Semantic Process Retrieval with iISPARQL

Christoph Kiefer!, Abraham Bernstein!, Hong Joo Lee?, Mark Klein?, and
Markus Stocker!

! Department of Informatics, University of Zurich, Switzerland
{kiefer,bernstein,stocker}@ifi.uzh.ch
2 Center for Collective Intelligence, Massachusetts Institute of Technology, USA
{hongjoo,m klein}@mit.edu

Abstract. The vision of semantic business processes is to enable the in-
tegration and inter-operability of business processes across organizational
boundaries. Since different organizations model their processes differ-
ently, the discovery and retrieval of similar semantic business processes
is necessary in order to foster inter-organizational collaborations. This
paper presents our approach of using iISPARQL— our imprecise query
engine based on SPARQL- to query the OWL MIT Process Handbook—
a large collection of over 5000 semantic business processes. We partic-
ularly show how easy it is to use iISPARQL to perform the presented
process retrieval task. Furthermore, since choosing the best performing
similarity strategy is a non-trivial, data-, and context-dependent task, we
evaluate the performance of three simple and two human-engineered sim-
ilarity strategies. In addition, we conduct machine learning experiments
to learn similarity measures showing that complementary information
contained in the different notions of similarity strategies provide a very
high retrieval accuracy. Our preliminary results indicate that iISPARQL
is indeed useful for extending the reach of queries and that it is, therefore,
an enabler for inter- and intra-organizational collaborations.

1 Introduction

One of the cornerstones of the Semantic Web services vision is to enable the
design and execution of dynamic inter- and intra-organizational services (pro-
cesses). A major prerequisite for fulfilling this vision is the ability to find services
which have certain features (i.e., the ability for adaptive service discovery and
matchmaking and/or mediation). Most approaches so far have relied on some
type of logical reasoning [4,10]. In earlier works, we suggested that statistical
methods based on a catalog of simple predefined similarity measures might be
more suitable for this task [3]. Indeed, using the OWLS-TC matchmaking test
collection, we showed that a straightforward method based on simple, off-the-
shelf similarity metrics performed almost as well as the “best of bread” OWLS-
MX matchmaker that was engineered to the task of matching OWL-S services.

While this success was remarkable it left open some important questions.
First, the question of which similarity measure is applicable for a given problem
needs to be answered. Findings from Machine Learning [8], Information Retrieval

(IR) [1], and Psychology [9] show that the best performing similarity measure
might be both task- (e.g., OWL-S/WSML matchmaking, retrieval in ontologies,
etc.) and domain-dependent (i.e., the ontologies involved). Indeed, finding the
best similarity measure for any given task and domain can be mapped to an
optimization problem, where the “No Free Lunch” theorem [15] has proven that
no uniformly best solution exists. Hence, the choice of the best performing sim-
ilarity measure for any given task, given an application domain, seems anything
but straightforward.

Second, given that our similarity-based approach was still slightly outper-
formed by the human-engineered, task-optimized OWLS-MX matchmaker, raises
the question if a (human-) engineered, task-optimized similarity measure would
not perform better? This question is especially important since in many prac-
tical applications a considerable amount of human (knowledge) engineering is
expended to improve the performance of systems. Hence, the engineering effort
would also go into similarity-based solutions.

Third, given that similarity is an inherently statistics-based notion almost
begs the use of statistical machine learning techniques for finding a similarity
measure optimized for a given task and application domain.

In this paper we use the iSPARQL framework to address exactly these ques-
tions. iISPARQL is an extension of official SPARQL [14] that enables similarity
joins which employ any of about 40 different similarity measures implemented
in SimPack — our generic Java library of similarity measures for the use in on-
tologies.? It, therefore, lends itself as a platform for any kinds of similarity-based
retrieval experiments in ontologies.

Specifically, the contributions of this paper are that it (i) shows the simplicity
of designing similarity-based Semantic Web applications with iSPARQL, (ii) an-
alyzes the usefulness of human-engineered task- and domain-specific similarity
measures in comparison to some off-the-shelf measures widely used in Com-
puter Science and Al, and (iii) shows how similarity measures learned through
supervised learning techniques outperform both the off-the-shelf as well as the
human-engineered measures in a service retrieval task. Last, the paper introduces
a new dataset for (process/service) retrieval applications in ontologies based on
the MIT Process Handbook [13] that provides a very rich structural and textual
description of the provided processes.

The remainder of this paper is structured as follows. The next section suc-
cinctly summarizes the most important related work. Given the importance as an
underlying framework, Section 3 introduces the relevant features of iISPARQL.
Section 4 is the heart of the paper: it introduces the experimental setup including
the dataset used in the evaluations, provides some details on the experiments,
and discusses the results. To close, Section 5 discusses the results in the light of
the claims, related work, and limitations. We close the paper with our conclu-
sions and some insight into future work.

