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Abstract

For  a  growing  number  of  applications  good similarity  measures  are  crucial  to  ensure  that  the 

applications works as desired. Similarity measures can be used to find the most similar object to 

another one, or can be used to perform a categorisation task, whereby the calculated similarity value 

will be used to determine the category. But manually defining a good similarity measure, especially 

if  complex and domain specific objects have to be compared,  can be a difficult  task.  A lot  of 

domain knowledge combined with knowledge in computer science (namely how these similarity 

measures  work  internally)  is  needed,  and  there  exists  no  approved  methodology  to  do  this. 

Therefore the global goal in this diploma thesis is, instead of manually defining similarity measures, 

to learn them and to evaluate the achieved results.

To  be  able  to  learn  similarity  measures,  an  universal  framework  is  used,  the  Local/Global 

Framework. The idea is to use the Local/Global principle to compare complex objects, whereby the 

local similarity measures and the amalgamation function can be learned. Another precondition for 

this  is  to  have  an  evaluation  method  to  estimate  a  particular  similarity  measure's  soundness. 

Typically this is done by comparing the similarity measure's results with a so-called gold standard.

To learn, the evolutionary principles observed in nature will be exploited in an artificial evolution. 

This  artificial  evolution  can be  implemented  as  a  genetic  algorithm or  a  genetic  programming 

approach can be used. In the first case parameters of similarity measures will be learned, in the 

second case, using the genetic programming approach, the algorithms themselves are learned. In 

both cases the goal is to find similarity measures, which will show only a small deviation to the 

gold standard. In the case of using a similarity measure to do a categorisation, the goal will be to 

properly identify the category an object or a pair of objects (the two compared ones) belongs to.
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Zusammenfassung

Für eine wachsende Zahl von Anwendungen ist es essentiell gute Ähnlichkeitsmasse zu haben, um 

zu  erreichen,  dass  diese  Applikationen  ihren  Zweck  erfüllen.  Ähnlichkeitsmasse  können  dazu 

verwendet werden, das ähnlichste Objekt zu einem gegebenen Objekt zu bestimmen, oder um eine 

Kategorisierung  vorzunehmen,  wobei  in  diesem  Fall  die  berechneten  Ähnlichkeitswerte  dazu 

verwendet  werden  um  die  Kategorie  zu  bestimmen.  Aber  diese  Ähnlichkeitsmasse  genau  zu 

definieren, vor allem wenn diese komplexe, sachgebietspezifische Objekte vergleichen sollen, kann 

eine  schwierige  Aufgabe  sein.  Gute  Kenntnisse  über  das  Sachgebiet,  auf  das  sich  die  Objekte 

beziehen, kombiniert mit Informatikkenntissen (über die internen Vorgänge der Ähnlichkeitsmasse) 

sind  nötig  und  es  gibt  keine  standardisierte  Vorgehensweise  solche  Ähnlichkeitsmasse  zu 

definieren. Deshalb ist es das Ziel dieser Diplomarbeit, anstatt Ähnlichkeitsmasse zu definieren, 

solche zu lernen und die erreichten Resultate zu evaluieren.

Um Ähnlichkeitsmasse zu lernen, wird ein Framework benutzt, das Local/Global Framework. Die 

Idee  ist  es,  das  Local/Global  Prinzip  zu  nutzen,  um komplexe  Objekte  zu  vergleichen.  Dabei 

können die lokalen Ähnlichkeitsmasse und die Vereinigungsfunktion gelernt werden. Eine weitere 

Voraussetzung ist es, eine Evaluationsmethode zu haben um die erreichte Zweckmässigkeit eines 

Ähnlichkeitsmasses  abzuschätzen.  Dies  wird  üblicherweise  gemacht  indem  die  Resultate  des 

Ähnlichkeitsmasses mit einem sogenannten Gold-Standard verglichen werden.

Um diese  Masse  zu  lernen,  werden die  Prinzipien der  natürlichen Evolution ausgenutzt.  Diese 

künstliche  Evolution  kann  als  genetischer  Algorithmus  oder  mit  dem  Ansatz  der  genetischen 

Programmierung  realisiert  werden.  Im  ersten  Fall  werden  die  Parameterwerte  für  die 

Ähnlichkeitsmasse  erlernt,  im  zweiten  Fall,  wo  der  Ansatz  der  genetischen  Programmierung 

verwendet wird, wird ein Algorithmus erlernt. In beiden Fällen ist es immer das Ziel, ein Mass zu 

finden,  dass  eine  möglichst  geringe  Abweichung  zum  Gold-Standard  aufweist.  Wenn  die 

Ähnlichkeitsmasse  verwendet  werden um eine  Kategorisierung durchzuführen,  ist  das  Ziel,  die 

Kategorie, zu der ein Objekt oder Objektpaar (die beiden verglichenen) gehört, korrekt anzugeben.
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1. Introduction

1. Introduction

In a growing number of applications, good similarity measures are needed to ensure that they run 

properly and bring a  significant benefit  for the users.  Such applications may be comparison of 

products from different online shops, case based reasoning applications or data mining tasks. 

Unlike for mathematical operations, for similarity measures there exists no exact definition, how 

big  (or  how small)  the  similarity  between to  objects  is.  Therefore  a  lot  of  different  similarity 

measures exist and a lot of them also can be configured to achieve, that they calculate a similarity 

value which the user of the application accepts (or expects). For comparison of complex objects a 

combination of different similarity measures can be used to calculate a similarity value between two 

objects. In practice this leads to the fact that each similarity measure has a set of parameters which 

can  be  set.  In  case  of  using  a  combination  of  similarity  measures  the  number  of  parameters 

increases. Setting all these parameters to a meaningful value is crucial for making successfully use 

of a similarity measure. 

One way is to ask a domain expert (of the domain, the compared objects come from) to tell us how 

to  set  the  parameters.  But  this  assumes  that  the  domain  expert  also  knows  about  similarity 

measures, the meaning of the parameters etc., things not out of his domain, but part of the computer 

science. 

Another method is to learn the parameter values using a machine learning technique. Usually a 

machine learning technique needs a feedback, which tells whether the learning results are good or 

bad. In the case of learning similarity measures (or better their parameter settings), this can be 

achieved by comparing the result of a comparison with a desired similarity value, that the compared 

objects should have. This desired value could be defined by a domain expert, who (to do this task) 

needs no knowledge about computer science at all. He just can define that, according to his opinion 

(using his domain knowledge), two particular objects have a particular similarity value. A whole set 

of such comparisons, where the desired result is known, is called a gold standard and can be used to 

give feedback to a learning algorithm.

In this diploma thesis I will show how we can exploit the principals of evolution to learn good 

similarity measures. Therefore first the genetic algorithm and afterwards also genetic programming 
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1. Introduction

will be used to learn good similarity measures. Also we want to see how we can learn similarity 

measures that compare complex objects. Therefore the Local-Global principle is used and enhanced 

to work in a recursive way. This is done because we want to allow that an object's property may be 

a complex object (that may contain complex attributes again and so on...). To achieve this goal a 

“Local/Global similarity measure” framework has been developed which is presented in Chapter 2.

Having a similarity measure and a somehow (e.g. by a domain expert) defined gold standard, a 

method  is  needed  to  evaluate  how  good  this  similarity  measure  might  be.  This  is  needed  to 

determine the feedback, which the learning algorithm should get. How a similarity measure can be 

evaluated is described in Chapter 3.

In Chapter 4 the genetic algorithm (GA) will be introduced. The general aspects of the algorithm 

will be presented, always with a focus to learn similarity measures using a GA. Especially a detailed 

description how a similarity measures deviation (which should be small) can be transformed into a 

fitness value (which should be large) will be presented. Chapter 5 shows an evaluation of learning 

similarity measures using a genetic algorithm. 

Afterwards  Chapter 6  introduces the method of genetic programming. In Chapter 7 an evaluation 

of the results, using genetic programming and a genetic algorithm to learn similarity measures, is 

presented.

Finally  a  conclusion  part  and  a  chapter  where  some  aspects  of  implementation  are  presented 

conclude this diploma thesis.

2



2. The Local/Global Similarity Measure Framework

2. The Local/Global Similarity 
Measure Framework

In this chapter an introduction into similarity measures in general and the Local-Global framework 

is presented. The Local-Global framework can be used to define such similarity measures and will 

be needed to learn similarity measures later on. The goal of  having such a framework is that one 

has standardized interfaces to evaluate and configure similarity measures. This will be important 

when learned parameter settings have to be transformed into a working similarity measure.

2.1. Similarity Measures
A similarity measure is a function that calculates a similarity value between two objects x and y. 

SimValue=Sim x , y 

The calculated value  usually has a range from 0 to 1, whereby the meaning of 0 is defined as no 

similarity at  all  between the two objects, and the meaning 1 is defined as maximum similarity 

between the two objects or equality.

2.1.1. General Properties of Similarity Measures
For all possible concrete similarity measures one could think about some general properties which 

they could fulfil or not. These properties could be used to classify similarity measures and help to 

find a measure that fits for a given domain.

Reflexivity

This property is fulfilled when the calculation of the similarity between two equal objects always 

returns 1. 

∀ x : Simx , x=1

Strong reflexivity is given when two objects have a similarity value of 1, if and only if these two 

objects are identical.

∀ x , y : Simx , y =1 x= y

3



2. The Local/Global Similarity Measure Framework

Usually  similarity  measures  for  primitive  types,  such  as  numbers  or  strings,  fulfil  the  strong 

reflexivity, while similarity measures for complex types including weights may break the strong 

reflexivity because e.g. one weight could be 0. Furthermore reflexivity is demanded for a similarity 

measure in most domains.

Symmetry

This property describes whether the calculated similarity value depends on the order of the two 

arguments given to the similarity function. A measure is symmetric if it does not.

∀ x , y : Simx , y =Sim  y , x 

Symmetry or asymmetry of similarity measures can be demanded. The following example shows a 

case where asymmetry is demanded. Imagine looking for a storage device with a capacity of 20 GB. 

A device with a capacity of 40 GB will fulfil your needs. On the other hand if you are looking for a 

40 GB device, one which only 20 GB will not be acceptable.

Monotony

Assuming that  for  all  possible  values  that  one  wants  to  compare with a  similarity  measure an 

ordering relation (<) is defined (e.g. all possible values are numbers). In this case the similarity 

measure can be monotonic or not. It will be monotonic if (and only if) the similarity between two 

objects is smaller than all similarities between any of the two and a third object in between them 

(based on the ordering relation).

∀ x , y , z :x yz∨ z y x Simx , zSim x , y

Knowing about this property can help a lot in practice to configure or to learn a similarity measure 

because it decreases the search space by one dimension.

Triangle inequality

Usually the triangle inequality is defined for a distance measure to be a metric. Having three objects 

and a particular distance between each pair of them, in this case the triangle inequality defines that 

none of the three distances may be larger than the sum of the two others.

∀ x , y , z :dist  x , z ≤dist x , ydist  y , z 

Formulated for similarity measures the triangle inequality would look like this :

∀ x , y , z :Sim x , z 1≥Simx , y Sim y , z 

4



2. The Local/Global Similarity Measure Framework

This  means  that  going  over  a  “third  edge”,  instead  of  calculating  the  similarity  value  directly 

between two objects and adding 1 (the maximum similarity value), may not lead to a larger value. 

For a reflexive similarity measure the triangle inequality could also be formulated as follows :

∀ x , y , z :Sim x , z Sim z , z≥Sim x , ySim y , z 

2.1.2. The Local-Global Principle
If one wants to compare complex objects instead of just strings or numbers this is done mostly 

using the Local-Global Principle. Assume we have objects with the attributes a1,  a2,  a3,  ...  ,  an. 

Defining one single function that uses the attribute values of two objects to calculate a similarity 

value would be quite  complex and not  very flexible.  So usually  one would define a  similarity 

measure  for  each  of  the  attributes,  the  local  similarity  measures  [Stahl  2004].  To  calculate  a 

similarity between two objects, first the similarities between the attributes have to be calculated. To 

calculate then the overall similarity, one can just take the average of all attribute results,

Sim=1
n∑i=1

n

localSimi

or a weighted average.

Sim=∑
i=1

n

i⋅localSimi

While n is the number of attributes, localSimi is the local similarity value of the i-th attributes and 

ωi  is the weight for the i-th attribute. Note that ∑i=1
n i must be 1 to ensure that the value of Sim 

stays in the range between 0 and 1.

Limitations of the weighted average method

Generally speaking the average or weighted average is the amalgamation function of a (global) 

similarity measure. But of course these two methods of calculating the global similarity are not the 

only ones possible, and also with the weighted average method some phenomena are thinkable 

which could not be represented properly. Thinking of objects representing rectangles, they would 

each have two numeric attributes length and width. One could define that for his needs, a similar 

length is more important than a similar width, by setting the weight for the length attribute higher 

than the one for the width. But if one would want to achieve that two rectangles which are both 

squares should get a higher similarity he wont be able to do that just by setting useful parameters 

for the two attributes length and width. Say we have three rectangles with length/width: 4/4, 4/8, 
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and 8/8. However the setting of the weights is chosen,  the rectangle 4/8 will always be at least as 

similar to the square 4/4 as to the other square 8/8. One possibility to overcome this limitation is to 

add  a  third  (calculated)  attribute  ratio,  which  describes  the  shape  of  the  rectangle.  Another 

possibility  is  to  create  more  complex  amalgamation  functions  which  would  deal  with  such 

phenomena. 

The first possibility has its drawback that redundant data has to be created before to be able to 

calculate a proper  similarity measure and one must know that he wants to use the aspect of the 

length/with ration in his measure. This makes this method not applicable for using machine learning 

techniques to improve the similarity measures. 

The second possibility will be treated in the section about genetic programming, where I will use 

methods of genetic programming to find good amalgamation functions. The idea is, that contrary to 

using a genetic algorithm to learn weights or any other predefined parameters, a genetic program 

can also evolve an own (not predefined) structure for the amalgamation function.

2.1.4. Recursive Similarity Measures
Another limitation of the (traditional) Local-Global principle is that the attributes of an object must 

have a  primitive type to fit  the local  similarity  measure.  This is  often not  the case with more 

complex data. For comparison of personal data, each person may have an attribute name, surname, 

date_of_birth and education. Name and surname would be of type string and be non problem for a 

local similarity measure dealing with strings, but the two other attributes would be complex objects 

(such as “person” itself). Say date_of_birth consists of the tree attributes year, month and day, while 

education has as (sub-)attributes education_type and year_of_graduation.  One way to deal  with 

6
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2. The Local/Global Similarity Measure Framework

such data  is  being able  to  handle a  global  similarity  measure as a  local  one,  so that  the local 

measures for date_of_birth and education (in our example) would be in fact global measures with 

their own local measures for their attributes.

2.2. Types of Local Similarity Measures
Basically the type of a local similarity measure strongly depends on the data type of the values 

which  have  to  be  compared.  Basically  four  different  data  types  can  be  separated.  These  are 

numbers, strings, symbols and composites of these 3 types (i.e. objects). So there are four types  of 

similarity measures, one for each data type. 

2.2.1. Numeric Similarity Measures
Numeric similarity measures can calculate the similarity of two numeric values. Generally they 

calculate a distance (in the easiest case the difference) and in a second step transform this distance 

to a similarity value between 0 and 1. 

