IOP Weights... 43
Table 17: Main Loop Case Similarity.. 44
Table 18: Type-Weight Matrix.. 44
Table 19: URI Term Processing... 46
Table 20: Overview Adaption Strategy... 49
Table 21: Evaluation Table Test Case Similarity.. 60
Table 22: Evaluation Table Test Case Adaption.. 60

65

6 Conclusion

7 References

[Baggenstos 2006] Daniel Baggenstos, Implementation and Evaluation of Graph
Isomorphism Algorithms for RDF-Graphs, University of Zurich,
2006

[Bareiss 1989] R. Bareiss, Exemplar-Based Knowledge Acquisition: A Unified
Approach to Concept Representation, Classification, and
Learning, Academic Press, San Diego, CA, 1989

[Bernstein 2005] So what is a (Diploma) Thesis? A few thoughts for first-timers.
(by A. Bernstein), 2005

[Colucci et al. 2004] S. Colucci, T. D. Noia, E. D. Sciascio, F. Donini, and M.
Mongiello. Concept abduction and contraction for semantic-
based discovery of matches and negotiation spaces in an e-
marketplace. In Proc. 6th Int Conference on Electronic
Commerce (ICEC 2004). ACM Press, 2004.

[Daenzer 2005] Michael Daenzer, NExT – The NMR EXperiment Toolbox,
University of Zurich, 2005

[Estlin et al. 2000] T. Estlin, G. Rabideau, D. Mutz, S. Chien. Using Continuous
Planning Techniques to Coordinate Multiple Rovers, Electronic
Transactions on Artificial Intelligence, 2000

[Hammond 1989] K. J. Hammond, Case-Based Planning, Academic Press, San
Diego, CA, 1989

[Hinrihs, 1992] T. R. Hinrihs, Problem Solving in Open Worlds, Lawrence
Erlbaum Associates, Hillsdale, NJ, 1992

[Li and Horrock, 2003] L. Li and I. Horrock. A software framework for
matchmaking based on semantic web technology. In
Proc. 12th Int World Wide Web Conference Workshop
on E-Services and the Semantic Web (ESSW 2003),
2003.

[Keller et al. 2005] U. Keller, R. Lara, H. Lausen, A. Polleres, D. Fensel.
Automatic Location of Services. In Proceedings of the
2nd European Semantic Web Conference, LNCS 3532,
2005.

[Klusch et al. 2006] Matthias Klusch, Benedikt Fries, Katia Sycara: Automated
Semantic Web Service Discovery with OWLS-MX, International
Conference on Autonomous Agents, Proceedings of the fifth
international joint conference on Autonomous agents and
multiagent systems, 2006

[Kolodner 1983] J. L. Kolodner, Maintaining organization in a dynamic long term
memory, Cognitive Science, vol. 7, 1983

[Kolodner 1992] J. L. Kolodner, An introduction to Case-based Reasoning,

66

7 References

Artificial Intelligence Review, vol. 6, no. 1, pp. 3-34, 1992
[Kolodner and Mark 1992] J. L. Kolodner, W. Mark, Case-based Reasoning, IEEE Expert,

vol. 7, no. 5, pp. 5-6, 1992
[Kolodner 1993] J. L. Kolodner, Case-Based Reasoning, Morgan Kaufmann,

San Francisco, 1993
[Martin et al. 2004] David Martin, Mark Burstein, Jerry Hobbs, Ora Lassila, Drew

McDermott, Sheila McIlraith, Srini Narayanan, Massimo
Paolucci, Bijan Parsia, Terry Payne, Evren Sirin, Naveen
Srinivasan, Katia Sycara. OWL-S: Semantic Markup for Web
Services. http://www.daml.org/services/1.1/overview/ - last time
validated on February, 1, 2007.

