
Using Genetic Programming and SimPack
to Learn Global Similarity Measures

Diploma Thesis in Computer Science

submitted by
Manuel Kägi, Winterthur, Switzerland

Student number: 99-713-307

written at the
Department of Informatics

University of Zürich

Prof. Abraham Bernstein, Ph.D.

Supervised by
Dipl. Inf.-Ing. ETH Christoph Kiefer

submitted on
November 8, 2006

Abstract

For a growing number of applications good similarity measures are crucial to ensure that the

applications works as desired. Similarity measures can be used to find the most similar object to

another one, or can be used to perform a categorisation task, whereby the calculated similarity value

will be used to determine the category. But manually defining a good similarity measure, especially

if complex and domain specific objects have to be compared, can be a difficult task. A lot of

domain knowledge combined with knowledge in computer science (namely how these similarity

measures work internally) is needed, and there exists no approved methodology to do this.

Therefore the global goal in this diploma thesis is, instead of manually defining similarity measures,

to learn them and to evaluate the achieved results.

To be able to learn similarity measures, an universal framework is used, the Local/Global

Framework. The idea is to use the Local/Global principle to compare complex objects, whereby the

local similarity measures and the amalgamation function can be learned. Another precondition for

this is to have an evaluation method to estimate a particular similarity measure's soundness.

Typically this is done by comparing the similarity measure's results with a so-called gold standard.

To learn, the evolutionary principles observed in nature will be exploited in an artificial evolution.

This artificial evolution can be implemented as a genetic algorithm or a genetic programming

approach can be used. In the first case parameters of similarity measures will be learned, in the

second case, using the genetic programming approach, the algorithms themselves are learned. In

both cases the goal is to find similarity measures, which will show only a small deviation to the

gold standard. In the case of using a similarity measure to do a categorisation, the goal will be to

properly identify the category an object or a pair of objects (the two compared ones) belongs to.

I

Zusammenfassung

Für eine wachsende Zahl von Anwendungen ist es essentiell gute Ähnlichkeitsmasse zu haben, um

zu erreichen, dass diese Applikationen ihren Zweck erfüllen. Ähnlichkeitsmasse können dazu

verwendet werden, das ähnlichste Objekt zu einem gegebenen Objekt zu bestimmen, oder um eine

Kategorisierung vorzunehmen, wobei in diesem Fall die berechneten Ähnlichkeitswerte dazu

verwendet werden um die Kategorie zu bestimmen. Aber diese Ähnlichkeitsmasse genau zu

definieren, vor allem wenn diese komplexe, sachgebietspezifische Objekte vergleichen sollen, kann

eine schwierige Aufgabe sein. Gute Kenntnisse über das Sachgebiet, auf das sich die Objekte

beziehen, kombiniert mit Informatikkenntissen (über die internen Vorgänge der Ähnlichkeitsmasse)

sind nötig und es gibt keine standardisierte Vorgehensweise solche Ähnlichkeitsmasse zu

definieren. Deshalb ist es das Ziel dieser Diplomarbeit, anstatt Ähnlichkeitsmasse zu definieren,

solche zu lernen und die erreichten Resultate zu evaluieren.

Um Ähnlichkeitsmasse zu lernen, wird ein Framework benutzt, das Local/Global Framework. Die

Idee ist es, das Local/Global Prinzip zu nutzen, um komplexe Objekte zu vergleichen. Dabei

können die lokalen Ähnlichkeitsmasse und die Vereinigungsfunktion gelernt werden. Eine weitere

Voraussetzung ist es, eine Evaluationsmethode zu haben um die erreichte Zweckmässigkeit eines

Ähnlichkeitsmasses abzuschätzen. Dies wird üblicherweise gemacht indem die Resultate des

Ähnlichkeitsmasses mit einem sogenannten Gold-Standard verglichen werden.

Um diese Masse zu lernen, werden die Prinzipien der natürlichen Evolution ausgenutzt. Diese

künstliche Evolution kann als genetischer Algorithmus oder mit dem Ansatz der genetischen

Programmierung realisiert werden. Im ersten Fall werden die Parameterwerte für die

Ähnlichkeitsmasse erlernt, im zweiten Fall, wo der Ansatz der genetischen Programmierung

verwendet wird, wird ein Algorithmus erlernt. In beiden Fällen ist es immer das Ziel, ein Mass zu

finden, dass eine möglichst geringe Abweichung zum Gold-Standard aufweist. Wenn die

Ähnlichkeitsmasse verwendet werden um eine Kategorisierung durchzuführen, ist das Ziel, die

Kategorie, zu der ein Objekt oder Objektpaar (die beiden verglichenen) gehört, korrekt anzugeben.

III

Contents

1. Introduction.. 1

2. The Local/Global Similarity Measure Framework................................... 3
2.1. Similarity Measures.. 3

2.1.1. General Properties of Similarity Measures... 3
2.1.2. The Local-Global Principle... 5
2.1.4. Recursive Similarity Measures... 6

2.2. Types of Local Similarity Measures.. 7
2.2.1. Numeric Similarity Measures... 7
2.2.2. String Similarity Measures... 7
2.2.3. Symbol Similarity Measures... 8
2.2.4. Object Similarity Measures.. 8

2.3. Configuration of Local Similarity Measures... 8
2.3.1. Which Configurations for which types of Similarity Measures............................ 9
2.3.2. Configurations.. 9

2.3.2.1. Distance-to-Similarity Mapping... 9
2.3.2.2. Similarity-to-Similarity Mapping... 10
2.3.2.3. Similarity Tables... 10
2.3.2.4. Similarity Trees... 11
2.3.2.5. Configuration for Measures for Complex Types....................................... 12

3. Evaluating Similarity Measures.. 13
3.1. Soundness of Similarity Measures.. 13
3.2. The “Gold-Standard”.. 13

3.2.1. Gold Standard using one data set.. 14
3.2.2. Gold Standard using two data sets.. 14
3.2.3. Using a “Target function”.. 14

3.3. Calculating a similarity measure's deviation from the gold standard..............15
3.3.1. Average Difference.. 16
3.3.2. Root-Mean-Square Error.. 16
3.3.3. Threshold-Method.. 17

3.4. Using Evaluation to learn Similarity Measures...17

4. The Genetic Algorithm (GA).. 19
4.1. Terminology... 19
4.2. Overview of the Genetic Algorithm... 20

V

4.3. The Algorithm in Detail... 21
4.3.1. Fitness Calculation... 22

4.3.1.1. Calculating the deviation... 22
4.3.1.2. Calculating a fitness value from a deviation.. 22

4.3.2. Selection.. 24
4.3.2.1. Roulette-Wheel... 24
4.3.2.2. Elitism... 25
4.3.2.3. Equal Chance for all... 25
4.3.2.4. Combination of the Strategies... 25

4.3.3. Genetic Operators.. 26
4.3.3.1. Crossover... 26
4.3.3.2. Mutation.. 27
4.3.3.3. Combination of the genetic operators... 27

4.4. Parameters for the genetic algorithm.. 27
4.4.1. List of parameters.. 28
4.4.2. Parameter values... 29

5. Learning Performance with the Genetic Algorithm.............................. 33
5.1. Using a Product Database.. 33

5.1.1. Validation using a Test-set... 34
5.1.2. Cross-Validation... 35

5.1.2.1. Leave-One-out Cross Validation... 35
5.1.2.2. k-fold Cross Validation.. 35

5.1.3 Cross Validation Results... 35
5.2. Ontology Alignment.. 40

5.2.1. Task Description.. 40
5.2.2. Converting the Ontology into a Set of assimilable Instances........................... 40
5.2.3. Converting the rdf-Reference into a Gold Standard... 41
5.2.4. Set-up of the Experiments.. 41
5.2.5. Results... 42
5.2.6. Discussion, Future work... 44

6. Genetic Programming (GP)... 47
6.1. Introduction... 47
6.2. Conditions for successful genetic programming...48

6.2.1. The Closure Property... 48
6.2.2. Sufficiency of Terminal- & Function-set... 49

6.3. Genetic programming in Detail.. 49
6.3.1. Creating an initial Population... 49
6.3.2. Fitness function in genetic programming .. 51

VI

6.3.3. Selection.. 51
6.3.4. Genetic Operator... 51

7. Results using GA & GP... 55
7.1. Set-up of the Experiments ... 55
7.2. Results using the Product Dataset.. 56
7.3. Results of learning an Ontology Alignment..60

8. Implementation Aspects.. 63
8.1. The Local/Global Framework... 63

8.1.1. The Local Similarity Measures... 63
8.1.2. The Configurations... 64

8.2. Evaluation of Similarity Measures... 65
8.3. Learning with the genetic algorithm.. 66
8.4. The Genetic Programming Framework... 66
8.5. Learning an amalgamation Function using GP.. 67

9. Conclusions & Future Work.. 69
9.1. Summary.. 69
9.2. Benefits & Drawbacks... 70
9.3. Future work.. 71

10. References.. 75

Appendix... 77
Appendix A - Using the Local/Global Framework .. 77

A.1. To configure Similarity Measures... 77
A.2. To learn Similarity Measures.. 77
A.3. An Example how to use this Framework... 78

Appendix B - GA Learning... 82
Appendix C - GP Learning... 84

VII

List of Figures

Figure 1: A possible data structure... 6
Figure 2: A possible transformation function with 4 predefined points................................. 7
Figure 3: A general Distance to Similarity mapping, in this mapping negative and positive

distances will not be transformed in the same way, a similarity measure would
not be symmetric... 9

Figure 4: Similarity Tree for the attribute vehicle_type... 11
Figure 5: All possible comparisons... 15
Figure 6: 2 randomly chosen comparisons for each member of set A............................... 15
Figure 7: Choosing the 3 next objects as comparison partners..15
Figure 8: Flowchart of the genetic algorithm ... 21
Figure 9: Hyperbola to transform deviation to fitness ... 22
Figure 10: A possible roulette wheel for 10 individuals...24
Figure 11: Crossover.. 26
Figure 12: The achieved deviation after 200 generations with a population of 50..............30
Figure 13: Achieved deviation increasing the number of generations (learning rate).........30
Figure 14: The product's attributes... 33
Figure 15: Training set performance using property name only... 34
Figure 16: Training- and Test set performance ... 34
Figure 17: Training- and Test set performance.. 34
Figure 18: Cross validation results using no vocabulary knowledge, as deviation the

RootMeanSquare Error, that the best learned measure achieved,is shown. ... 36
Figure 19: Results of a 10-fold cross validation using vocabulary knowledge....................37
Figure 20: The tree structured product data... 38
Figure 21: Results comparing tree structured data.. 38
Figure 22: Results comparing objects with small structural differences............................. 39
Figure 23: Summary of the cross validation results (best test set performers)...................39
Figure 24: A possible data structure for ontology properties ... 41
Figure 25: 2-fold cross validation for ontology alignment, Performance is defined as

correctly identified alignment minus wrongly identified ones.............................42
Figure 26: Training set performance using property name only... 42
Figure 27: Training set performance using property name and class name of domain and

range... 43
Figure 28: Training set performance using “position in hierarchy”......................................43
Figure 29: Training set performance using “position in hierarchy” encoded as string........ 44

IX

Figure 30: Suggested learning cycle for an ontology alignment... 45
Figure 31: Tree representation of the Pythagoras' theorem .. 47
Figure 32: Flowchart of the learning cycle in GP.. 49
Figure 33: A tree with branches of different lengths... 50
Figure 34: Two inner nodes selected for the crossover operation...................................... 52
Figure 35: The offspring of the crossover operation... 52
Figure 36: Two learning rates of the genetic programming.. 56
Figure 37: An amalgamation function transformed to a parse tree for a genetic program..57
Figure 38: 10-fold cross validation using GA and GP... 58
Figure 39: Training- and test set errors after GA and after GP, the GA's amalgamation

function was not part of the initial population of the GP part............................. 58
Figure 40: Training- and test set errors after GA and after GP, the GA's amalgamation

function was not part of the initial population of the GP part, but GA had the
possibility to learn its own amalgamation function.. 59

Figure 41: Training- and test set errors after GA and after GP, the GA's amalgamation
function was part of the initial population of the GP part, and GA had the
possibility to learn its own amalgamation function.. 59

Figure 42: The correctly- and the wrongly found alignments and the performance as
correct ones minus wrong ones.. 60

Figure 43: The correctly- and the wrongly found alignments and the performance as
correct ones minus wrong ones, the GA could not learn its amalgamation
function... 61

Figure 44: The class diagram for the local similarity measures.. 63
Figure 45: The class diagram for the Configuration classes...64
Figure 46: Class diagram of the Evaluators... 65
Figure 47: Suggested learning cycle for an ontology alignment... 72
Figure 48: Class diagram of the different GeneDataInterpreters.. 78
Figure 49: The structure of the car objects used in the example.. 78
Figure 50: Similarity Tree for the attribute shape... 79

X

List of Tables

Table 1: Types of measures and configurations... 9
Table 2: An example of a similarity table, the concrete values might be set by a domain

expert or learned by a learning algorithm... 11
Table 3: Number of parameters to be set using a symmetric similarity table or a similarity

tree... 12
Table 4: The parameter values for the GA... 29
Table 5: The parameter values used for the for the GA in the next 4 experiments............ 36
Table 6: Table of the following experiments... 57
Table 7: Table of the following ontology alignment experiments.. 60

XI

1. Introduction

1. Introduction

In a growing number of applications, good similarity measures are needed to ensure that they run

properly and bring a significant benefit for the users. Such applications may be comparison of

products from different online shops, case based reasoning applications or data mining tasks.

Unlike for mathematical operations, for similarity measures there exists no exact definition, how

big (or how small) the similarity between to objects is. Therefore a lot of different similarity

measures exist and a lot of them also can be configured to achieve, that they calculate a similarity

value which the user of the application accepts (or expects). For comparison of complex objects a

combination of different similarity measures can be used to calculate a similarity value between two

objects. In practice this leads to the fact that each similarity measure has a set of parameters which

can be set. In case of using a combination of similarity measures the number of parameters

increases. Setting all these parameters to a meaningful value is crucial for making successfully use

of a similarity measure.

One way is to ask a domain expert (of the domain, the compared objects come from) to tell us how

to set the parameters. But this assumes that the domain expert also knows about similarity

measures, the meaning of the parameters etc., things not out of his domain, but part of the computer

science.

Another method is to learn the parameter values using a machine learning technique. Usually a

machine learning technique needs a feedback, which tells whether the learning results are good or

bad. In the case of learning similarity measures (or better their parameter settings), this can be

achieved by comparing the result of a comparison with a desired similarity value, that the compared

objects should have. This desired value could be defined by a domain expert, who (to do this task)

needs no knowledge about computer science at all. He just can define that, according to his opinion

(using his domain knowledge), two particular objects have a particular similarity value. A whole set

of such comparisons, where the desired result is known, is called a gold standard and can be used to

give feedback to a learning algorithm.

In this diploma thesis I will show how we can exploit the principals of evolution to learn good

similarity measures. Therefore first the genetic algorithm and afterwards also genetic programming

1

1. Introduction

will be used to learn good similarity measures. Also we want to see how we can learn similarity

measures that compare complex objects. Therefore the Local-Global principle is used and enhanced

to work in a recursive way. This is done because we want to allow that an object's property may be

a complex object (that may contain complex attributes again and so on...). To achieve this goal a

“Local/Global similarity measure” framework has been developed which is presented in Chapter 2.

Having a similarity measure and a somehow (e.g. by a domain expert) defined gold standard, a

method is needed to evaluate how good this similarity measure might be. This is needed to

determine the feedback, which the learning algorithm should get. How a similarity measure can be

evaluated is described in Chapter 3.

In Chapter 4 the genetic algorithm (GA) will be introduced. The general aspects of the algorithm

will be presented, always with a focus to learn similarity measures using a GA. Especially a detailed

description how a similarity measures deviation (which should be small) can be transformed into a

fitness value (which should be large) will be presented. Chapter 5 shows an evaluation of learning

similarity measures using a genetic algorithm.

Afterwards Chapter 6 introduces the method of genetic programming. In Chapter 7 an evaluation

of the results, using genetic programming and a genetic algorithm to learn similarity measures, is

presented.

Finally a conclusion part and a chapter where some aspects of implementation are presented

conclude this diploma thesis.

2

2. The Local/Global Similarity Measure Framework

2. The Local/Global Similarity
Measure Framework

In this chapter an introduction into similarity measures in general and the Local-Global framework

is presented. The Local-Global framework can be used to define such similarity measures and will

be needed to learn similarity measures later on. The goal of having such a framework is that one

has standardized interfaces to evaluate and configure similarity measures. This will be important

when learned parameter settings have to be transformed into a working similarity measure.

2.1. Similarity Measures
A similarity measure is a function that calculates a similarity value between two objects x and y.

SimValue=Sim x , y 

The calculated value usually has a range from 0 to 1, whereby the meaning of 0 is defined as no

similarity at all between the two objects, and the meaning 1 is defined as maximum similarity

between the two objects or equality.