3 http://www.ifi.unizh.ch/ddis/simpack.html

2 Related Work

Several other studies focus on the comparison of semantic business processes
either for retrieval, discovery, matchmaking, or process alignment. We introduced
in earlier works PQL — the Process Query Language to query the MIT Process
Handbook [4]. PQL does not make use of similarity measures to retrieve similar
query matches. However, PQL knows a “contains”-operator that can be roughly
compared with the SQL “like”-operator performing string comparisons.

We are aware of two other studies that address the task of aligning semantic
business processes using a similarity measure. Brockmans et al. and Ehrig et al.
[5, 7] propose an approach to semantically align business processes originally rep-
resented as Petri nets. After the nets have been transformed to OWL, similarity
measures from different categories are employed to measure the affinity between
elements of Petri nets. Because we are able to define similarity strategies (i.e.,
compositions of several atomic similarity measurements and weighting schemes)
with our iISPARQL system, we consider such an ontology alignment task as being
in the range of tasks which could be perfectly carried out by iSPARQL.

With respect to matchmaking, Klusch et al. [10] present an approach to per-
form hybrid Semantic Web service matchmaking. Their OWLS-MX matchmaker
uses both, semantic similarity measures, as well as logic-based reasoning tech-
niques to discover similar web services to a given query service. Again, Semantic
Web service/process matchmaking is a possible application for iSPARQL.

Last, imprecise RDQL (iIRDQL) is the predecessor of iSPARQL [3]. In iRDQL,
special keywords are used to specify the similarity strategy (and parameters) to
measure the relatedness between resources in ontologies. We did not want to
introduce new keywords in iSPARQL since this would break the official W3C
SPARQL grammar. Hence, we decided to integrate imprecise statements as vir-
tual triples allowing us to add similarity measures and parameters by simply
extending the virtual triple ontology.

3 iSPARQL

This section succinctly introduces the relevant features of our iSPARQL frame-
work that serves as the technical foundation to all evaluations.* iSPARQL is an
extension of SPARQL [14] that allows to query by triple patterns, conjunctions,
disjunctions, and optional patterns. iISPARQL extends the traditional SPARQL
grammar but does not make use of additional keywords. Instead, iSPARQL in-
troduces the idea of virtual triples. Virtual triples are not matched against the
underlying ontology graph, but used to configure similarity joins: they spec-
ify which pair of variables (that are bound by SPARQL to resources) should be
joined and compared using what type of similarity measure. Thus, they establish
a virtual relation between the resources bound to the variables describing their
similarity. A similarity ontology defines the admissible virtual triples and links

4 An online demonstration of iISPARQL is available at http://www.ifi.unizh.ch/
ddis/isparql.html

PREFIX ph: <http://www.ifi.unizh.ch/ddis/ph/2006/08/ProcessHandbook.owl#>
PREFIX isparql: <java:ch.unizh.ifi.isparql.query.property.>

SELECT ?processl ?namel 7overallsimilarity
WHERE {
?processl ph:name ?7namel
?processl ph:description ?descriptionil
?process2 ph:name ¢‘Sell’’
9 7?process2 ph:description ?description2

W ~NO O WN -

11 # ImpreciseBlockOfTriples (lines 13-20, 22-24, and 26-33)

13 # NameStatement
14 7strategyl isparql:name ‘‘LoLN’’.
15 # ArgumentsStatement

16 7strategyl isparql:argument (7namel ‘‘Sell’’)
17 # IgnorecaseStatement
18 “7strategyl isparql:ignorecase ‘‘true’’

19 # SimilarityStatement
20 7?strategyl isparql:similarity ?simil

22 “?strategy2 isparql:name ¢‘TFIDFD’’
23 7strategy2 isparql:arguments (7descriptionl ?description2)
24 “?strategy2 isparql:similarity ?sim2

26 ?strategy3 isparql:name ‘‘ScoreAggregator’’

27 # ScoresStatement

28 “?strategy3 isparql:scores (7siml ?sim2)

29 # WeightsStatement

30 “?strategy3 isparql:weights (0.8 0.2)

31 # AggregatorStatement

32 “7strategy3 isparql:aggregator sum’’

33 “?strategy3 isparql:similarity ?overallsimilarity
34 } ORDER BY DESC(?7overallsimilarity);

Listing 1.1. iSPARQL example query for the MIT Process Handbook.

[

the different measures to their actual implementation in our library of similarity
measures called SimPack. The similarity ontology also allows the specification
of more sophisticated combinations of similarity measures, which we call simi-
larity strategies (or simply strategies) in the rest of this paper. Note that the
order of virtual triples is irrelevant since iISPARQL’s query processor will inspect
(reorder) them before the query is passed to the query engine.

