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Abstract. Traditional process support systems typically offer a static
composition of atomic tasks to more powerful services. In the real world,
however, processes change over time: business needs are rapidly evolving
thus changing the work itself and relevant information may be unknown
until workflow execution run-time. Hence, the static approach does not
sufficiently address the need for dynamism. Based on applications in the
life science domain this paper puts forward five requirements for dynamic
process support systems. These demand a focus on a tight user interaction
in the whole process life cycle. The system and the user establish a con-
tinuous feedback loop resulting in a mixed-initiative approach requiring
a partial execution and resumption feature to adapt a running process
to changing needs. Here we present our prototype implementation NExT
and discuss a preliminary validation based on a real-world scenario.

1 An Illustrating Scenario - As is

Peter, the chemist in our scenario, needs to determine the 3D structure of a
bio-molecule using NMR spectroscopy. Without having IT support, he uses his
paper lab book to construct a rough experimental plan. He then starts the exper-
iment. Only, he forgets to calibrate the spectrometer, a fact he quickly realises
as the spectrometer returns first data, which shows a systematic and continuous
shift over all values. At some later point, Peter stumbles on a problem with his
experiment, which he does not know how to solve. He is unable to interpret
a spectrum correctly and therefore to choose which measurement to perform
as the next step. He reads a publication about a similar problem and makes a
lengthy (formal descriptions are hard to explain in prose form) telephone call
with his advisor, which is visiting a conference overseas. Anyhow, his advisor can
help him and following his lead, he studies some intermediate results returned
from the spectrometer. Peter then realises that he forgot to repeat a proceeding
measurement with adapted parameter values rendering the current measurement
totally useless. But even worse, he did not store the intermediate results during
the execution, so he has to restart the execution from scratch.



2 Introduction

The scenario shows that conducting meaningful experiments or exploratory ac-
tivities requires a user to construct a complex and long-running sequence of
atomic tasks which may have to be changed during all phases in their life cycle
(process choreography [1]). Their size can be very large leading to long and com-
plex interrelations. Furthermore, processes and their elements may change their
degree of specificity (see Figure 1) over time: Underspecified processes can be-
come well specified when more information becomes available and well-specified
processes can become less specified (e.g., due to exceptions) — thus, the pro-
cess moves along the Specificity Frontier [2]. A system acting in domains whose
processes show varying degrees of specificity and dynamically move along the
frontier must conform to such behaviour.
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Fig. 1. The Specificity Frontier [2]

Usually, several potential realizations exist for an atomic task (such as Web or
Grid Services or local procedure calls), so choosing the appropriate one (process
orchestration [1]) turns out to be non-trivial. At run-time, exceptions can be
thrown (e. g., hardwre malfunctions, software crashes), unforeseeable events may
take place or the user wants to intervene when he observes something unusual,
forcing the execution to halt and the system to react accordingly. The process
must then be adapted in some way preserving its correctness and consistency.
Finally, the execution must be resumed at the correct and optimal resumption
point. Once the experiment has finished, all its related data must be documented
(e.g., for publication in academia or to record that the process was maintained
in legal environments).

In our opinion, a process support system acting in highly dynamic domains
must focus on the user and keep him/her engaged in a tight interaction. Based on
the system’s domain knowledge and the explicitly given information, the system
should provide contextual guidance to the user in all situations, especially in the
complex creative phases of his work. More specifically, based on the preliminary
work [2], we proclaim that such a system has to fulfill the following requirements:

R1: Support users throughout the process choreography and orchestration steps.

R2: Support partial executions and dynamic adaptations at run-time.

R3: Integrate reasoners and planners to provide useful alternatives for the user.

R4: Incorporate a Case Base. Then a Case Based Reasoner [3] can infer useful
information from past cases (from both best and worst practices).



R5: Support (semi-)automated data mediation to connect processes with differ-
ent data formats which are transformable into each other.

In this paper we will present an overall approach for a process support system
addressing these requirements. We focus on the second one and will show in more
detail how partial executions, run-time adaptations and changes to parameter
values can be supported. The remainder of this paper is structured as follows:
In Section 3 we operationalize the requirements into concrete foundational chal-
lenges for our prototype NExT (Next-generation Experiment Toolbox). Section
4 then introduces the most important architectural and implementation aspects
of NExT. A preliminary validation of the prototype in the context of the intro-
ductory scenario is discussed in Section 5, followed by a comparison with related
work in section 6. We conclude with a summary and an outlook on future work.