[Massimo et al. 2002] Massimo Paolucci, Takahiro Kawamura, Terry Payne, Katia
Sycara: Semantic Matching of Web Services Capabilities.
Springer Berlin / Heidelberg, 2002

[Sankar and Simon 2004] Sankar K. Pal, Simon C. K. Shiu , Foundations of Soft Case-
Based Reasoning, Wiley Series on Intelligent Systems, ISBN:
978-0-471-08635-2, April 2004

[Simpson 1985] R. L. Simpson, A computer model of Case-based Reasoning in
problem solving: an investigation in the domain of dispute
mediation, Ph.D. Dissertation, School of Information and
Computer Science, Georgia Institute of Technology, Atlanta,
GA, 1985

[Sycara 1988] K. Sycara, Using Case-based Reasoning for plan adaption and
repair, in Proceedings of the Case-Based Reasoning
Workshop, DARPA, Clearwater Beach, FL, Morgan Kaufmann,
San Francisco, 1988

[Sycara et al. 2003] K. Sycara, M. Paolucci, A. Anolekar, and N. Srinivasan.
Automated discovery, interaction and composition of semantic
web services. Web Semantics, Elsevier, 2003.

67

Appendix

A Appendix – Case-based Reasoning

A.A Case-based Reasoning Criteria

Although the methodology of Case-based Reasoning can be applied to a number of
domains, it is not always suitable. The following characteristics should be met in order to
determine whether it is applicable:31

1. Does the domain have an underlying model?
If the domain is impossible to understand completely or if the factors leading to the
success of failure of a solution can't be modeled explicitly, CBR allows us to work
on pas experience without a complete understanding of the underlying mechanism.

2. Are there exceptions and novel cases?
Domains without novel or exceptional cases may be modeled better with rules,
which could be determined inductively from past data. However, in a situation
where new experiences and exceptions are encountered frequently, it would be
difficult to maintain consistency among the rules in the system. In that case the
incremental case learning characteristics of CBR systems makes it a possible
alternative to rule-based systems.

3. Do cases recur?
If the experience of a case is not likely to be used for a new problem, because of a
lack of similarity, there is little value in storing the case. In other words, when
experiences are not similar enough to be compared and adapted successfully, it
might be better to build a model of the domain to derive the solution.

4. Is there significant benefit in adapting the pas solutions?
One should consider whether there is a significant benefit, in therms of resources,
to crating a solution through modifying a similar solution rather than creating a
solution to a problem from scratch.

5. Are relevant previous cases obtainable?
Is it possible to obtain data that record the necessary characteristics of pas cases?
Do the recoded cases contain the relevant features of the problem and its context
that influenced the outcome of the solution? Is the solution recoded in sufficient
detail to allow it to be adapted in the future? These questions allow one to go for the
CBR framework.

31 See [Kolodner 1992], [Kolodner and Mark 1992], [Kolodner 1993]

68

Appendix

A.B Advantages of Case-based Reasoning
Following a summary of some of the major advantages of CBR:32

1. Reducing the knowledge acquisition task
By eliminating the need to extract of a model or a set of rules, as is necessary in
model/rule-based systems, the knowledge acquisition tasks of CBR consist
primarily of the collection of relevant existing experiences/cases and their
representation and storage.

2. Avoiding repeating mistakes made in the past
In systems that record failures as well as successes, and perhaps the reason for
those failures, information about what caused failures in the past can be used to
predict potential failures in the future.

3. Providing flexibility in knowledge modeling
Due to their rigidity in problem formulation and modeling, model-based systems
sometimes can't solve a problem that is on the boundary of their knowledge or
scope or when there is missing or incomplete data. In contrast, case-based systems
use past experience as the domain knowledge and can often provide a reasonable
solution, through appropriate adaption, to these types of problems.

4. Reasoning in domains that have not been fully understood, defined, or modeled
In a situation where insufficient knowledge exists to build a causal model of a
domain or to derive a set of heuristics for it, a Case-based Reasoner can still be
developed using only a small set of cases from the domain. The underlying theory
of domain knowledge does not have to be quantified ore understood entirely for a
Case-based Reasoner to function.