3.1 The iSPARQL Grammar

The various additional grammar statements are explained with the help of the
example query in Listing 1.1. This query aims at finding processes (or services)
in a process ontology (we use the MIT Process Handbook introduced in Section
4.1) which are similar to the process “Sell” by comparing process names and
descriptions. To implement our virtual triple approach we added an Imprecise-
Block0fTriples symbol to the SPARQL grammar expression of FilteredBa-
sicGraphPattern [14]. Instead of matching patterns in the RDF graph, the
triples in an ImpreciseBlockOfTriples act as virtual triple patterns, which are
interpreted by iSPARQL’s query processor

An ImpreciseBlockOfTriples requires at least a NameStatement (lines 14,
22, and 26) specifying the similarity strategy. iISPARQL has two kinds of strate-
gies: similarity strategies and aggregation strategies. The former defines how the
proximity of resources should be computed. The latter aggregates previously
computed similarity scores to an overall similarity value. The example query
in Listing 1.1 defines the two similarity strategies “LoLN” (lines 13-20) and
“TFIDFD” (lines 22-24) as well as the aggregation strategy “ScoreAggregator”
(lines 26-33; see Section 3.2 for a discussion of the available strategies).

In addition, an ImpreciseBlockOfTriples requires an ArgumentsStatement
(lines 16 and 23) or a ScoresStatement (line 28), depending on whether it de-
fines a similarity or an aggregation strategy. An ArgumentsStatement speci-
fies the resources under comparison to the iSPARQL framework. The Scores-
Statement takes a list of previously calculated values (typically from similarity
strategies) and summarizes the individual values in a user-defined way (e.g., av-
erage, weighted sum, min, max, median, etc.). We found aggregators to be useful
to construct overall (sometimes complex) similarity scores based on two or more
previously computed similarity scores. The similarity ontology also allows the
use of some additional triple patterns (statements) for most strategies to pass
parameters to the strategies instructing them to, for example, ignore a string’s
case during a comparison operation (the IgnorecaseStatement on line 18) or
to apply weights to the aggregated values (using the WeightsStatement on line
30).

3.2 Similarity Strategies

Currently, iISPARQL supports all of the about 40 similarity measures imple-
mented in SimPack. The reference to the implementing class as well as all nec-
essary parameters are listed in the iISPARQL ontology. It is beyond the scope of
this paper to present a complete list of implemented strategies. Therefore, Table
1 summarizes the five similarity strategies we use to evaluate the performance
of iSPARQL on the MIT Process Handbook (see Section 4). We distinguish be-
tween simple and engineered strategies: simple strategies employ a single, atomic
similarity measure of SimPack, whereas engineered strategies are a (weighted)
combination of individual similarity measures whose resulting similarity scores
get aggregated by a user-defined aggregator.

4 Experimental Analysis

The goal of our experimental analysis was to find some empirical evidence to an-
swer the questions raised in the introduction: Which are the “correct” measures
for a given task and domain? Do engineered measures outperform off-the-shelf
measures? And, can an “optimal” measure be learned? To that end we con-
structed a large ontology retrieval dataset and performed two sets of experiments:
first, the pure retrieval experiments show a comparison of both off-the-shelf and
domain-/task-specific, engineered similarity strategies using iSPARQL; second,

Strategy Explanation

TFIDFD (simple) TFIDF between process descriptions: the textual descriptions of two pro-
cesses are compared by TFIDF, the standard weighting scheme from IR. It
uses a corpus of process descriptions that serves to retrieve pre-computed
statistics about words in the descriptions. The similarity between two text
documents is the Cosine of the angle between their document vectors [1].
LevN (simple) Levenshtein similarity of process names: two process names are compared
with the Levenshtein string similarity measure. The Levenshtein-based
similarity measures are founded on the Levenshtein string edit distance
that measures the relatedness of two strings (process names) in terms of
the number of insert, remove, and replacement operations to transform
one string into another string [11].

LoLN (simple) Levenshtein Level 2 (Levenshtein of Levenshtein) similarity of process
names: two process names such as “Buy over the internet” and “Sell via In-
ternet” are compared string-by-string with the (inner) Levenshtein string
similarity measure. If the similarity between two strings is above a user-
defined threshold, the strings are considered as equal (i.e., they match).
These scores are used by the outer Levenshtein string similarity measure
to compute an overall degree of similarity between the two process names
(sequences of strings).

MITPH-LoLNTFIDFD |[Levenshtein Level 2 similarity between process names, TFIDF between
(engineered) process descriptions: this strategy is a combination of two atomic mea-
sures. An overall similarity score is computed by aggregating the individ-
ual scores.

MITPH-LoLNTFIDFD- |Levenshtein Level 2 similarity between process names, TFIDF between
JaccardAll (engineered) |process descriptions, Jaccard (Tanimoto) set-based similarity [6] between
process exceptions, goals, resources, inputs, and outputs: a combination
of six atomic measures; in addition to MITPH-LoLNTFIDFD, four sin-
gle similarity scores are computed from two processes’ goal, exception,
resource, in- and output sets. An overall score is, again, determined by
accumulating (and weighting) the individual scores.

Table 1. Selection of five iISPARQL similarity strategies.

the machine learning experiments compare the performance of these predefined
measures to learned strategies gained using supervised learning approaches. In
the following, we first describe the experimental setup, explain the generation of
the test set that is used to perform the aforementioned experiments, and present
the results of our evaluations.