Sim=dist2simdist x , y 

Where  dist is  the function calculating the distance between the two values  and  dist2sim is  the 

transformation function.  Possibilities  for  the  distance function  are  taking just  the  difference  or 

taking the difference of the logarithms of the original values. As transformation function a linear 

interpolation between two (or more) defined values is possible. Figure 2 shows a transformation 

with 4 predefined values. Usually the value for  dist=0  is set to 1, and the value for a maximum 

distance is set to 0. For all distance values bigger than this, the similarity will be set to 0. With 

distance functions that also return negative values, also asymmetric numeric similarity measures 

can be configured.

2.2.2. String Similarity 
Measures

String  similarity  measures  can 

calculate  the  similarity  between 

two  strings.  Analogue  to  the 

number measures they consist of 

an  internal  measure  which 

generates  a  “raw-similarity” 
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between the two strings, and in a second step this value is transformed to the definitive similarity 

value with a range 0 to 1. 

Sim=rawSim2Sim internalMeasure  x , y

For the internal measure mostly Levensthein is taken, but others are possible of course. For the 

transformation a linear interpolation between 2 (ore more) defined points can be done (like for the 

numerical measures). The difference is, that usually the value for rawSim = 0 is 0 and the value for 

rawSim = 1 is 1.

2.2.3. Symbol Similarity Measures
Symbol similarity measures can be used, when an attribute has a finite number of values that it can 

adopt. For example the attribute education_type in our persons example could be limited to the 

values {school, college, university, technical university}. In this case a symbol similarity measure 

can be used, which returns a similarity value for each combination of values. Internally symbol 

similarity measures perform no calculation at all (unlike the string- and number similarity) but just 

lookup a value in a similarity table (see page 10,  2.3.2.3. Similarity Tables). But note, that this 

similarity table must be defined manually (e.g. by a domain expert) or, in case of learning similarity 

measures, will be part of the configuration that will be learned.

2.2.4. Object Similarity Measures
These  measures  are  always  used  for  complex  data  types  (objects).  They  consist  of  one  local 

similarity measure for each attribute of the object (in fact for each attribute that should be taken into 

account for the similarity calculation), matching to the type of the attribute. If an attribute is again a 

complex  data  structure,  its  similarity  measure  would  be  an  object  similarity  measure  again. 

Furthermore,  it  contains an amalgamation function which calculates one global similarity value 

from all values calculated by the “attribute”-measures. For example an object similarity measure 

can compare the date_of_birth of two persons from our example. To do so, it  consists of three 

number similarity measures, one for each attribute which the complex attribute date_of_birth has.

2.3. Configuration of Local Similarity Measures
As seen in the previous chapter, every type of similarity measure has its own needs to be configured 

for  a  concrete  application.  So  we  can  say  there  are  (types  of)  measures  on  one  hand  and 

configurations on the other hand. A type of a measure and a configuration together will result in a 

concrete similarity measure, ready for being used in an application. Looking forward, the topic of 

8
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this theses is learning similarity measures, the configurations also act as link between the learning 

algorithm and the similarity measures. So actually learned will be configurations (for the types of 

similarity measures).

2.3.1. Which Configurations for which types of Similarity Measures
As we have seen, there are basically four different types of similarity measures and they have all 

(more or less) different needs of configuration data. Let's see which configuration data can be used 

for which types of similarity measures.

Note  that  Distance-to-Similarity 

Mapping and Similarity-to-Similarity 

Mapping is quite analogue. The only 

difference  is  in  the  meaning  of  the 

input  data.  While  Distance-to-

Similarity usually maps a distance of 

0 to a similarity of 1 and larger distances will  result in lower similarity values,  Similarity-to-

Similarity maps 0 to 0 and 1 to 1, larger values than 1 will not exist since the input is already a 

(raw-)similarity. Therefore, a Similarity-to-Similarity mapping is just a special case of a Distance-

to-Similarity mapping.

2.3.2. Configurations
In this section we will take a look at these configurations in detail.

2.3.2.1. Distance-to-
Similarity Mapping
A  Distance-to-Similarity 

Mapping  consists  of  an 

array  of  similarity  values 

sim1, sim2,  sim3,  ...,  simn 

and  an  lower-  and  upper 

boundary  distmin and 

distmax. All input distances 

lower  (or  equal)  than 

distmin will be transformed 

9

Table 1: Types of measures and configurations

Type of measure Possible Configuration
Numeric Distance-to-Similarity Mapping
String Similarity-to-Similarity Mapping
Symbol Similarity Table or Similarity Tree
Object Object Similarity Configuration

Figure 3: A general Distance to Similarity mapping, in this mapping negative and 
positive distances will not be transformed in the same way, a similarity measure 
would not be symmetric

Sim

distx distmax

sim2

distmin distmin+x
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to the similarity value sim1. Values bigger (or equal) than distmax will get the similarity value simn. In 

Figure 3 (and usually also in practice) sim1 and simn is 0. n is chosen to be 7. The width x of one 

linear section can be calculated as :

 x=
dist max−dist min

n−1
  

The  other  similarity  values  of  the  array  will  be  distributed  equally  on  the  remaining  interval 

between distmin and distmax. Distances within this interval will be calculated as follows: First, the two 

nearest (upper and lover) similarity values from the array will be identified and second, a linear (or 

quadratic...) interpolation between these two similarity values is done to find the value for the given 

distance.

Note, that using a distance function, which returns also negative values (e.g. a simple difference), 

this  mapping  will  allow to  define  asymmetric  measures.  Also  reflexivity  is  not  guaranteed  as 

inherent  property of  this  configuration.  There are  methods to  ensure symmetry,  reflexivity and 

monotony. 

Ensuring symmetry can be done by mirroring the similarity values at the dist=0 axis.

Ensuring reflexivity can be done by setting the similarity value for dist=0 to 1.

Monotony can be achieved by letting the similarity values continuously increase or decrease over 

the whole range.

2.3.2.2. Similarity-to-Similarity Mapping
As shortly mentioned in the general section, a Similarity-to-Similarity mapping is just a special case 

of a Distance-to-Similarity mapping. The Similarity-to-Similarity mapping is one, that is ensured to 

be reflexive (meaning in this case, that the similarity value must be 1 for a “raw-similarity” of 1). 

Furthermore it is monotonically ascending with an increasing raw-similarity value, and it is ensured 

that a raw-similarity of 0 will result in a similarity of 0.

2.3.2.3. Similarity Tables
Similarity tables are useful to define similarity values between symbolic attribute values. In the per­

sonal data example the attribute education_type can have 4 different values which could be looked 

at as discrete symbols. So a similarity table for the (symbol-)similarity measure for this attribute is 

shown in Table 2. A measure using this table would be reflexive because all values in the main di­

agonal  are 1. A measure would not be symmetric because  the value in the field School / University 

is not the same as University / School. A general similarity table for an attribute that's value range 

10
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consists 

out  of  n 

different 

values 

(symbols) 

will have the size of n2. If reflexivity is desired, the number of free values decreases to n(n+1) and 

in case of symmetry to n⋅n1
2 . If a measure should get symmetric and reflexive (in fact the most 

common case) the number of free values is n⋅n−1
2 . However one drawback for machine-learning 

of similarity tables is that the search space (in every variant) increases with O(n2).

2.3.2.4. Similarity Trees
Sometimes the set of symbols, which an attribute can have as its value, can be embedded in a 

meaningful taxonomy [Gabel 2005]. Thinking of a symbolic attribute vehicle_type in a database of 

(motor-)vehicles,  the value range could be {Limousine, Station-wagon, Cabriolet, Coupé, Van, Open-

truck, Closed-truck}. One could arrange these Symbols in a taxonomy shown in Figure 4.

For each node of the tree a similarity value can be defined. So the similarity-value  between to types 

of vehicles can be looked up by finding the Nearest-Common-Parent (NCP) node of the two nodes, 

which represent the vehicles to be compared. The idea is, that all cars among each other have at 

least the similarity of car. But if two cars are also both 4-doors cars, they will get the similarity of 

all 4-door cars, which is usually higher because of the greater specialisation. This strategy, to look 
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Table 2: An example of a similarity table, the concrete values might be set by a domain expert or learned 
by a learning algorithm

School College University tech. University
School 1 0.6 0.2 0.2
College 0.6 1 0.5 0.5

University 0.3 0.5 1 0.9
tech. University 0.2 0.5 0.9 1

Figure 4: Similarity Tree for the attribute vehicle_type
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up similarity values between symbols, decreases the amount of parameters to be set to the number 

of nodes in the tree (unlike the O(n2) for the similarity tables). Note that an inherent property of the 

similarity tree is that it will lead to a symmetric similarity measure, because the NCP will be the 

same for two nodes, independent from the a order of the attributes. 

∀ x , y : NCP  x , y=NCP x , y 

 If a reflexive measure is desired, the number of parameters shrinks about the number of leaf nodes 

because their values can be set to 1 in this case. Looking at the example with the vehicle_type 

attribute,  Table 3 shows the 

numbers  of  parameters  that 

have to be set. 

2.3.2.5. Configuration for Measures for Complex Types
As seen in  chapter 2.2.4  an object  similarity  measure basically  consists  of  a number of  (sub-) 

similarity measures and an amalgamation function.  So to configure a concrete object similarity 

measure, concrete parameters for the amalgamation function and a configuration for each similarity 

measure,  which  it  contains,  is  needed.  I'll  call  this  an  object  similarity  configuration.  If  the 

amalgamation function in the object similarity measure is defined to be a weighted average, its 

parameter would be an array of the weights. To configure the similarity measures for the object's 

attributes, an array of configurations can be used (mappings, similarity trees, similarity tables or for 

a complex attribute another object similarity configuration).
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Table 3: Number of parameters to be set using a symmetric similarity table or a  
similarity tree

Similarity table Similarity Tree
irreflexive 28 12
reflexive 21 5
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3. Evaluating Similarity Measures

Unlike formally well defined algorithms, as for example an equality operator, a similarity measure 

will never be correct or wrong. It will further be more or less meaningful (or useful) in some cases. 

In this section we will see how one could evaluate whether a concrete similarity measure is useful 

or not. Unlike in the last section, the similarity measure itself and the (complex-) objects which it 

compares, can be considered as black boxes.

3.1. Soundness of Similarity Measures
Not only that  the results  of a  similarity  measure are  generally  not  mathematically  defined and 

therefore  can only be more or less useful, the soundness of a similarity measure can also depend 

strongly on the users needs. For example, if we have a database of cars (telling us about licence 

number, colour, shape, manufacturer, engine, year of manufacture, number of seats etc.) and for this 

a similarity measure which is able to compare two cars, the soundness of one single similarity 

measure now varies from use case to use case. If the police tries to find a car similar to a witness' 

description especially the two attributes colour and shape will be important (and maybe licence 

number in case the witness was able to read parts of it). On the other hand a mechanic looking for a 

special replacement part,  colour, shape and licence number are (usually) unimportant at all, but 

important would be the manufacturer and maybe the engine. So we can conclude, that a globally 

useful similarity measure usually does not exist.  A similarity measure's soundness will strongly 

depend on the users needs (and maybe even subjective preferences).

3.2. The “Gold-Standard”
One way to estimate the soundness of a similarity measure is to check it against a so called gold 

standard. This is a set of comparisons with a desired similarity value, defined by  the user or a 

domain  expert.  In  our  car-database  example  this  could  be  a  subset  of  all  cars  where  for  each 

possible pair a desired similarity value is defined.

13
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3.2.1. Gold Standard using one data set
In our car database we have just one set of objects and we usually want to compare the members of 

this set among themselves. So if we have the set of cars ℂ and the set of car pairs P=ℂ×ℂ , 

for a subset Q⊂P  a desired (or say defined) similarity value is given. If the similarity measure 

for all (or the most) of these pairs returns the same value as defined in the gold standard, when 

comparing the two cars of the pair, it will be a useful similarity measure (or at least as useful as the 

values in the gold standard are). Another way to define Q (the set of pairs of which we know the 

correct  similarity  values)  is  to  define  a  subset G⊂ℂ and  Q=G×G .  This  could  also  be 

considered as a quadratic matrix or a similarity table. 

3.2.2. Gold Standard using two data sets
In another case one might have two databases of car models from two different manufacturers A 

and B and wants to find the most similar model from manufacturer B to a given model from A (e.g. 

to buy afterwards the cheaper one). In this case the gold standard should be defined for the pairs 

P=A×B while A and B will be subsets of all models in the database from manufacturer A or B, 

respectively.  In this case the matrix usually won't  be quadratic.  Also it  will  not  be possible to 

consider the gold standard as a similarity table to check whether it is reflexive. The last section 

(only one data set) can be seen as a special case of using two  sets, namely the one where the two 

sets are identical.

Another  example  for  this  case  could  be  if  one  wants  to  find  semantically  equivalent  (but 

syntactically different) attributes / classes in two different ontologies.

3.2.3. Using a “Target function”
A way to create gold standard data is to use a so-called target function. This will be a function (e.g. 

a concrete similarity measure) that may be defined by a domain expert. Using this function, one 

could easily generate the gold standard just by calculating the similarity value for each pair that 

shall become member of the gold standard. 

One might  think it's  senseless  to  use a  target  function  to  create  a  gold  standard to  evaluate  a 

similarity measure, because the target function itself would of course be the best fitting similarity 

measure to this gold standard. So why all that work if also just the target function could be used as 

the needed similarity measure? There are two cases where this nevertheless makes sense:

14
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1. It could be, that the defined target-function has a bad runtime or a lot of memory usage and 

the goal will be to find a similarity measure that leads to the same (similar) results but 

having a better runtime (or memory usage).

2. If (and this is the case in this diploma theses) the goal is just to learn a similarity measure 

that fits to a somehow created gold standard (and not one that will necessarily be used in 

practice).  This is  the case if  one is  not  primarily  interested in  a  practically  very useful 

similarity measure, but only wants to test  if the chosen learning mechanism has a good 

performance (regardless of  the fact that the algorithm learns in practice useless or useful 

measures).

3.3. Calculating a similarity measure's deviation from 
the gold standard

Independent of who has defined the gold standard with which 

method,  a  key point  of  estimating the quality  of  a  similarity 

measure will always be the calculation of its deviation to the 

gold  standard.  This  basically  consists  of  two steps:  choosing 

pairs of objects to compare and choosing a meaningful measure 

for calculating the deviation. 

Choosing the pairs of objects to compare could be done just by 

using all defined pairs in the gold standard. But often this will 

lead to a lot of comparisons and so to a long runtime (especially, 

if the subsets for which the gold standard is defined grow the 

number of comparisons increases quadratically to the size of the 

gold standard' s subsets). 

Another  possibility  is  to 

choose  a  value  n and  then 

compare  each  object  of 

subset  A  with n objects  of 

subset  B.  These  n objects  of  subset  B could  be  chosen 

randomly. In the special case that A is identical with B it is also 

possible to choose the next  n  objects to be compared with the 

first object. Assuming A contains m objects and ai should be the 
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Figure 5: All possible comparisons
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i-th object in the set, a1 would be compared to a2, a3, a4, ... an+1. This will lead to a kind of ring of 

comparisons and so ensure that each object is exactly 2n times part of a comparison.

The details of the measures for the deviation will be described in the next three (sub-) sections.

3.3.1. Average Difference
This deviation measure just takes the difference between the value from the gold standard and the 

value from the similarity measure. It will summarize all absolute values from this differences and 

divide this sum by the number of comparisons made. 

avgDiff =1
n ∑i=1

n

∣goldStd i−simValue i∣

where n is the number of comparisons,  goldStdi is the gold standard value and  simValuei is the 

calculated value for the i-th comparison. 