2.1.1. General Properties of Similarity Measures
For all possible concrete similarity measures one could think about some general properties which

they could fulfil or not. These properties could be used to classify similarity measures and help to

find a measure that fits for a given domain.

Reflexivity

This property is fulfilled when the calculation of the similarity between two equal objects always

returns 1.

∀ x : Simx , x=1

Strong reflexivity is given when two objects have a similarity value of 1, if and only if these two

objects are identical.

∀ x , y : Simx , y =1 x= y

3

2. The Local/Global Similarity Measure Framework

Usually similarity measures for primitive types, such as numbers or strings, fulfil the strong

reflexivity, while similarity measures for complex types including weights may break the strong

reflexivity because e.g. one weight could be 0. Furthermore reflexivity is demanded for a similarity

measure in most domains.

Symmetry

This property describes whether the calculated similarity value depends on the order of the two

arguments given to the similarity function. A measure is symmetric if it does not.

∀ x , y : Simx , y =Sim  y , x 

Symmetry or asymmetry of similarity measures can be demanded. The following example shows a

case where asymmetry is demanded. Imagine looking for a storage device with a capacity of 20 GB.

A device with a capacity of 40 GB will fulfil your needs. On the other hand if you are looking for a

40 GB device, one which only 20 GB will not be acceptable.

Monotony

Assuming that for all possible values that one wants to compare with a similarity measure an

ordering relation (<) is defined (e.g. all possible values are numbers). In this case the similarity

measure can be monotonic or not. It will be monotonic if (and only if) the similarity between two

objects is smaller than all similarities between any of the two and a third object in between them

(based on the ordering relation).

∀ x , y , z :x yz∨ z y x Simx , zSim x , y

Knowing about this property can help a lot in practice to configure or to learn a similarity measure

because it decreases the search space by one dimension.

Triangle inequality

Usually the triangle inequality is defined for a distance measure to be a metric. Having three objects

and a particular distance between each pair of them, in this case the triangle inequality defines that

none of the three distances may be larger than the sum of the two others.

∀ x , y , z :dist  x , z ≤dist x , ydist  y , z 

Formulated for similarity measures the triangle inequality would look like this :

∀ x , y , z :Sim x , z 1≥Simx , y Sim y , z 

4

2. The Local/Global Similarity Measure Framework

This means that going over a “third edge”, instead of calculating the similarity value directly

between two objects and adding 1 (the maximum similarity value), may not lead to a larger value.

For a reflexive similarity measure the triangle inequality could also be formulated as follows :

∀ x , y , z :Sim x , z Sim z , z≥Sim x , ySim y , z 

2.1.2. The Local-Global Principle
If one wants to compare complex objects instead of just strings or numbers this is done mostly

using the Local-Global Principle. Assume we have objects with the attributes a1, a2, a3, ... , an.

Defining one single function that uses the attribute values of two objects to calculate a similarity

value would be quite complex and not very flexible. So usually one would define a similarity

measure for each of the attributes, the local similarity measures [Stahl 2004]. To calculate a

similarity between two objects, first the similarities between the attributes have to be calculated. To

calculate then the overall similarity, one can just take the average of all attribute results,

Sim=1
n∑i=1

n

localSimi

or a weighted average.

Sim=∑
i=1

n

i⋅localSimi

While n is the number of attributes, localSimi is the local similarity value of the i-th attributes and

ωi is the weight for the i-th attribute. Note that ∑i=1
n i must be 1 to ensure that the value of Sim

stays in the range between 0 and 1.

Limitations of the weighted average method

Generally speaking the average or weighted average is the amalgamation function of a (global)

similarity measure. But of course these two methods of calculating the global similarity are not the

only ones possible, and also with the weighted average method some phenomena are thinkable

which could not be represented properly. Thinking of objects representing rectangles, they would

each have two numeric attributes length and width. One could define that for his needs, a similar

length is more important than a similar width, by setting the weight for the length attribute higher

than the one for the width. But if one would want to achieve that two rectangles which are both

squares should get a higher similarity he wont be able to do that just by setting useful parameters

for the two attributes length and width. Say we have three rectangles with length/width: 4/4, 4/8,

5

2. The Local/Global Similarity Measure Framework

and 8/8. However the setting of the weights is chosen, the rectangle 4/8 will always be at least as

similar to the square 4/4 as to the other square 8/8. One possibility to overcome this limitation is to

add a third (calculated) attribute ratio, which describes the shape of the rectangle. Another

possibility is to create more complex amalgamation functions which would deal with such

phenomena.

The first possibility has its drawback that redundant data has to be created before to be able to

calculate a proper similarity measure and one must know that he wants to use the aspect of the

length/with ration in his measure. This makes this method not applicable for using machine learning

techniques to improve the similarity measures.

The second possibility will be treated in the section about genetic programming, where I will use

methods of genetic programming to find good amalgamation functions. The idea is, that contrary to

using a genetic algorithm to learn weights or any other predefined parameters, a genetic program

can also evolve an own (not predefined) structure for the amalgamation function.

2.1.4. Recursive Similarity Measures
Another limitation of the (traditional) Local-Global principle is that the attributes of an object must

have a primitive type to fit the local similarity measure. This is often not the case with more

complex data. For comparison of personal data, each person may have an attribute name, surname,

date_of_birth and education. Name and surname would be of type string and be non problem for a

local similarity measure dealing with strings, but the two other attributes would be complex objects

(such as “person” itself). Say date_of_birth consists of the tree attributes year, month and day, while

education has as (sub-)attributes education_type and year_of_graduation. One way to deal with

6

Figure 1: A possible data structure

Person
complex

education
complex

year
number

date_of_birth
complex

education_type
symbol

year_of_graduation
number

month
number

surname
string

name
string

day
number

2. The Local/Global Similarity Measure Framework

such data is being able to handle a global similarity measure as a local one, so that the local

measures for date_of_birth and education (in our example) would be in fact global measures with

their own local measures for their attributes.

2.2. Types of Local Similarity Measures
Basically the type of a local similarity measure strongly depends on the data type of the values

which have to be compared. Basically four different data types can be separated. These are

numbers, strings, symbols and composites of these 3 types (i.e. objects). So there are four types of

similarity measures, one for each data type.

2.2.1. Numeric Similarity Measures
Numeric similarity measures can calculate the similarity of two numeric values. Generally they

calculate a distance (in the easiest case the difference) and in a second step transform this distance

to a similarity value between 0 and 1.

Sim=dist2simdist x , y 

Where dist is the function calculating the distance between the two values and dist2sim is the

transformation function. Possibilities for the distance function are taking just the difference or

taking the difference of the logarithms of the original values. As transformation function a linear

interpolation between two (or more) defined values is possible. Figure 2 shows a transformation

with 4 predefined values. Usually the value for dist=0 is set to 1, and the value for a maximum

distance is set to 0. For all distance values bigger than this, the similarity will be set to 0. With

distance functions that also return negative values, also asymmetric numeric similarity measures

can be configured.

2.2.2. String Similarity
Measures

String similarity measures can

calculate the similarity between

two strings. Analogue to the

number measures they consist of

an internal measure which

generates a “raw-similarity”

7

Figure 2: A possible transformation function with 4 predefined points

dist

Sim

1

distmax

2. The Local/Global Similarity Measure Framework

between the two strings, and in a second step this value is transformed to the definitive similarity

value with a range 0 to 1.

Sim=rawSim2Sim internalMeasure  x , y

For the internal measure mostly Levensthein is taken, but others are possible of course. For the

transformation a linear interpolation between 2 (ore more) defined points can be done (like for the

numerical measures). The difference is, that usually the value for rawSim = 0 is 0 and the value for

rawSim = 1 is 1.

2.2.3. Symbol Similarity Measures
Symbol similarity measures can be used, when an attribute has a finite number of values that it can

adopt. For example the attribute education_type in our persons example could be limited to the

values {school, college, university, technical university}. In this case a symbol similarity measure

can be used, which returns a similarity value for each combination of values. Internally symbol

similarity measures perform no calculation at all (unlike the string- and number similarity) but just

lookup a value in a similarity table (see page 10, 2.3.2.3. Similarity Tables). But note, that this

similarity table must be defined manually (e.g. by a domain expert) or, in case of learning similarity

measures, will be part of the configuration that will be learned.

2.2.4. Object Similarity Measures
These measures are always used for complex data types (objects). They consist of one local

similarity measure for each attribute of the object (in fact for each attribute that should be taken into

account for the similarity calculation), matching to the type of the attribute. If an attribute is again a

complex data structure, its similarity measure would be an object similarity measure again.

Furthermore, it contains an amalgamation function which calculates one global similarity value

from all values calculated by the “attribute”-measures. For example an object similarity measure

can compare the date_of_birth of two persons from our example. To do so, it consists of three

number similarity measures, one for each attribute which the complex attribute date_of_birth has.

2.3. Configuration of Local Similarity Measures
As seen in the previous chapter, every type of similarity measure has its own needs to be configured

for a concrete application. So we can say there are (types of) measures on one hand and

configurations on the other hand. A type of a measure and a configuration together will result in a

concrete similarity measure, ready for being used in an application. Looking forward, the topic of

8

2. The Local/Global Similarity Measure Framework

this theses is learning similarity measures, the configurations also act as link between the learning

algorithm and the similarity measures. So actually learned will be configurations (for the types of

similarity measures).

2.3.1. Which Configurations for which types of Similarity Measures
As we have seen, there are basically four different types of similarity measures and they have all

(more or less) different needs of configuration data. Let's see which configuration data can be used

for which types of similarity measures.

Note that Distance-to-Similarity

Mapping and Similarity-to-Similarity

Mapping is quite analogue. The only

difference is in the meaning of the

input data. While Distance-to-

Similarity usually maps a distance of

0 to a similarity of 1 and larger distances will result in lower similarity values, Similarity-to-

Similarity maps 0 to 0 and 1 to 1, larger values than 1 will not exist since the input is already a

(raw-)similarity. Therefore, a Similarity-to-Similarity mapping is just a special case of a Distance-

to-Similarity mapping.

2.3.2. Configurations
In this section we will take a look at these configurations in detail.

2.3.2.1. Distance-to-
Similarity Mapping
A Distance-to-Similarity

Mapping consists of an

array of similarity values

sim1, sim2, sim3, ..., simn

and an lower- and upper

boundary distmin and

distmax. All input distances

lower (or equal) than

distmin will be transformed

9

Table 1: Types of measures and configurations

Type of measure Possible Configuration
Numeric Distance-to-Similarity Mapping
String Similarity-to-Similarity Mapping
Symbol Similarity Table or Similarity Tree
Object Object Similarity Configuration

Figure 3: A general Distance to Similarity mapping, in this mapping negative and
positive distances will not be transformed in the same way, a similarity measure
would not be symmetric

Sim

distx distmax

sim2

distmin distmin+x

2. The Local/Global Similarity Measure Framework

to the similarity value sim1. Values bigger (or equal) than distmax will get the similarity value simn. In

Figure 3 (and usually also in practice) sim1 and simn is 0. n is chosen to be 7. The width x of one

linear section can be calculated as :

 x=
dist max−dist min

n−1

The other similarity values of the array will be distributed equally on the remaining interval

between distmin and distmax. Distances within this interval will be calculated as follows: First, the two

nearest (upper and lover) similarity values from the array will be identified and second, a linear (or

quadratic...) interpolation between these two similarity values is done to find the value for the given

distance.

Note, that using a distance function, which returns also negative values (e.g. a simple difference),

this mapping will allow to define asymmetric measures. Also reflexivity is not guaranteed as

inherent property of this configuration. There are methods to ensure symmetry, reflexivity and

monotony.

Ensuring symmetry can be done by mirroring the similarity values at the dist=0 axis.

Ensuring reflexivity can be done by setting the similarity value for dist=0 to 1.

Monotony can be achieved by letting the similarity values continuously increase or decrease over

the whole range.

2.3.2.2. Similarity-to-Similarity Mapping
As shortly mentioned in the general section, a Similarity-to-Similarity mapping is just a special case

of a Distance-to-Similarity mapping. The Similarity-to-Similarity mapping is one, that is ensured to

be reflexive (meaning in this case, that the similarity value must be 1 for a “raw-similarity” of 1).

Furthermore it is monotonically ascending with an increasing raw-similarity value, and it is ensured

that a raw-similarity of 0 will result in a similarity of 0.

2.3.2.3. Similarity Tables
Similarity tables are useful to define similarity values between symbolic attribute values. In the per­

sonal data example the attribute education_type can have 4 different values which could be looked

at as discrete symbols. So a similarity table for the (symbol-)similarity measure for this attribute is

shown in Table 2. A measure using this table would be reflexive because all values in the main di­

agonal are 1. A measure would not be symmetric because the value in the field School / University

is not the same as University / School. A general similarity table for an attribute that's value range

10

2. The Local/Global Similarity Measure Framework

consists

out of n

different

values

(symbols)

will have the size of n2. If reflexivity is desired, the number of free values decreases to n(n+1) and

in case of symmetry to n⋅n1
2 . If a measure should get symmetric and reflexive (in fact the most

common case) the number of free values is n⋅n−1
2 . However one drawback for machine-learning

of similarity tables is that the search space (in every variant) increases with O(n2).

2.3.2.4. Similarity Trees
Sometimes the set of symbols, which an attribute can have as its value, can be embedded in a

meaningful taxonomy [Gabel 2005]. Thinking of a symbolic attribute vehicle_type in a database of

(motor-)vehicles, the value range could be {Limousine, Station-wagon, Cabriolet, Coupé, Van, Open-

truck, Closed-truck}. One could arrange these Symbols in a taxonomy shown in Figure 4.

For each node of the tree a similarity value can be defined. So the similarity-value between to types

of vehicles can be looked up by finding the Nearest-Common-Parent (NCP) node of the two nodes,

which represent the vehicles to be compared. The idea is, that all cars among each other have at

least the similarity of car. But if two cars are also both 4-doors cars, they will get the similarity of

all 4-door cars, which is usually higher because of the greater specialisation. This strategy, to look

11

Table 2: An example of a similarity table, the concrete values might be set by a domain expert or learned
by a learning algorithm

School College University tech. University
School 1 0.6 0.2 0.2
College 0.6 1 0.5 0.5

University 0.3 0.5 1 0.9
tech. University 0.2 0.5 0.9 1

Figure 4: Similarity Tree for the attribute vehicle_type

1
Cabriolet

1
Coupé

1
Stationwagon

1
Limousine

0.7
4-doors Car

1
Closed truck

1
Open truck

1
Van

0.4
Car

0.8
2-doors Car

0.5
Truck

0.25
Vehicle

2. The Local/Global Similarity Measure Framework

up similarity values between symbols, decreases the amount of parameters to be set to the number

of nodes in the tree (unlike the O(n2) for the similarity tables). Note that an inherent property of the

similarity tree is that it will lead to a symmetric similarity measure, because the NCP will be the

same for two nodes, independent from the a order of the attributes.

∀ x , y : NCP  x , y=NCP x , y 

 If a reflexive measure is desired, the number of parameters shrinks about the number of leaf nodes

because their values can be set to 1 in this case. Looking at the example with the vehicle_type

attribute, Table 3 shows the

numbers of parameters that

have to be set.

2.3.2.5. Configuration for Measures for Complex Types
As seen in chapter 2.2.4 an object similarity measure basically consists of a number of (sub-)

similarity measures and an amalgamation function. So to configure a concrete object similarity

measure, concrete parameters for the amalgamation function and a configuration for each similarity

measure, which it contains, is needed. I'll call this an object similarity configuration. If the

amalgamation function in the object similarity measure is defined to be a weighted average, its

parameter would be an array of the weights. To configure the similarity measures for the object's

attributes, an array of configurations can be used (mappings, similarity trees, similarity tables or for

a complex attribute another object similarity configuration).

12

Table 3: Number of parameters to be set using a symmetric similarity table or a
similarity tree

Similarity table Similarity Tree
irreflexive 28 12
reflexive 21 5

3. Evaluating Similarity Measures

3. Evaluating Similarity Measures

Unlike formally well defined algorithms, as for example an equality operator, a similarity measure

will never be correct or wrong. It will further be more or less meaningful (or useful) in some cases.

In this section we will see how one could evaluate whether a concrete similarity measure is useful

or not. Unlike in the last section, the similarity measure itself and the (complex-) objects which it

compares, can be considered as black boxes.

3.1. Soundness of Similarity Measures
Not only that the results of a similarity measure are generally not mathematically defined and

therefore can only be more or less useful, the soundness of a similarity measure can also depend

strongly on the users needs. For example, if we have a database of cars (telling us about licence

number, colour, shape, manufacturer, engine, year of manufacture, number of seats etc.) and for this

a similarity measure which is able to compare two cars, the soundness of one single similarity

measure now varies from use case to use case. If the police tries to find a car similar to a witness'

description especially the two attributes colour and shape will be important (and maybe licence

number in case the witness was able to read parts of it). On the other hand a mechanic looking for a

special replacement part, colour, shape and licence number are (usually) unimportant at all, but

important would be the manufacturer and maybe the engine. So we can conclude, that a globally

useful similarity measure usually does not exist. A similarity measure's soundness will strongly

depend on the users needs (and maybe even subjective preferences).