We conducted all our experiments on a two processor dual core AMD Opteron
270 2.0GHz machine with 4GB RAM, 7200rpm disks, using a 32-bit version of
Fedora Core 5.

4.1 Test Set Generation — “Mutating” the MIT Process Handbook

In order to evaluate our ontology retrieval approach, we needed a substantial
database of instances, which includes a sizable number of queries with its asso-
ciated correct answers. The correct answers are crucial, as they allow the quan-
titative evaluation of the retrieval approach. But preparing manually a suitable
database that is large enough to enable statistical analysis can be impracticably
time-consuming. We decided, therefore, to bootstrap the dataset generation pro-
cess by a large existing knowledge base that describes business processes. The
MIT Process Handbook is an electronic repository of best-practice business pro-
cesses and the result of over a decade of development by over 40 researchers and

Fig. 1. Simplified structure of the OWL MIT Process Handbook Ontology.

practitioners centered around the MIT Center for Coordination Science.® The
Handbook is intended to help people: (1) redesigning organizational processes,
(2) inventing new processes, and (3) sharing ideas about organizational practices
[13]. The Handbook includes a database of about 8000 business processes in ad-
dition to software tools for viewing, searching, and editing the database contents
[12]. The Process Handbook is a process ontology: it provides a specialization
hierarchy of processes (verbs) and their inter-relations in the form of properties,
which connect the process to its attributes, parts, exceptions and dependencies
to other processes. Note that specialization in the Process Handbook is non-
monotonic. In other words, it is possible for a “child” process to overwrite or
delete an inherited property. The Process Handbook, thus, has the advantage
of being a sizable dataset that was developed in a real-world setting (i.e., by
end-users and not by Semantic Web researchers).

In order to use the MIT Process Handbook for an evaluation, we had to export
it into an OWL-based format. Given the non-monotonic inheritance structure,
the straight-forward translation of processes to concepts was not possible. We,
therefore, decided to model the Process Handbook meta-model in OWL and
export the processes in the Handbook as instances of the meta-model.® Hence,
all major parts of the Handbook such as Process, Bundle, Goal, Exception,
Resource, Dependency, and Tradeoff are represented as OWL classes (see Fig-
ure 1). With the ontology, we transformed the approximately 5000 business pro-
cesses to OWL and stored them in their own files. Figure 2 shows a representative
example of such a process.

Next, we had to find a sizable number of realistic queries and their corre-
sponding correct answers in the Process Handbook. To that end we adopted a
novel approach for creating a test database that is based on semantics-preserving
process mutation. We began by selecting 105 distinct process models from within
the Process Handbook repository. These models represent the target set. For each
target process we then created 20 variants of that process that are syntactically

® Now called the MIT Center for Collective Intelligence (http://cci.mit.edu).
5 In order to preserve the inherent semantics of the MIT Process Handbook, some
additional rules in RuleML would be needed [2].

@prefix rdfs: <http://www.w3.0rg/2000/01/rdf-schema#> .

@prefix daml: <http://www.daml.org/2001/03/daml+oil#>
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix owl: <http://www.w3.org/2002/07/owl#>

Oprefix processHandbook: <http://www.ifi.unizh.ch/ddis/ph/2006/08/ProcessHandbook.owl#> .

<http://www.ifi.unizh.ch/ddis/ph/2006/08/E1024.0wl#E1024> a processHandbook:Process ;
processHandbook:name "Determine cost" ;
processHandbook:description "This is a general activity to determine the cost

to the organization of purchase or production." ;
processHandbook:hasException <http://www.ifi.unizh.ch/ddis/ph/2006/08/E171569.0wl#E17159> ;
processHandbook:hasSpecialization <http://www.ifi.unizh.ch/ddis/ph/2006/08/E6302.0owl1#E6302> ,

<http://www.ifi.unizh.ch/ddis/ph/2006/08/E8007.owl#E8007> ;

processHandbook:hasGeneralization <http://www.ifi.unizh.ch/ddis/ph/2006/08/E3356.0wl#E3356> .

Fig. 2. The figure shows process E1024 (“Determine cost”) in Notation 3.

different but semantically equivalent using mutation operators. These variants
represent the “true positives” or correct answers (i.e., the database items that
should be returned when our retrieval algorithm is applied to find matches for
the target process). All other items in the database are viewed as non-matches,
and should not be returned by our retrieval algorithm if it is operating correctly.