3.3.2. Root-Mean-Square Error
Another possibility is to use the root-mean-square error (rms) as measure for the deviation.

rms= 1
n∑i=1

n

goldStd i−simValue i
2

Thinking of just two comparisons and both having a difference to the gold standard of 0.1, the 

average difference and the root-mean-square error both would be 0.1. If the differences would be 

0.05 and 0.15 the average difference would still be 0.1 but the rms would grow to 0.1118. This is 

because the rms “punishes” single bigger differences stronger than it awards single small ones. Due 

to this fact  the value of the rms is always higher than the average difference. This phenomena 

increases by choosing a bigger exponent in the formula, and shrinks by choosing a smaller one. The 

two deviation measures could be unified in one formula by introducing another parameter a for the 

exponent.

deviation=a 1
n∑i=1

n

∣goldStd i−simValue i∣
a

Setting  a = 1  will  lead to  the average difference,  a  = 2 will  result  in  root-mean-square error, 

choosing an even bigger a will increase the “punishment” for single large differences.
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3.3.3. Threshold-Method
The threshold method uses a defined threshold value  t. All comparisons where the gold standard 

and the calculated value are both over or both below the threshold are treated as correct. All other 

comparisons, i.e. if one value is over and one below the threshold are treated as error. All errors will 

be counted. The amount of errors divided by the total number of comparisons will be the so-called 

threshold error of the tested similarity measure. This deviation measure can be used if the usage of 

the similarity measure at the end will be a categorisation task (e.g. finding semantically equivalent 

attributes in two ontologies).

3.4. Using Evaluation to learn Similarity Measures
Note that evaluating a similarity measure, as seen in this chapter, has initially nothing to do with 

learning a similarity measure. But of course a meaningful evaluation of a  single similarity measure 

is crucial for doing any machine learning.  Moreover these methods will also be used for testing the 

learning results (e.g. against a test set) and can also be used for other tasks different from machine 

learning. Note also, that the evaluation methods do not yet determine which learning method must 

be used. In this diploma theses these evaluation methods will be used to learn similarity measures 

with the genetic algorithm and genetic programming. 
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4. The Genetic Algorithm (GA)

Generally speaking, the genetic algorithm tries to adapt the Darwinian principle of “survival of the 

fittest” as  found in nature to an algorithm. The goal is to get an artificial evolution that generates 

better  and  better  solutions  to  a  given  problem.  Unlike  the  classical  engineering  approach  of 

development, much less knowledge (theoretically none at all) about  the solution's area of expertise 

should bee needed. Like nature which knows nothing at all about physics, chemistry and so on but 

nevertheless is  able  to  create very well  performing creatures  [Dawkins 1986].  As in nature,  in 

artificial evolution a kind a construction plan is encoded to a chromosome. The genetic algorithm 

then has the task to come up with better and better “construction plans” for the solution one is 

looking for. The goal is to find a good construction plan and so to find a good solution to a given 

problem. Additionally  it  will  be presented how a genetic  algorithm can be used to  learn good 

similarity measures [Stahl and Gabel 2003]. 

4.1. Terminology
In this section the specific terminology, which is used later on, will be shortly introduced. 

– A chromosome or genotype is the “construction plan” for the solution (as in nature).

– A gene is the smallest unit of the chromosome, a  gene has a  gene value. One or more gene 

values usually represent the value of one specific parameter of the solution. 

– A phenotype is the solution itself. If the solution is a physical thing the phenotype is this thing, 

if the solution is a algorithm (e.g. a similarity measure) the  phenotype is this algorithm. The 

phenotype is needed to determine (calculate / meter) if it has the desired properties and so has a 

high  fitness. Determining the fitness only by analysing the  genotype /  chromosome will not 

work.

– A population is a set of  genotype or  phenotypes. Usually before determining the fitness for 

each genotype, its phenotype will be built up. The population is often used for the whole set 

of genotypes or phenotypes a GA works with.

– An  individual is one  genotype or  phenotype of the  population. The population consists of 

individuals.
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– Fitness or fitness value is a number that describes how good a particular phenotype can solve 

the problem, or how near the phenotype is to the ideal solution. The phenotype's fitness can be 

transformed to its genotype (“its” means the genotype which was used as construction plan for 

this phenotype), or generally the individual's fitness.

– The  fitness function is the function that determines the  fitness of an  individual. The fitness 

function has as argument a  phenotype or a  genotype,  the first step a fitness function, which 

gets a genotype as its argument, has to do, is to build up the phenotype. 

– Selection is the process that determines which individuals may take part at the reproduction. 

The selection should use the fitness of the single individuals to determine that.

– Reproduction is the process that builds new genotypes / chromosomes out of the genotypes / 

chromosomes of the selected individuals (where selected means, that the selection process has 

chosen them to reproduce).

– The generation tells how many times already reproduction has happened. Unlike nature, in the 

GA usually all individuals reproduce themselves at one time, so all individuals of a population 

will be in the same generation.

4.2. Overview of the Genetic Algorithm
If the solution for a problem should be found or improved using a genetic algorithm, it is necessary 

that it it can be parametrised. If for example an ideal shape for a fuel pipe is desired it could be first 

parametrised in a way that, for each section of the pipe a parameter defines its curvature.  Each 

parameter will then be analogue to a gene and all parameters together result in a chromosome or 

genotype of the solution.

Second there must  be  a  method to  come from the  genotype  (i.e.  the  parameter  values)  to  the 

working  solution  (in  our  example  the  fuel  pipe).  This  is,  generally  speaking,  the  phenotype. 

Looking at the implementation, the data which the so-called GeneDataInterpreters will get, is the 

genotype, and the built up similarity measure is the phenotype (in some special cases the genotype 

and the phenotype may be identical but usually this is not the case).

Third a method to calculate or meter the phenotype's fitness is needed. This is the so called fitness 

function.  The better the fitness value will  be, the better  will the chances be that this particular 

phenotype (or its genotype respectively) will be reproduced. 

The genetic algorithm then generally repeats following steps in a loop:

1. Create from each genotype of the population its phenotype
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2. Determine  the  fitness  of  all 

phenotypes  using  the  fitness 

function.

3. Select the genotypes which will 

take  part  in  the  reproduction 

(according to their fitness values)

4. Reproduce  the  selected 

genotypes using crossover and/or 

mutation

Note  that  the  term  “population”  is 

important. Using only one genotype will 

not  work because out  of  one genotype 

no selection can be done. So the genetic 

algorithm  always  works  with 

populations of genotypes.

4.3. The Algorithm in 
Detail

In this section I will give a detailed description of the major components (see Fig. 8) of the GA and 

its possible variations. I will not describe the details of the process “Build up phenotype” because 

this step is very domain specific and in my opinion not part of the GA. But having a method to 

build up the phenotype is a precondition to use a genetic algorithm. Depending on the concrete 

implementation, “building up the phenotype” can also be part of the fitness calculation in a way that 

the fitness function actually has the task to evaluate a genotype. In the case of learning similarity 

measures  using  the  Local/Global  framework  (introduced  in  chapter  2),  the  so  called 

GeneDataInterpreters will be used to build up the configurations of the similarity measures and than 

the configurations build up the concrete (working) similarity measures. For more details how the 

phenotype is built up in this case, see in section “A.2. To learn Similarity Measures” on page 77.
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4.3.1. Fitness Calculation
Fitness calculation basically consists out of two steps, first one or more domain specific attributes 

of  the  phenotype  will  be  metered  or  calculated  and  in  the  second  step  these  values  will  be 

transformed to one global fitness value for the phenotype (or its genotype). In the fuel pipe example 

a property can be the metered flow rate. For evolving similarity measures the central property will 

be the deviation to a gold standard.

4.3.1.1. Calculating the deviation
When the fitness of a similarity measure shall be calculated, calculating its deviation will be the 

first step. Several methods  to to this exist (e.g. calculating the average difference or the root-mean-

square error). A detailed description of this task can be found in chapter 3.3.

4.3.1.2. Calculating a fitness value from a deviation
One evolving similarity measures, is of course interested in measures which have a small deviation. 

To achieve  this,  it  is  necessary  to  transform the  “raw”  deviation  value  to  a  fitness  value  that 

increases if the deviation decreases. To do this a hyperbolic function can be used. 

fitness deviation= z
deviationa

−b

Note the three parameters 

a, b and  z, this  common 

hyperbola comes up with. 

These can be used to adapt 

the  hyperbola  to  the 

concrete  needs  one  might 

have,  transforming  a 

deviation  to  a  fitness. 

These  might  be  that  a 

defined maximal deviation 

leads to a fitness value of 

0and that a deviation of  0 

leads to a defined maximal 

fitness value (or infinity if 

a is chosen to be 0). 
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Figure 9: Hyperbola to transform deviation to fitness  
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Since similarity values are always in the range from 0 to 1, the maximal deviation thinkable would 

be 1 and so one could wish that the fitness of such a measure should become 0 (fitness(1) = 0). 

Another method is to calculate the average distance two randomly chosen values in the interval 0 to 

1 will have.

avgDist x =x2−x 1
2

This is the average distance two random values will have depending on the value of the first one 

chosen. Integrating this function from 0 to 1 will lead to the overall average distance.

avgDist=∫
x=0

1

x2−x1
2
= 1

3

So it is possible to define fitness  1
3  to be 0 because also a random generator will achieve this 

deviation value .

So if one defines two points which the hyperbola has to cross, namely,  fitness(0) =  fitnessmax and 

fitness(deviationmax) = 0, it is possible to set up two equations for the parameters (a, b and z) of the 

common hyperbola. So a third point of the  hyperbola is needed (or from other point of view: can be 

chosen) to set up the third equation. Having these three points it is possible to calculate the three 

parameter values. I suppose to define a value fitnessmean, that defines the  fitness function's value for 

the deviation of deviatonmax

2 . Choosing this value to be fitnessmax

2 , the resulting function would be a 

straight line. The smaller this value is chosen the  bigger the curvature of the hyperbola will get. 

The choice of this value will be important for the selection (the next step in the GA), because it 

actually defines how much fitter a phenotype with a smaller deviation will get. Choosing a small 

value will increase the evolutionary pressure on individuals which have a smaller deviation than 
deviatonmax

2 . Following three equations can be set up:

z
a
−b= fitnessmax

z
deviationmaxa

−b=0

z
deviationmax

2
a

−b= fitnessmean
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Solving these would show following results:

a=
fitnessmean⋅deviationmax

fitnessmax−2⋅fitnessmean

b=
fitnessmax⋅fitnessmean

fitnessmax−2⋅fitnessmean

z=a⋅ fitnessmaxb=
fitnessmean⋅deviationmax

fitnessmax−2⋅ fitnessmean
⋅[ fitnessmax

fitnessmax⋅fitnessmean

fitnessmax−2⋅fitnessmean ]
Once  the  three  parameters  fitnessmax,  deviationmax and  fitnessmean have  been  defined,  the  three 

parameters for the hyperbola can be calculated and so, the transformation from deviation to fitness 

becomes a well defined function which (hopefully) fulfils the users needs.

4.3.2. Selection
The main goal of the selection is to give the fitter individuals (i.e. better similarity measures) a 

better chance to reproduce themselves. To achieve this, usually the roulette wheel strategy is used. 

A secondary goal of the selection could be to ensure that the fittest (or the fittest 10%) will always 

reproduce. And as third goal, with a good selection strategy the diversity of the whole population 

can be raised (or better: a good selection strategy can avoid, that the diversity goes down to 0 and 

the found individuals stick in a local maxima).

4.3.2.1. Roulette-Wheel
This selection strategy can be interpreted as 

a roulette wheel where each individual has 

its  sector.  If  the  ball  falls  in  a  particular 

individual's sector, this one will be chosen 

for reproduction. The roulette wheel then is 

turned as many times as individuals shall be 

selected for reproduction. Unlike a roulette 

wheel in the casino, the size of each sector 

is  proportional  to  the  individual's  fitness, 

that  the sector  represents.  In that  way the 

fitter individuals will have a bigger chance 

to be selected. As variation of this strategy 
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Figure 10: A possible roulette wheel for 10 individuals
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one could enforce that a particular individual can only be selected once. Using this strategy, it will 

for none of the individuals ( not even for the fittest ) be guaranteed, that it gets selected.

4.3.2.2. Elitism
This selection strategy just defines that the best n or the best n% individuals (the elite) of the whole 

population will be selected. Individuals which are not part of the elite will have no chance to get 

selected. As benefit this strategy guarantees that the best performing (i.e. the fittest) will never “get 

lost”. A big drawback is, that in  most cases, using this selection strategy will lead to a fast loss of 

diversity in the population. The diversity of the population is important to avoid that the whole 

population will become stuck in a local maxima. Another point is that this strategy is far away from 

the evolutionary processes in nature,  which (as mentioned at  the begin of this  chapter)  are  the 

intention of the genetic algorithm. So an elitism strategy will hardly be used as single selection 

strategy, but could bring benefits when used in combination with other strategies.

4.3.2.3. Equal Chance for all
Like elitism this strategy is quite simple and hardly usable as single selection strategy (even less 

than elitism). It just ignores the fitness of the individuals and selects randomly some individuals to 

reproduce. Due to this, using only this strategy will result in a totally random evolution not guided 

by the fitness function. On the other hand the problem that he population's diversity shrinks  will 

not occur with this selection strategy.

4.3.2.4. Combination of the Strategies
The different benefits of the different selection strategies can be exploited by using a combined 

strategy. Imagine a box  having a capacity of c where the selected individuals will be put into. Now 

this box could be segmented into three (or more) parts having each a defined capacity c1, c2 and c3 

in a way that c1 + c2 + c3 = c. Having this done each selection strategy is allowed to fill up its box. 

Note that the population is not segmented, all selection strategies use the same population as pool of 

individuals. Think of a population of 100 individuals. For example one might think that he wants to 

guarantee the selection for the Top-10 performers. Second he wants to use the “natural” strategy of 

the roulette wheel. Third he wants to have 20 places left for randomly chosen individuals. Doing so 

can  help  to  overcome the  Exploration  vs.  Exploitation  trade-off.  The  elitism strategy  enforces 

exploitation  (of  well  performing  genetic  material)  and  the  “equal  chance”  strategy  pushes  the 
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exploration of the whole search space, because also individuals “travelling” through a region (of the 

search space) where fitness is low, have a chance to survive and reproduce.

4.3.3. Genetic Operators
The task of a genetic operator is to perform the reproduction of the selected individuals. Normally 

the amount of selected individuals is smaller that the amount of individuals in the whole population. 

In this case the genetic operator has also to ensure that the size of the population increases again up 

to the original population size. Otherwise the population would shrink in each cycle of the GA and 

so the reproduction would not be sustainable. 

Another  method  to  ensure  a  lasting  population  size  is  to  allow that  some individuals  may be 

selected  several  times  in  the  selection  phase.  So  the  selection  can  produce  as  many  selected 

individuals as the population size is. This brings the following benefit: the genetic operator has not 

to deal with the question which individual can reproduce how many times. The selection strategy is 

more appropriate to decide this because it is anyway dealing with the fitness values. So the selection 

strategy  can  not  only  decide  whether  an  individual  may  take  part  of  the  reproduction  or  not, 

moreover it can also decide which individual may reproduce how many times (fitter ones may have 

more children).  On the other hand the genetic algorithm must not care about fitness values at all. 

The two most common genetic operators are crossover and mutation [Pfeiffer and Scheier 1999]. 