3.2. The “Gold-Standard”
One way to estimate the soundness of a similarity measure is to check it against a so called gold

standard. This is a set of comparisons with a desired similarity value, defined by the user or a

domain expert. In our car-database example this could be a subset of all cars where for each

possible pair a desired similarity value is defined.

13

3. Evaluating Similarity Measures

3.2.1. Gold Standard using one data set
In our car database we have just one set of objects and we usually want to compare the members of

this set among themselves. So if we have the set of cars ℂ and the set of car pairs P=ℂ×ℂ ,

for a subset Q⊂P a desired (or say defined) similarity value is given. If the similarity measure

for all (or the most) of these pairs returns the same value as defined in the gold standard, when

comparing the two cars of the pair, it will be a useful similarity measure (or at least as useful as the

values in the gold standard are). Another way to define Q (the set of pairs of which we know the

correct similarity values) is to define a subset G⊂ℂ and Q=G×G . This could also be

considered as a quadratic matrix or a similarity table.

3.2.2. Gold Standard using two data sets
In another case one might have two databases of car models from two different manufacturers A

and B and wants to find the most similar model from manufacturer B to a given model from A (e.g.

to buy afterwards the cheaper one). In this case the gold standard should be defined for the pairs

P=A×B while A and B will be subsets of all models in the database from manufacturer A or B,

respectively. In this case the matrix usually won't be quadratic. Also it will not be possible to

consider the gold standard as a similarity table to check whether it is reflexive. The last section

(only one data set) can be seen as a special case of using two sets, namely the one where the two

sets are identical.

Another example for this case could be if one wants to find semantically equivalent (but

syntactically different) attributes / classes in two different ontologies.

3.2.3. Using a “Target function”
A way to create gold standard data is to use a so-called target function. This will be a function (e.g.

a concrete similarity measure) that may be defined by a domain expert. Using this function, one

could easily generate the gold standard just by calculating the similarity value for each pair that

shall become member of the gold standard.

One might think it's senseless to use a target function to create a gold standard to evaluate a

similarity measure, because the target function itself would of course be the best fitting similarity

measure to this gold standard. So why all that work if also just the target function could be used as

the needed similarity measure? There are two cases where this nevertheless makes sense:

14

3. Evaluating Similarity Measures

1. It could be, that the defined target-function has a bad runtime or a lot of memory usage and

the goal will be to find a similarity measure that leads to the same (similar) results but

having a better runtime (or memory usage).

2. If (and this is the case in this diploma theses) the goal is just to learn a similarity measure

that fits to a somehow created gold standard (and not one that will necessarily be used in

practice). This is the case if one is not primarily interested in a practically very useful

similarity measure, but only wants to test if the chosen learning mechanism has a good

performance (regardless of the fact that the algorithm learns in practice useless or useful

measures).

3.3. Calculating a similarity measure's deviation from
the gold standard

Independent of who has defined the gold standard with which

method, a key point of estimating the quality of a similarity

measure will always be the calculation of its deviation to the

gold standard. This basically consists of two steps: choosing

pairs of objects to compare and choosing a meaningful measure

for calculating the deviation.

Choosing the pairs of objects to compare could be done just by

using all defined pairs in the gold standard. But often this will

lead to a lot of comparisons and so to a long runtime (especially,

if the subsets for which the gold standard is defined grow the

number of comparisons increases quadratically to the size of the

gold standard' s subsets).

Another possibility is to

choose a value n and then

compare each object of

subset A with n objects of

subset B. These n objects of subset B could be chosen

randomly. In the special case that A is identical with B it is also

possible to choose the next n objects to be compared with the

first object. Assuming A contains m objects and ai should be the

15

Figure 5: All possible comparisons

set A set B

a3

a4

...
amax

a1

a2

b3

b4

...
bmax

b1

b2

Figure 6: 2 randomly chosen
comparisons for each member of set A

set A set B

a3

a4

...
amax

a1

a2

b3

b4

...
bmax

b1

b2

Figure 7: Choosing the 3 next objects
as comparison partners.

set A set A

a3

a4

...
amax

a1

a2

a3

a4

...
amax

a1

a2

3. Evaluating Similarity Measures

i-th object in the set, a1 would be compared to a2, a3, a4, ... an+1. This will lead to a kind of ring of

comparisons and so ensure that each object is exactly 2n times part of a comparison.

The details of the measures for the deviation will be described in the next three (sub-) sections.

3.3.1. Average Difference
This deviation measure just takes the difference between the value from the gold standard and the

value from the similarity measure. It will summarize all absolute values from this differences and

divide this sum by the number of comparisons made.

avgDiff =1
n ∑i=1

n

∣goldStd i−simValue i∣

where n is the number of comparisons, goldStdi is the gold standard value and simValuei is the

calculated value for the i-th comparison.

3.3.2. Root-Mean-Square Error
Another possibility is to use the root-mean-square error (rms) as measure for the deviation.

rms= 1
n∑i=1

n

goldStd i−simValue i
2

Thinking of just two comparisons and both having a difference to the gold standard of 0.1, the

average difference and the root-mean-square error both would be 0.1. If the differences would be

0.05 and 0.15 the average difference would still be 0.1 but the rms would grow to 0.1118. This is

because the rms “punishes” single bigger differences stronger than it awards single small ones. Due

to this fact the value of the rms is always higher than the average difference. This phenomena

increases by choosing a bigger exponent in the formula, and shrinks by choosing a smaller one. The

two deviation measures could be unified in one formula by introducing another parameter a for the

exponent.

deviation=a 1
n∑i=1

n

∣goldStd i−simValue i∣
a

Setting a = 1 will lead to the average difference, a = 2 will result in root-mean-square error,

choosing an even bigger a will increase the “punishment” for single large differences.

16

3. Evaluating Similarity Measures

3.3.3. Threshold-Method
The threshold method uses a defined threshold value t. All comparisons where the gold standard

and the calculated value are both over or both below the threshold are treated as correct. All other

comparisons, i.e. if one value is over and one below the threshold are treated as error. All errors will

be counted. The amount of errors divided by the total number of comparisons will be the so-called

threshold error of the tested similarity measure. This deviation measure can be used if the usage of

the similarity measure at the end will be a categorisation task (e.g. finding semantically equivalent

attributes in two ontologies).

3.4. Using Evaluation to learn Similarity Measures
Note that evaluating a similarity measure, as seen in this chapter, has initially nothing to do with

learning a similarity measure. But of course a meaningful evaluation of a single similarity measure

is crucial for doing any machine learning. Moreover these methods will also be used for testing the

learning results (e.g. against a test set) and can also be used for other tasks different from machine

learning. Note also, that the evaluation methods do not yet determine which learning method must

be used. In this diploma theses these evaluation methods will be used to learn similarity measures

with the genetic algorithm and genetic programming.

17

4. The Genetic Algorithm (GA)

4. The Genetic Algorithm (GA)

Generally speaking, the genetic algorithm tries to adapt the Darwinian principle of “survival of the

fittest” as found in nature to an algorithm. The goal is to get an artificial evolution that generates

better and better solutions to a given problem. Unlike the classical engineering approach of

development, much less knowledge (theoretically none at all) about the solution's area of expertise

should bee needed. Like nature which knows nothing at all about physics, chemistry and so on but

nevertheless is able to create very well performing creatures [Dawkins 1986]. As in nature, in

artificial evolution a kind a construction plan is encoded to a chromosome. The genetic algorithm

then has the task to come up with better and better “construction plans” for the solution one is

looking for. The goal is to find a good construction plan and so to find a good solution to a given

problem. Additionally it will be presented how a genetic algorithm can be used to learn good

similarity measures [Stahl and Gabel 2003].

4.1. Terminology
In this section the specific terminology, which is used later on, will be shortly introduced.

– A chromosome or genotype is the “construction plan” for the solution (as in nature).

– A gene is the smallest unit of the chromosome, a gene has a gene value. One or more gene

values usually represent the value of one specific parameter of the solution.

– A phenotype is the solution itself. If the solution is a physical thing the phenotype is this thing,

if the solution is a algorithm (e.g. a similarity measure) the phenotype is this algorithm. The

phenotype is needed to determine (calculate / meter) if it has the desired properties and so has a

high fitness. Determining the fitness only by analysing the genotype / chromosome will not

work.

– A population is a set of genotype or phenotypes. Usually before determining the fitness for

each genotype, its phenotype will be built up. The population is often used for the whole set

of genotypes or phenotypes a GA works with.

– An individual is one genotype or phenotype of the population. The population consists of

individuals.

19

4. The Genetic Algorithm (GA)

– Fitness or fitness value is a number that describes how good a particular phenotype can solve

the problem, or how near the phenotype is to the ideal solution. The phenotype's fitness can be

transformed to its genotype (“its” means the genotype which was used as construction plan for

this phenotype), or generally the individual's fitness.

– The fitness function is the function that determines the fitness of an individual. The fitness

function has as argument a phenotype or a genotype, the first step a fitness function, which

gets a genotype as its argument, has to do, is to build up the phenotype.

– Selection is the process that determines which individuals may take part at the reproduction.

The selection should use the fitness of the single individuals to determine that.

– Reproduction is the process that builds new genotypes / chromosomes out of the genotypes /

chromosomes of the selected individuals (where selected means, that the selection process has

chosen them to reproduce).

– The generation tells how many times already reproduction has happened. Unlike nature, in the

GA usually all individuals reproduce themselves at one time, so all individuals of a population

will be in the same generation.

4.2. Overview of the Genetic Algorithm
If the solution for a problem should be found or improved using a genetic algorithm, it is necessary

that it it can be parametrised. If for example an ideal shape for a fuel pipe is desired it could be first

parametrised in a way that, for each section of the pipe a parameter defines its curvature. Each

parameter will then be analogue to a gene and all parameters together result in a chromosome or

genotype of the solution.

Second there must be a method to come from the genotype (i.e. the parameter values) to the

working solution (in our example the fuel pipe). This is, generally speaking, the phenotype.

Looking at the implementation, the data which the so-called GeneDataInterpreters will get, is the

genotype, and the built up similarity measure is the phenotype (in some special cases the genotype

and the phenotype may be identical but usually this is not the case).

Third a method to calculate or meter the phenotype's fitness is needed. This is the so called fitness

function. The better the fitness value will be, the better will the chances be that this particular

phenotype (or its genotype respectively) will be reproduced.

The genetic algorithm then generally repeats following steps in a loop:

1. Create from each genotype of the population its phenotype

20

4. The Genetic Algorithm (GA)

2. Determine the fitness of all

phenotypes using the fitness

function.

3. Select the genotypes which will

take part in the reproduction

(according to their fitness values)

4. Reproduce the selected

genotypes using crossover and/or

mutation

Note that the term “population” is

important. Using only one genotype will

not work because out of one genotype

no selection can be done. So the genetic

algorithm always works with

populations of genotypes.

4.3. The Algorithm in
Detail

In this section I will give a detailed description of the major components (see Fig. 8) of the GA and

its possible variations. I will not describe the details of the process “Build up phenotype” because

this step is very domain specific and in my opinion not part of the GA. But having a method to

build up the phenotype is a precondition to use a genetic algorithm. Depending on the concrete

implementation, “building up the phenotype” can also be part of the fitness calculation in a way that

the fitness function actually has the task to evaluate a genotype. In the case of learning similarity

measures using the Local/Global framework (introduced in chapter 2), the so called

GeneDataInterpreters will be used to build up the configurations of the similarity measures and than

the configurations build up the concrete (working) similarity measures. For more details how the

phenotype is built up in this case, see in section “A.2. To learn Similarity Measures” on page 77.

21

Figure 8: Flowchart of the genetic algorithm

Create an initial population

Build up phenotypes

Determine fitness

Perform selection

Reproduction

Abort criteron

4. The Genetic Algorithm (GA)

4.3.1. Fitness Calculation
Fitness calculation basically consists out of two steps, first one or more domain specific attributes

of the phenotype will be metered or calculated and in the second step these values will be

transformed to one global fitness value for the phenotype (or its genotype). In the fuel pipe example

a property can be the metered flow rate. For evolving similarity measures the central property will

be the deviation to a gold standard.

4.3.1.1. Calculating the deviation
When the fitness of a similarity measure shall be calculated, calculating its deviation will be the

first step. Several methods to to this exist (e.g. calculating the average difference or the root-mean-

square error). A detailed description of this task can be found in chapter 3.3.

4.3.1.2. Calculating a fitness value from a deviation
One evolving similarity measures, is of course interested in measures which have a small deviation.

To achieve this, it is necessary to transform the “raw” deviation value to a fitness value that

increases if the deviation decreases. To do this a hyperbolic function can be used.

fitness deviation= z
deviationa

−b

Note the three parameters

a, b and z, this common

hyperbola comes up with.

These can be used to adapt

the hyperbola to the

concrete needs one might

have, transforming a

deviation to a fitness.

These might be that a

defined maximal deviation

leads to a fitness value of

0and that a deviation of 0

leads to a defined maximal

fitness value (or infinity if

a is chosen to be 0).

22

Figure 9: Hyperbola to transform deviation to fitness

firnessmean

fitnessmax

deviationmax

deviation

fitness

4. The Genetic Algorithm (GA)

Since similarity values are always in the range from 0 to 1, the maximal deviation thinkable would

be 1 and so one could wish that the fitness of such a measure should become 0 (fitness(1) = 0).

Another method is to calculate the average distance two randomly chosen values in the interval 0 to

1 will have.

avgDist x =x2−x 1
2

This is the average distance two random values will have depending on the value of the first one

chosen. Integrating this function from 0 to 1 will lead to the overall average distance.

avgDist=∫
x=0

1

x2−x1
2
= 1

3

So it is possible to define fitness  1
3  to be 0 because also a random generator will achieve this

deviation value .

So if one defines two points which the hyperbola has to cross, namely, fitness(0) = fitnessmax and

fitness(deviationmax) = 0, it is possible to set up two equations for the parameters (a, b and z) of the

common hyperbola. So a third point of the hyperbola is needed (or from other point of view: can be

chosen) to set up the third equation. Having these three points it is possible to calculate the three

parameter values. I suppose to define a value fitnessmean, that defines the fitness function's value for

the deviation of deviatonmax

2 . Choosing this value to be fitnessmax

2 , the resulting function would be a

straight line. The smaller this value is chosen the bigger the curvature of the hyperbola will get.

The choice of this value will be important for the selection (the next step in the GA), because it

actually defines how much fitter a phenotype with a smaller deviation will get. Choosing a small

value will increase the evolutionary pressure on individuals which have a smaller deviation than
deviatonmax

2 . Following three equations can be set up:

z
a
−b= fitnessmax

z
deviationmaxa

−b=0

z
deviationmax

2
a

−b= fitnessmean

23

4. The Genetic Algorithm (GA)

Solving these would show following results:

a=
fitnessmean⋅deviationmax

fitnessmax−2⋅fitnessmean

b=
fitnessmax⋅fitnessmean

fitnessmax−2⋅fitnessmean

z=a⋅ fitnessmaxb=
fitnessmean⋅deviationmax

fitnessmax−2⋅ fitnessmean
⋅[fitnessmax

fitnessmax⋅fitnessmean

fitnessmax−2⋅fitnessmean]
Once the three parameters fitnessmax, deviationmax and fitnessmean have been defined, the three

parameters for the hyperbola can be calculated and so, the transformation from deviation to fitness

becomes a well defined function which (hopefully) fulfils the users needs.

4.3.2. Selection
The main goal of the selection is to give the fitter individuals (i.e. better similarity measures) a

better chance to reproduce themselves. To achieve this, usually the roulette wheel strategy is used.

A secondary goal of the selection could be to ensure that the fittest (or the fittest 10%) will always

reproduce. And as third goal, with a good selection strategy the diversity of the whole population

can be raised (or better: a good selection strategy can avoid, that the diversity goes down to 0 and

the found individuals stick in a local maxima).

4.3.2.1. Roulette-Wheel
This selection strategy can be interpreted as

a roulette wheel where each individual has

its sector. If the ball falls in a particular

individual's sector, this one will be chosen

for reproduction. The roulette wheel then is

turned as many times as individuals shall be

selected for reproduction. Unlike a roulette

wheel in the casino, the size of each sector

is proportional to the individual's fitness,

that the sector represents. In that way the

fitter individuals will have a bigger chance

to be selected. As variation of this strategy

24

Figure 10: A possible roulette wheel for 10 individuals

i1

i10

i2

i3

i4

i9

i8

i5

i7

i6

4. The Genetic Algorithm (GA)

one could enforce that a particular individual can only be selected once. Using this strategy, it will

for none of the individuals (not even for the fittest) be guaranteed, that it gets selected.