3 Overall Operationalization of NExT

In order to assure and a clear separation of concerns, we divided NExT into
two parts: the underlying knowledge bases (KBs) containing all the domain
knowledge and a generic execution support system. The content of these KBs
is provided in a formal, machine readable language, which is a pre-requisite for
planning and reasoning (R3, R4). We identified three types of entities to store
in separate online KBs: First a Process Library with models for all atomic tasks
and templates for composite processes with a loose coupling to their concrete
realizations allowing for their dynamic reassignment (R1). Second, a Data Entity
Library containing models for all data/object types to enable (semi-)automated
data mediation in fulfillment for R5. Last, but not least, a Case Base containing
a collection of completed process executions enables both automated as well as
human case based reasoning (R4). Note that due to the KBs NExT exhibits
significant network effects in the micro-economic sense: the more people use
it the more attractive it becomes. If a sufficiently large group of people in a
given domain publish their processes into the repositories then the possibility
for knowledge exchange increases, collaborating in designing/executing processes
is simplified, and their use as case bases and domain KBs increases the quality
and diversity of planner/reasoner results.

We follow an approach known as Mixed-Initiative planning and execution
[3]; the user and the NExT system work hand-in-hand informing each other
with newly discovered facts. The more information and constraints the system
receives from the user, the more (implicit) knowledge it can infer and present
to him. He then can use this additional information to either retrieve even more
information or make decisions, both of which become new input for the system.
User and system are, thus engaged in a continuous feedback loop. In addition,
the system continuously monitors newly arriving information (such as detected
exceptions) and initiates an interaction with the user whenever necessary.

NExT guides the user by providing suggestions whenever she has to make
decisions or she explicitly requests help. During the process choreography the
system’s degree of assistance ranges between suggestions, which processes are



suitable for the next step, and the generation of whole process plans at once
(R1). During the process orchestration the system will (1) guide the users to
concrete realizations and (2) help them to decide which one is suitable under
the given constraints and user preferences (R1). When two processes are chained
together by a data flow and the types of their parameters are not ”castable”,
then the system tries to resolve the mismatch or suggests solutions to the user
(R5). The execution history is recorded and contains the execution sequence of
atomic tasks, the links to used realizations, and all intermediate results. This is
an apparent prerequisite to build up cases (R4) for CBR.

The NExT user interface (UI) attempts to integrate all the necessary tools in
one common interface (the workbench metaphor). NExT’s target audience are
not computer scientists (but domain experts), so we tried to provide as simple as
possible interaction approaches. A graphical data-flow style editor allows the user
to easily create, start, pause, and adapt workflows and shows also the current
state of the process during execution. Interactive browsers allow querying and
browsing the KBs at any point in time and reasoners/planers/mediators act as
wizard-like pop-ups to impart advise whenever asked.

3.1 Supporting Partial Executions and Adaptations

In contrast to pure static workflows, dynamically evolving processes in most cases
cannot be fully specified before the start of the execution (e.g., some relevant
information becomes only available at run-time). Therefore, we allow the user to
start executing such processes, at least as long as the first steps in the sequence
are well specified. Over time the amount of information rises and the process
specification can be improved iteratively. Nevertheless, every problem that leads
to a failure at runtime must be resolved. Hence, our concept of partial execu-
tions consists of four elements: (1) errors in the process specifications and/or
exceptions and events must be detected before they affect the execution, (2) the
process execution must be interruptible, (3) the user must be able to adapt the
process to solve the problem, and (4) the execution must be re-continuable at a
correct and optimal point to ensure the overall process consistency.

The process specification is validated each time before the execution starts (or
re-continues) and at run-time, exceptions and events are caught by an exception
handler. For further handling, we developed an ontology of possible incidents

Exception Resolution Strategy

Hole in the 1. Call planner to provide alternatives to fill the gap

sequence 2. Ask user to define a realization manually

Missing 1. Query KB for processes, that produce the missing variables
2
3

parameter makes |2. Relax the condition

a condition . Remove processes whose effects make the condition unsatisfiable
unsatisfiable 4. At run-time, instantiate an input and let the user enter its value.
Table 1. Excerpt of the problem ontology including the problem resolution strategies




combined with adequate (semi-)automated resolution strategies (see Table 1).
After catching a problem, NExT exploits this ontology to map each problem to
an incident and determines then the priority for the problem resolution. When-
ever a severe incident is detected that endangers the immediate continuation of
the process the respective resolution strategy is applied instantly. On the other
hand, minor, not time-critical problems are simply reported to the user which
then can trigger the resolution manually (or the incident’s severity rises over
time above a threshold and then needs to be resolved immediately).

In most cases atomic tasks will not be interruptible when already under
execution (except they explicitly support this behaviour). In most cases this
issue can be addressed by interrupting the execution of the overall process when
the execution of the current atomic task finishes. If the cause for the interruption
is related to the outcome of the atomic task’s execution then its outcome will
have to either ignored, undone, or taken into account when it finished (in fact,
this is an instance of the Specificity Frontier). Consider this logistics scenario:
The plane transporting a piece of cargo for us is already airborne and we hear
that the cargo staff at the destination airport is on strike. Thus, it will not be
delivered at the demanded time, which is a hard constraint from our costumer.
Since, it is not in our power to reroute the plane we have to adapt our process
to the new circumstances.