Basically  they  adapt  two methods  of  reproduction  that  also  can  be  observed  in  nature:  sexual 

reproduction and asexual reproduction. Both can be implemented in a genetic algorithm. Sexual 

reproduction is done by crossover, asexual reproduction by mutation. These two operators will be 

explained in the following two sections.

4.3.3.1. Crossover
For  this  genetic  operator 

two  individuals  A  and  B 

are needed and their genes 

will  be  combined.  In 

crossover  this  is  done  by 

generating  randomly  a 

crossover  point.  This  will 

be  just  a  point  in  the 

chromosomes  of  the 
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partners. To create the chromosome of the offspring all genes before the crossover point are taken 

from chromosome A and all  genes after  the crossover point are taken from chromosome B. A 

parameter could define whether partner B must also be part of the selection or if for the partner B 

any individual from the whole population is allowed. One of the two partners at least must be part 

of the selection (otherwise the selection won't make any sense).

4.3.3.2. Mutation
Another method of reproduction is just to mutate one or more genes of a chromosome and letting 

the so created chromosome be part of the offspring generation. If a single gene would be a bit, the 

mutation  of  one  gene  would  just  be  flipping  it.  There  are  two  ways  to  select  the  gene(s)  for 

mutation. First one or more genes on the chromosome are randomly chosen and then exactly these 

genes mutate. Mostly only one point is chosen and so exactly one gene mutates. Another way is to 

define a chance of mutation for every gene (e.g. one divided by the length of the chromosome) and 

then letting each gene having this chance to mutate. For me this way seems to be more like nature 

works because the genes may mutate independently from each other. 

If the value of the genes are not just binary but maybe double values with a range from 0 to 1, the 

mutation of one gene can be done by  increasing or decreasing its value about a certain (small) step. 

This step again can be generated randomly and may have a limit. This way, when working with 

double-valued-genes, its possible to define a maximum mutation impact.

4.3.3.3. Combination of the genetic operators
The above introduced two operators can also be used both together. They can be combined in a way 

that sometimes mutations and some other times crossover is performed. But it is also possible to let 

the two operators work independently from each other. To achieve this one could define an overall 

chance that crossover happens and a chance that mutation happens. If an individual then is chosen 

not to be reproduced by crossover it first will be just copied from the original one. Afterwards it 

will maybe perform mutation with the same chance of mutation all individuals have.

4.4. Parameters for the genetic algorithm
In this section a summary about all the options and variations of the GA, seen in this chapter will be 

presented. Moreover we will see a list of all possible parameters, their meaning and value ranges. 

Also some evaluations will be shown, which have been made to find healthy values for the different 

parameters.

27



4. The Genetic Algorithm (GA)

4.4.1. List of parameters
General  parameters

populationSize, the population's size, usually in the range of 50 to 1'000).

– generations, defines how many generations will be generated, usually in the range of 100 to 

1'000).

Parameters for the fitness function

– testsPerRecord, defines how many comparisons per record are done to estimate the deviation (1 

– number of records).

– testPairCreation,  defines  how  the  comparison  partners  are  selected  (the  next  n records, 

randomly once or randomly new each generation).

– deviationType,  type  of  deviation  calculated  (average  difference,  root-mean-square  error  or 

threshold).

– tresholdValue, value of the threshold (if the threshold method is used; range 0 – 1.

– deviationmax, deviations greater or equal than this parameter value will get fitness 0; range 0 – 1.

– fitnessmax, the fitness value an individual with deviation 0 gets (e.g. 100).

– fitnessmean,  the  fitness  value  an  individual  gets  that  has  the  half  deviation  of  the  defined 

maximum deviation (e.g. 1, must be smaller than the half of the maximum fitness).

Parameters for the Selection

– eliteSize, size of the elite in percent of population (members of the elite will have a guarantee to 

be selected), 0% – 100%.

– grr, guaranteed reproduction rate for the elite (member of the elite will be a least as many times 

selected, 1 or more (if the elite e.g. is defined as the top 10%, the guaranteed reproduction rate 

can be 10 as maximum, then the whole “box of selection” is full).

– jokers, how many individuals will be selected just randomly (Equal chance for all) in percent of 

the population size.

Looking at the model with the boxes of selected individuals (introduced in the section  4.3.2.4.

Combination  of  the  Strategies)  the  box  for  elitism  will  have  the  capacity  of  eilteSize⋅grr  

percent, the box for “Equal chance for all” will have the capacity of jokers percent. The remaining 

capacity  will  be  used  for  roulette  wheel  selection.  Note  that  eliteSize⋅grr jokers must  be 

smaller (or equal) than 100%.
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Parameters for the reproduction

– crossoverRate, the chance of each individual to get reproduced by a crossover operation with 

another randomly chosen individual.

– mutationRate, the chance that a (somehow) reproduced individual to mutate.

– maxMutationImpact, the maximum impact a mutation can have (assuming the genes represent 

double values).

4.4.2. Parameter values
In the last section of this chapter we will see the 

concrete values, I used for the parameters. The 

value  for  deviatonType depends  on  the 

evolution's  goal.  If  the  goal  is  to  find  a 

similarity  measure  with  a  small  deviation, 

“root-mean-square  error”  or  “average 

difference”  is  used.  If  the  goal  is  to  use  the 

found  similarity  measure  for  a  categorisation 

task  (e.g.  alignment  finding)  the  threshold 

method  is  used.  Depending  on  the  deviation 

type, deviationmax can be defined. It will be 1
3  

if the first case (as seen before), and calculated 

in the case of a categorisation task. (In this case 

the  deviationmax will  be  set  to  the  threshold 

error,  which  a  measure  would  achieve  by 

always returning 0). Second an  present an experiment will be presented, that has been done to find 

good parameter values. The experiment, that will be shown, has been done to find good values for 

maxMutationImpact. This parameter is chosen because it is not part of the “standard” GA parameter 

set. 

Figure 12 shows the achieved deviation depending on the maximum mutation impact. One can see 

that the maximum mutation impact should not be set too small. It shows also nicely that all values 

above 0.1 have lead to a quite good performance of the GA. This actually is one of the benefits 

working with genetic algorithms: they are quite stable against the settings of the parameters. In 

practice of course this makes the work a lot easier. Doing such analysis for other parameters brings 
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Table 4: The parameter values for the GA

Parameter Value
populationSize 50...250
generations 50...500
testsPerRecord 1...50
testPairCreation random
thresholdValue 0.5
deviatonType [domain dep.]

[calculated]
100

1
eliteSize 5.00%
grr 2
jokers 50.00%
crossoverRate 0.5
mutationRate 0.5
maxMutationImpact 0.2

deviatonmax

fitnessmax

fitnessmean
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very  similar 

results.  Some 

extreme  values 

will  decrease 

the  GA's  per­

formance  but 

there is always 

a  quite  large 

range  of 

healthy values.

Looking at Figure 13 one can see the impact of the parameter generations. On this diagram one can 

see that the learning steps at  the beginning are big and then the improvements get smaller and 

smaller.  This  is  a  typical  learning  rate.  And  of  course  (unlike  the  things  mentioned  to 

maxMutationImpact) this parameter has a significant influence on the GA's performance. The grey 

line shows the deviation from the training set, the black line shows the deviation from the so-called 

test set. The test set is another gold standard, but hidden to the GA. This is done to verify if the 
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Figure 13: Achieved deviation increasing the number of generations (learning rate)
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Figure 12: The achieved deviation after 200 generations with a population of 50
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learned measure is also meaningful for data which was not taken into account during the learning 

phase. 
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5. Learning Performance with the 
Genetic Algorithm

Putting  all  together,  the  Local-Global  framework  from  Chapter  2,  the  methods  to  evaluate  a 

similarity  measure  (Chapter  3)  and  the  genetic  algorithm from chapter  4,  one  is  able  to  learn 

similarity measures using a given gold standard. In this chapter I will present some evaluations of 

the learning performance and the achieved deviations. In the first part I will show some experiments 

using a database of (shop-)products. In this part also the principle of training- and test set and the 

cross validation will be introduced.

In the second part of this chapter some experiments, that have been done with ontologies, will be 

presented.  The  task  was  to  find  a  correct  alignment  from  properties  of  one  ontology  to  the 

properties of another ontology.

5.1. Using a Product Database
The article  data  set  consists  out 

of  2850  objects  (i.e.  the 

products).  Each  product  firstly 

has  6  properties  (actually  they 

have  more  but  in  these 

experiments  only  6  are  used). 

Figure 14 shows the structure of 

a product-object. Firstly it is flat, 

later on a tree-like structure will be used to evaluate the recursive similarity measures (see section 

2.1.4. Recursive Similarity Measures). The symbolic attribute “type” defines what kind of product 

(food, fertilizer etc.) it is. The attribute “group” defines for which kind of animal a product is (the 

product set is from a pet shop). The two numeric attributes “min” and “max” define the minimum 

and maximum stock of inventory of the product.
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Figure 14: The product's attributes
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5.1.1. Validation using a Test-set
Assume having a gold standard, that tells the desired similarities among e.g. 100 products, one 

problem that can occur when learning with a genetic algorithm, is that a similarity measure could be 

learned that is very specialised to this gold standard but will not perform well for the rest of the 

products. This is the so 

called  over-fitting 

problem.  To  minimize 

this  problem,  the  gold 

standard can be defined 

for  more  products,  but 

this may be a hard work, 

and a simply larger gold 

standard would increase 

the  runtime.  So  it  is 

necessary  to  estimate 

how  big  (or  hopefully  how  small)  the  over-fitting  effect  is.  Therefore,  the  learned  similarity 

measure is checked against another gold standard, the so-called test set. This set was not used for 

the learning algorithm itself, and so a good performance on the test set would hardly be a result of 

over-fitting. Analysing the training- and test set performance also helps to initially find a healthy 

number of generations. Figure 16 shows the root-means-square error of a similarity measure against 

the  training-  and  test 

set.  While  after  200 

generations the training 

set error still decreases, 

the  test  set  error 

increases again. So after 

this  point  unhealthy 

specialisation  starts. 

This  experiment  has 

been  done  with  a 

relatively  small 

population of only 25 individuals. Figure 17 shows the same experiment, using a larger population 
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Figure 17: Training- and Test set performance
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Figure 16: Training- and Test set performance 
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of 50 individuals. One can see that the effect is a bit weaker and seems to start later. For these 

experiments a quite small training set has been used (and so a small gold standard has been used to 

learn). In the following experiments, where a cross-validation is done, a larger training set will be 

used to even more decrease the specialisation effects.

5.1.2. Cross-Validation
Another method to check the soundness of the learning method and the learned similarity measures 

is to perform a so-called cross validation. This method uses the test set evaluation in a special way 

and generally has two different variants, leave-one-out and k-fold cross validation.

5.1.2.1. Leave-One-out Cross Validation
The leave-one-out method works as follows: The training set contains all objects except for one 

single object. This object (the “left-out” one) then is the test set. Afterwards every object of the 

whole set will be once this special object, so the learning-cycle runs as many times as objects are 

contained in the whole set. This of course leads (especially for large sets, as our product set) to a 

very long runtime of the whole cross validation task. Also in my opinion it does not show that the 

learning algorithm is able to come up with good general measures, having a relatively small training 

set  (since  the training set  will  consist  of   the whole set  except one single object).  At last  for 

similarity  measures  (comparing  two objects)  this  will  not  work.  Thinkable  is  a  leave-two-out 

method, but due to the other drawbacks, all experiments have been done with the k-fold method. 

5.1.2.2. k-fold Cross Validation
The idea of the k-fold cross validation is  to segment the whole set  into  k subsets.  Then every 

segment is once the training set, while all other segments together work as test set. This will lead to 

k runs of the learning cycle. Meaningful values for k could be 5 ... 50. Using a very small k (e.g. 2) 

would lead to big training sets and therefore not show the ability of the learning algorithm to work 

with a relatively small training set. Very large values will increase the runtime because the whole 

learning cycle will run k times. In all following experiments I will use this type of cross validation 

with a k of 10 (10-fold cross validation). Remembering that our product set contains 2850 products, 

the training set would always contain 285 products and the test set's size will be 2565.

5.1.3 Cross Validation Results
All experiments in this section use the parameter settings shown in Table 5. A detailed description 

of the meaning of each parameter can be found in the last chapter (“4.4. Parameters for the genetic
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algorithm” on  page 27).  The first  two experi­

ments shall show the benefits of using “vocabu­

lary  knowledge”.  This  is  general  knowledge 

one  might  have  about  the  similarity  measure 

that will be learned, for instance that the local 

similarity for a particular attribute is symmetric. 

This vocabulary knowledge can be used to de­

crease  the  search  space  for  the  genetic  al­

gorithm. E.g. for the attribute “price” it can be 

defined that the similarity value has to decrease 

monotonic if the price-difference increases. For 

the symbolic attribute “group” a taxonomy can 

be defined so that, instead of a (large) similarity 

table, a smaller similarity tree has to be learned. 

For “type” it can be defined that the similarity 

table has to be symmetric and so on. Doing so, 

we can exploit knowledge about the desired similarity measure, one might already have.

Figure 18 shows the results of the 10-fold cross validation without using any vocabulary know­

ledge. The RootMeanSquare Error (rms) on the y-axis of the diagram shows the achieved deviation 

to the gold standard, a perfect measure would have a rms of 0. On the x-axis the number of the sec­

tion that was used as training set is shown (since a 10-fold cross validation divides the whole data 

set into 10 segments). The two bars show the achieved training set respectively test set error, ac­

cording to the 

legend  shown 

in  Figure 18. 

The  legend 

will  be  valid 

for   all  dia­

grams  of  res­

ults  in  this 
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Table 5: The parameter values used for the for the GA in 
the next 4 experiments

Parameter Value
populationSize 50
generations 250

2
random

0.5
deviatonType RootMeanSquare Error

0.33
100

1
eliteSize 5%
grr 2
jokers 50%
crossoverRate 0.5

testsPerRecord
testPairCreation
thresholdValue

deviatonmax

fitnessmax

fitnessmean

Figure 18: Cross validation results using no vocabulary knowledge, as deviation the 
RootMeanSquare Error, that the best learned measure achieved,is shown. 
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section (therefore, the legend is left away in the following diagrams). The diagram shows three 

things: 

– That the at the training set learned measures have not too much over-fitting tendencies, the test- 

and training set errors are for each training set quite the same.

– It shows that with all training sets it is possible to learn a good similarity measure, this depends 

not too much on the chosen training set.  

– The observed deviation is overall not too good , we will see better similarity measures in the 

experiments with the exploitation of vocabulary knowledge.

For a 10-fold cross validation a 1.6 GHz AMD computer comes up with a runtime of  about ¾ 

hours.

In a next experiment, all the previously mentioned vocabulary knowledge is used and so the search 

space is smaller. Also the length of the chromosome needed to encode all parameters of the similar­

ity measures is much smaller. Whereby the chromosome contained 63 genes in the last case, it con­

tains  only  33  genes 

when the vocabulary 

knowledge  is  ex­

ploited.  Figure  19 

shows the benefits of 

exploiting  this 

knowledge.  The 

learned measure per­

form  dramatically 

better after the same 

learning  time.  Note 

that  this  is  actually 

an optimization task. Without exploiting the vocabulary knowledge, it is also possible to learn as 

good measures, but it takes much more runtime.

Tree-like data Structure

In this experiment  the performance learning recursive similarity measures should be evaluated. To 

do  so,  the  data  structure  of  the  products  to  be  compared  has  been  changed to  get  2  complex 

attributes. Actually the two symbolic attributes “type” and “group” have been arranged under the 
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Figure 19: Results of a 10-fold cross validation using vocabulary knowledge
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newly  created  complex  attribute 

“classification”  and  the  two  numeric 

attributes  “min”  and  “max”  are  merged 

under  the  newly  created  stock-attribute. 