4.3.2.2. Elitism
This selection strategy just defines that the best n or the best n% individuals (the elite) of the whole

population will be selected. Individuals which are not part of the elite will have no chance to get

selected. As benefit this strategy guarantees that the best performing (i.e. the fittest) will never “get

lost”. A big drawback is, that in most cases, using this selection strategy will lead to a fast loss of

diversity in the population. The diversity of the population is important to avoid that the whole

population will become stuck in a local maxima. Another point is that this strategy is far away from

the evolutionary processes in nature, which (as mentioned at the begin of this chapter) are the

intention of the genetic algorithm. So an elitism strategy will hardly be used as single selection

strategy, but could bring benefits when used in combination with other strategies.

4.3.2.3. Equal Chance for all
Like elitism this strategy is quite simple and hardly usable as single selection strategy (even less

than elitism). It just ignores the fitness of the individuals and selects randomly some individuals to

reproduce. Due to this, using only this strategy will result in a totally random evolution not guided

by the fitness function. On the other hand the problem that he population's diversity shrinks will

not occur with this selection strategy.

4.3.2.4. Combination of the Strategies
The different benefits of the different selection strategies can be exploited by using a combined

strategy. Imagine a box having a capacity of c where the selected individuals will be put into. Now

this box could be segmented into three (or more) parts having each a defined capacity c1, c2 and c3

in a way that c1 + c2 + c3 = c. Having this done each selection strategy is allowed to fill up its box.

Note that the population is not segmented, all selection strategies use the same population as pool of

individuals. Think of a population of 100 individuals. For example one might think that he wants to

guarantee the selection for the Top-10 performers. Second he wants to use the “natural” strategy of

the roulette wheel. Third he wants to have 20 places left for randomly chosen individuals. Doing so

can help to overcome the Exploration vs. Exploitation trade-off. The elitism strategy enforces

exploitation (of well performing genetic material) and the “equal chance” strategy pushes the

25

4. The Genetic Algorithm (GA)

exploration of the whole search space, because also individuals “travelling” through a region (of the

search space) where fitness is low, have a chance to survive and reproduce.

4.3.3. Genetic Operators
The task of a genetic operator is to perform the reproduction of the selected individuals. Normally

the amount of selected individuals is smaller that the amount of individuals in the whole population.

In this case the genetic operator has also to ensure that the size of the population increases again up

to the original population size. Otherwise the population would shrink in each cycle of the GA and

so the reproduction would not be sustainable.

Another method to ensure a lasting population size is to allow that some individuals may be

selected several times in the selection phase. So the selection can produce as many selected

individuals as the population size is. This brings the following benefit: the genetic operator has not

to deal with the question which individual can reproduce how many times. The selection strategy is

more appropriate to decide this because it is anyway dealing with the fitness values. So the selection

strategy can not only decide whether an individual may take part of the reproduction or not,

moreover it can also decide which individual may reproduce how many times (fitter ones may have

more children). On the other hand the genetic algorithm must not care about fitness values at all.

The two most common genetic operators are crossover and mutation [Pfeiffer and Scheier 1999].

Basically they adapt two methods of reproduction that also can be observed in nature: sexual

reproduction and asexual reproduction. Both can be implemented in a genetic algorithm. Sexual

reproduction is done by crossover, asexual reproduction by mutation. These two operators will be

explained in the following two sections.

4.3.3.1. Crossover
For this genetic operator

two individuals A and B

are needed and their genes

will be combined. In

crossover this is done by

generating randomly a

crossover point. This will

be just a point in the

chromosomes of the

26

Figure 11: Crossover

Chromosome of
the offspring

Crossover pointGenes

Chromosome B

Chromosome A

4. The Genetic Algorithm (GA)

partners. To create the chromosome of the offspring all genes before the crossover point are taken

from chromosome A and all genes after the crossover point are taken from chromosome B. A

parameter could define whether partner B must also be part of the selection or if for the partner B

any individual from the whole population is allowed. One of the two partners at least must be part

of the selection (otherwise the selection won't make any sense).

4.3.3.2. Mutation
Another method of reproduction is just to mutate one or more genes of a chromosome and letting

the so created chromosome be part of the offspring generation. If a single gene would be a bit, the

mutation of one gene would just be flipping it. There are two ways to select the gene(s) for

mutation. First one or more genes on the chromosome are randomly chosen and then exactly these

genes mutate. Mostly only one point is chosen and so exactly one gene mutates. Another way is to

define a chance of mutation for every gene (e.g. one divided by the length of the chromosome) and

then letting each gene having this chance to mutate. For me this way seems to be more like nature

works because the genes may mutate independently from each other.

If the value of the genes are not just binary but maybe double values with a range from 0 to 1, the

mutation of one gene can be done by increasing or decreasing its value about a certain (small) step.

This step again can be generated randomly and may have a limit. This way, when working with

double-valued-genes, its possible to define a maximum mutation impact.

4.3.3.3. Combination of the genetic operators
The above introduced two operators can also be used both together. They can be combined in a way

that sometimes mutations and some other times crossover is performed. But it is also possible to let

the two operators work independently from each other. To achieve this one could define an overall

chance that crossover happens and a chance that mutation happens. If an individual then is chosen

not to be reproduced by crossover it first will be just copied from the original one. Afterwards it

will maybe perform mutation with the same chance of mutation all individuals have.

4.4. Parameters for the genetic algorithm
In this section a summary about all the options and variations of the GA, seen in this chapter will be

presented. Moreover we will see a list of all possible parameters, their meaning and value ranges.

Also some evaluations will be shown, which have been made to find healthy values for the different

parameters.

27

4. The Genetic Algorithm (GA)

4.4.1. List of parameters
General parameters

populationSize, the population's size, usually in the range of 50 to 1'000).

– generations, defines how many generations will be generated, usually in the range of 100 to

1'000).

Parameters for the fitness function

– testsPerRecord, defines how many comparisons per record are done to estimate the deviation (1

– number of records).

– testPairCreation, defines how the comparison partners are selected (the next n records,

randomly once or randomly new each generation).

– deviationType, type of deviation calculated (average difference, root-mean-square error or

threshold).

– tresholdValue, value of the threshold (if the threshold method is used; range 0 – 1.

– deviationmax, deviations greater or equal than this parameter value will get fitness 0; range 0 – 1.

– fitnessmax, the fitness value an individual with deviation 0 gets (e.g. 100).

– fitnessmean, the fitness value an individual gets that has the half deviation of the defined

maximum deviation (e.g. 1, must be smaller than the half of the maximum fitness).

Parameters for the Selection

– eliteSize, size of the elite in percent of population (members of the elite will have a guarantee to

be selected), 0% – 100%.

– grr, guaranteed reproduction rate for the elite (member of the elite will be a least as many times

selected, 1 or more (if the elite e.g. is defined as the top 10%, the guaranteed reproduction rate

can be 10 as maximum, then the whole “box of selection” is full).

– jokers, how many individuals will be selected just randomly (Equal chance for all) in percent of

the population size.

Looking at the model with the boxes of selected individuals (introduced in the section 4.3.2.4.

Combination of the Strategies) the box for elitism will have the capacity of eilteSize⋅grr

percent, the box for “Equal chance for all” will have the capacity of jokers percent. The remaining

capacity will be used for roulette wheel selection. Note that eliteSize⋅grr jokers must be

smaller (or equal) than 100%.

28

4. The Genetic Algorithm (GA)

Parameters for the reproduction

– crossoverRate, the chance of each individual to get reproduced by a crossover operation with

another randomly chosen individual.

– mutationRate, the chance that a (somehow) reproduced individual to mutate.

– maxMutationImpact, the maximum impact a mutation can have (assuming the genes represent

double values).

4.4.2. Parameter values
In the last section of this chapter we will see the

concrete values, I used for the parameters. The

value for deviatonType depends on the

evolution's goal. If the goal is to find a

similarity measure with a small deviation,

“root-mean-square error” or “average

difference” is used. If the goal is to use the

found similarity measure for a categorisation

task (e.g. alignment finding) the threshold

method is used. Depending on the deviation

type, deviationmax can be defined. It will be 1
3

if the first case (as seen before), and calculated

in the case of a categorisation task. (In this case

the deviationmax will be set to the threshold

error, which a measure would achieve by

always returning 0). Second an present an experiment will be presented, that has been done to find

good parameter values. The experiment, that will be shown, has been done to find good values for

maxMutationImpact. This parameter is chosen because it is not part of the “standard” GA parameter

set.

Figure 12 shows the achieved deviation depending on the maximum mutation impact. One can see

that the maximum mutation impact should not be set too small. It shows also nicely that all values

above 0.1 have lead to a quite good performance of the GA. This actually is one of the benefits

working with genetic algorithms: they are quite stable against the settings of the parameters. In

practice of course this makes the work a lot easier. Doing such analysis for other parameters brings

29

Table 4: The parameter values for the GA

Parameter Value
populationSize 50...250
generations 50...500
testsPerRecord 1...50
testPairCreation random
thresholdValue 0.5
deviatonType [domain dep.]

[calculated]
100

1
eliteSize 5.00%
grr 2
jokers 50.00%
crossoverRate 0.5
mutationRate 0.5
maxMutationImpact 0.2

deviatonmax

fitnessmax

fitnessmean

4. The Genetic Algorithm (GA)

very similar

results. Some

extreme values

will decrease

the GA's per­

formance but

there is always

a quite large

range of

healthy values.

Looking at Figure 13 one can see the impact of the parameter generations. On this diagram one can

see that the learning steps at the beginning are big and then the improvements get smaller and

smaller. This is a typical learning rate. And of course (unlike the things mentioned to

maxMutationImpact) this parameter has a significant influence on the GA's performance. The grey

line shows the deviation from the training set, the black line shows the deviation from the so-called

test set. The test set is another gold standard, but hidden to the GA. This is done to verify if the

30

Figure 13: Achieved deviation increasing the number of generations (learning rate)

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Generations

D
ev

ia
to

n
(a

ve
ra

ge
 d

iff
er

en
ce

)

Figure 12: The achieved deviation after 200 generations with a population of 50

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

0.00

0.01

0.02

0.03

0.04

MaxMutatonImpact

A
ch

ie
ve

d
de

vi
at

on
 (r

m
s)

4. The Genetic Algorithm (GA)

learned measure is also meaningful for data which was not taken into account during the learning

phase.

31

5. Learning Performance with the Genetic Algorithm

5. Learning Performance with the
Genetic Algorithm

Putting all together, the Local-Global framework from Chapter 2, the methods to evaluate a

similarity measure (Chapter 3) and the genetic algorithm from chapter 4, one is able to learn

similarity measures using a given gold standard. In this chapter I will present some evaluations of

the learning performance and the achieved deviations. In the first part I will show some experiments

using a database of (shop-)products. In this part also the principle of training- and test set and the

cross validation will be introduced.

In the second part of this chapter some experiments, that have been done with ontologies, will be

presented. The task was to find a correct alignment from properties of one ontology to the

properties of another ontology.

5.1. Using a Product Database
The article data set consists out

of 2850 objects (i.e. the

products). Each product firstly

has 6 properties (actually they

have more but in these

experiments only 6 are used).

Figure 14 shows the structure of

a product-object. Firstly it is flat,

later on a tree-like structure will be used to evaluate the recursive similarity measures (see section

2.1.4. Recursive Similarity Measures). The symbolic attribute “type” defines what kind of product

(food, fertilizer etc.) it is. The attribute “group” defines for which kind of animal a product is (the

product set is from a pet shop). The two numeric attributes “min” and “max” define the minimum

and maximum stock of inventory of the product.

33

Figure 14: The product's attributes

number
min

string
name

number
price

number
max

symbol
type

symbol
group

complex
product

5. Learning Performance with the Genetic Algorithm

5.1.1. Validation using a Test-set
Assume having a gold standard, that tells the desired similarities among e.g. 100 products, one

problem that can occur when learning with a genetic algorithm, is that a similarity measure could be

learned that is very specialised to this gold standard but will not perform well for the rest of the

products. This is the so

called over-fitting

problem. To minimize

this problem, the gold

standard can be defined

for more products, but

this may be a hard work,

and a simply larger gold

standard would increase

the runtime. So it is

necessary to estimate

how big (or hopefully how small) the over-fitting effect is. Therefore, the learned similarity

measure is checked against another gold standard, the so-called test set. This set was not used for

the learning algorithm itself, and so a good performance on the test set would hardly be a result of

over-fitting. Analysing the training- and test set performance also helps to initially find a healthy

number of generations. Figure 16 shows the root-means-square error of a similarity measure against

the training- and test

set. While after 200

generations the training

set error still decreases,

the test set error

increases again. So after

this point unhealthy

specialisation starts.

This experiment has

been done with a

relatively small

population of only 25 individuals. Figure 17 shows the same experiment, using a larger population

34

Figure 17: Training- and Test set performance

0 100 200 300 400 500
0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.10

Population: 50

RMS Training
RMS Test

Generationen

R
oo

tM
ea

nS
qu

ar
e

Er
ro

r

Figure 16: Training- and Test set performance

0 100 200 300 400
0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.10

Population: 25

RMS Training
RMS Test

Generations

R
oo

tM
ea

nS
qu

ar
e

E
rr

or

5. Learning Performance with the Genetic Algorithm

of 50 individuals. One can see that the effect is a bit weaker and seems to start later. For these

experiments a quite small training set has been used (and so a small gold standard has been used to

learn). In the following experiments, where a cross-validation is done, a larger training set will be

used to even more decrease the specialisation effects.

5.1.2. Cross-Validation
Another method to check the soundness of the learning method and the learned similarity measures

is to perform a so-called cross validation. This method uses the test set evaluation in a special way

and generally has two different variants, leave-one-out and k-fold cross validation.

5.1.2.1. Leave-One-out Cross Validation
The leave-one-out method works as follows: The training set contains all objects except for one

single object. This object (the “left-out” one) then is the test set. Afterwards every object of the

whole set will be once this special object, so the learning-cycle runs as many times as objects are

contained in the whole set. This of course leads (especially for large sets, as our product set) to a

very long runtime of the whole cross validation task. Also in my opinion it does not show that the

learning algorithm is able to come up with good general measures, having a relatively small training

set (since the training set will consist of the whole set except one single object). At last for

similarity measures (comparing two objects) this will not work. Thinkable is a leave-two-out

method, but due to the other drawbacks, all experiments have been done with the k-fold method.

5.1.2.2. k-fold Cross Validation
The idea of the k-fold cross validation is to segment the whole set into k subsets. Then every

segment is once the training set, while all other segments together work as test set. This will lead to

k runs of the learning cycle. Meaningful values for k could be 5 ... 50. Using a very small k (e.g. 2)

would lead to big training sets and therefore not show the ability of the learning algorithm to work

with a relatively small training set. Very large values will increase the runtime because the whole

learning cycle will run k times. In all following experiments I will use this type of cross validation

with a k of 10 (10-fold cross validation). Remembering that our product set contains 2850 products,

the training set would always contain 285 products and the test set's size will be 2565.

5.1.3 Cross Validation Results
All experiments in this section use the parameter settings shown in Table 5. A detailed description

of the meaning of each parameter can be found in the last chapter (“4.4. Parameters for the genetic

35

5. Learning Performance with the Genetic Algorithm

algorithm” on page 27). The first two experi­

ments shall show the benefits of using “vocabu­

lary knowledge”. This is general knowledge

one might have about the similarity measure

that will be learned, for instance that the local

similarity for a particular attribute is symmetric.

This vocabulary knowledge can be used to de­

crease the search space for the genetic al­

gorithm. E.g. for the attribute “price” it can be

defined that the similarity value has to decrease

monotonic if the price-difference increases. For

the symbolic attribute “group” a taxonomy can

be defined so that, instead of a (large) similarity

table, a smaller similarity tree has to be learned.

For “type” it can be defined that the similarity

table has to be symmetric and so on. Doing so,

we can exploit knowledge about the desired similarity measure, one might already have.

Figure 18 shows the results of the 10-fold cross validation without using any vocabulary know­

ledge. The RootMeanSquare Error (rms) on the y-axis of the diagram shows the achieved deviation

to the gold standard, a perfect measure would have a rms of 0. On the x-axis the number of the sec­

tion that was used as training set is shown (since a 10-fold cross validation divides the whole data

set into 10 segments). The two bars show the achieved training set respectively test set error, ac­

cording to the

legend shown

in Figure 18.

The legend

will be valid

for all dia­

grams of res­

ults in this

36

Table 5: The parameter values used for the for the GA in
the next 4 experiments

Parameter Value
populationSize 50
generations 250

2
random

0.5
deviatonType RootMeanSquare Error

0.33
100

1
eliteSize 5%
grr 2
jokers 50%
crossoverRate 0.5

testsPerRecord
testPairCreation
thresholdValue

deviatonmax

fitnessmax

fitnessmean

Figure 18: Cross validation results using no vocabulary knowledge, as deviation the
RootMeanSquare Error, that the best learned measure achieved,is shown.

0 1 2 3 4 5 6 7 8 9 ∅
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

rms Training
rms Test

Number of Trainingset

R
oo

tM
ea

nS
qu

ar
e

E
rr

or

5. Learning Performance with the Genetic Algorithm

section (therefore, the legend is left away in the following diagrams). The diagram shows three

things:

– That the at the training set learned measures have not too much over-fitting tendencies, the test-

and training set errors are for each training set quite the same.