Variants were created by applying semantics-preserving mutation operators
to the target processes. Every variant represented the application of between 1
and 20 randomly selected operators to a target process. We used the following
operators:

— a process step (i.e., part of a process) is
e split into two siblings (STEPSPLIT)
split into a parent/child (STEPCHILD)
merged with a (randomly selected) sibling (STEPMERGESIB)
merged with its parent (STEPMERGEPARENT)
deleted (STEPDELETE)
— a word in the name of a process is
e deleted (NAMEDELETE)
— a word in the description of a process is
e deleted (DESCRIPTIONDELETE)

The mutation operators were selected so that they produce a plausible alter-
native way of modeling the process they were applied to. If we were modeling
a restaurant process, for example, some people might combine the “order” and
“pay” actions into one substep (e.g., for a fast food restaurant), while others
might model the same process with separate substeps for “order” and “pay”.
These two approaches represent syntactically different, but semantically equiv-
alent, ways of modeling the same process. The STEPMERGESIB operator could
take a process model with distinct “order” and “pay” substeps and merge them
into one. Conversely, the STEPSPLIT operator could take a process model where
“order” and “pay” are merged, and split them into two distinct substeps.

It should be noted, as a caveat, that there is a substantial random element in
how the mutation operators work, because they do not perform a sophisticated

semantic analysis of a step before, for example, deciding how to perform a split.
Hence, the process variants may not look much like what a human might have
generated, even though they are generated by a process that is similar to what
a person might have used. It is our belief, however, that a semantics-preserving
mutation approach represents a promising way for generating large query collec-
tions enabling rapid and useful evaluations of different retrieval algorithms. The
algorithms that “rise to the top” as a result of this screening procedure can then
be evaluated using hand-generated test sets that, presumably, will produce re-
trieval and precision figures that are closer to what we can expect in “real-world”
contexts. The generated process retrieval test collection, including queries and
variants (true positives) is available at our project website.”

4.2 Retrieval Experiments — Off-the-shelf vs. Engineered

In order to compare the performance of off-the-shelf versus specifically engi-
neered similarity strategies, we first chose three simple strategies from SimPack:
TFIDFD, LevN, and LoLN (see Section 3.2). Obviously, we did not choose
them randomly but actually chose the off-the-shelf measures that we thought
would perform well and then discarded the ones that were not performing suf-
ficiently well to compete with the top-ranking ones. Second, we manually de-
fined (or engineered) two task- and domain-specific complex similarity strate-
gies that are both a combination of multiple similarity measures based on our
experience with the Process Handbook: MITPH-LoLNTFIDFD and MITPH-
LoLNTFIDFDJaccardAll. Note that while almost no domain knowledge is nec-
essary to choose and define the off-the-shelf similarity strategies, some domain
expertise is needed for the human-engineered strategies since specifying which
measures should be used to determine the similarity between which elements of
processes means to have a profound understanding of the structure of the data.

To compare the performance of the similarity strategies, we had to execute
all 105 query processes with each of the five similarity strategies. Here, the capa-
bilities of iISPARQL were very useful: because it was designed to run SPARQL
queries with similarity joins, we could simply construct iSPARQL queries that
would correspond to the retrieval operations. Consider the query depicted in
Listing 1.2: it computes a similarity join between the process with the reference
http://www.ifi.unizh.ch/ddis/ph /2006 /08 /ProcessHandbook.owl#E16056 and all
other processes in the knowledge base using the TFIDFD strategy and returns
them in descending order of similarity. Actually, we were able to run all five
strategies with one query by having an ImpreciseBlock0OfTriples (see Section
3.1) for each strategy in the same query, exemplifying how iISPARQL simplifies
the implementation of Semantic Web retrieval applications.

To evaluate the performance of the queries, we chose precision and recall —
the traditional performance measures from IR. As a representative example, the
results for process E16056 are shown in Figures 3(a) and 3(b) that depict pre-
cision and recall for the 100 most similar processes to E16056.8 As one can see,

" http://www.ifi.unizh.ch/ddis/ph-owl.html
8 http://www.ifi.unizh.ch/ddis/ph/2006/08/E16056.0wl

PREFIX ph: <http://www.ifi.unizh.ch/ddis/ph/2006/08/ProcessHandbook.owl#>
PREFIX isparql: <java:ch.unizh.ifi.isparql.query.property.>

SELECT ?process2 ?name2 ?similarity
WHERE {
?process2 ph:name 7name2 .
7?strategy isparql:name ¢‘TFIDFD’’ .
?strategy isparql:arguments (ph:E16056 ?process2) .
?strategy isparql:similarity ?similarity .
ORDER BY DESC(?similarity)

Listing 1.2. iSPARQL retrieval query.