Whenever possible the strategies attempt an automated, systems-led reso-
lution of the exception. If this fails or the user intervenes, she is integrated in
the loop (usually when too little information is known for the incident’s resolu-
tion). We found that the majority of the resolution strategies include changes in
the parameter values or adaptations of the process’s control and/or data flow.
Thus NExT must support such change operations and guide the user by the same
mechanisms as during process creation phase. In addition it must be ensured that
the process’s new execution plan is consistent and of its execution trail/history
remains correct and consistent. Before re-continuation of the process, the correct
and optimal resumption point must be found. Whenever processes or parameter
values that already were executed respectively computed are changed, it must
be computed wether the execution path is still correct. If not, some processes
must be rolled back to start over at a previous stage of the execution.

4 The NExXT Prototype Implementation

In order to ensure domain independence our system’s process meta-model defines
the system’s view on both processes and data entities (R3, R5 - Planner, Medi-
ation). Code was written in terms of meta-model concepts whereas applications
may inherit from or extend the meta-model for their own purposes. We describe
processes by their IOPE, meaning the (semantic) notion of inputs, outputs, pre-
conditions and effects (or post-conditions) and encode them in a declarative,
formal and machine readable language. These are the minimal properties to use
AT planners [4] (R3). We furthermore differentiate between an AtomicTask and
a CompositeProcess, whereas only the former can be related with one or sev-



eral mappings to concrete realizations (R1). The mapping contains the specific
how (and where) to invoke a realization. A CompositeProcess on the other hand
consists of a sequence of processes (potentially both atomic and composite). We
have chosen to use OWL-S [5], because it supports most of the concepts we need
out-of-the-box. When the execution of a process starts, the HistoryTrail is at-
tached. All atomic tasks in their execution sequence and all intermediate values
of all parameters are stored and define hereby a Case (R4). Dataltems can be
nested to compose complex types (R5 - mediation).

As our process execution engine we extended the Mindswap OWL-S API!
with two features: First, we added a new type of grounding that an atomic
task directly maps to a Java method. Second, we augmented the API with a
facility to interrupt and resume a process execution. NExT, furthermore, pro-
vides a component to retrieve content for the user assistance (R1, R3-R5) and
a second component controlling the partial execution and dynamic adaptation
aspect (R2), which we present in more detail in the next section. The guidance
component integrates several types of inferencing mechanisms:

— Deductive reasoners acting directly on the semantic model items. Specifically
we used the Pellet reasoner [6] that came with the Mindswap API.

— A Case Based Reasoner can find past processes similar to the one in use. The
current implementation relies on SimPack? [7] to retrieve similar entities.

— A plug-in interface to integrate several Al planners suitable for web service
composition [8,9,10,11,12] into the system. Herby we can exploit their spe-
cialization on a certain planning aspect (e.g. to use planners addressing the
changing information issue [13,14].

NExT is based on the Eclipse® framework. It is built as a workbench inte-
grating graphical tools for all important purposes. A process editor allows the
graphical creation and editing of workflows, their initiation and interruption. as
well as monitoring all process-related information such as partial results during
execution.

4.1 Supporting Partial Executions and Adaptations

We implemented a hierarchy with specific handlers for each type of incident in
our ontology. These handlers encapsulate the incident itself, its severity, and
implement its resolution strategy. To ease the development of these strategies
general facilities for common steps are provided by the NExT system (such as
UI widgets for user interaction or encapsulations for standard interactions with
planners). We then extended the Mindswap OWL-S API to perform consistency
checks on OWL-S process descriptions for design-time detection of problems
and improved the exception handling within the execution engine for run-time
detection. Both methods return an instance of incident stubs (or a list thereof).

! see http://www.mindswap.org/2004,/owl-s/api
2 see http://www.ifi.unizh.ch/ddis/research/semweb /simpack/
3 see http://www.eclipse.org



Depending on its severity, the incident is either added to a warning list for
detached resolution or the resolution strategy is immediately applied. As long
as the problems are not resolved, The execution is postponed (when not yet
started) or stays interrupted as long as not all severe problems are resolved.

Once the execution (re-) starts, the correct and optimal resumption point
must be computed. If all changes took place after the current execution point,
then we can simply continue the process. Else the algorithm attempts to roll
back all the effects of the computation by applying the following strategy to
each process step backwards until the first change:

1. When an inverse process is specified, invoke it. Proceed with next step.

2. When the process triggered no changes in the world state besides IO trans-
formations, the corresponding values are set back. Proceed with next step.