Looking at the results of the 10-fold cross 

validation  again,  it  shows,  that  it  works 

with  a  very  similar  performance  as  the 

experiment  using  the  flat  data  structure. 

Note,  that  the  scale  in  Figure 21 has 

changed,  compared  to  the 

first  two  experiments,  to 

make  the  differences 

between  the  different  runs 

better  visible.  Looking  at 

the  average  performance 

over  all  runs,  it  is  slightly 

worse  than  the  experiment 

with the flat data structure. 

For  the  test  set  this  value 

was 0.0144 for the flat, and 

0.0148  for  the  recursive 

case.

Using slightly different data structures

This experiment shall show whether its also possible to learn measures that compare two objects 

which have not exactly the same structure. To create such a data set, randomly some attributes in 

the objects are removed, in this case every attribute of every object in the data set has a chance of 

10% to be removed. To calculate the similarity between two objects then following rule is used: 

– If an attribute a exists in both objects use the local similarity measure to calculate this (local) 

similarity value.

– If in one object the attribute is missing set this (local) similarity value to 0.

– If both are missing set the weight for this attribute to 0.
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Figure 20: The tree structured product data
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Figure 21: Results comparing tree structured data
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Again  a  10-fold  cross 

validation has been done to 

evaluate if the GA is able to 

learn  good  similarity 

measures  that  could  deal 

with  small  differences 

between  the  compared 

objects.  Figure 22 shows 

the results which again are 

very  similar  to  the  results 

from the second experiment 

(Figure 19), which is used as reference experiment. In numbers the average root-mean-square error 

is 0.0131 (while in the reference experiment it was 0.0144). The fact, that in average the root-mean-

square error was even   a bit smaller is not significant. But significant is, that the results are in the 

same value range (between 0.01 and 0.02) in opposite to the first experiment where the results are 

approximately about a factor 6 worse.

Summary

In this section we compared the cross validation results, and in the most right bars of the diagrams 

always the average performance of all training- and test set evaluations, that have been done for the 

particular cross validation, is shown. But if a cross validation is done, it is of course also possible to 

take the overall best measure (according to the smallest test set error). Figure 23 shows from each 
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Figure 23: Summary of the cross validation results (best test set performers)
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Figure 22: Results comparing objects with small structural differences
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experiment the best result that has been generated. So we can see that the framework performs well 

in all three cases where vocabulary knowledge is exploited. It would also work without vocabulary 

knowledge but one would have to wait very long for usable results (due to the much larger search 

space, the GA needs bigger populations and more generations to come up with good results).

5.2. Ontology Alignment
In  this second group of experiments the goal is to find a alignment between different ontologies. 

An alignment is needed, to know whether in two different ontologies there are classes or properties 

defined which actually represent the same concept. Moreover it will show which of them represent 

the same concept. The problem is, that in different ontologies the same concepts could be named 

differently  (e.g.  if  the  ontologies  are  written  in  different  languages)  and  located  in  a  different 

position in the taxonomy. 

5.2.1. Task Description
In these experiments the goal is to find the properties, that represent the same “real world” property 

of an object in two different ontologies. Having such an alignment, the concrete instances of the two 

ontologies can be merged together. The idea is to do that using a similarity measure that compares 

properties  from the  two ontologies.  If  the  calculated  similarity  value  is  greater  then  a  defined 

threshold it  is  assumed that  they are  semantically identical.  To do so,  a reference alignment is 

needed, that consists of property pairs which match. This reference alignment than will be used to 

set up a gold standard and so to learn these similarity measures.

5.2.2. Converting the Ontology into a Set of assimilable Instances
The first step to do this, is to load the ontology and extract all properties that are defined in it. Then 

a suitable data structure, that represents the properties, has to be found and the properties' (meta-)

data has to be filled into it. This could be, in the most simple case, just the name of the property. In 

a slightly more complex case, the class names of the domain and the range of the property could be 

used also, which then leads to a flat data structure suitable for a local-global similarity measure. In a 

next step the class hierarchy of the ontology could be generated. Having this information for the 

range  and  domain  classes  of  each  property,  information  about  the  class'  position  in  the  class 

hierarchy can also be added to the data structure.  This can lead to the data structure shown in 

Figure 24, and so a recursive similarity measure can be used to compare in this way structured 

property  (meta-)data.  For  the  experiments  the  ontologies  from the  “EON Ontology  Alignment 
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Contest” [Euzenat  et 

al. 2004]  are used.

5.2.3. Converting the rdf-Reference into a Gold Standard
To create a gold standard, the reference alignment is needed. These reference alignments are also 

available at the web page of the “EON Ontology Alignment Contest” [eon 2004]. This is a rdf-file 

but it actually contains a plain XML-data structure. Reading this would lead to a set of property 

pairs which match. A gold standard can be set up by initialising a matrix and then set the value of 

each cell to 1 if the corresponding property pair is part of the reference alignment. All other values 

are set to 0.

5.2.4. Set-up of the Experiments
The reference alignments are always defined between the “original” ontology (number 101) and 

another one. So in the following experiments it will always be tried to find the alignment between 

the original and another ontology. Following experiments have been done: First an experiment that 

tests the concept of training- and test set for this group of experiments. This is done for the ontology 

that contains different naming conventions for the properties and classes (number 204).  Because 

the amount of data is rather small, there are 44 different properties defined. This is done using a 2-

fold  cross  validation.  This  experiment  uses  the  ontology  number  204  (naming  conventions). 

Afterwards experiments using different data structures for the properties are done. Each of these 

experiments is done for the ontology with different naming conventions, for one using synonyms 

(number 205) and one with names in another language (number 206).
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Figure 24: A possible data structure for ontology properties 
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5.2.5. Results
2-fold cross validation

As the cross validation results shown in Figure 25 

one  can  see  that  also  using  a  training  set,  that 

contains  only  22  properties,  no  specialisation 

(over-fitting)  can  be  observed.  Actually  the  five 

not found alignments will  also be missing using 

the whole property set as training set. The reason 

for this is that these properties are lower case in 

one  and  upper  case  in  the  other  ontology.  This 

leads to a maximum Levensthein distance, but it 

would be no problem to just use a case insensitive 

version  of  the  Levensthein  algorithm,  or  better 

letting the measure learn whether it  should work 

case sensitive or not. As performance measure for the figures, all correct found alignments minus 

all wrongly found alignments is taken, so that in this case the maximum would be 22.

Using only property names

Using  only  the  property  names  will 

lead to a quite good performance at the 

case  where  the  alignment  for  the 

ontology  number  204  (naming 

conventions) is created, but rather poor 

results  for  the  other  two cases.  Note 

that in all these experiments no 2-fold 

cross  validation  is  done  but  all  44 

properties are part of the training set. 

So  the  maximum  which  the 

performance measure can reach is 44. However in the case of the ontology with the foreign names it 

performs slightly better than the one with the synonyms.
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Figure 25: 2-fold cross validation for ontology 
alignment, Performance is defined as correctly  
identified alignment minus wrongly identified ones.
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Figure 26: Training set performance using property name only
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Using  property  names  and  class 

names  of  the  property's  range and 

domain

In this experiment the alignment to the 

naming  conventions  has  the  same 

performance  as  using  the  property 

names only (actually it is even slightly 

worse). The reason for this is that the 

names just vary so little that no more 

improvements can be done using more 

data. The case with the synonyms also 

shows no improvement  at  all  but  the 

alignment to the foreign language gets a bit better.

Using property names, class names and class hierarchy of domain and range

In this case also information about the 

class's position in the class hierarchy is 

used to find a good alignment between 

the ontologies. The idea of doing so is, 

that maybe names of the properties and 

the  class  names  of  their  range  and 

domain can be far from similar, but the 

position of the classes (of domain and 

range)  in  the  class  hierarchy may be 

the same or at least very similar.  For 

this  actually  3  numerical  values  are 

calculated  and  exploited  by  a  numerical  (local)  similarity  measure.  These  are  number  of 

superclasses,  number  of  subclasses  and  number  of  direct  subclasses.  As  Figure 28 shows,  this 

finally brings a even worse result to the alignment to the synonym's ontology. Also the alignment to 

the foreign name's ontology is again as bad as it was using the property names only. The problem 

doing so is that the class hierarchy in this case is rather small and flat so that   most classes have the 

same amount of superclasses and 0 subclasses. Actually the results are so bad because a lot of 
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Figure 28: Training set performance using “position in hierarchy”
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Figure 27: Training set performance using property name and class 
name of domain and range
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wrong alignments have been found. This leads to the fact that the learning algorithm will set the 

weights for the similarities of the “position in hierarchy” attributes very low. So again a measure 

that overweights the name of the property will come out. Note the similarity between Figure 28 and 

Figure 26.

Using the position in hierarchy as string attribute.

Another way to exploit the “position in 

hierarchy” data is to encode the three 

numerical values into a string. For this 

string  attribute  the  another  string 

similarity  measure  is  learned.  The 

benefit  of  doing  so  is  that  also  one 

different  value  leads  to  a  different 

string, unlike in the last case where 2 

out of  the 3 of the attributes will still 

have maximum similarity. In fact this 

leads to better alignments as Figure 29 

shows. 

5.2.6. Discussion, Future work
Looking at these experiment's results, they are, except the easy case with the naming conventions, 

quite  dispiriting.  So  we need to  think why this  is  so  and how further  improvements  could be 

realized.

Using larger ontologies

In larger ontologies (at best with larger class hierarchies) the chance that two classes which are not 

semantically identical, but nevertheless have the same values for superclasses, subclasses and direct 

subclasses will be lower. As mentioned in the explanation of the third experiment (the first one 

using the class hierarchy), this is a reason that these values don't really help finding the correct 

alignment. Therefore I predict better results using just a larger ontology.
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Figure 29: Training set performance using “position in hierarchy” 
encoded as string
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Using even more property (meta-)data

More meta data of the properties can be taken into account, e.g. the cardinality could be exploited 

also. But this would have the same problem as the “position in hierarchy”. The value of this 

attribute would in most of the cases just be 1. So for a lot of property pairs, which are not part of the 

correct alignment, the  comparison of this attribute will lead to a maximum similarity.

Using a class alignment

The basic idea of using the class 

hierarchy was to identify the classes 

that represent each other 

semantically, and so reasoning, that 

properties where the range and the 

domain is the (semantically) same 

class have a good chance to 

represent each other. Now the same 

procedure, as is used finding the 

alignment between the properties, 

can be used for finding the class 

alignment. Having this done, it can 

be exploited to find the property 

alignment.

Using an alignment learning cycle

As  mentioned  before,  the  class 

alignment could be learned in a first 

step  analogue  to  the  the  property 

alignment.  Looking  at  the  (quite 

poor)  results  finding  the  correct 

property alignment, there is little hope that finding the class alignment would perform much better. 

But to find the class alignment, the property alignment could of course also be exploited. So this 

could be done in a cycle, an initially quite bad class alignment leads to a slightly better property 

alignment. Than this again is used to learn a better class alignment and so on and on. Figure 30 
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Figure 30: Suggested learning cycle for an ontology alignment
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shows the imagined learning cycle. Note that in the Figure it is the class similarity measure that is 

learned initially and  therefore an initial class-alignment will be created. This is arbitrarily defined, 

one can also define to start the cycle with an initial property alignment.
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6. Genetic Programming (GP)

So far  we  have  seen,  that  it  is  possible  to  use  the  principle  of  evolution  to  learn  meaningful 

similarity measures. To do this, the genetic algorithm, described in Chapter 4, has been used. Using 

a GA, all parameters of a solution (i.e. the similarity algorithm) have been encoded to a genotype 

(i.e. the chromosome). Another domain specific operation was used to decode the chromosome and 

so to  build  up  the  concrete  (working)  solution.  Another  way of  exploiting the mechanisms of 

evolution, is to use genetic programming instead [Koza 1992]. This method generates directly the 

solution (since the solution is a computer program), therefore the en- and decoding parameters to 

and from a chromosome are not necessary any more.

6.1. Introduction
The  idea  of  genetic 

programming is, that instead of 

using a sequential chromosome 

to reproduce individuals. A tree 

data  structure  is  used  for  this. 

And  since  every  computer 

program can be represented as a 

tree,  exactly  these  trees  are 

taken  to  do  the  reproduction. 

Figure 31 shows  how  a 

program, which calculates the  hypotenuse of right-angled triangle, can be represented as a  tree. 

Having  such  a  tree  as  “chromosome”  for  the  genetic  programming,  no  (domain  specific) 

interpretation is needed to get a working program. Of course the meaning of the symbols has to be 

interpreted, but this has to be done anyway while compiling the program This interpretation stays 

always the same for the same programming language. Having this, a learning cycle similar to the 

one in the genetic algorithm can start. First a fitness function evaluates each program's fitness, and 

according  to  these  fitness  values  a  selection  is  performed.  The  genetic  operator  works  a  bit 
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Figure 31: Tree representation of the Pythagoras' theorem 
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different, but in principal has the same goal, namely, to create a new generation using the selected 

programs as  parents.  The  details  of  these  steps  and  the  differences  to  the  classic  GA will  be 

described in the section “6.3. Genetic programming in Detail“ later on in this chapter. But genetic 

programming needs also some solution specific configuration. Namely, a terminal- and a function 

set has to be defined. In the example in Figure 31, the terminal set would be the two variables a and 

b, the function set would be {sqrt, +, *}. Elements of the terminal set are candidates for the leaf 

nodes of the tree, the elements of the function set are candidates for the inner nodes. Additionally 

for each function its arity has to be defined, in our example the arity is 1 for the square root function 

and 2 for the addition and the multiplication. This value defines the number of child nodes, which a 

node, representing a particular function, must have.

6.2. Conditions for successful genetic programming
In this section two conditions that have to be fulfilled for a successful genetic programming in 

practice will be presented. 

6.2.1. The Closure Property
This  property  needs  to  be  fulfilled,  to  achieve  that  every  possible  tree,  constructed  out  of  the 

function set and the terminal set, will represent a working program. For this, it is necessary, that 

every function (in the  function set) accepts every possible return value of any other function at 

every position in its argument list as input parameter. This leads in practice to the fact  that  all 

functions have to return the same data type, and also that all parameters of each function have to 

accept this data type (or class in an object oriented programming language). Moreover all possible 

values, which the terminals might have, must be of this data type. Otherwise a randomly created 

tree will mostly represent a program that will not work due to type errors. 

Also each function's return value has to be defined for each combination of input value that may 

occur. In the example the square-root function must not be the native square-root function, which is 

usually not defined for negative input values, but must be replaced by a “protected” version. This 

version must also return a result for negative input values. One way to do this, is to define sqrt as 

follows : sqrt x =∣x∣ . For the division function a similar workaround to avoid the “division 

by zero” error has to be done.
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6.2.2. Sufficiency of Terminal- & Function-set
Another mandatory condition is,  that the terminal- and the function set have to be sufficient to 

create a program that can solve the problem. In our example genetic programming would never 

have the chance to come up with a proper solution, if for example the terminal b (representing the 

length of one leg of the right-angled triangle) would not be part of the terminal set. Also, if any of 

the functions would be left away, it would not be possible to get a good solution. On the other hand, 

it is possible to define more functions and terminals than are actually used (since we want to use 

genetic programming to generate a solution, which we do not know in the first place). Therefore 

knowing that the problem of calculating the length of the hypotenuse is a mathematical problem and 

depends on the length of the  legs of the right-angled triangle, one could define a terminal set {a,b} 

and a function set {+, - ,  *, /, sqrt,  sin, cos). So we have seen that some knowledge about the 

solution's character is needed also in genetic programming.