O WO N WN -

-

TFIDFD outperforms all other strategies in terms of precision closely followed by
MITPH-LoLNTFIDFD. Both, simple as well as engineered strategies start very
high with precision=1, except for MITPH-LoLNTFIDFD that starts around 0.9.
LoLN rapidly falls below 0.2 in precision (~25 returned processes), which ex-
presses its low usefulness for this retrieval task. Considering recall (Figure 3(b)),
MITPH-LoLNTFIDFD starts highest (recall ~0.7) but gets outperformed by
TFIDFD (around 15 returns) for larger query result sets. Why does the stan-
dard TFIDF perform so well? We believe it is due to the large descriptions that
are typically associated with Process Handbook entries. Given that the descrip-
tions were not mutated in all cases and that mutation did essentially consist
of deleting words, TFIDF, which has been found to be very useful in full-text
retrieval, may have an unfair advantage. Nonetheless, even disregarding TFIDF
as a competitor, it is interesting to observe that neither of the engineered mea-
sures uniformly outperforms the off-the-shelf ones in terms of precision, but that
they only gain with larger result sets. Why does the engineered measure MITPH-
LoLNTFIDFDJaccard ALL not perform equally well (LoLN initially outperforms
it in terms of precision and almost uniformly outperforms it in terms of recall)?
This might be due to badly chosen weights of the individual similarity strate-
gies (i.e., instead of giving the same weights to TFIDFD, LoLN, and Jaccard,
TFIDFD should probably be weighted much higher as indicated by the simple
strategies). We discuss an approach of how to learn such weights in the next
subsection.

Figure 4 shows average precision and recall of the five employed similarity
strategies across all 105 queries. As the figure illustrates the performance of all
measures across all the queries is not as good as for the single query. Nonetheless,
we can see that the findings from the one query generalize qualitatively. Specif-
ically, Figure 4(a) illustrates that the simple TFIDFD measure clearly outper-
forms all other strategies in terms of precision — it seems as if the descriptions
across all the queries again are of much higher importance than other structure
properties of a process. Note that precision for all measures (including TFIDFD)
on average is, however, not as high as in the single query case. This due to the
fact, that there are processes in the test collection that have shorter textual
descriptions and/or fewer properties resulting in lower TFIDF similarity scores,
which, in turn, leads to reduced average precision. In terms of precision, all

10

TFIDFD ——
LevN
== LOLN —*—

0.8 MITPH-LOLNTFIDFD —=— |

[S, MITPH-LOLNTFIDFDJaccardAl
06

1
04

TFIDFD —+—

0.2 r LevN
OLN ——
MITPH-LOLNTFIDFD —=—

0 ‘ ‘ ‘ ‘ 0 MITPH-LoLNTFIDFDJaccardAll

0 20 40 60 80 100 0 20 40 60 80 100
(a) Precision for E16056. (b) Recall for E16056.

Fig. 3. Precision and recall for a representative example process.

three simple strategies outperform the engineered ones again for few processes
returned. For larger query result sets, the two engineered strategies MITPH-
LoLNTFIDFD and MITPH-LoLTFIDFDJaccardAll perform better than LevN
and LoLN but still worse than simple TFIDF. Inspecting recall (Figure 4(b)),
the best performing similarity strategy is the engineered MITPH-LoLNTFIDFD
until ~40 returned processes. With larger result sets, it gets outperformed by
TFIDFD that starts low (~0.3). We note that also on average, similarity strate-
gies incorporating TFIDF to measure the relatedness of processes of the MIT
Process Handbook perform substantially better than strategies focusing on other
modeling aspects. Thus, future strategies should probably use TFIDF as one of
their component measures, assigning it a high enough weight in the overall sim-
ilarity computation.

Summarizing, we can state that the engineered measures do not uniformly
outperform the off-the-shelf ones. Indeed, it seems that the simple ones that
are heavily reliant on full-text (such as TFIDF) are favored by this dataset.
Ignoring the description (and the TFIDF measure), we can see, however, that
the engineered measures perform better in terms of both precision and recall for
large return sets. For small return sets the off-the-shelf measures are better in
terms of precision and at least competitive for recall.

4.3 Machine Learning Experiments — Off-the-shelf and Engineered
vs. Learned

The last question raised in the introduction demands clarification on the per-
formance on a learned measure in comparison to either the off-the-shelf or the
engineered ones. To that end we decided to employ the widely used ML tool
Weka® in conjunction with iSPARQL to learn a similarity measure based on the
results obtained with the simple as well as engineered strategies. Specifically, for
each of the 105 queries, we took all the off-the-shelf but the TFIDF measures

9 http://www.cs.waikato.ac.nz/ml/weka/

11

TFIDFD ——
LevN
LOLN —»—
08 MITPH-LOLNTFIDFD —=—
MITPH-LoLNTFIDFDJaccardAll

MITPH-LOLNTFIDFD —=—
MITPH-LOLNTFIDFDJaccardAll

0 20 40 60 80 100 0 20 40 60 80 100

(a) Average precision. (b) Average recall.

Fig. 4. Average precision and recall for 105 queries and five similarity strategies.

used so far. The rationale for not using the TFIDF measure was that we did not
want the description to have too much influence in this evaluation. Together with
the information if they were a correct or incorrect answer, we combined them to
a feature vector shelf; ; = [LevN (i, 5), LoLN (i, j), correct(i, j)]7, where i is the
number of the target process, j is the number of the process from the Process
Handbook and correct(i, j) specifies if j is a correct answer to the target process
i. We then combined all the vectors shelf; ; to the dataset shelf. Analogously, we
constructed the vector engineered; ; that extended shelf; ; with the engineered
measures to the dataset engineered.