5. Making predictions for the probable success of a proffered solution
When information is stored regarding the level of success of past solutions, the
Case-based Reasoner may be able to predict the success of the solution suggested
for a current problem. This is done by referring to the stored solutions, the level of
success of these solutions and the differences between the previous and current
contexts of applying these solutions.

6. Learning over time
As CBR systems are sued, they encounter more problem situations and create
more solutions. If solution cases are tested subsequently in the real world and a
level of success is determined for those solutions, these cases can be added to the
case base and used to help in solving future problems. As cases are added, a CBR
system should be able to reason in a wider variety of situations and with a higher
degree of refinement and success.

7. Reasoning in a domain with a small body of knowledge
While in a problem domain for which only a few cases are available, a Case-based
Reasoner can start with these few known cases and build its knowledge
incrementally as cases are added. The addition of new cases will cause the system
to expand in directions that are determined by the cases encounters in its problem-
solving endeavors.

8. Reasoning with incomplete or imprecise data concepts
As cases are retrieved, they many not be identical to the current case.
Nevertheless, when they are within some defined measure of similarity to the

32 See [Sankar and Simon 2004], pp. 9-11

69

Appendix

present case, any incompleteness and imprecision can be dealt with by a Case-
based Reasoner. Although these factors may cause a slight degradation in
performance, due to the increase disparity between the current and retrieved cases,
reasoning can continue.

9. Avoiding repeating all the steps that need to be taken to arrive at a solution
In problem domains that require significant processes to create a solution from
scratch, the alternative approach of modifying an earlier solution can reduce this
processing requirement significantly. In addition, reusing a previous solution also
allows the actual steps taken to reach that solution to be reused for solving other
problems.

10.Providing a means of explanation
Case-based Reasoning systems can supply a previous case and its solution to help
convince a suer of, or to justify, a proposed solution to the current problem. In most
domains there will be occasions when a user wishes to be reassured about the
quality of the solution provided bu a system. By explaining how a previous case was
successful in a situation, using the similarities between the cases and the reasoning
involved in adaption, a CBR system can explain its solution to a user. Even for a
hybrid system, one that may be using multiple methods to find a solution, this
proposed explanation mechanism can augment the causal explanation given to a
user.

11.Extending to many different purposes
The number of ways in which a CBR system can be implemented is almost
unlimited. It can be used for many purposes, such as creating a plan, making a
diagnosis, and arguing a point of view. Therefore, the data dealt with by a CBR
system are able to take many forms, and the retrieval and adaption methods will
also vary. Whenever stored past cases are being retrieved and adapted, Case-
based Reasoning is said to be taking place.

12.Extending to a broad range of domains
CBR can also be applied to extremely diverse application domains. This is due to
the seemingly limitless number of ways of representing, indexing, retrieving and
adapting cases.

13.Reflecting human reasoning
As there are many situations where we, as humans, use a form of Case-based
Reasoning, it is not difficult to convince implementers, users, and managers of the
validity of the paradigm. Similarly, humans can understand a CBR system's
reasoning and explanations and are able to be convinced of the validity of the
solutions they receive from a system. If a human user is wary of the validity of an
earlier solution, they are less likely to use this solution. The more critical the
domain, the lower the chance that a past solution will be used and the greater the
required level of a suer's understanding and credulity.

70

Appendix

B Appendix - OWL-S

Based on the progress made in the Semantic Web effort, the DARPA Agent Markup
Language (DAML) Program developed a set of ontologies in the ontology language OWL
to describe Web services. OWL-S is therefore “a OWL-based Web service ontology, which
supplies Web service providers with a core set of markup language constructs for
describing the properties and capabilities of their Web services in unambiguous, computer-
interpretable form.”33 The goal is to facilitate the automation of Web service tasks,
including automated Web service discovery, execution, composition and interoperation.

OWL-S therefore defines a top level ontology Service to provide the data needed to
discover and invoke, but also to allow composition and inter operation of Web Services.
OWL-S associates three basic entities to a Service as shown in the following figure34:

The service profile tells "what the service does", in a way that is suitable for a service-
seeking agent (or matchmaking agent acting on behalf of a service-seeking agent) to
determine whether the service meets its needs. This form of representation includes a
description of what is accomplished by the service, limitations on service applicability and
quality of service, and requirements that the service requester must satisfy to use the
service successfully.