6.3. Genetic programming in Detail
Analogue  to  chapter  4  about  the  GA, 

some  details  of  the  single  steps  in 

genetic programming will  be presented 

in this section. They are more or less the 

same  as  in  the  genetic  algorithm  so 

especially  the  differences  will  be 

mentioned. Also the learning cycle as a 

whole is quite the  same as in GA (see 

Figure 32).

6.3.1. Creating an initial 
Population

In  genetic  programming  the  very  first 

step  is  also  to  randomly  generate  an 

initial  population  of  individuals.  But 

since the data structure, representing an 

individual, is a tree in this case, there are 

some differences. Opposite to just setting a random value for each gene in each chromosome, a 

more sophisticated method to build up the initial population is needed. Basically two methods exist 
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Figure 32: Flowchart of the learning cycle in GP
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to randomly generate a tree, consisting of the terminals and functions given in the corresponding 

sets. Koza  calls these methods the “full” and the “grow”.

The first (full) method is to define a desired height (or number of levels) of the tree (e.g. 5). For the 

root node a symbol of the function set is randomly chosen. The number of needed child nodes is 

defined by the arity of the function which is chosen. The required  number of child-nodes will be 

generated and a symbol from the function set is set randomly to each node. These steps are then 

recursively repeated  for each node until the desired height of the tree is reached. In this case for 

each child needed, a symbol from the terminal set is randomly chosen to create the leaves of the 

tree. This method leads to trees, where each leave is on the same level (i.e. the desired height of the 

tree). This is then a “full” tree.

The “grow” method is (except for the root node) to choose always a symbol out of the union of 

function- and terminal set. If for 

a  particular  child  a  terminal 

symbol  is  chosen,  this  branch 

ends  there.  Additionally  a 

maximum  height  of  the  tree 

must be defined. If this  height 

is reached, choosing a terminal 

symbol will be enforced. This is 

has to be done, to avoid that a 

particular  tree  grows  infinitely 

large.  Trees  created  with  this 

method  can  have  branches  of 

different lengths.

The  tree  shown  in  the 

Pythagoras  example  is  an 

example  for  a  “full”  tree.  All 

terminals are on level 3, if counting starts with 0 at the root node (which is the method in this 

diploma theses). Figure 33 shows a tree that could have been generated with the “grow” method. 

Maybe the maximum level was 6, but this is not necessarily the case because the process of growing 

can stop before the maximum level is reached. This tree actually calculates the first solution of the a 

quadratic equation ax2bxc=0 .
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Figure 33: A tree with branches of different lengths.
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To get a good diversity in the initial population, one can use the following strategy: Half of the 

population  is  created  with  the  full  method,  the  other  half  with  the  grow  method.  These  two 

segments again are divided into n parts (e.g. n = 5). Then the maximum number of levels for part n 

of each segment is defined as  minHeight +  n, whereby minHeight is e.g. 2. Doing so, one gets a 

good diversity of trees of different sizes. For each size some “full”  trees and some with variable 

branch lengths, will be part of the initial population. Koza calls this method “ramped-half-half”.

6.3.2. Fitness function in genetic programming 
The fitness function in GP actually is very similar to the one in GA. All considerations done in 

section “4.3.1. Fitness Calculation“ (see page 22), and especially the transformation from deviation 

to fitness (in the case of learning similarity measures), are still valid. As also mentioned in chapter 

4, a difference is, that sometimes the first step of the fitness function is to build up the phenotype 

from the genotype (interpreting the chromosome). This is not necessary in GP because the learned 

structure  is the program itself. In practise a function will be executed (e.g. “evaluateTree”) which 

takes the learned tree as argument and returns the calculated result. If a programming language is 

used, which is able to interpret/compile and execute its own source code at runtime, it is possible to 

create the source code from the tree and then letting this code snippet being executed. 

6.3.3. Selection
As the fitness calculation, the selection step is also very similar to the analogue step in the GA. All 

considerations from section “4.3.2.4. Combination of the Strategies“ (see page 25) are valid. It will 

also be possible to basically use a roulette wheel strategy. To enrich this strategy an elite can be 

defined, in the meaning that members of the elite will  have a guarantee to be selected once or 

n-times (where  n would be the guaranteed reproduction rate).  Furthermore the selection can be 

combined with a defined amount of individuals which are selected just randomly, regardless of their 

fitness values. One might consider to use different parameter values, but as also already mentioned, 

the algorithm is quite stable against different parameter settings, and so the expected impact of 

doing so will be small.

6.3.4. Genetic Operator
As the representation of the individuals is different to the GA, also the genetic operators work 

different.  The  basic  principle  of  crossover  and  mutation  remains  the  same,  but  the  method  to 

achieve them is different. Crossover in GP is also done by first selecting the  two individuals which 
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participate (the parents). 

Having selected the two 

parents,  two  crossover 

points (unlike one only 

in  GA)  are  randomly 

selected (the grey nodes 

in  Figure 34).  The 

crossover points may be 

any inner- or leaf node 

of  the  trees.  The  two 

selected  nodes 

(including  their  child 

nodes)  then  will  be 

exchanged between the 

two  trees,  and  so  the 

offspring  is  generated 

(shown in Figure 35). If 

in both trees a leaf node 

is  chosen  to  be 

crossover  point,  the 

operation  has  the same 

effect  as  a  mutation  in 

GA (one  node  in  each 

tree  will  change  its 

value).  Therefore  it  is 

not  necessary  to  have 

an  explicit  mutation 

operator  in  genetic 

programming  (but  one 

could program and use a mutation operator if  desired).  To achieve that  (hopefully meaningful) 

program parts will be exchanged instead of leaf nodes, one can define that in e.g. 90% of all cases 

an inner node gets selected as crossover point, and on the other hand only with a chance of 10% a 
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Figure 35: The offspring of the crossover operation
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Figure 34: Two inner nodes selected for the crossover operation
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leaf node will be selected (independent of the inner-node – leaf-node ratio in the tree). Unlike in the 

genetic algorithm where the length of the chromosome is fix, the trees here may grow and shrink. In 

the example of Figures 34 & 35 the left tree shrinked and the right one grew. The reason for this 

effect is that the two sub-trees, which have been replaced, did not have the same size. Therefore it is 

necessary  to  define  a  maximum  size  which  a  tree  may  reach,  otherwise  the  trees  may  grow 

infinitely large and so cause an unacceptable runtime.
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7. Results using GA & GP

In this chapter we will show how genetic programming can be used to learn similarity measures. 

For  that  several  evaluations  will  be  presented.  The  goal  is  to  find  out  if,  and  under  which 

conditions,  genetic  programming  can  successfully  be  used  as  learning  method  to  find  good 

similarity measures. 

7.1. Set-up of the Experiments 
Due to the closure property (see section “6.2.1.  The Closure Property”, page 48) it  will  not be 

possible to learn local similarity measures because (except numeric similarity measures) they have 

different input and return types (e.g.  Levensthein takes two strings and return a double value). 

Therefore learning the local measures will, also in these evaluations, still be done using the GA. 

Genetic  programming  will  be  used  to  learn  the  amalgamation  function  (i.e.  the  function  that 

combines each local similarity value to a global similarity). This amalgamation function was fixed 

to be a weighted average in all experiments using the GA only, and the single weights then have 

been learned with the GA. Now the amalgamation function will be a learned genetic program.

So in all following experiments first the normal GA runs and learns a global similarity measure and 

afterwards a genetic program is learned. This genetic program will get the local similarity values 

(calculated by the local similarity measures of which the (GA-learned) global similarity measures 

consist).

Figure 36 shows two different learning rates of two different runs, learning an amalgamation func­

tion for a global similarity measure. On the y-axis one can see the achieved root-mean-square error 

using the particular amalgamation function that is learned. The detailed conditions of the runs are 

not relevant here. What should be shown with this figure is, that the learning rate in genetic pro­

gramming may have quite different characteristics from run to run. In run 1 the amalgamation func­

tion first gets even worse and afterwards makes a sort of stepwise improvements. In run 2 the root-

mean-square error shrinks quickly after having started the learning cycle, and already after genera­

tion 40 the root-mean-square error reaches almost the final value. 
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As  in  the 

evaluation  of  the 

learning  with  the 

genetic  algorithm 

only,  in  the  next 

two  sections 

results  using  the 

product dataset and 

results of trying to 

find  alignments 

between properties of different ontologies will be presented.

Because usually the search space is much larger in genetic programming than it is using a GA, 

genetic  programming needs  larger  populations,  to  come up with good results,  than the genetic 

algorithm1.  For  that  the  population  size  in  all  experiments  presented  is  500  for  the  genetic 

programming part.

7.2. Results using the Product Dataset
In this section the results of four experiments will be shown. For one experiment a 10-fold cross 

validation  has  been  done.  For  the  other  three  only  a  training-  and  test  set  evaluation  will  be 

presented (due to the fact that a cross validation using GA and GP uses about 10 hours of runtime 

on a 1.6 GHz AMD processor).

So what are the four experiments? As mentioned in the last section the procedure is to learn a 

similarity measure with the GA, and then use the so learned  local similarity measures as given, 

trying to find a good amalgamation function. So one can define whether the GA may learn the 

weights (ω1, ω2, ω3, ..., ωn) of its own amalgamation function (the weighted average), 

Sim=∑
i=1

n

i⋅localSimi

or whether these aspects will not be learned in the GA part of the experiment. In this case, the 

amalgamation function the GA may use, is fixed to be a normal (equal weighted) average,

1 Due to this fact detractors of genetic programming say that it is more like random search than really exploits the 
principals of evolution.
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Figure 36: Two learning rates of the genetic programming
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Sim=∑
i=1

n

⋅localSimi

while  ω is  fixed  to  be  1
n .  Independent  of  this  decision,  another  option  is  to  transform the 

amalgamation function, which the GA uses (or has learned), to a genetic program. This program 

then can be added (or not) to the initial population, that the genetic program part of the experiment 

uses. An amalgamation function that combines for example four local similarity values,

Sim=∑
i=1

4

i⋅localSimi

can  be  transformed 

in  the  genetic  pro­

gram shown in Fig­

ure 37.  This  trans­

formation of course 

can  be  made  inde­

pendently  whether 

the  weights  in  the 

GA   were all fixed 

to  be  1
4 or  have 

been learned by the 

GA.  So  these  two 

options lead to

four  combinations 

shown  in  Table 6 

(where  AF  stands  for 

“amalgamation function”) and the results using these settings will be presented. 

Experiment 1

Figure 38 shows the results of the 10-fold cross validation. In this experiment the genetic algorithm 

was fixed to use an equal weighted average as its own amalgamation function and this equal aver­

age function has been transformed to a genetic program. This genetic program was than added to 

the initial population of the genetic algorithm. The x-axis shows which segment (since in a 10-fold 
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Figure 37: An amalgamation function transformed to a parse tree for a genetic program
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Table 6: Table of the following experiments

GP uses GA's AF
Experiment 2 Experiment 1

GA may learn an AF Experiment 3 Experiment 4

GP does not use GA's AF
GA may not learn AF
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cross validation, the whole dataset is divided into 10 segments) was actually the training set. All 

other sections  were part of the test set. For each training set used, the first two bars show the train­

ing- and test set 

error  which  the 

measure  had 

after  the  run  of 

the  GA.  The 

second two bars 

show  the  devi­

ations  that  have 

been  achieved 

after the genetic 

programming 

part  of  the  ex­

periment. As one can see, in all 10 cases the two first bars, representing the training- and test set er­

ror the GA came up with, are higher than the second two bars. These second two bars represent 

training- and test set error which the measure had after the genetic programming part of the experi­

ment. So we can see that GP brings a benefit in this 10-fold cross validation.

Experiment 2

Figure 39 shows  the  results  of  the 

experiment where the GA also had to 

learn  a  measure  using  an  equal 

weighted  average  as  amalgamation 

function, but this function was not put 

into  the  initial  population  for  the 

genetic programming part. 

Looking at these two figures (38 and 

39) one can see that the performance 

of  the  genetic  programming  part  is 

quite similar. In both experiments the 

GA  had  no  possibility  to  create  an 
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Figure 38: 10-fold cross validation using GA and GP
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Figure 39: Training- and test set errors after GA and after GP, the 
GA's amalgamation function was not part of the initial population of  
the GP part
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improved weighted average as its own amalgamation function, and so, whether the (simple) equal 

weighted average function is given to the genetic programming part or not, has almost no impact.

Experiment 3 & 4

The  next  two  experiments  show  the 

cases where the genetic algorithm had 

the  possibility  to  come  up  with  a 

meaningful  weighing of  the  different 

attributes  of  the  product  objects 

(which  are  the  compared  objects  in 

this section). Due to this, at the end of 

the  GA  part  of  the  experiment,  an 

improved  amalgamation  function  is 

contained  in  the  measure  which  the 

genetic  algorithm  learned.  Now  this 

amalgamation  function  again  can  be 

transformed  into  a  genetic  program. 

This  can  afterwards  be  put  into  the 

initial  population  for  the  genetic 

programming part or not (analogue to 

the last two experiments). Looking at 

the Figures 40 and 41 one can see, that 

in  this  case  (GA may learn  weights) 

there is a significant impact if the GA's 

amalgamation  function  is  part  of  the 

initial  population  of  the  genetic 

programming part. If not, as shown in 

Figure 40,  the  measure  learned  with 

GP is worse than the one the GA came up with. On the other hand, the figures show that the genetic 

programming part results in considerable improvements, if it gets the GA's amalgamation as a kind 

of “hint” or a good starting point to find a better amalgamation function that the weighted average.
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Figure 40: Training- and test set errors after GA and after GP, the 
GA's amalgamation function was not part of the initial population of  
the GP part, but GA had the possibility to learn its own amalgamation 
function
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Figure 41: Training- and test set errors after GA and after GP, the 
GA's amalgamation function was part of the initial population of the 
GP part, and GA had the possibility to learn its own amalgamation 
function
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7.3. Results of learning an Ontology Alignment
In this section the results of using the genetic algorithm and genetic programming to find a property 

alignment between two ontologies will be presented. Generally the task is the same as in the case of 

using the GA only, as mentioned in section “5.2. Ontology Alignment” (see page  40). As seen, 

using  the  GA only,  leads,  for  some  ontology  alignments,  to  very  poor  results.  Especially  the 

alignment between the reference ontology and the one, which uses synonyms for class and property 

names, never came up with a performance better than 11, while the maximum value of the used 

performance measure was 44 (Fig. 29, page 44). Therefore, in this section (where we will try to 

improve this by using genetic programming) the alignment between these two ontologies shall be 

learned in the next two experiments.

As mentioned in the last section, an option of the experiments is whether the genetic algorithm may 

learn its own amalgamation function or not. As in the previous section an experiment was made for 

both methods and will be presented. The other option, whether the amalgamation function, which 

the  GA  learned,  is  contained  in  the  initial 

population,  which  the  genetic  programming 

part gets (or not), is for both experiments set 

to “yes”.

Experiment 1

Figure 42 shows the results of the 

first  experiment,  where  the  GA 

was  able  to  learn  its  own 

amalgamation  function  (the 

weights of the weighted average). 