3. The user is asked to perform the roll-back manually. To suggest potential
solutions, the process library is queried to find a process with reversed in-
put/output and pre-/post-condition.

4. Abort the execution.

Note, that we must consider that massive amounts of data can be generated
during the execution. Hence, storing all intermediate results on all atomic tasks
is unpractical. We therefore let the user define storage points in the process se-
quence at which the intermediate results are written on disk. Second, note, that
finding the correct termination point for the strategy above shows some complex-
ity too. Parallel execution of steps or loop construct may introduce dependencies
between steps, which must be taken into account. The actually implemented al-
gorithm takes these two points into consideration. With all these considerations,
we propagate to fulfill R2.

5 Preliminary Validation —
The Introductory Scenario Revisited

Let us have a second look at our scenario. Peter conducts the same experiment,
this time with a copy of NExT. First, he finds a similar project in the past,
adopts its process sequence (see Figure 2 for a screenshot of NExT) and adapts
it slightly to his needs. The ”calibrate spectrometer” process is part of a) the
pre-condition of the ”run measurement” process and b) the standard ”setup
spectrometer” process template, so this time Peter does not forget this step.
All the steps that can be automated such as spectrometer calibration or some
simple analysis steps are executed automatically, but still some tasks need to be
performed manually. Peter though encounters the same problem as before. But
this time, the system provides him several potential solutions and he chooses
the correct alternative amongst them. NExXT re-sets the execution pointer to the
correct position and continues the experiment avoiding its restart from scratch.
In the end, Peter completes his experiment with success and much faster than
earlier. In addition to his prose report, he uploads the whole case including
all intermediate results, the history trail, and all additional information into a
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Fig. 2. Screenshot of NExT with the experimental sequence for a NMR case

shared knowledge base of the journal. Furthermore, Peter is able to generalize a
part of the process sequence for a certain type of bio molecules into a template
and publishes it in a NMR-community maintained Knowledge Base.

6 Related Work

Most of the Process Support Systems that have been developed in the past
30 years support either fixed, pre-defined, standard processes (e.g., workflow
management systems) or informal ad-hoc dynamic processes (such as e-mail or
groupware). The former use formal process definitions and can thus assist users
during the workflow creation whereas the latter are not bound to strict rules to
ensure flexible process adaptations at run-time. Only a few systems provide the
base for both. The FAR [15] system implements an exception handler based on
Event-Condition-Action (ECA) rules defined in a specific exception specification
language. ADEPT ., [16] is based upon a graph-based workflow model and
includes a complete and minimal set of (dynamic) change operations such as
task insertion or deletion. Consistency and correctness are preserved hereby.
Modern systems from the life science community are oriented towards service
orientation and grid computing. Prominent representatives thereof are Kepler
[17], Pegasus [18], and Taverna [19]. They all provide the basic functionality to
help users in the process life cycle, but none of them is focused on highly dynamic
processes and tight user integration. Both Taverna and Kepler allow the user to
manually pause an execution, Taverna can re-assign intermediate results during
an interruption and Kepler allows in addition adaptations to the control and
data flow. Pegasus on the other hand differentiates between the process and



its realization, uses a partial-order planning [4] algorithm for guidance in the
process composition and in combination with Virtual Data System [20] some
interfaces support for data mediation are provided.

7 Future Work/Conclusion

In future, we want to deploy NExT in a life science environment to observe its
practical usage for complex experiments. We plan to extend OWL-S by integrat-
ing the concepts of exceptions and events into the language. This would enable
reasoning upon these concepts and thus improve the user guidance facilities.
Furthermore, we will incrementally extend and refine our incident ontology and
NExT’s facilities for applying the resolution strategy. Also, we hope to exploit
the ongoing research on both Al and non-Al composition algorithms to offer
further guidance to users on the process composition and adaptation steps.

In this paper, we presented an approach for a process support system that
assists its users throughout the whole process life cycle from creation to en-
actment, adaptation and publication in the end. The system aims at domains
confronted with complex, long-running and highly dynamic processes. The pro-
cess support system maintains a tight interaction with its human users: they
want to be assisted in the creative work parts and they need to have the full
control, but simple and monotonic tasks should be executed automatically to
hold off the user from these time-consuming tasks.

As our main contribution we developed five requirements for process support
systems in complex experimental domains. We have, furthermore, shown a ba-
sic architecture and key implementation elements of our NExT process support
system based on Semantic Web technologies and Al planning and reasoning
methodologies (planners, Case-Based Reasoning) that implements our vision.
We especially focused on the partial execution feature (R2) and showed how we
detect problems, exceptions, and events at run-time (as well in design-time), al-
low for appropriate adaptations in the process, and resume the execution at the
correct and optimal resumption point. We hope that such systems will enable
the practical use of Semantic Web Services system in practice.
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