The service model tells a client how to use the service, by detailing the semantic content of
requests, the conditions under which particular outcomes will occur, and, where
necessary, the step by step processes leading to those outcomes. That is, it describes
how to ask for the service and what happens when the service is carried out. For nontrivial
services (those composed of several steps over time), this description may be used by a
service-seeking agent in at least four different ways: (1) to perform a more in-depth
analysis of whether the service meets its needs; (2) to compose service descriptions from

33 http://www.daml.org/services/owl-s/
34 Figure from white paper about OWL-S - http://www.daml.org/services/owl-s/1.1/overview/

71

Figure 24: Top level of the service ontology

Appendix

multiple services to perform a specific task; (3) during the course of the service enactment,
to coordinate the activities of the different participants; and (4) to monitor the execution of
the service.

A service grounding ("grounding" for short) specifies the details of how an agent can
access a service. Typically a grounding will specify a communication protocol, message
formats, and other service-specific details such as port numbers used in contacting the
service. In addition, the grounding must specify, for each semantic type of input or output
specified in the ServiceModel, an unambiguous way of exchanging data elements of that
type with the service (that is, the serialization techniques employed).

The upper ontology for services specifies only two cardinality constraints: a service can be
described by at most one service model, and a grounding must be associated with exactly
one service. The upper ontology deliberately does not specify any minimum cardinality for
the properties presents or describedBy. (Although, in principle, a service needs all three
properties to be fully characterized, it is easy to imagine situations in which a partial
characterization could be useful.) Nor does the upper ontology specify any maximum
cardinality for presents or supports. (It will be extremely useful for some services to offer
multiple profiles and/or multiple groundings.)

Finally, it must be noted that while there is one particular upper ontology for profiles, one
for service models, and one for groundings, nevertheless OWL-S allows for the
construction of alternative approaches in each case.

72

Appendix

C Tools and Libraries

C.A Eclipse
Eclipse 3.1 was used as an IDE to write Java code. To be able to collaborate and store the
work properly, Subversive35 was used. Subversive is an Eclipse Team Provider for the
Subversion version control system. Google Code was used as a Subversion repository.
The code is available in its entirety under http://code.google.com/p/cbr-owl-s/. UML 2.1 by
Omondo36 was used to generate the UML diagrams.

C.B Mindswap OWL-S API
“OWL-S API provides a Java API for programmatic access to read, execute and write
OWL-S (formerly known as DAML-S) service descriptions. The API supports to read
different versions of OWL-S (OWL-S 1.1, OWL-S 1.0, OWL-S 0.9, DAML-S 0.7)
descriptions. The API provides an ExecutionEngine that can invoke AtomicProcesses that
has WSDL or UPnP groundings, and CompositeProcecesses that uses control constructs
Sequence, Unordered, Split, If-Then-else and RepeatUntil.”37

The OWL-S API has the ability to execute OWL-S web services that are grounded in
WSDL or UPnP. As of recently, the API has been extended by Michael Daenzer to support
Java Groundings. However, the extensibility of the OWL-S architecture allows future
implementations of theoretically any technology.

C.C Simpack
The Department of Informatics at the University of Zurich has developed a similarity
measurement toolkit called SimPack38. Until now, it supports the following measurement
approaches:

Currently, similarity measures from the following categories have been implemented:

Feature vectors
▪ Alignment, Cosine, Dice, Euclidean, Jaccard, Manhattan, Overlap, Pearson

Strings or sequences of strings (text)
▪ Averaged String Matching, Jaro, TFIDF

Sets
▪ Jaccard, Loss of Information, Resembalance

35 http://www.polarion.org/index.php?page=overview&project=subversive
36 http://www.omondo.com/
37 See http://www.mindswap.org/2004/owl-s/api/
38 http://www.ifi.unizh.ch/ddis/simpack.html