As  one  can  see,  also  the  use  of 

genetic  programming  does  not 

lead  to  a  perfect  (or  almost 

perfect)  alignment.  But  a 

significant  improvement  can  be 

observed.  The  performance, 

defined as the amount of correctly 
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Figure 42: The correctly- and the wrongly found alignments and the 
performance as correct ones minus wrong ones
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identified alignments (true positives) minus the wrongly identified ones (false positives), increases 

in this case from 8 to 16. 

Experiment 2

In the second experiment the GA 

was  not  able  to  learn  its  own 

amalgamation  function,  and  so 

the similarity measure learned by 

the  GA is  very  poor,  as  can  be 

seen  in  Figure 43.  The 

performance  of  the  measure 

learned  by  the  GA  is  even 

negative, because there are more 

wrongly  identified  alignments 

than correctly identified ones. But 

looking  at  the  results  after  the 

genetic  programming part  of  the 

experiment, one can see that the performance increased up to 16. This is the same value as achieved 

in the first experiment. So the results after the genetic programming part does not  depend on a 

meaningful weighting of the similarity measure already after the GA part of the experiment.

Conclusions, Future work

At the end of the section about finding ontology alignment's using GA only (“5.2.6. Discussion,

Future work”, page 44), some possibilities to improve the results in future work are presented. One 

of them is to use a class-alignment to learn the property-alignment and vice versa. Doing so, it is 

possible to build up a kind of a learning cycle (see Fig. 30, page 45). Looking at the considerable 

improvements  (despite  the  still  quite  poor  quality  of  the  absolute  results)  the  use  of  genetic 

programming can achieve, it would be a good idea, to include the genetic programming part in each 

learning step of this learning cycle.
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Figure 43: The correctly- and the wrongly found alignments and the 
performance as correct ones minus wrong ones, the GA could not learn its  
amalgamation function
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8. Implementation Aspects

Since this diploma thesis is not just a theoretical thesis about learning similarity measures, but also 

an implementation in the “real” world has been developed, we will focus in this chapter on some 

aspects of the implementation of the Local/Global Framework and the learning algorithms.

8.1. The Local/Global Framework
The whole implementation is embedded in the so called SimPack library which has been developed 

at  the department  of   informatics  at  the University  of  Zurich.  For  more  information about  the 

SimPack project see [Bernstein et al. 2005] and [Bernstein and Kiefer 2006].

8.1.1. The Local Similarity Measures
The 4 basic types for Local Similarity measures have all their own class. All these four classes 

inherit  from the  abstract  class  LocalSimilarityMeasure.  These  five  classes  can be found in  the 
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Figure 44: The class diagram for the local similarity measures
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package  simpack.measure.local.  Because  all  local  similarity  measures  inherit  from one 

single  abstract  class,  it  is  easy  to  define  the  object  similarity  class  in  a  way that  building  up 

recursive measures will be easily possible (due to the fact that an object similarity measure can be 

seen also as a local similarity measure). In fact the class ObjectSimilarity contains just an array of 

LocalSimilarityMeasure, whose entries can be objects of any subclass of LocalSimilarityMeasure. 

As shown in  the  class  diagram, LocalSimilarityMeasure  is  a  specialisation  of  the “base” class 

SimilarityMeasure,  defined in  the  package  simpack.api.impl.  Note  the  subclasses  for  the 

Number and the String measures,  they are  made to  be able  to  use different  internal  similarity 

measures (in the case of  String) or  distance measures (in the case of  Number).  More of these 

internal measures can be added easily.

8.1.2. The Configurations
The  class  diagram  of  the 

configurations for the similarity 

measures  is  built  quite  similar 

as  the  class  diagram  for  the 

measures themselves. Basically 

there  exists  one  configuration 

class for each type of measure, 

and  all  configuration  classes 

implement  the  interface  ILocalSimilarityConfiguration.  Note  that  the  configuration  for  string 

similarity measures (Sim2SimMapping) is a specialisation of Dist2SimMapping (the configuration 

for numeric similarity measures). There exists also a class SimilarityTree but it is technically not 

part of these configuration classes. A SimilarityTree can be used to set the similarity values of a 

SimilarityTable. This has especially two reasons: 

1. For each similarity measure there is exact one configuration.

2. SimilarityTables are much faster than trees, because in trees we have always to find the 

nearest-common-parent node (NCP) to get the correct similarity value.

All configuration classes are located in the package simpack.util.local.
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Figure 45: The class diagram for the Configuration classes
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8.2. Evaluation of Similarity Measures
There exists one abstract class that is able to evaluate the soundness of a similarity measure. To be 

able to use this class also to evaluate how well a learned amalgamation function performs, it is a 

generic abstract class. Concrete implementations will have to implement basically two methods. 

One that returns the similarity between two objects which is calculated using the measure to be 

evaluated (or amalgamation function). The other method, which must be implemented, has to return 

the similarity value between two objects which is defined in the gold standard. The class diagram 

shows how the  different  evaluation classes  are  inherited from each other.  The great  benefit  of 

having this generic evaluator is that all the code about:

• which deviation type is used.

• how the deviation should be transformed into a fitness value

• how many comparisons are made for one single measure to evaluate its deviation

• how these “test pairs” are generated

is in the generic Evaluator class. See following sections for more details of these tasks.

• “3.3. Calculating a similarity measure's deviation from the gold standard” on page 15

• “4.3.1.2. Calculating a fitness value from a deviation” on page 22
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Figure 46: Class diagram of the Evaluators
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The two classes, Evaluator<LocalSimilarityMeasure> and Evaluator<SymbolNode> actually do not 

exist.  They  are  shown  in  the  diagram  to  highlight  that  MeasureEvaluator  actually  extends 

Evaluator<LocalSimilarityMeasure> (and GP_SimMeasure_FF extends Evaluator<SymbolNode>, 

respectively). The reason that in the GP the evaluator and the fitness function is the same, is that no 

interpretation  on  the  chromosome  is  needed.  In  GA  the  fitness  function  first  interprets  the 

chromosome and builds up a similarity measure, and than uses the MeasureEvaluator to evaluate it. 

The general evaluators are located in simpack.learning, the GP related evaluators are located 

in simpack.learning.gp.

8.3. Learning with the genetic algorithm
All the GA specific classes are located in  simpack.learning.ga. For the genetic algorithm 

the open-source JGAP-Framework has been used. To improve the learning performance, an own 

NaturalSelector and an own GeneticOperator have been implemented according to the interfaces 

defined in the JGAP-Framework. This is done to have a selection strategy as presented in Section 

“4.3.2.4. Combination of the Strategies” (see p. 25) and a genetic operator as described in “4.3.3.3.

Combination of the genetic operators” (see p. 27). This implementations can be found in the classes 

SimpackSelector and SimpackGeneticOperator respectively. To improve the runtime, the learning 

cycle  has  been  implemented  newly  (outside  the  JGAP Framework).  This  is  done  in  the  class 

GA_Starter, where therefore a method exists to start an evolution.

Another important part of this packages are the so called GeneDataInterpretors. Their task is to 

transform a chromosome into a  LocalSimilarityMeasure.  They are  used by the  fitness  function 

which is also part of the simpack.learning.ga package. A detailed instruction how to learn 

similarity measure using this package can be found in the appendix.

8.4. The Genetic Programming Framework
This  framework  has  been  developed  to  be  able  to  use  genetic  programming  to  learn  an 

amalgamation function. It is developed in an analogue way as the JGAP-Framework has been built. 

Also three interfaces, one for a fitness function, one for a genetic operator and one for a selector 

exist. Each of them is implemented for the case of learning an amalgamation function. What is not 

needed in the genetic programming approach, are the GeneDataInterpreters. Instead of them a so 

called GP_Executor has been developed. This is a class that is able to execute a genetic program, 

having its parse tree. For that, it maps the symbols, contained in the tree nodes on the defined Java-
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methods which then will be invoked. Furthermore it maps the terminal symbols, which stand for a 

variable, to the actual value this variable has. These values can be set before executing the genetic 

program,  and  so  the  defined  variables  can  be  used  as  arguments  (input  values)  for  a  genetic 

program. The GP_Executor is also the class that is able to produce an initial population of genetic 

programs to  start  the  evolutionary process.  Objects  of  the class  GeneticProgram represents  the 

actual programs (i.e. the individuals in the population). They consist of the parse tree (to execute 

them by the GP_Executor) and a fitness value, which will be set by the bulk fitness function (this is 

a function that calculates the fitness for each individual in the population).

8.5. Learning an amalgamation Function using GP
To  learn  an  amalgamation  function  for  a  global  similarity  measure,  the  two  classes 

GP_SimMeasureAnalyser and GP_SimMeasureFF are used.

First SimMeasureAnalyser is used to create an accurate GP_Executor. In this step, for each local 

similarity value, that the global measure would produce when its calculated,  a variable will  be 

defined in the GP_Executor. If the (GA-learned) amalgamation function should be exploited to 

learn the new one, all learned weights could also be added to the GP_Executor as constants2. The 

SimMeasureAnalyser also defines the functions that the genetic program may use, their symbols 

and the concrete Java-methods, which are associated with the function symbols.

This built up GP_Executor and the global similarity measure are given to the  GP_SimMeasureFF, 

the  fitness  function  for  this  task.  When  the  fitness  of  an  amalgamation  function  should  be 

calculated,  first  all  local  similarity  values  will  be calculated,  using  this  global  measure.  These 

values will be set  to the variables in the GP_Executor (SimMeasureAnalyser has defined these 

variables previously). Having done this, the GP_Executor is used to calculate the result which the 

learned amalgamation function produces. This then will be the global similarity value, which is 

used to calculate the deviation (as in the case of GA-learning). Note that always an amalgamation 

function for one single similarity measure is learned. This similarity measure can be a measure 

learned previously by the GA.

These classes are also located in the package  simpack.learning.gp, together with the GP 

Framework's classes. 

2 Technically they are variables, which will be set only once.
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9. Conclusions & Future Work

In this chapter first a summary of the work done and presented in this diploma thesis is given. 

Afterwards we will see what benefits and drawbacks the applied methods come up with. In the last 

section proposals for future work will be presented.

9.1. Summary
At the very beginning of this diploma thesis we have introduced similarity measures and shown 

how the Local/Global principle works. Afterwards a possible Local/Global framework has been 

presented, which will be needed later on when similarity measures will be learned.

We have seen how the soundness of similarity measures can be evaluated using a gold standard and 

how such a gold standard can be created. Initially these two chapters had nothing to do with the real 

learning algorithm but this work has been done to have the basis for using machine learning of 

similarity measures.

Afterwards  the details  of the genetic algorithm (the first  chosen learning technique)  have been 

presented,  always  looking  at  the  final  goal  of  learning  similarity  measures.  In  the  following 

evaluation  part  we  have  seen  that  the  genetic  algorithm  comes  up  with  very  good  similarity 

measures for the product data set. We have also seen that the approach works in principal also for 

the categorisation task of finding a property alignment between two ontologies, but that in absolute 

numbers, the results are are not as good as the results using the product data set. Therefore some 

proposals for future work are made at  the end of this  evaluation part.  These proposals will  be 

repeated together with further proposals for improvement  in in the “Future work” section of this 

chapter.

Having all these things done, the method of genetic programming has been introduced and we have 

seen  how  we  can  exploit  this  technique  to  improve  the  (first  by  the  GA  learned)  similarity 

measures. In the evaluation of this part, we have seen that genetic programming is able to find 

better  amalgamation  function  than  the  (predefined)  weighted  average,  and  that  genetic 

programming was able to improve the ontology alignment significantly, but results are still on a 

fairly poor level. 
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9.2. Benefits & Drawbacks
Local/Global Principle

The benefit of using the Local/Global principle is, that it can be used for nearly any kind of data 

structures. This is especially true with its recursive version, introduced in Chapter 2, where a local 

similarity measure can also be a global one, which has its own local similarity measures again. With 

this principle, complex- or aggregated objects,  having every possible tree-like data structure, may 

be compared. 

Using artificial evolution 

The use of artificial evolution, which means the genetic algorithm and/or genetic programming, 

itself  results in the following benefits.

– Less domain specific knowledge is needed to find a good similarity measure.

– It is a way to overcome the designer bias. The designer bias means, that if a human constructs 

something (e.g. a similarity measure), he always intuitively uses his conception of what the 

solution might be. This behaviour usually leads to the fact that not all possible solutions are 

considered. 

– Using a gold standard is a good interface for transporting the domain knowledge of an expert 

into the learned similarity measure, without needing a domain expert, who is also a computer 

scientist. 

Genetic programming 

Genetic programming can learn an algorithm itself, unlike the GA which only learns a parameter 

setting  for  a  defined  algorithm.  For  instance  an  own amalgamation  function,  instead  of  just  a 

parameter setting for a weighted average, can be learned. Therefore (compared to the GA, where the 

solution initially must be parametrized) with genetic programming even less knowledge about the 

characteristics of the solution is needed.

A drawback is, due to the closure property, GP is not able to learn a whole similarity measure to 

compare complex objects. The genetic algorithm and so the Local/Global framework is still needed.

Another drawback is that, GP compared to GA, needs larger populations and therefore much more 

runtime. The results of GP are also less predictable than those of using GA.
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9.3. Future work
In  this  section we will  see  what  future  work can be done to  improve particular  results  of  the 

evaluations or to widen the scope of application of this framework.

Future work concerning the Local/Global Framework

As seen in Chapter 2 the Local/Global framework consists of four types of similarity measures and 

four types of configurations for the similarity measures. Including the similarity tree there would be 

five configuration types. 

So more types of measures could be implemented (or built into the framework) to achieve that more 

accurate (global) similarity measures can be constructed. These could be measures that compare 

two data structures (e.g. tree edit distance3) or measures to compare long strings that have a textual 

character (e.g. TFIDF).

As seen in Chapter 2 the string and the number similarity weights consist of a “raw” similarity 

measure (distance measure in the case of number similarity) and a mapping that can be learned. The 

learning could be widened to the parameter setting of these “internal” measures.

Furthermore one might introduce a kind of a “similarity graph”. Like a similarity tree, such a graph 

could  be  used  to  calculate  a  similarity  table  for  symbol  similarity  measures.  In  the  case  of  a 

similarity tree, a learned similarity of the nearest common parent node defines the similarity of two 

symbolic  values.  In  a  similarity  graph  the  nearest  path  from  one  to  another  object  could  be 

calculated and learned values of each edge could be used to calculate a similarity value.

Improving the results of the ontology alignment task

The alignment task can be done with larger ontologies. In larger ontologies (at best with larger class 

hierarchies) the chance that two classes which are not semantically identical, but nevertheless have 

the same values for superclasses, subclasses and direct subclasses, will be lower. As mentioned in 

the explanation of the first experiment using the class hierarchy (see “Using property names, class

names and class hierarchy of domain and range“, on page 43), this is a reason that these values do 

3 The tree edit distance measure implemented in SimPack had an unacceptable runtime for use it in a learning cycle. 
So the necessary first step before being able to use it would be an optimisation.
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not really help finding the correct alignment. Therefore I predict better results using just a larger 

ontology.

More meta data of the properties can be taken into account. E.g. the cardinality could be exploited 

also. But this would have the same problem as the “position in hierarchy”, the value of this attribute 

will be in most of the cases just 1. Therefore, for a lot of property pairs, which are not part of the 

correct alignment, the comparison of this attribute will lead to a maximum similarity.