– It shows that with all training sets it is possible to learn a good similarity measure, this depends

not too much on the chosen training set.

– The observed deviation is overall not too good , we will see better similarity measures in the

experiments with the exploitation of vocabulary knowledge.

For a 10-fold cross validation a 1.6 GHz AMD computer comes up with a runtime of about ¾

hours.

In a next experiment, all the previously mentioned vocabulary knowledge is used and so the search

space is smaller. Also the length of the chromosome needed to encode all parameters of the similar­

ity measures is much smaller. Whereby the chromosome contained 63 genes in the last case, it con­

tains only 33 genes

when the vocabulary

knowledge is ex­

ploited. Figure 19

shows the benefits of

exploiting this

knowledge. The

learned measure per­

form dramatically

better after the same

learning time. Note

that this is actually

an optimization task. Without exploiting the vocabulary knowledge, it is also possible to learn as

good measures, but it takes much more runtime.

Tree-like data Structure

In this experiment the performance learning recursive similarity measures should be evaluated. To

do so, the data structure of the products to be compared has been changed to get 2 complex

attributes. Actually the two symbolic attributes “type” and “group” have been arranged under the

37

Figure 19: Results of a 10-fold cross validation using vocabulary knowledge

0 1 2 3 4 5 6 7 8 9 ∅
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

Number of Trainingset

R
oo

tM
ea

nS
qu

ar
e

E
rr

or

5. Learning Performance with the Genetic Algorithm

newly created complex attribute

“classification” and the two numeric

attributes “min” and “max” are merged

under the newly created stock-attribute.

Looking at the results of the 10-fold cross

validation again, it shows, that it works

with a very similar performance as the

experiment using the flat data structure.

Note, that the scale in Figure 21 has

changed, compared to the

first two experiments, to

make the differences

between the different runs

better visible. Looking at

the average performance

over all runs, it is slightly

worse than the experiment

with the flat data structure.

For the test set this value

was 0.0144 for the flat, and

0.0148 for the recursive

case.

Using slightly different data structures

This experiment shall show whether its also possible to learn measures that compare two objects

which have not exactly the same structure. To create such a data set, randomly some attributes in

the objects are removed, in this case every attribute of every object in the data set has a chance of

10% to be removed. To calculate the similarity between two objects then following rule is used:

– If an attribute a exists in both objects use the local similarity measure to calculate this (local)

similarity value.

– If in one object the attribute is missing set this (local) similarity value to 0.

– If both are missing set the weight for this attribute to 0.

38

Figure 20: The tree structured product data

product
complex

group
symbol

type
symbol

max
number

price
number

name
string

min
number

stock
complex

classification
complex

Figure 21: Results comparing tree structured data

0 1 2 3 4 5 6 7 8 9 ∅
0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0.018

0.020

Number of Trainingset

R
oo

tM
ea

nS
qu

ar
e

E
rr

or

5. Learning Performance with the Genetic Algorithm

Again a 10-fold cross

validation has been done to

evaluate if the GA is able to

learn good similarity

measures that could deal

with small differences

between the compared

objects. Figure 22 shows

the results which again are

very similar to the results

from the second experiment

(Figure 19), which is used as reference experiment. In numbers the average root-mean-square error

is 0.0131 (while in the reference experiment it was 0.0144). The fact, that in average the root-mean-

square error was even a bit smaller is not significant. But significant is, that the results are in the

same value range (between 0.01 and 0.02) in opposite to the first experiment where the results are

approximately about a factor 6 worse.

Summary

In this section we compared the cross validation results, and in the most right bars of the diagrams

always the average performance of all training- and test set evaluations, that have been done for the

particular cross validation, is shown. But if a cross validation is done, it is of course also possible to

take the overall best measure (according to the smallest test set error). Figure 23 shows from each

39

Figure 23: Summary of the cross validation results (best test set performers)

No Vocabulary
knowledge

Flat Datastruc-
ture

Recursive
Datastructure

Missing Values
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

rms Training
rms Test

R
oo

tM
ea

nS
qu

ar
e

E
rro

r

Figure 22: Results comparing objects with small structural differences

0 1 2 3 4 5 6 7 8 9 ∅
0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0.018

0.020

Number of Trainingset

R
oo

tM
ea

nS
qu

ar
e

E
rr

or

5. Learning Performance with the Genetic Algorithm

experiment the best result that has been generated. So we can see that the framework performs well

in all three cases where vocabulary knowledge is exploited. It would also work without vocabulary

knowledge but one would have to wait very long for usable results (due to the much larger search

space, the GA needs bigger populations and more generations to come up with good results).

5.2. Ontology Alignment
In this second group of experiments the goal is to find a alignment between different ontologies.

An alignment is needed, to know whether in two different ontologies there are classes or properties

defined which actually represent the same concept. Moreover it will show which of them represent

the same concept. The problem is, that in different ontologies the same concepts could be named

differently (e.g. if the ontologies are written in different languages) and located in a different

position in the taxonomy.

5.2.1. Task Description
In these experiments the goal is to find the properties, that represent the same “real world” property

of an object in two different ontologies. Having such an alignment, the concrete instances of the two

ontologies can be merged together. The idea is to do that using a similarity measure that compares

properties from the two ontologies. If the calculated similarity value is greater then a defined

threshold it is assumed that they are semantically identical. To do so, a reference alignment is

needed, that consists of property pairs which match. This reference alignment than will be used to

set up a gold standard and so to learn these similarity measures.

5.2.2. Converting the Ontology into a Set of assimilable Instances
The first step to do this, is to load the ontology and extract all properties that are defined in it. Then

a suitable data structure, that represents the properties, has to be found and the properties' (meta-)

data has to be filled into it. This could be, in the most simple case, just the name of the property. In

a slightly more complex case, the class names of the domain and the range of the property could be

used also, which then leads to a flat data structure suitable for a local-global similarity measure. In a

next step the class hierarchy of the ontology could be generated. Having this information for the

range and domain classes of each property, information about the class' position in the class

hierarchy can also be added to the data structure. This can lead to the data structure shown in

Figure 24, and so a recursive similarity measure can be used to compare in this way structured

property (meta-)data. For the experiments the ontologies from the “EON Ontology Alignment

40

5. Learning Performance with the Genetic Algorithm

Contest” [Euzenat et

al. 2004] are used.

5.2.3. Converting the rdf-Reference into a Gold Standard
To create a gold standard, the reference alignment is needed. These reference alignments are also

available at the web page of the “EON Ontology Alignment Contest” [eon 2004]. This is a rdf-file

but it actually contains a plain XML-data structure. Reading this would lead to a set of property

pairs which match. A gold standard can be set up by initialising a matrix and then set the value of

each cell to 1 if the corresponding property pair is part of the reference alignment. All other values

are set to 0.

5.2.4. Set-up of the Experiments
The reference alignments are always defined between the “original” ontology (number 101) and

another one. So in the following experiments it will always be tried to find the alignment between

the original and another ontology. Following experiments have been done: First an experiment that

tests the concept of training- and test set for this group of experiments. This is done for the ontology

that contains different naming conventions for the properties and classes (number 204). Because

the amount of data is rather small, there are 44 different properties defined. This is done using a 2-

fold cross validation. This experiment uses the ontology number 204 (naming conventions).

Afterwards experiments using different data structures for the properties are done. Each of these

experiments is done for the ontology with different naming conventions, for one using synonyms

(number 205) and one with names in another language (number 206).

41

Figure 24: A possible data structure for ontology properties

string
name

number
subclasses

number
direct subclasses

complex
domain

number
subclasses

string
name

number
range

number
direct subclasses

complex
property

number
superclasses

string
name

number
superclasses

5. Learning Performance with the Genetic Algorithm

5.2.5. Results
2-fold cross validation

As the cross validation results shown in Figure 25

one can see that also using a training set, that

contains only 22 properties, no specialisation

(over-fitting) can be observed. Actually the five

not found alignments will also be missing using

the whole property set as training set. The reason

for this is that these properties are lower case in

one and upper case in the other ontology. This

leads to a maximum Levensthein distance, but it

would be no problem to just use a case insensitive

version of the Levensthein algorithm, or better

letting the measure learn whether it should work

case sensitive or not. As performance measure for the figures, all correct found alignments minus

all wrongly found alignments is taken, so that in this case the maximum would be 22.

Using only property names

Using only the property names will

lead to a quite good performance at the

case where the alignment for the

ontology number 204 (naming

conventions) is created, but rather poor

results for the other two cases. Note

that in all these experiments no 2-fold

cross validation is done but all 44

properties are part of the training set.

So the maximum which the

performance measure can reach is 44. However in the case of the ontology with the foreign names it

performs slightly better than the one with the synonyms.

42

Figure 25: 2-fold cross validation for ontology
alignment, Performance is defined as correctly
identified alignment minus wrongly identified ones.

1 2
0
2
4
6
8

10
12
14
16
18
20
22

Trainingset
Testset

Number of trainingset
P

er
fo

rm
an

ce

Figure 26: Training set performance using property name only

Naming
conventions

Synonyms Foreign
language

0
4
8

12
16
20
24
28
32
36
40
44

Ontology used

P
er

fo
rm

an
ce

5. Learning Performance with the Genetic Algorithm

Using property names and class

names of the property's range and

domain

In this experiment the alignment to the

naming conventions has the same

performance as using the property

names only (actually it is even slightly

worse). The reason for this is that the

names just vary so little that no more

improvements can be done using more

data. The case with the synonyms also

shows no improvement at all but the

alignment to the foreign language gets a bit better.

Using property names, class names and class hierarchy of domain and range

In this case also information about the

class's position in the class hierarchy is

used to find a good alignment between

the ontologies. The idea of doing so is,

that maybe names of the properties and

the class names of their range and

domain can be far from similar, but the

position of the classes (of domain and

range) in the class hierarchy may be

the same or at least very similar. For

this actually 3 numerical values are

calculated and exploited by a numerical (local) similarity measure. These are number of

superclasses, number of subclasses and number of direct subclasses. As Figure 28 shows, this

finally brings a even worse result to the alignment to the synonym's ontology. Also the alignment to

the foreign name's ontology is again as bad as it was using the property names only. The problem

doing so is that the class hierarchy in this case is rather small and flat so that most classes have the

same amount of superclasses and 0 subclasses. Actually the results are so bad because a lot of

43

Figure 28: Training set performance using “position in hierarchy”

Naming
conventions

Synonyms Foreign
language

0
4
8

12
16
20
24
28
32
36
40
44

Ontology used

P
er

fo
rm

an
ce

Figure 27: Training set performance using property name and class
name of domain and range

Naming
conventions

Synonyms Foreign
language

0
4
8

12
16
20
24
28
32
36
40
44

Ontology used

P
er

fo
rm

an
ce

5. Learning Performance with the Genetic Algorithm

wrong alignments have been found. This leads to the fact that the learning algorithm will set the

weights for the similarities of the “position in hierarchy” attributes very low. So again a measure

that overweights the name of the property will come out. Note the similarity between Figure 28 and

Figure 26.

Using the position in hierarchy as string attribute.

Another way to exploit the “position in

hierarchy” data is to encode the three

numerical values into a string. For this

string attribute the another string

similarity measure is learned. The

benefit of doing so is that also one

different value leads to a different

string, unlike in the last case where 2

out of the 3 of the attributes will still

have maximum similarity. In fact this

leads to better alignments as Figure 29

shows.

5.2.6. Discussion, Future work
Looking at these experiment's results, they are, except the easy case with the naming conventions,

quite dispiriting. So we need to think why this is so and how further improvements could be

realized.

Using larger ontologies

In larger ontologies (at best with larger class hierarchies) the chance that two classes which are not

semantically identical, but nevertheless have the same values for superclasses, subclasses and direct

subclasses will be lower. As mentioned in the explanation of the third experiment (the first one

using the class hierarchy), this is a reason that these values don't really help finding the correct

alignment. Therefore I predict better results using just a larger ontology.

44

Figure 29: Training set performance using “position in hierarchy”
encoded as string

Naming
conventions

Synonyms Foreign
language

0
4
8

12
16
20
24
28
32
36
40
44

Ontology used

P
er

fo
rm

an
ce

5. Learning Performance with the Genetic Algorithm

Using even more property (meta-)data

More meta data of the properties can be taken into account, e.g. the cardinality could be exploited

also. But this would have the same problem as the “position in hierarchy”. The value of this

attribute would in most of the cases just be 1. So for a lot of property pairs, which are not part of the

correct alignment, the comparison of this attribute will lead to a maximum similarity.

Using a class alignment

The basic idea of using the class

hierarchy was to identify the classes

that represent each other

semantically, and so reasoning, that

properties where the range and the

domain is the (semantically) same

class have a good chance to

represent each other. Now the same

procedure, as is used finding the

alignment between the properties,

can be used for finding the class

alignment. Having this done, it can

be exploited to find the property

alignment.

Using an alignment learning cycle

As mentioned before, the class

alignment could be learned in a first

step analogue to the the property

alignment. Looking at the (quite

poor) results finding the correct

property alignment, there is little hope that finding the class alignment would perform much better.

But to find the class alignment, the property alignment could of course also be exploited. So this

could be done in a cycle, an initially quite bad class alignment leads to a slightly better property

alignment. Than this again is used to learn a better class alignment and so on and on. Figure 30

45

Figure 30: Suggested learning cycle for an ontology alignment

cl
as

s
al

ig
nm

en
t

property alignment

class alignment

Use the property alignment to
learn a class similarity measure

Use this measure to create
an initial class alignment

Use the class alignment to learn
a property similarity measure

Abort criteron

Use this measure to create
a class alignment

Use this measure to create
a property alignment

Learn an initial class
similarity measure

5. Learning Performance with the Genetic Algorithm

shows the imagined learning cycle. Note that in the Figure it is the class similarity measure that is

learned initially and therefore an initial class-alignment will be created. This is arbitrarily defined,

one can also define to start the cycle with an initial property alignment.

46

6. Genetic Programming (GP)

6. Genetic Programming (GP)

So far we have seen, that it is possible to use the principle of evolution to learn meaningful

similarity measures. To do this, the genetic algorithm, described in Chapter 4, has been used. Using

a GA, all parameters of a solution (i.e. the similarity algorithm) have been encoded to a genotype

(i.e. the chromosome). Another domain specific operation was used to decode the chromosome and

so to build up the concrete (working) solution. Another way of exploiting the mechanisms of

evolution, is to use genetic programming instead [Koza 1992]. This method generates directly the

solution (since the solution is a computer program), therefore the en- and decoding parameters to

and from a chromosome are not necessary any more.

6.1. Introduction
The idea of genetic

programming is, that instead of

using a sequential chromosome

to reproduce individuals. A tree

data structure is used for this.

And since every computer

program can be represented as a

tree, exactly these trees are

taken to do the reproduction.

Figure 31 shows how a

program, which calculates the hypotenuse of right-angled triangle, can be represented as a tree.

Having such a tree as “chromosome” for the genetic programming, no (domain specific)

interpretation is needed to get a working program. Of course the meaning of the symbols has to be

interpreted, but this has to be done anyway while compiling the program This interpretation stays

always the same for the same programming language. Having this, a learning cycle similar to the

one in the genetic algorithm can start. First a fitness function evaluates each program's fitness, and

according to these fitness values a selection is performed. The genetic operator works a bit

47

Figure 31: Tree representation of the Pythagoras' theorem

sqrt

+

*

a a b

*

b

6. Genetic Programming (GP)

different, but in principal has the same goal, namely, to create a new generation using the selected

programs as parents. The details of these steps and the differences to the classic GA will be

described in the section “6.3. Genetic programming in Detail“ later on in this chapter. But genetic

programming needs also some solution specific configuration. Namely, a terminal- and a function

set has to be defined. In the example in Figure 31, the terminal set would be the two variables a and

b, the function set would be {sqrt, +, *}. Elements of the terminal set are candidates for the leaf

nodes of the tree, the elements of the function set are candidates for the inner nodes. Additionally

for each function its arity has to be defined, in our example the arity is 1 for the square root function

and 2 for the addition and the multiplication. This value defines the number of child nodes, which a

node, representing a particular function, must have.

6.2. Conditions for successful genetic programming
In this section two conditions that have to be fulfilled for a successful genetic programming in

practice will be presented.

6.2.1. The Closure Property
This property needs to be fulfilled, to achieve that every possible tree, constructed out of the

function set and the terminal set, will represent a working program. For this, it is necessary, that

every function (in the function set) accepts every possible return value of any other function at

every position in its argument list as input parameter. This leads in practice to the fact that all

functions have to return the same data type, and also that all parameters of each function have to

accept this data type (or class in an object oriented programming language). Moreover all possible

values, which the terminals might have, must be of this data type. Otherwise a randomly created

tree will mostly represent a program that will not work due to type errors.

Also each function's return value has to be defined for each combination of input value that may

occur. In the example the square-root function must not be the native square-root function, which is

usually not defined for negative input values, but must be replaced by a “protected” version. This

version must also return a result for negative input values. One way to do this, is to define sqrt as

follows : sqrt x =∣x∣ . For the division function a similar workaround to avoid the “division

by zero” error has to be done.