For each of these two datasets we then learned a similarity measure using a
logistic regression statistical learning algorithm performing an (almost) 10-fold
cross validation.'® We took 10% of the queries (always exactly 10, discarding
the rest), learned the similarity measure using the logistic regression learner on
the remaining 90% of the data, and then measured its effectiveness on these
10%. This approach is standard practice in Machine Learning. The averages of
the results of the 10 runs are shown in Figure 5. As Figures 5(a) and 5(b) show,
the performance of the learned measures vastly outperforms both the engineered
and the off-the-shelf measures (note the scale on the figures!). It, thus, seems
that each of the measures employed contains some latent (potentially different)
information about the similarity between the queries and its correct answers.
Combined, they provide an excellent performance. Note also that the similarity
measure learned from the engineered dataset (the upper line in Figures 5(a) and
5(b)) significantly outperforms the one learned from the shelf dataset (lower
curves). Since precision/recall curves are sometimes misleading when evaluating
the performance of learning approaches, we also supply the average receiver
operating characteristic (ROC) curves for both learned measures. The ROC
curve graphs the true positive rate (y-axis) against the false positive rate (x-
axis), where and ideal curve would go from the origin to the top left (0,1) corner,

10 We call it “almost” 10-fold cross validation because 105 queries cannot be divided
into 10 equally sized groups, but 5 groups of 10 and 5 groups 11 queries.

12

N 0.9999 NI
0.9995 N - S

N - 08
0999 \ 0.9998) 7 -
4 R
0.9997 / "
¥ B 05
0.9985 \\ / /

0.9996

// 04
0.998 N\ /
D osess| //
N
>\ 02
0.9975 \\ 09084 ‘//
Precision (not engineered) \ Recall (not engineered) —— ROC (not engineered)
recision (engineered) Recall (engineered) —<— ROC (engineered)
0.997 0.9993 o
0 20 40 60 80 100 0 20 40 60 80 100 0 02 04 06 08 1
(a) Precision curves. (b) Recall curves. (c) ROC curves.

Fig. 5. Results for the learned similarity measure (logistic regression).

before proceeding to the top right (1,1) one. As Figure 5(c) clearly shows, the
similarity measure learned from the engineered dataset almost perfectly mimics
a perfect prediction resulting in an accuracy of 99.469%; the one for the shelf
dataset being not much worse with an accuracy of 98.523%.

5 Discussion, Limitations, and Future Work

The findings of the preceding analysis are relatively clear. First, the ease of use
of our iISPARQL framework for the presented semantic process retrieval task has
been clearly shown. Fvaluations that previously would have had to be programmed
tediously could be effectuated by simply compose a query. The seamless integra-
tion of simple, off-the-shelf as well as human-engineered similarity strategies
significantly simplified the implementation. We claim, therefore, that a declara-
tive query language containing statistical reasoning elements such as iISPARQL
can significantly simplify the design and implementation of Semantic Web ap-
plications that include some elements of similarity. Because such elements are
included in many of the core Semantic Web applications (e.g., matchmaking, re-
trieval in ontologies, ontology alignment, etc.), tools such as iISPARQL can play
an important role in simplifying the spread of the Semantic Web.

Second, as our retrieval experiments showed, the human-engineered measures
performed constantly better on large sets of processes than the off-the-shelf mea-
sures did. In contrast, the simple, off-the-shelf strategies turned out to be supe-
rior for smaller sets. Furthermore, strategies including the TFIDF measure that
heavily drew on the process descriptions performed better in terms of precision
and recall. This indicates that the off-the-shelf methods captured a different no-
tion of the similarity between processes than the engineered ones. This finding
is further supported by the learned similarity measures. As Figure 5 shows the
results of the algorithm learned with only the off-the-shelf data is somewhat less
precise than the one learned with both the engineered and off-the-shelf methods.
Hence, the information contained in the engineered measures is at least partially
complementary to the information contained in the off-the-shelf ones, which the
learning algorithm can exploit. Arguably, this additional information is the latent
experience of the experts that was embedded in the engineered measures.

13

Third, the learned measures clearly outperformed the designed or off-the-shelf
ones. The learning algorithm’s ability to combine the complementary information
contained in the different notions of similarity proved to provide an overall,
almost overwhelming accuracy. We can, therefore, clearly conclude that the value
of using learned similarity measures seems immense assuming that a sufficient
number of examples is available: irrespective of whether we used off-the-shelf or
expert measures, the learned measures performed close to perfect.