 

The basic idea of using the class hierarchy was to identify the classes that represent each other 

semantically, and so to reason, that properties, where the range and the domain is the (semantically) 

same class, have a good chance to represent each other. Now the same procedure, as is used to find 

the  alignment  between  the 

properties,  can be used to  find the 

class alignment. Having this once it 

can be exploited to find the property 

alignment.

As  already  mentioned,  the  class 

alignment could be learned in a first 

step,  analogue  to  the  the  property 

alignment.  Looking  at  the  (quite 

poor) results  of finding the correct 

property alignment, there is also not 

much  hope  that  finding  the  class 

alignment  would  perform  much 

better.  But  to  find  the  class 

alignment,  the  previously  found 

property alignment can be exploited. 

So this could be done in a cycle. An 

initially  quite  insufficient  class 

alignment  will  lead  to  a  slightly 

better property alignment. Than this 

72

Figure 47: Suggested learning cycle for an ontology alignment

cl
as

s 
al

ig
nm

en
t

property alignment

class alignment

Use the property alignment to 
learn a class similarity measure 

Use this measure to create 
an initial class alignment

Use the class alignment to learn
a property similarity measure 

Abort criteron

Use this measure to create 
a class alignment

Use this measure to create 
a property alignment

Learn an initial class 
similarity measure



9. Conclusions & Future Work

property alignment again is used to learn a better class alignment and so forth. Figure 47 shows the 

imagined learning cycle. Note that in the Figure 47 the class similarity measure is learned initially 

and  therefore an initial class-alignment will be created. This is arbitrarily defined, one can also start 

the learning cycle with an initial property alignment.

Doing more evaluations

In this diploma thesis evaluations with two datasets have been done, the product dataset and the 

ontology alignment task. Of course more different data sets can be used to do more evaluations of 

the whole framework. As the Local/Global principle, especially in its recursive version, it is very 

universal. Objects of almost every thinkable data structure can be compared with each other by an 

accurately configured global similarity measure.

Refactoring SimPack

Using the SimPack library was fairly complicated because a lot of different return- and argument 

types are used. This may be the result of the different developers working on the SimPack and their 

individual tastes. I would propose to use primitive types, and  instead of collection, sets, vectors and 

all  these classes,  to use simple arrays of the particular objects,  wherever possible.  This simply 

would  make it  easier  understandable for  a  user  (e.g.  when he  reads  the  Java-doc)  and,  if  less 

different classes for argument and return types are used, a lot of transformation work could be 

saved. Another benefit (especially of using primitive types) would be that, simpler data structures 

will usually lead to less memory- and runtime4 consumption. 

So we can see that a lot of further improvement is possible. These further improvements will make 

learning similarity measures more efficient, more universal and easier to apply.

4 I reimplemented the Levensthein algorithm and got a 4 times better runtime just by using a 2-dimensional array of a 
primitive type instead of a matrix object. 
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Appendix A - Using the Local/Global Framework 
This framework (for local similarity measures) can be used in two ways:

1. It can be used just to define concrete similarity measures.

2. To learn meaningful configurations for similarity measures,  which was the point  in this 

diploma thesis.

A.1. To configure Similarity Measures
If  one wants to use this framework just  for creating (known) similarity measures,  one can just 

instantiate the  correct  configuration  classes,  set  the  parameter  values,  in  a  way  he  thinks  is 

meaningful, and create the similarity measures. There are two ways to get from the configurations 

to  the  working  measure.  Either  the  LocalSimilarityMeasure  is  instantiated  and  it's  desired 

configurations is given to the constructor or, the more elegant way, one can call the getMeasure() 

method  of  the  configuration  object.  The  getMeasure()  method  is  defined  in  the  Interface 

ILocalSimilarityConfiguration so that it is ensured that every configuration class has to implement 

it.

A.2. To learn Similarity Measures
To learn a  meaningful  configuration,  it  is  necessary to  learn all  parameter values.  If  a  genetic 

algorithm is used for this, the number of parameters defines the length of the chromosome (or the 

number of genes). If one just wants to learn for example one similarity table, he can easily calculate 

how many free parameters need to be set, and so start a genetic algorithm. In each fitness test he 

would interpret the chromosome and build up the similarity table. But calculating the length of the 

chromosome needed and interpreting it,  will get more and more difficult,  if  one wants to learn 

complexer measures (such as recursive object measures). If something changes (e.g. one wants to 

ensure  a  similarity  table  to  be  symmetric)  the  interpreter  for  the  chromosome  has  to  be 

reprogrammed. 
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To  avoid  this  work,  an­

other  type  of  helpful 

classes  has  been  created, 

the so-called GeneDataIn­

terpreters.  These  classes 

build the bridge from the 

genetic  algorithm  (which 

knows nothing about sim­

ilarity) to the configurations and measures (which know nothing about the genetic algorithm). Ba­

sically an instance of a GeneDataInterpreter (again 4 types exist, analogue to the configurations, and 

they also can be arranged recursively) is able to transform a number of genes into a configuration. 

Furthermore it can answer the question how many genes are needed for it's configuration and can 

create a sample chromosome. These two features are needed to calculate the length of the needed 

chromosome automatically. Once having a configuration, it is easy to create a similarity measure 

from it, which can be evaluated (e.g. to calculate it's fitness).

A.3. An Example how to use  this Framework
This section should give a concrete example, 

how to configure a global similarity measure 

and how to  use  the  GeneDataInterpretors  to 

learn a similarity measure.

Configuring a similarity measure

Assume  that  a  simple  global  similarity 

measure  to  compare  cars  should  be 

configured. Three attributes of a car should be used: shape, power (in kW) and origin (the country 

where it was produced). To start, we instantiate the ObjectSimlarityConfiguration for our desired 

global similarity measure.

ObjectSimilarityConfiguration osc = new ObjectSimilarityConfiguration();
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Figure 48: Class diagram of the different GeneDataInterpreters

Figure 49: The structure of the car objects used in the 
example
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Having this done,  the configurations for the local similarity measures can be set up.  For the 2 

symbolic  attributes  we  need  a  SimilarityTable,  for  the  numeric  one,  a  Dist2SimMapping. 

Additionally for shape we wants to use a taxonomy to calculate the similarity table (see Fig. 50). 

Symbol[] shape = new Symbol[4];
shape[0] = new Symbol("Cabriolet");
shape[1] = new Symbol("Coupé");
shape[2] = new Symbol("Stationwagon");
shape[3] = new Symbol("Limousine");
SimilarityTable tableShape = new SimilarityTable(shape);

“shape”  defines  the  symbols, 

which  this  table  may  compare, 

this  array  hast  to  contain  all 

possible values the attribute may 

have.  Afterwards,  build  up  the 

SimilarityTree and pass it  to the 

similarity table:

String[] twoDoors = {“Cabriolet”, “Coupé”}
String[] fourDoors = {“Limousine”, “Stationwagon”};
SimilarityTree[] cars = new SimilarityTree[2];
cars[0] = new SimilarityTree(“2-door”, 0.7, twoDoors);
cars[1] = new SimilarityTree(“4-door”, 0.5, fourDoors);
root = new SimilarityTree(“Car”, 0.2, cars);
tableShape.setSimilaritiesByTree(root);

To add this configuration to the global configuration use this:

osc.addAttribute("shape", 0.4, tableShape);

The first attribute of the function represents the key of the property, which contains the values to 

compare in the car objects, the second is the weight of this property.
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Figure 50: Similarity Tree for the attribute shape
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As next, define the configuration for the numeric similarity measure used to compare the power of 

the cars. For this a Dist2SimMapping is used. Using our common sense (vocabulary knowledge) we 

want to have a measure that is symmetric.

double[] powerValues = { 1, 0.8, 0.5, 0.25, 0.1, 0 };
Dist2SimMapping powerMapping = new Dist2SimMapping(0, 100, 

Dist2SimMapping.DIFFERENCE, powerValues);
powerMapping.setSymetric(true);
osc.addAttribute(“power”, 0.3, powerMapping);

The similarity values in the array “powerValues” will be uniformly distributed over the difference 

range from 0 to 100. Finally the mapping is added to the global configuration object. 

For the third attribute another similarity table is needed. Unlike for the attribute “shape” a similarity 

table could also be manually defined like the distance-to-similarity mapping, but a 2 dimensional 

array will be needed. 

double[][] simValue = { { 1, 0, 0.4, 0, 0.3 }, { 0, 1, 0, 0.75, 0.3 }, 
{ 0.4, 0, 1, 0, 0 }, { 0, 0.75, 0, 1, 0 }, { 0.3, 0.3, 0, 0, 1 } };

Symbol[] country = new Symbol[5];
country[0] = new Symbol("Germany");
country[1] = new Symbol("France");
country[2] = new Symbol("Sweden");
country[3] = new Symbol("USA");
country[4] = new Symbol("Japan");
SimilarityTable tableOrigin = new SimilarityTable(country, simValue);
osc.addAttribute(“origin”, 0.3, tableOrigin);

Having all this done, the measure can be created:

LocalSimilarityMeasure carSimMeasure = osc.getMeasure();

This measure will be able to compare objects of the class Hashtable<String, Object> whereby they 

should have the keys “shape”, “power” and “origin” for the attribute values.
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Create a GeneDataInterpreter

To learn  a  similarity  measure  using  the  genetic  algorithm,  a  so  called  GeneDataInterpreter  is 

needed.

In this section it will be shown how to build such an interpreter for the car example. First instantiate 

the interpreter for the global measure.

ConfigurationInterpreter carInterpreter = new ConfigurationInterpreter();

Having this, create the interpreters for the local measures and add them to the global one:

SimTableInterpreter shapeInt = new SimTableInterpreter(shape);
shapeInt.setTreeStructure(root);
carInterpreter.addSubInterpreter(“shape”, shapeInt);

Note that “shape” should represent the previously introduced symbol array, and “root” stands for 

the similarity tree defined in the previous section. The similarity values, which have been set there, 

will not be used by the interpreter. To set these, the genes of the chromosome to be interpreted, will 

be used.

For the similarity mapping the following interpreter can be defined:

MappingInterpreter powerInt = new MappingInterpreter(0, 100, 6, 
Dist2SimMapping.DIFFERENCE);

powerInt.setMonotonic(true, Dist2SimMapping.DECREASING);
powerInt.setSymetric(true);
carInterpreter.addSubInterpreter(“power”, powerInt);

The third argument of the constructor indicates how many values may be learned to create the 

mapping. 

For the last symbolic attribute “origin” the following interpreter can be used:

SimTableInterpreter originInt = new SimTableInterpreter(country);
originInt.setSymmetric(true);
carInterpreter.addSubInterpreter(“origin”, originInt);

Note that “country” stands for the symbol array that was created in the last section.
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At this point this interpretor can be used to learn a concrete similarity measure that compares the car 

objects in our example. Additionally the interpreter can answer the question how many genes are 

needed to encode all parameters and he can create a sample chromosome (technically an array of 

genes) for the JGAP-Framework.

Appendix B - GA Learning
To learn a similarity measure, first an evaluator is needed. To instantiate this a training set and a 

gold standard is needed. Another option is to have a target measure that calculates the similarity 

values for the gold standard.

So first somehow the training set has to be loaded (form a database, csv-file, ontology or whatever 

the data source might be5) and brought in a form that it is an array of Hashtable<String, Object>. 

The  gold  standard  will  be  an  2-dimensional  array  of  doubles,  indicating  the  desired  similarity 

between  two  objects,  whereby  goldStd[i][j]  should  be  desiredSimilarity(trainingSet[i],  

trainingSet[j]). The MeasureEvaluator than can be instantiated like this:

MeasureEvaluator me = new MeasureEvaluatorGoldStandard(trainingSet, goldStd);
or 
MeasureEvaluator me = new MeasureEvaluatorTargetMeasure(trainingSet, 

targetMeasure);

Having  this  done,  the  fitness  function  can  bin  instantiated  using  the  evaluator  and  the 

GeneDataInterpreter introduced Appendix A.3. Once having the fitness function, out of it the so 

called BulkFitnessFunction can be created, which calculates the fitness of each individual in the 

population at once. 

SimMeasureFitnessFunction ff = new SimMeasureFitnessFunction(me, 
carInterpreter);

SimMeasureBulkFitness smbf = new SimMeasureBulkFitness(ff);

These two steps are already implemented in the GA_Starter, the class which starts and controls the 

learning cycle.

5 Some classes to do this are in the package simpack.data_access
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To start a learning cycle, at least a GeneDataInterpreter and an Evaluator is needed. Optionally a 

specific  GeneticOperator  and/or  a  specific  NaturalSelector  can  be  used.  Otherwise  the  default 

SimpackGeneticOperator and the default SimpackSelector will be used.

populationSize = 50;
generations = 250;
GA_Starter.evolvePopulation(me, carInterpreter, populationSize, generations);

This method returns an array of Chromosomes. From every generation the chromosome of the best 

performing individual is in this array. “carInterpreter” is the reference to the GeneDataInterpreter 

used. 

Configuring the GeneticOperator and the NaturalSelector

The SimpackSelector can be configured for example as follows:

int eliteSize = 10;
int grr  =  3;
int jokers = 25
INaturalSelector selector = new SimpackSelector(eliteSize, grr, jokers);

Where eliteSize defines the size of the elite (in percent of the whole population), which has a 

guarantee to be selected grr times (grr = guaranteed reproduction rate). “jokers” defines how many 

percent of the individuals will be selected regardless of their fitness. 

The SimpackGeneticOperator can be customized like this:

double crossoverRate = 0.75;
double mutationRate = 0.4;
double mmi = 0.2;
GeneticOperator go = new SimpackGeneticOperator(mutationRate, crossoverRate, 

mmi);

Where mutationRate and crossoverRate define the chance for  each individual  do reproduce by 

crossover or mutation, mmi defines the maximum mutation impact. 
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Appendix C - GP Learning
To learn with genetic programming, first also an evaluator is needed. This evaluator is in this case 

identical with the fitness function, because no GeneDataInterpreter is needed in GP. Analogue to 

GA-leaning,  to instantiate  the evaluator,  a training set  and a gold standard (optionally a  target 

measure) is needed. But furthermore the evaluator for an amalgamation function needs to know the 

ObjectSimilarityMeasure,  for  which  the  amalgamation  function  should  be  learned,  and  a 

GP_Executor, which is used to execute the genetic programs. The measure can be a previously 

GA-learned  similarity  measure  called  “measure”  in  the  following  code  snippet.  Having  this 

measure, also the GP_Executor can be created using the class SimMeasureAnalyser :

GP_Executor<Double> gpEx = GP_SimMeasureAnalyser.createGPExecutor(measure);
GP_SimMeasureFF ffTraining = new GP_SimMeasureFF_GoldStandard(gpEx, measure, 

trainingSet, goldStd);

The selectors and the genetic operators work similar to the ones used in GA, the genetic operator 

has only one parameter, crossoverRate, because no explicit mutation is implemented. Also there 

exists no method that starts and controls the learning cycle. The learning cycle could be set up like 

this:

int gpGenerations = 50;
int gpPopSize = 500;
GP_CrossOverOperator go = new GP_CrossOverOperator();
GP_SimpackSelector sel = new GP_SimpackSelector();
GeneticProgram[] pop = gpEx.createInitialPopulation(gpPopSize);
GP_BulkFitnessFunction bff = new GP_BulkFitnessFunction(ffTraining);

for (int n = 0; n < gpGenerations; n++) {
bff.evalute(pop);
GeneticProgram[] selected = sel.select(gpPopSize, pop);
pop = go.operate(gpPopSize, selected);

}

Note that in this GP-Framework the population is represented simply by the array of individuals the 

population contains.
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