48

6. Genetic Programming (GP)

6.2.2. Sufficiency of Terminal- & Function-set
Another mandatory condition is, that the terminal- and the function set have to be sufficient to

create a program that can solve the problem. In our example genetic programming would never

have the chance to come up with a proper solution, if for example the terminal b (representing the

length of one leg of the right-angled triangle) would not be part of the terminal set. Also, if any of

the functions would be left away, it would not be possible to get a good solution. On the other hand,

it is possible to define more functions and terminals than are actually used (since we want to use

genetic programming to generate a solution, which we do not know in the first place). Therefore

knowing that the problem of calculating the length of the hypotenuse is a mathematical problem and

depends on the length of the legs of the right-angled triangle, one could define a terminal set {a,b}

and a function set {+, - , *, /, sqrt, sin, cos). So we have seen that some knowledge about the

solution's character is needed also in genetic programming.

6.3. Genetic programming in Detail
Analogue to chapter 4 about the GA,

some details of the single steps in

genetic programming will be presented

in this section. They are more or less the

same as in the genetic algorithm so

especially the differences will be

mentioned. Also the learning cycle as a

whole is quite the same as in GA (see

Figure 32).

6.3.1. Creating an initial
Population

In genetic programming the very first

step is also to randomly generate an

initial population of individuals. But

since the data structure, representing an

individual, is a tree in this case, there are

some differences. Opposite to just setting a random value for each gene in each chromosome, a

more sophisticated method to build up the initial population is needed. Basically two methods exist

49

Figure 32: Flowchart of the learning cycle in GP

Create an initial population

Determine fitness

Perform selection

Reproduction

Abort criteron

6. Genetic Programming (GP)

to randomly generate a tree, consisting of the terminals and functions given in the corresponding

sets. Koza calls these methods the “full” and the “grow”.

The first (full) method is to define a desired height (or number of levels) of the tree (e.g. 5). For the

root node a symbol of the function set is randomly chosen. The number of needed child nodes is

defined by the arity of the function which is chosen. The required number of child-nodes will be

generated and a symbol from the function set is set randomly to each node. These steps are then

recursively repeated for each node until the desired height of the tree is reached. In this case for

each child needed, a symbol from the terminal set is randomly chosen to create the leaves of the

tree. This method leads to trees, where each leave is on the same level (i.e. the desired height of the

tree). This is then a “full” tree.

The “grow” method is (except for the root node) to choose always a symbol out of the union of

function- and terminal set. If for

a particular child a terminal

symbol is chosen, this branch

ends there. Additionally a

maximum height of the tree

must be defined. If this height

is reached, choosing a terminal

symbol will be enforced. This is

has to be done, to avoid that a

particular tree grows infinitely

large. Trees created with this

method can have branches of

different lengths.

The tree shown in the

Pythagoras example is an

example for a “full” tree. All

terminals are on level 3, if counting starts with 0 at the root node (which is the method in this

diploma theses). Figure 33 shows a tree that could have been generated with the “grow” method.

Maybe the maximum level was 6, but this is not necessarily the case because the process of growing

can stop before the maximum level is reached. This tree actually calculates the first solution of the a

quadratic equation ax2bxc=0 .

50

Figure 33: A tree with branches of different lengths.

sqrt

-

b

-

2

*

a

*

aa

b

*

b

/

a *

6. Genetic Programming (GP)

To get a good diversity in the initial population, one can use the following strategy: Half of the

population is created with the full method, the other half with the grow method. These two

segments again are divided into n parts (e.g. n = 5). Then the maximum number of levels for part n

of each segment is defined as minHeight + n, whereby minHeight is e.g. 2. Doing so, one gets a

good diversity of trees of different sizes. For each size some “full” trees and some with variable

branch lengths, will be part of the initial population. Koza calls this method “ramped-half-half”.

6.3.2. Fitness function in genetic programming
The fitness function in GP actually is very similar to the one in GA. All considerations done in

section “4.3.1. Fitness Calculation“ (see page 22), and especially the transformation from deviation

to fitness (in the case of learning similarity measures), are still valid. As also mentioned in chapter

4, a difference is, that sometimes the first step of the fitness function is to build up the phenotype

from the genotype (interpreting the chromosome). This is not necessary in GP because the learned

structure is the program itself. In practise a function will be executed (e.g. “evaluateTree”) which

takes the learned tree as argument and returns the calculated result. If a programming language is

used, which is able to interpret/compile and execute its own source code at runtime, it is possible to

create the source code from the tree and then letting this code snippet being executed.

6.3.3. Selection
As the fitness calculation, the selection step is also very similar to the analogue step in the GA. All

considerations from section “4.3.2.4. Combination of the Strategies“ (see page 25) are valid. It will

also be possible to basically use a roulette wheel strategy. To enrich this strategy an elite can be

defined, in the meaning that members of the elite will have a guarantee to be selected once or

n-times (where n would be the guaranteed reproduction rate). Furthermore the selection can be

combined with a defined amount of individuals which are selected just randomly, regardless of their

fitness values. One might consider to use different parameter values, but as also already mentioned,

the algorithm is quite stable against different parameter settings, and so the expected impact of

doing so will be small.

6.3.4. Genetic Operator
As the representation of the individuals is different to the GA, also the genetic operators work

different. The basic principle of crossover and mutation remains the same, but the method to

achieve them is different. Crossover in GP is also done by first selecting the two individuals which

51

6. Genetic Programming (GP)

participate (the parents).

Having selected the two

parents, two crossover

points (unlike one only

in GA) are randomly

selected (the grey nodes

in Figure 34). The

crossover points may be

any inner- or leaf node

of the trees. The two

selected nodes

(including their child

nodes) then will be

exchanged between the

two trees, and so the

offspring is generated

(shown in Figure 35). If

in both trees a leaf node

is chosen to be

crossover point, the

operation has the same

effect as a mutation in

GA (one node in each

tree will change its

value). Therefore it is

not necessary to have

an explicit mutation

operator in genetic

programming (but one

could program and use a mutation operator if desired). To achieve that (hopefully meaningful)

program parts will be exchanged instead of leaf nodes, one can define that in e.g. 90% of all cases

an inner node gets selected as crossover point, and on the other hand only with a chance of 10% a

52

Figure 35: The offspring of the crossover operation

sqrt

-

b -

2

*

a *

aa

b

*

b

/

a *

sqrt

+

*

a a

b

*

b

Figure 34: Two inner nodes selected for the crossover operation

sqrt

-

b

- 2

*

a

*

aa

b

*

b

/

a *

sqrt

+

*

a a b

*

b

6. Genetic Programming (GP)

leaf node will be selected (independent of the inner-node – leaf-node ratio in the tree). Unlike in the

genetic algorithm where the length of the chromosome is fix, the trees here may grow and shrink. In

the example of Figures 34 & 35 the left tree shrinked and the right one grew. The reason for this

effect is that the two sub-trees, which have been replaced, did not have the same size. Therefore it is

necessary to define a maximum size which a tree may reach, otherwise the trees may grow

infinitely large and so cause an unacceptable runtime.

53

7. Results using GA & GP

7. Results using GA & GP

In this chapter we will show how genetic programming can be used to learn similarity measures.

For that several evaluations will be presented. The goal is to find out if, and under which

conditions, genetic programming can successfully be used as learning method to find good

similarity measures.

7.1. Set-up of the Experiments
Due to the closure property (see section “6.2.1. The Closure Property”, page 48) it will not be

possible to learn local similarity measures because (except numeric similarity measures) they have

different input and return types (e.g. Levensthein takes two strings and return a double value).

Therefore learning the local measures will, also in these evaluations, still be done using the GA.

Genetic programming will be used to learn the amalgamation function (i.e. the function that

combines each local similarity value to a global similarity). This amalgamation function was fixed

to be a weighted average in all experiments using the GA only, and the single weights then have

been learned with the GA. Now the amalgamation function will be a learned genetic program.

So in all following experiments first the normal GA runs and learns a global similarity measure and

afterwards a genetic program is learned. This genetic program will get the local similarity values

(calculated by the local similarity measures of which the (GA-learned) global similarity measures

consist).

Figure 36 shows two different learning rates of two different runs, learning an amalgamation func­

tion for a global similarity measure. On the y-axis one can see the achieved root-mean-square error

using the particular amalgamation function that is learned. The detailed conditions of the runs are

not relevant here. What should be shown with this figure is, that the learning rate in genetic pro­

gramming may have quite different characteristics from run to run. In run 1 the amalgamation func­

tion first gets even worse and afterwards makes a sort of stepwise improvements. In run 2 the root-

mean-square error shrinks quickly after having started the learning cycle, and already after genera­

tion 40 the root-mean-square error reaches almost the final value.

55

7. Results using GA & GP

As in the

evaluation of the

learning with the

genetic algorithm

only, in the next

two sections

results using the

product dataset and

results of trying to

find alignments

between properties of different ontologies will be presented.

Because usually the search space is much larger in genetic programming than it is using a GA,

genetic programming needs larger populations, to come up with good results, than the genetic

algorithm1. For that the population size in all experiments presented is 500 for the genetic

programming part.

7.2. Results using the Product Dataset
In this section the results of four experiments will be shown. For one experiment a 10-fold cross

validation has been done. For the other three only a training- and test set evaluation will be

presented (due to the fact that a cross validation using GA and GP uses about 10 hours of runtime

on a 1.6 GHz AMD processor).

So what are the four experiments? As mentioned in the last section the procedure is to learn a

similarity measure with the GA, and then use the so learned local similarity measures as given,

trying to find a good amalgamation function. So one can define whether the GA may learn the

weights (ω1, ω2, ω3, ..., ωn) of its own amalgamation function (the weighted average),

Sim=∑
i=1

n

i⋅localSimi

or whether these aspects will not be learned in the GA part of the experiment. In this case, the

amalgamation function the GA may use, is fixed to be a normal (equal weighted) average,

1 Due to this fact detractors of genetic programming say that it is more like random search than really exploits the
principals of evolution.

56

Figure 36: Two learning rates of the genetic programming

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240

0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.10
0.11
0.12

Run 1
Run 2

Generation

R
oo

tM
ea

nS
qu

ar
e

Er
ro

r

7. Results using GA & GP

Sim=∑
i=1

n

⋅localSimi

while ω is fixed to be 1
n . Independent of this decision, another option is to transform the

amalgamation function, which the GA uses (or has learned), to a genetic program. This program

then can be added (or not) to the initial population, that the genetic program part of the experiment

uses. An amalgamation function that combines for example four local similarity values,

Sim=∑
i=1

4

i⋅localSimi

can be transformed

in the genetic pro­

gram shown in Fig­

ure 37. This trans­

formation of course

can be made inde­

pendently whether

the weights in the

GA were all fixed

to be 1
4 or have

been learned by the

GA. So these two

options lead to

four combinations

shown in Table 6

(where AF stands for

“amalgamation function”) and the results using these settings will be presented.

Experiment 1

Figure 38 shows the results of the 10-fold cross validation. In this experiment the genetic algorithm

was fixed to use an equal weighted average as its own amalgamation function and this equal aver­

age function has been transformed to a genetic program. This genetic program was than added to

the initial population of the genetic algorithm. The x-axis shows which segment (since in a 10-fold

57

Figure 37: An amalgamation function transformed to a parse tree for a genetic program

*

localSim1

+

aω1

+

+*

localSim2
ω2 *

localSim3ω3

*

localSim4ω4

Table 6: Table of the following experiments

GP uses GA's AF
Experiment 2 Experiment 1

GA may learn an AF Experiment 3 Experiment 4

GP does not use GA's AF
GA may not learn AF

7. Results using GA & GP

cross validation, the whole dataset is divided into 10 segments) was actually the training set. All

other sections were part of the test set. For each training set used, the first two bars show the train­

ing- and test set

error which the

measure had

after the run of

the GA. The

second two bars

show the devi­

ations that have

been achieved

after the genetic

programming

part of the ex­

periment. As one can see, in all 10 cases the two first bars, representing the training- and test set er­

ror the GA came up with, are higher than the second two bars. These second two bars represent

training- and test set error which the measure had after the genetic programming part of the experi­

ment. So we can see that GP brings a benefit in this 10-fold cross validation.

Experiment 2

Figure 39 shows the results of the

experiment where the GA also had to

learn a measure using an equal

weighted average as amalgamation

function, but this function was not put

into the initial population for the

genetic programming part.

Looking at these two figures (38 and

39) one can see that the performance

of the genetic programming part is

quite similar. In both experiments the

GA had no possibility to create an

58

Figure 38: 10-fold cross validation using GA and GP

0 1 2 3 4 5 6 7 8 9 ∅
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

rms Training GA
rms Test GA
rms Training GP
rms Test GP

Number of Trainingset

R
oo

tM
ea

nS
qu

re
 E

rr
or

Figure 39: Training- and test set errors after GA and after GP, the
GA's amalgamation function was not part of the initial population of
the GP part

GA GP
0

0.01

0.02

0.03

0.04

0.05

rms Training
rms Test

R
oo

tM
ea

nS
qu

ar
eE

rr
or

7. Results using GA & GP

improved weighted average as its own amalgamation function, and so, whether the (simple) equal

weighted average function is given to the genetic programming part or not, has almost no impact.

Experiment 3 & 4

The next two experiments show the

cases where the genetic algorithm had

the possibility to come up with a

meaningful weighing of the different

attributes of the product objects

(which are the compared objects in

this section). Due to this, at the end of

the GA part of the experiment, an

improved amalgamation function is

contained in the measure which the

genetic algorithm learned. Now this

amalgamation function again can be

transformed into a genetic program.

This can afterwards be put into the

initial population for the genetic

programming part or not (analogue to

the last two experiments). Looking at

the Figures 40 and 41 one can see, that

in this case (GA may learn weights)

there is a significant impact if the GA's

amalgamation function is part of the

initial population of the genetic

programming part. If not, as shown in

Figure 40, the measure learned with

GP is worse than the one the GA came up with. On the other hand, the figures show that the genetic

programming part results in considerable improvements, if it gets the GA's amalgamation as a kind

of “hint” or a good starting point to find a better amalgamation function that the weighted average.

59

Figure 40: Training- and test set errors after GA and after GP, the
GA's amalgamation function was not part of the initial population of
the GP part, but GA had the possibility to learn its own amalgamation
function

GA GP
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

rms Training
rms Test

R
oo

tM
ea

nS
qu

ar
eE

rr
or

Figure 41: Training- and test set errors after GA and after GP, the
GA's amalgamation function was part of the initial population of the
GP part, and GA had the possibility to learn its own amalgamation
function

GA GP
0

0.01

0.02

0.03

0.04

0.05

rms Training
rms Test

R
oo

tM
ea

nS
qu

ar
eE

rr
or

7. Results using GA & GP

7.3. Results of learning an Ontology Alignment
In this section the results of using the genetic algorithm and genetic programming to find a property

alignment between two ontologies will be presented. Generally the task is the same as in the case of

using the GA only, as mentioned in section “5.2. Ontology Alignment” (see page 40). As seen,

using the GA only, leads, for some ontology alignments, to very poor results. Especially the

alignment between the reference ontology and the one, which uses synonyms for class and property

names, never came up with a performance better than 11, while the maximum value of the used

performance measure was 44 (Fig. 29, page 44). Therefore, in this section (where we will try to

improve this by using genetic programming) the alignment between these two ontologies shall be

learned in the next two experiments.

As mentioned in the last section, an option of the experiments is whether the genetic algorithm may

learn its own amalgamation function or not. As in the previous section an experiment was made for

both methods and will be presented. The other option, whether the amalgamation function, which

the GA learned, is contained in the initial

population, which the genetic programming

part gets (or not), is for both experiments set

to “yes”.

Experiment 1

Figure 42 shows the results of the

first experiment, where the GA

was able to learn its own

amalgamation function (the

weights of the weighted average).

As one can see, also the use of

genetic programming does not

lead to a perfect (or almost

perfect) alignment. But a

significant improvement can be

observed. The performance,

defined as the amount of correctly

60

Figure 42: The correctly- and the wrongly found alignments and the
performance as correct ones minus wrong ones

GA GP
0

4

8

12

16

20

24

28

32

36

40

44

Correct
Alignments
Wrong
alignements
Performance

Table 7: Table of the following ontology alignment
experiments

GA may learn an AF Experiment 1
Experiment 2

GP uses GA's AF

GA may not learn AF

7. Results using GA & GP

identified alignments (true positives) minus the wrongly identified ones (false positives), increases

in this case from 8 to 16.

Experiment 2

In the second experiment the GA

was not able to learn its own

amalgamation function, and so

the similarity measure learned by

the GA is very poor, as can be

seen in Figure 43. The

performance of the measure

learned by the GA is even

negative, because there are more

wrongly identified alignments

than correctly identified ones. But

looking at the results after the

genetic programming part of the

experiment, one can see that the performance increased up to 16. This is the same value as achieved

in the first experiment. So the results after the genetic programming part does not depend on a

meaningful weighting of the similarity measure already after the GA part of the experiment.