73

Appendix

Sequences
▪ Levensthein Edit Distance

Trees
▪ Bottom-up/Top-down Maximum Common Subtree, Tree Edit Distance

Graphs
▪ Conceptual Similarity, Graph Isomorphism, Subgraph Isomorphism, Maximum

Common Subgraph Isomorphism, Graph Isomorphism Covering, Shortest Path

Information theory
▪ Jiang & Conrath, Lin, Resnik

In addition, the package implements the measures from the SecondString39, the
SimMetrics40, and the OWLS-MX41 projects.

39 http://secondstring.sourceforge.net/
40 http://www.dcs.shef.ac.uk/~sam/simmetrics.html
41 http://www-ags.dfki.uni-sb.de/~klusch/owls-mx/index.html

74

Appendix

Glossary

Case - A case is a past experience that actually happened. In this context, we refer to
OWL-S ontologies that have been executed using the OWL-S API and recorded in an
OWL-S ontology itself.

Execution Trail – Synonym for Case

Case Base - The case base is a set of cases.

Knowledge Base – Synonym for Case Base.

CBR – Case-based Reasoning

NMR - Nuclear Magnetic Resonance

DL – Description Logic

GUI – Graphical User Interface

XML – Extensible Markup Language

OWL – Ontology Web Language

OWL-S – OWL Web Service Ontology

Pellet – OWL-DL reasoner

I/O – Input/Output

IOP – Inputs, Outputs, Processes

AI – Artificial Intelligence

UDDI – Universal description, discovery and integration

75

	1Introduction
	1.1Goal of the Thesis
	1.2Structure
	1.3Target Audience

	2Motivation
	2.1NExT – The NMR EXperiment Toolbox
	2.1.1An exemplary Scenario
	2.1.2The Concepts
	2.1.3User Guidance

	2.2Case-based Reasoning
	2.2.1History of Case-based Reasoning
	2.2.2Main Components and Features of Case-based Reasoning

	2.3Semantic Web and OWL-S
	2.3.1The Semantic Web
	
	2.3.2OWL-S

	2.4Related Work
	2.4.1Case-based Reasoner: jColibri
	2.4.2Matchmaker: OWLS-MX
	2.4.3AI Planner: CASPER
	2.4.4Conclusion

	2.5Personal Motivation

	3Design
	3.1Overview
	3.2Recording Cases / Execution Trails
	3.3Case
	3.4Case Base and Indexing
	3.5Retrieve
	3.5.1Similarity Strategies
	3.5.1.1Semantic similarity
	3.5.1.2Syntactic Similarity
	3.5.1.3Graph Similarity

	3.6Reuse
	3.7Revising
	3.8Retaining

	4Implementation
	4.1Overview
	4.1.1Used Technologies

	4.2Framework
	4.3Recording Cases / Execution Trails
	4.4Case Base
	4.5Retrieve
	4.5.1OWL-S Graph
	4.5.2Similarity Strategies
	4.5.2.1Semantic Matching
	4.5.2.2Syntactic Matching
	4.5.2.3Graph Matching
	4.5.2.4Future Implementations

	4.6Reuse
	4.6.1Adaption Strategy Simple
	4.6.2Adaption Strategy Copy
	4.6.3Adaption Strategy Insert

	4.7Revising
	4.8Retaining

	5Evaluation
	5.1Setting
	5.2Approach
	5.3Test Cases

	6Conclusion
	6.1Summary
	6.2Future Work
	6.2.1Case and Case Base
	6.2.2Evaluation
	6.2.3Similarity Measures
	6.2.4Adaption Strategies
	6.2.5Revision and Retention
	6.2.6Future Applications

	7References
	AAppendix – Case-based Reasoning
	A.ACase-based Reasoning Criteria
	A.BAdvantages of Case-based Reasoning

	BAppendix - OWL-S
	CTools and Libraries
	C.AEclipse
	C.BMindswap OWL-S API
	C.CSimpack