One major limitation of our work is the choice of experimental data. The
generalizability of our findings across tasks and domains is limited by the fact
that we (i) only used one dataset, (ii) that this dataset employed some generated
data, (iii) we only ran one task, and (iv) that the test suite generation strategy
might have influenced the results. Nonetheless, we claim that our findings are
likely to hold across domains and task: first, extrapolating from information
retrieval, where the choice of good similarity measures seem to permeate across
both tasks and domains; second, while our dataset is not ideal, it is one of the
first ones in the Semantic Web that contains both queries and associated true
answers. Such datasets are very costly to design and only their introduction to
the community will allow comparative studies, which, ultimately, is the basis
of science; third, even though the true positives were generated (note that the
database itself was collected by domain experts), their generation process was
guided by many years of experience with the type of data under study. We claim,
therefore, that our findings will generalize at least across domains and possibly,
given the ubiquity of similarity measures in Computer Science and Al, even
across tasks.

We see a couple of future research directions: (1) extending our evaluation
to other domains and tasks to ensure our findings’ generalizability; (2) applying
iSPARQL to different Semantic Web tasks such as service matchmaking and
ontology alignment to shed some more light on its potential as a framework; and
(3) investigating extensions to iISPARQL that will further improve its usefulness
for additional tasks.

6 Conclusions

Our study investigated the use of similarity measures in a process ontology re-
trieval task using the iSPARQL framework. We found that the declarative nature
of iISPARQL did significantly simplify the task prompting us to a deeper inves-
tigation of the applicability of iSPARQL to different Semantic Web tasks such
as matchmaking and ontology alignment, beyond the presented process retrieval
task. We also found that the combination of different notions of similarity string
learning approaches significantly boosted the overall task performance. There-
fore, as seen from our evaluations, the use of statistics, either directly employed
by similarity strategies or by statistical learning algorithms, proved crucial for
the performance in this task. For the Semantic Web in general, these findings
raise the question whether the more wide-spread use of statistical reasoning ele-
ments would not improve the overall performance of its tools and applications.

14

Acknowledgment One of the authors was supported by the Korea Research
Foundation Grant of the Korean Government (KRF-2006-214-D00193). We would
like to thank the anonymous reviewers for their valuable comments.

References

1. R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. Addison
Wesley, 1999.

2. A. Bernstein, B. Grosof, and M. Kifer. Beyond Monotonic Inheritance: Towards
Non-Monotonic Semantic Web Process Ontologies. In Proc. of the W3C Ws. on
Frameworks for Semantics in Web Services, 2005.

3. A. Bernstein and C. Kiefer. Imprecise RDQL: Towards Generic Retrieval in On-
tologies Using Similarity Joins. In Proc. of the 2006 ACM Symp. on Applied
Computing (SAC), pages 1684-1689, New York, NY, 2006.

4. A. Bernstein and M. Klein. Towards High-Precision Service Retrieval. In Proc.
of the 1st Int. Semantic Web Conf. on The Semantic Web (ISWC), pages 84-101,
London, UK, 2002.

5. S. Brockmans, M. Ehrig, A. Koschmider, A. Oberweis, and R. Studer. Semantic
Alignment of Business Processes. In Proc. of the 8th Int. Conf. on Enterprise
Information Systems (ICEIS), pages 191-196, Paphos, Cyprus, 2006.

6. W. W. Cohen, P. Ravikumar, and S. Fienberg. A Comparison of String Distance
Metrics for Name-Matching Tasks. In Proc. of the IJCAI Ws. on Information
Integration on the Web (IIWeb), 2003.

7. M. Ehrig, A. Koschmider, and A. Oberweis. Measuring Similarity between Seman-
tic Business Process Models. In Proc. of the 4th Asia-Pacific Conf. on Conceptual
Modelling (APCCM), Ballarat, Victoria, Australia, 2007.

8. L. Geng and H. J. Hamilton. Interestingness Measures for Data Mining: A Survey.
ACM Comp. Surv., 38(3), 2006.

9. D. Gentner and J. Medina. Similarity and the Development of Rules. Cognition,
65:263-297, 1998.

10. M. Klusch, B. Fries, and K. Sycara. Automated Semantic Web Service Discovery
with OWLS-MX. In Proc. of the 5th Int. Joint Conf. on Autonomous Agents and
Multiagent Systems (AAMAS), pages 915-922, New York, NY, 2006.

11. V. L. Levenshtein. Binary Codes Capable of Correcting Deletions, Insertions and
Reversals. Soviet Physics Doklady, 10:707-710, 1966.

12. T. W. Malone, K. Crowston, and G. A. Herman. Organizing Business Knowledge:
The MIT Process Handbook. MIT Press, Cambridge, MA, 2003.

13. T. W. Malone, K. Crowston, J. Lee, B. Pentland, C. Dellarocas, G. Wyner,
J. Quimby, C. S. Osborn, A. Bernstein, G. Herman, M. Klein, and E. O’Donnell.
Tools for Inventing Organizations: Towards a Handbook of Organizational Pro-
cesses. Management Science, 45(3):425-443, 1999.

14. E. Prud’hommeaux and A. Seaborne. SPARQL Query Language for RDF. Tech-
nical report, W3C, 2006.

15. D. Wolpert and W. Mcready. No Free Lunch Theorems for Optimization. IEEE
TOEC, 1(1):67-82, 1997.

15