Conclusions, Future work

At the end of the section about finding ontology alignment's using GA only (“5.2.6. Discussion,

Future work”, page 44), some possibilities to improve the results in future work are presented. One

of them is to use a class-alignment to learn the property-alignment and vice versa. Doing so, it is

possible to build up a kind of a learning cycle (see Fig. 30, page 45). Looking at the considerable

improvements (despite the still quite poor quality of the absolute results) the use of genetic

programming can achieve, it would be a good idea, to include the genetic programming part in each

learning step of this learning cycle.

61

Figure 43: The correctly- and the wrongly found alignments and the
performance as correct ones minus wrong ones, the GA could not learn its
amalgamation function

GA GP
-4
0
4
8

12
16
20
24
28
32
36
40
44

Correct
Alignments
Wrong
alignements
Performance

8. Implementation Aspects

8. Implementation Aspects

Since this diploma thesis is not just a theoretical thesis about learning similarity measures, but also

an implementation in the “real” world has been developed, we will focus in this chapter on some

aspects of the implementation of the Local/Global Framework and the learning algorithms.

8.1. The Local/Global Framework
The whole implementation is embedded in the so called SimPack library which has been developed

at the department of informatics at the University of Zurich. For more information about the

SimPack project see [Bernstein et al. 2005] and [Bernstein and Kiefer 2006].

8.1.1. The Local Similarity Measures
The 4 basic types for Local Similarity measures have all their own class. All these four classes

inherit from the abstract class LocalSimilarityMeasure. These five classes can be found in the

63

Figure 44: The class diagram for the local similarity measures

8. Implementation Aspects

package simpack.measure.local. Because all local similarity measures inherit from one

single abstract class, it is easy to define the object similarity class in a way that building up

recursive measures will be easily possible (due to the fact that an object similarity measure can be

seen also as a local similarity measure). In fact the class ObjectSimilarity contains just an array of

LocalSimilarityMeasure, whose entries can be objects of any subclass of LocalSimilarityMeasure.

As shown in the class diagram, LocalSimilarityMeasure is a specialisation of the “base” class

SimilarityMeasure, defined in the package simpack.api.impl. Note the subclasses for the

Number and the String measures, they are made to be able to use different internal similarity

measures (in the case of String) or distance measures (in the case of Number). More of these

internal measures can be added easily.

8.1.2. The Configurations
The class diagram of the

configurations for the similarity

measures is built quite similar

as the class diagram for the

measures themselves. Basically

there exists one configuration

class for each type of measure,

and all configuration classes

implement the interface ILocalSimilarityConfiguration. Note that the configuration for string

similarity measures (Sim2SimMapping) is a specialisation of Dist2SimMapping (the configuration

for numeric similarity measures). There exists also a class SimilarityTree but it is technically not

part of these configuration classes. A SimilarityTree can be used to set the similarity values of a

SimilarityTable. This has especially two reasons:

1. For each similarity measure there is exact one configuration.

2. SimilarityTables are much faster than trees, because in trees we have always to find the

nearest-common-parent node (NCP) to get the correct similarity value.

All configuration classes are located in the package simpack.util.local.

64

Figure 45: The class diagram for the Configuration classes

8. Implementation Aspects

8.2. Evaluation of Similarity Measures
There exists one abstract class that is able to evaluate the soundness of a similarity measure. To be

able to use this class also to evaluate how well a learned amalgamation function performs, it is a

generic abstract class. Concrete implementations will have to implement basically two methods.

One that returns the similarity between two objects which is calculated using the measure to be

evaluated (or amalgamation function). The other method, which must be implemented, has to return

the similarity value between two objects which is defined in the gold standard. The class diagram

shows how the different evaluation classes are inherited from each other. The great benefit of

having this generic evaluator is that all the code about:

• which deviation type is used.

• how the deviation should be transformed into a fitness value

• how many comparisons are made for one single measure to evaluate its deviation

• how these “test pairs” are generated

is in the generic Evaluator class. See following sections for more details of these tasks.

• “3.3. Calculating a similarity measure's deviation from the gold standard” on page 15

• “4.3.1.2. Calculating a fitness value from a deviation” on page 22

65

Figure 46: Class diagram of the Evaluators

8. Implementation Aspects

The two classes, Evaluator<LocalSimilarityMeasure> and Evaluator<SymbolNode> actually do not

exist. They are shown in the diagram to highlight that MeasureEvaluator actually extends

Evaluator<LocalSimilarityMeasure> (and GP_SimMeasure_FF extends Evaluator<SymbolNode>,

respectively). The reason that in the GP the evaluator and the fitness function is the same, is that no

interpretation on the chromosome is needed. In GA the fitness function first interprets the

chromosome and builds up a similarity measure, and than uses the MeasureEvaluator to evaluate it.

The general evaluators are located in simpack.learning, the GP related evaluators are located

in simpack.learning.gp.

8.3. Learning with the genetic algorithm
All the GA specific classes are located in simpack.learning.ga. For the genetic algorithm

the open-source JGAP-Framework has been used. To improve the learning performance, an own

NaturalSelector and an own GeneticOperator have been implemented according to the interfaces

defined in the JGAP-Framework. This is done to have a selection strategy as presented in Section

“4.3.2.4. Combination of the Strategies” (see p. 25) and a genetic operator as described in “4.3.3.3.

Combination of the genetic operators” (see p. 27). This implementations can be found in the classes

SimpackSelector and SimpackGeneticOperator respectively. To improve the runtime, the learning

cycle has been implemented newly (outside the JGAP Framework). This is done in the class

GA_Starter, where therefore a method exists to start an evolution.

Another important part of this packages are the so called GeneDataInterpretors. Their task is to

transform a chromosome into a LocalSimilarityMeasure. They are used by the fitness function

which is also part of the simpack.learning.ga package. A detailed instruction how to learn

similarity measure using this package can be found in the appendix.

8.4. The Genetic Programming Framework
This framework has been developed to be able to use genetic programming to learn an

amalgamation function. It is developed in an analogue way as the JGAP-Framework has been built.

Also three interfaces, one for a fitness function, one for a genetic operator and one for a selector

exist. Each of them is implemented for the case of learning an amalgamation function. What is not

needed in the genetic programming approach, are the GeneDataInterpreters. Instead of them a so

called GP_Executor has been developed. This is a class that is able to execute a genetic program,

having its parse tree. For that, it maps the symbols, contained in the tree nodes on the defined Java-

66

8. Implementation Aspects

methods which then will be invoked. Furthermore it maps the terminal symbols, which stand for a

variable, to the actual value this variable has. These values can be set before executing the genetic

program, and so the defined variables can be used as arguments (input values) for a genetic

program. The GP_Executor is also the class that is able to produce an initial population of genetic

programs to start the evolutionary process. Objects of the class GeneticProgram represents the

actual programs (i.e. the individuals in the population). They consist of the parse tree (to execute

them by the GP_Executor) and a fitness value, which will be set by the bulk fitness function (this is

a function that calculates the fitness for each individual in the population).

8.5. Learning an amalgamation Function using GP
To learn an amalgamation function for a global similarity measure, the two classes

GP_SimMeasureAnalyser and GP_SimMeasureFF are used.

First SimMeasureAnalyser is used to create an accurate GP_Executor. In this step, for each local

similarity value, that the global measure would produce when its calculated, a variable will be

defined in the GP_Executor. If the (GA-learned) amalgamation function should be exploited to

learn the new one, all learned weights could also be added to the GP_Executor as constants2. The

SimMeasureAnalyser also defines the functions that the genetic program may use, their symbols

and the concrete Java-methods, which are associated with the function symbols.

This built up GP_Executor and the global similarity measure are given to the GP_SimMeasureFF,

the fitness function for this task. When the fitness of an amalgamation function should be

calculated, first all local similarity values will be calculated, using this global measure. These

values will be set to the variables in the GP_Executor (SimMeasureAnalyser has defined these

variables previously). Having done this, the GP_Executor is used to calculate the result which the

learned amalgamation function produces. This then will be the global similarity value, which is

used to calculate the deviation (as in the case of GA-learning). Note that always an amalgamation

function for one single similarity measure is learned. This similarity measure can be a measure

learned previously by the GA.

These classes are also located in the package simpack.learning.gp, together with the GP

Framework's classes.

2 Technically they are variables, which will be set only once.

67

9. Conclusions & Future Work

9. Conclusions & Future Work

In this chapter first a summary of the work done and presented in this diploma thesis is given.

Afterwards we will see what benefits and drawbacks the applied methods come up with. In the last

section proposals for future work will be presented.

9.1. Summary
At the very beginning of this diploma thesis we have introduced similarity measures and shown

how the Local/Global principle works. Afterwards a possible Local/Global framework has been

presented, which will be needed later on when similarity measures will be learned.

We have seen how the soundness of similarity measures can be evaluated using a gold standard and

how such a gold standard can be created. Initially these two chapters had nothing to do with the real

learning algorithm but this work has been done to have the basis for using machine learning of

similarity measures.

Afterwards the details of the genetic algorithm (the first chosen learning technique) have been

presented, always looking at the final goal of learning similarity measures. In the following

evaluation part we have seen that the genetic algorithm comes up with very good similarity

measures for the product data set. We have also seen that the approach works in principal also for

the categorisation task of finding a property alignment between two ontologies, but that in absolute

numbers, the results are are not as good as the results using the product data set. Therefore some

proposals for future work are made at the end of this evaluation part. These proposals will be

repeated together with further proposals for improvement in in the “Future work” section of this

chapter.

Having all these things done, the method of genetic programming has been introduced and we have

seen how we can exploit this technique to improve the (first by the GA learned) similarity

measures. In the evaluation of this part, we have seen that genetic programming is able to find

better amalgamation function than the (predefined) weighted average, and that genetic

programming was able to improve the ontology alignment significantly, but results are still on a

fairly poor level.

69

9. Conclusions & Future Work

9.2. Benefits & Drawbacks
Local/Global Principle

The benefit of using the Local/Global principle is, that it can be used for nearly any kind of data

structures. This is especially true with its recursive version, introduced in Chapter 2, where a local

similarity measure can also be a global one, which has its own local similarity measures again. With

this principle, complex- or aggregated objects, having every possible tree-like data structure, may

be compared.

Using artificial evolution

The use of artificial evolution, which means the genetic algorithm and/or genetic programming,

itself results in the following benefits.

– Less domain specific knowledge is needed to find a good similarity measure.

– It is a way to overcome the designer bias. The designer bias means, that if a human constructs

something (e.g. a similarity measure), he always intuitively uses his conception of what the

solution might be. This behaviour usually leads to the fact that not all possible solutions are

considered.

– Using a gold standard is a good interface for transporting the domain knowledge of an expert

into the learned similarity measure, without needing a domain expert, who is also a computer

scientist.

Genetic programming

Genetic programming can learn an algorithm itself, unlike the GA which only learns a parameter

setting for a defined algorithm. For instance an own amalgamation function, instead of just a

parameter setting for a weighted average, can be learned. Therefore (compared to the GA, where the

solution initially must be parametrized) with genetic programming even less knowledge about the

characteristics of the solution is needed.

A drawback is, due to the closure property, GP is not able to learn a whole similarity measure to

compare complex objects. The genetic algorithm and so the Local/Global framework is still needed.

Another drawback is that, GP compared to GA, needs larger populations and therefore much more

runtime. The results of GP are also less predictable than those of using GA.

70

9. Conclusions & Future Work

9.3. Future work
In this section we will see what future work can be done to improve particular results of the

evaluations or to widen the scope of application of this framework.

Future work concerning the Local/Global Framework

As seen in Chapter 2 the Local/Global framework consists of four types of similarity measures and

four types of configurations for the similarity measures. Including the similarity tree there would be

five configuration types.

So more types of measures could be implemented (or built into the framework) to achieve that more

accurate (global) similarity measures can be constructed. These could be measures that compare

two data structures (e.g. tree edit distance3) or measures to compare long strings that have a textual

character (e.g. TFIDF).

As seen in Chapter 2 the string and the number similarity weights consist of a “raw” similarity

measure (distance measure in the case of number similarity) and a mapping that can be learned. The

learning could be widened to the parameter setting of these “internal” measures.

Furthermore one might introduce a kind of a “similarity graph”. Like a similarity tree, such a graph

could be used to calculate a similarity table for symbol similarity measures. In the case of a

similarity tree, a learned similarity of the nearest common parent node defines the similarity of two

symbolic values. In a similarity graph the nearest path from one to another object could be

calculated and learned values of each edge could be used to calculate a similarity value.

Improving the results of the ontology alignment task

The alignment task can be done with larger ontologies. In larger ontologies (at best with larger class

hierarchies) the chance that two classes which are not semantically identical, but nevertheless have

the same values for superclasses, subclasses and direct subclasses, will be lower. As mentioned in

the explanation of the first experiment using the class hierarchy (see “Using property names, class

names and class hierarchy of domain and range“, on page 43), this is a reason that these values do

3 The tree edit distance measure implemented in SimPack had an unacceptable runtime for use it in a learning cycle.
So the necessary first step before being able to use it would be an optimisation.

71

9. Conclusions & Future Work

not really help finding the correct alignment. Therefore I predict better results using just a larger

ontology.

More meta data of the properties can be taken into account. E.g. the cardinality could be exploited

also. But this would have the same problem as the “position in hierarchy”, the value of this attribute

will be in most of the cases just 1. Therefore, for a lot of property pairs, which are not part of the

correct alignment, the comparison of this attribute will lead to a maximum similarity.

The basic idea of using the class hierarchy was to identify the classes that represent each other

semantically, and so to reason, that properties, where the range and the domain is the (semantically)

same class, have a good chance to represent each other. Now the same procedure, as is used to find

the alignment between the

properties, can be used to find the

class alignment. Having this once it

can be exploited to find the property

alignment.

As already mentioned, the class

alignment could be learned in a first

step, analogue to the the property

alignment. Looking at the (quite

poor) results of finding the correct

property alignment, there is also not

much hope that finding the class

alignment would perform much

better. But to find the class

alignment, the previously found

property alignment can be exploited.

So this could be done in a cycle. An

initially quite insufficient class

alignment will lead to a slightly

better property alignment. Than this

72

Figure 47: Suggested learning cycle for an ontology alignment

cl
as

s
al

ig
nm

en
t

property alignment

class alignment

Use the property alignment to
learn a class similarity measure

Use this measure to create
an initial class alignment

Use the class alignment to learn
a property similarity measure

Abort criteron

Use this measure to create
a class alignment

Use this measure to create
a property alignment

Learn an initial class
similarity measure

9. Conclusions & Future Work

property alignment again is used to learn a better class alignment and so forth. Figure 47 shows the

imagined learning cycle. Note that in the Figure 47 the class similarity measure is learned initially

and therefore an initial class-alignment will be created. This is arbitrarily defined, one can also start

the learning cycle with an initial property alignment.

Doing more evaluations

In this diploma thesis evaluations with two datasets have been done, the product dataset and the

ontology alignment task. Of course more different data sets can be used to do more evaluations of

the whole framework. As the Local/Global principle, especially in its recursive version, it is very

universal. Objects of almost every thinkable data structure can be compared with each other by an

accurately configured global similarity measure.

Refactoring SimPack

Using the SimPack library was fairly complicated because a lot of different return- and argument

types are used. This may be the result of the different developers working on the SimPack and their

individual tastes. I would propose to use primitive types, and instead of collection, sets, vectors and

all these classes, to use simple arrays of the particular objects, wherever possible. This simply

would make it easier understandable for a user (e.g. when he reads the Java-doc) and, if less

different classes for argument and return types are used, a lot of transformation work could be

saved. Another benefit (especially of using primitive types) would be that, simpler data structures

will usually lead to less memory- and runtime4 consumption.

So we can see that a lot of further improvement is possible. These further improvements will make

learning similarity measures more efficient, more universal and easier to apply.

4 I reimplemented the Levensthein algorithm and got a 4 times better runtime just by using a 2-dimensional array of a
primitive type instead of a matrix object.

73

10. References

10. References

[Stahl 2004] A. Stahl. Learning of Knowledge-Intensive Similarity-Measures in Case-Based
Reasoning. PhD thesis, Chapter 3, University of Kaiserslautern, Germany, 2004. Verlag
dissertation.de, Band 986.

[Gabel 2005] T. Gabel. On the Use of Vocabulary Knowledge for Learning Similarity Measures. In
Wissensmanagement, pp. 253-258, 2005.

[Dawkins 1986] R. Dawkins. The blind watchmaker. 1986. Penguin Books Ltd.

[Stahl and Gabel 2003] A. Stahl and T. Gabel. Using Evolution Programs to Learn Local Similarity
Measures. In Proceedings of the 5th International Conference on Case-Based Reasoning
(ICCBR 2003), Trondheim, Norway, June 2003.

[Pfeifer and Scheier 1999] R. Pfeifer and Christian Scheier. Understanding Intelligence. Chapter 8
p.275. 1999. MIT Press.

[Euzenat et al. 2004] J. Euzenat, Y. Sure, O. Corcho, H. Stuckenschmidt, L. Palmer, N. Noy and D.
Loup. EON Ontology Alignment Contest
http://oaei.ontologymatching.org/2004/Contest/ 2004.

[Koza 1992] J. Koza. Genetic Programming. 1992, MIT Press.

[Bernstein et al. 2005] A. Bernstein, E. Kauffmann, C. Kiefer and C. Bürki. SimPack: A Generic
Java Library for Similarity Measures in Ontologies. Technical report, Department of
Informatics University of Zurich. 2005.

[Bernstein and Kiefer 2006] A. Bernstein and C. Kiefer. SimPack Project Page
http:://www.ifi.unizh.ch/ddis/simpack.html 2006.

75

Appendix

Appendix

Appendix A - Using the Local/Global Framework
This framework (for local similarity measures) can be used in two ways:

1. It can be used just to define concrete similarity measures.

2. To learn meaningful configurations for similarity measures, which was the point in this

diploma thesis.

A.1. To configure Similarity Measures
If one wants to use this framework just for creating (known) similarity measures, one can just

instantiate the correct configuration classes, set the parameter values, in a way he thinks is

meaningful, and create the similarity measures. There are two ways to get from the configurations

to the working measure. Either the LocalSimilarityMeasure is instantiated and it's desired

configurations is given to the constructor or, the more elegant way, one can call the getMeasure()

method of the configuration object. The getMeasure() method is defined in the Interface

ILocalSimilarityConfiguration so that it is ensured that every configuration class has to implement

it.

A.2. To learn Similarity Measures
To learn a meaningful configuration, it is necessary to learn all parameter values. If a genetic

algorithm is used for this, the number of parameters defines the length of the chromosome (or the

number of genes). If one just wants to learn for example one similarity table, he can easily calculate

how many free parameters need to be set, and so start a genetic algorithm. In each fitness test he

would interpret the chromosome and build up the similarity table. But calculating the length of the

chromosome needed and interpreting it, will get more and more difficult, if one wants to learn

complexer measures (such as recursive object measures). If something changes (e.g. one wants to

ensure a similarity table to be symmetric) the interpreter for the chromosome has to be

reprogrammed.

77

Appendix

To avoid this work, an­

other type of helpful

classes has been created,

the so-called GeneDataIn­

terpreters. These classes

build the bridge from the

genetic algorithm (which

knows nothing about sim­

ilarity) to the configurations and measures (which know nothing about the genetic algorithm). Ba­

sically an instance of a GeneDataInterpreter (again 4 types exist, analogue to the configurations, and

they also can be arranged recursively) is able to transform a number of genes into a configuration.

Furthermore it can answer the question how many genes are needed for it's configuration and can

create a sample chromosome. These two features are needed to calculate the length of the needed

chromosome automatically. Once having a configuration, it is easy to create a similarity measure

from it, which can be evaluated (e.g. to calculate it's fitness).

A.3. An Example how to use this Framework
This section should give a concrete example,

how to configure a global similarity measure

and how to use the GeneDataInterpretors to

learn a similarity measure.

Configuring a similarity measure

Assume that a simple global similarity

measure to compare cars should be

configured. Three attributes of a car should be used: shape, power (in kW) and origin (the country

where it was produced). To start, we instantiate the ObjectSimlarityConfiguration for our desired

global similarity measure.

ObjectSimilarityConfiguration osc = new ObjectSimilarityConfiguration();

78

Figure 48: Class diagram of the different GeneDataInterpreters

Figure 49: The structure of the car objects used in the
example

Car
complex

origin
sybmol

power
number

shape
symbol

Appendix

Having this done, the configurations for the local similarity measures can be set up. For the 2

symbolic attributes we need a SimilarityTable, for the numeric one, a Dist2SimMapping.

Additionally for shape we wants to use a taxonomy to calculate the similarity table (see Fig. 50).

Symbol[] shape = new Symbol[4];
shape[0] = new Symbol("Cabriolet");
shape[1] = new Symbol("Coupé");
shape[2] = new Symbol("Stationwagon");
shape[3] = new Symbol("Limousine");
SimilarityTable tableShape = new SimilarityTable(shape);

“shape” defines the symbols,

which this table may compare,

this array hast to contain all

possible values the attribute may

have. Afterwards, build up the

SimilarityTree and pass it to the

similarity table:

String[] twoDoors = {“Cabriolet”, “Coupé”}
String[] fourDoors = {“Limousine”, “Stationwagon”};
SimilarityTree[] cars = new SimilarityTree[2];
cars[0] = new SimilarityTree(“2-door”, 0.7, twoDoors);
cars[1] = new SimilarityTree(“4-door”, 0.5, fourDoors);
root = new SimilarityTree(“Car”, 0.2, cars);
tableShape.setSimilaritiesByTree(root);

To add this configuration to the global configuration use this:

osc.addAttribute("shape", 0.4, tableShape);

The first attribute of the function represents the key of the property, which contains the values to

compare in the car objects, the second is the weight of this property.

79

Figure 50: Similarity Tree for the attribute shape

1
Cabriolet

1
Coupé

1
Stationwagon

1
Limousine

0.5
4-doors Car

0.2
Car

0.7
2-doors Car

Appendix

As next, define the configuration for the numeric similarity measure used to compare the power of

the cars. For this a Dist2SimMapping is used. Using our common sense (vocabulary knowledge) we

want to have a measure that is symmetric.

double[] powerValues = { 1, 0.8, 0.5, 0.25, 0.1, 0 };
Dist2SimMapping powerMapping = new Dist2SimMapping(0, 100,

Dist2SimMapping.DIFFERENCE, powerValues);
powerMapping.setSymetric(true);
osc.addAttribute(“power”, 0.3, powerMapping);

The similarity values in the array “powerValues” will be uniformly distributed over the difference

range from 0 to 100. Finally the mapping is added to the global configuration object.

For the third attribute another similarity table is needed. Unlike for the attribute “shape” a similarity

table could also be manually defined like the distance-to-similarity mapping, but a 2 dimensional

array will be needed.

double[][] simValue = { { 1, 0, 0.4, 0, 0.3 }, { 0, 1, 0, 0.75, 0.3 },
{ 0.4, 0, 1, 0, 0 }, { 0, 0.75, 0, 1, 0 }, { 0.3, 0.3, 0, 0, 1 } };

Symbol[] country = new Symbol[5];
country[0] = new Symbol("Germany");
country[1] = new Symbol("France");
country[2] = new Symbol("Sweden");
country[3] = new Symbol("USA");
country[4] = new Symbol("Japan");
SimilarityTable tableOrigin = new SimilarityTable(country, simValue);
osc.addAttribute(“origin”, 0.3, tableOrigin);

Having all this done, the measure can be created:

LocalSimilarityMeasure carSimMeasure = osc.getMeasure();

This measure will be able to compare objects of the class Hashtable<String, Object> whereby they

should have the keys “shape”, “power” and “origin” for the attribute values.

80

Appendix

Create a GeneDataInterpreter

To learn a similarity measure using the genetic algorithm, a so called GeneDataInterpreter is

needed.

In this section it will be shown how to build such an interpreter for the car example. First instantiate

the interpreter for the global measure.

ConfigurationInterpreter carInterpreter = new ConfigurationInterpreter();

Having this, create the interpreters for the local measures and add them to the global one:

SimTableInterpreter shapeInt = new SimTableInterpreter(shape);
shapeInt.setTreeStructure(root);
carInterpreter.addSubInterpreter(“shape”, shapeInt);

Note that “shape” should represent the previously introduced symbol array, and “root” stands for

the similarity tree defined in the previous section. The similarity values, which have been set there,

will not be used by the interpreter. To set these, the genes of the chromosome to be interpreted, will

be used.

For the similarity mapping the following interpreter can be defined:

MappingInterpreter powerInt = new MappingInterpreter(0, 100, 6,
Dist2SimMapping.DIFFERENCE);

powerInt.setMonotonic(true, Dist2SimMapping.DECREASING);
powerInt.setSymetric(true);
carInterpreter.addSubInterpreter(“power”, powerInt);

The third argument of the constructor indicates how many values may be learned to create the

mapping.

For the last symbolic attribute “origin” the following interpreter can be used:

SimTableInterpreter originInt = new SimTableInterpreter(country);
originInt.setSymmetric(true);
carInterpreter.addSubInterpreter(“origin”, originInt);

Note that “country” stands for the symbol array that was created in the last section.

81

Appendix

At this point this interpretor can be used to learn a concrete similarity measure that compares the car

objects in our example. Additionally the interpreter can answer the question how many genes are

needed to encode all parameters and he can create a sample chromosome (technically an array of

genes) for the JGAP-Framework.

Appendix B - GA Learning
To learn a similarity measure, first an evaluator is needed. To instantiate this a training set and a

gold standard is needed. Another option is to have a target measure that calculates the similarity

values for the gold standard.

So first somehow the training set has to be loaded (form a database, csv-file, ontology or whatever

the data source might be5) and brought in a form that it is an array of Hashtable<String, Object>.

The gold standard will be an 2-dimensional array of doubles, indicating the desired similarity

between two objects, whereby goldStd[i][j] should be desiredSimilarity(trainingSet[i],

trainingSet[j]). The MeasureEvaluator than can be instantiated like this:

MeasureEvaluator me = new MeasureEvaluatorGoldStandard(trainingSet, goldStd);
or
MeasureEvaluator me = new MeasureEvaluatorTargetMeasure(trainingSet,

targetMeasure);

Having this done, the fitness function can bin instantiated using the evaluator and the

GeneDataInterpreter introduced Appendix A.3. Once having the fitness function, out of it the so

called BulkFitnessFunction can be created, which calculates the fitness of each individual in the

population at once.

SimMeasureFitnessFunction ff = new SimMeasureFitnessFunction(me,
carInterpreter);

SimMeasureBulkFitness smbf = new SimMeasureBulkFitness(ff);

These two steps are already implemented in the GA_Starter, the class which starts and controls the

learning cycle.

5 Some classes to do this are in the package simpack.data_access

82

Appendix

To start a learning cycle, at least a GeneDataInterpreter and an Evaluator is needed. Optionally a

specific GeneticOperator and/or a specific NaturalSelector can be used. Otherwise the default

SimpackGeneticOperator and the default SimpackSelector will be used.

populationSize = 50;
generations = 250;
GA_Starter.evolvePopulation(me, carInterpreter, populationSize, generations);

This method returns an array of Chromosomes. From every generation the chromosome of the best

performing individual is in this array. “carInterpreter” is the reference to the GeneDataInterpreter

used.

Configuring the GeneticOperator and the NaturalSelector

The SimpackSelector can be configured for example as follows:

int eliteSize = 10;
int grr = 3;
int jokers = 25
INaturalSelector selector = new SimpackSelector(eliteSize, grr, jokers);

Where eliteSize defines the size of the elite (in percent of the whole population), which has a

guarantee to be selected grr times (grr = guaranteed reproduction rate). “jokers” defines how many

percent of the individuals will be selected regardless of their fitness.

The SimpackGeneticOperator can be customized like this:

double crossoverRate = 0.75;
double mutationRate = 0.4;
double mmi = 0.2;
GeneticOperator go = new SimpackGeneticOperator(mutationRate, crossoverRate,

mmi);

Where mutationRate and crossoverRate define the chance for each individual do reproduce by

crossover or mutation, mmi defines the maximum mutation impact.

83

Appendix

Appendix C - GP Learning
To learn with genetic programming, first also an evaluator is needed. This evaluator is in this case

identical with the fitness function, because no GeneDataInterpreter is needed in GP. Analogue to

GA-leaning, to instantiate the evaluator, a training set and a gold standard (optionally a target

measure) is needed. But furthermore the evaluator for an amalgamation function needs to know the

ObjectSimilarityMeasure, for which the amalgamation function should be learned, and a

GP_Executor, which is used to execute the genetic programs. The measure can be a previously

GA-learned similarity measure called “measure” in the following code snippet. Having this

measure, also the GP_Executor can be created using the class SimMeasureAnalyser :

GP_Executor<Double> gpEx = GP_SimMeasureAnalyser.createGPExecutor(measure);
GP_SimMeasureFF ffTraining = new GP_SimMeasureFF_GoldStandard(gpEx, measure,

trainingSet, goldStd);

The selectors and the genetic operators work similar to the ones used in GA, the genetic operator

has only one parameter, crossoverRate, because no explicit mutation is implemented. Also there

exists no method that starts and controls the learning cycle. The learning cycle could be set up like

this:

int gpGenerations = 50;
int gpPopSize = 500;
GP_CrossOverOperator go = new GP_CrossOverOperator();
GP_SimpackSelector sel = new GP_SimpackSelector();
GeneticProgram[] pop = gpEx.createInitialPopulation(gpPopSize);
GP_BulkFitnessFunction bff = new GP_BulkFitnessFunction(ffTraining);

for (int n = 0; n < gpGenerations; n++) {
bff.evalute(pop);
GeneticProgram[] selected = sel.select(gpPopSize, pop);
pop = go.operate(gpPopSize, selected);

}

Note that in this GP-Framework the population is represented simply by the array of individuals the

population contains.

84

	1. Introduction
	2. The Local/Global Similarity Measure Framework
	2.1. Similarity Measures
	2.1.1. General Properties of Similarity Measures
	2.1.2. The Local-Global Principle
	2.1.4. Recursive Similarity Measures

	2.2. Types of Local Similarity Measures
	2.2.1. Numeric Similarity Measures
	2.2.2. String Similarity Measures
	2.2.3. Symbol Similarity Measures
	2.2.4. Object Similarity Measures

	2.3. Configuration of Local Similarity Measures
	2.3.1. Which Configurations for which types of Similarity Measures
	2.3.2. Configurations
	2.3.2.1. Distance-to-Similarity Mapping
	2.3.2.2. Similarity-to-Similarity Mapping
	2.3.2.3. Similarity Tables
	2.3.2.4. Similarity Trees
	2.3.2.5. Configuration for Measures for Complex Types

	3. Evaluating Similarity Measures
	3.1. Soundness of Similarity Measures
	3.2. The “Gold-Standard”
	3.2.1. Gold Standard using one data set
	3.2.2. Gold Standard using two data sets
	3.2.3. Using a “Target function”

	3.3. Calculating a similarity measure's deviation from the gold standard
	3.3.1. Average Difference
	3.3.2. Root-Mean-Square Error
	3.3.3. Threshold-Method

	3.4. Using Evaluation to learn Similarity Measures

	4. The Genetic Algorithm (GA)
	4.1. Terminology
	4.2. Overview of the Genetic Algorithm
	4.3. The Algorithm in Detail
	4.3.1. Fitness Calculation
	4.3.1.1. Calculating the deviation
	4.3.1.2. Calculating a fitness value from a deviation

	4.3.2. Selection
	4.3.2.1. Roulette-Wheel
	4.3.2.2. Elitism
	4.3.2.3. Equal Chance for all
	4.3.2.4. Combination of the Strategies

	4.3.3. Genetic Operators
	4.3.3.1. Crossover
	4.3.3.2. Mutation
	4.3.3.3. Combination of the genetic operators

	4.4. Parameters for the genetic algorithm
	4.4.1. List of parameters
	4.4.2. Parameter values

	5. Learning Performance with the Genetic Algorithm
	5.1. Using a Product Database
	5.1.1. Validation using a Test-set
	5.1.2. Cross-Validation
	5.1.2.1. Leave-One-out Cross Validation
	5.1.2.2. k-fold Cross Validation

	5.1.3 Cross Validation Results

	5.2. Ontology Alignment
	5.2.1. Task Description
	5.2.2. Converting the Ontology into a Set of assimilable Instances
	5.2.3. Converting the rdf-Reference into a Gold Standard
	5.2.4. Set-up of the Experiments
	5.2.5. Results
	5.2.6. Discussion, Future work

	6. Genetic Programming (GP)
	6.1. Introduction
	6.2. Conditions for successful genetic programming
	6.2.1. The Closure Property
	6.2.2. Sufficiency of Terminal- & Function-set

	6.3. Genetic programming in Detail
	6.3.1. Creating an initial Population
	6.3.2. Fitness function in genetic programming
	6.3.3. Selection
	6.3.4. Genetic Operator

	7. Results using GA & GP
	7.1. Set-up of the Experiments
	7.2. Results using the Product Dataset
	7.3. Results of learning an Ontology Alignment

	8. Implementation Aspects
	8.1. The Local/Global Framework
	8.1.1. The Local Similarity Measures
	8.1.2. The Configurations

	8.2. Evaluation of Similarity Measures
	8.3. Learning with the genetic algorithm
	8.4. The Genetic Programming Framework
	8.5. Learning an amalgamation Function using GP

	9. Conclusions & Future Work
	9.1. Summary
	9.2. Benefits & Drawbacks
	9.3. Future work

	10. References
	Appendix
	Appendix A - Using the Local/Global Framework
	A.1. To configure Similarity Measures
	A.2. To learn Similarity Measures
	A.3. An Example how to use this Framework

	Appendix B - GA Learning
	Appendix C - GP Learning

