
NLP-Reduce: A “naı̈ve” but Domain-independent
Natural Language Interface for Querying Ontologies

Esther Kaufmann, Abraham Bernstein, and Lorenz Fischer
University of Zurich

Department of Informatics
Binzmuehlestrasse 14, CH-8050 Zurich, Switzerland

{kaufmann, bernstein}@ifi.unizh.ch

Abstract

Casual users are typically overwhelmed by the for-
mal logic of the Semantic Web. The question is
how to help casual users to query a web based on
logic that they do not seem to understand. An often
proposed solution is the use of natural language in-
terfaces. Such tools, however, suffer from the prob-
lem that entries have to be grammatical. Further-
more, the systems are hardly adaptable to new do-
mains. We address these issues by presentingNLP-
Reduce, a “näıve,” domain-independent natural lan-
guage interface for the Semantic Web. The simple
approach deliberately avoids any complex linguis-
tic and semantic technology while still achieving
good retrieval performance as shown by the prelim-
inary evaluation.

1 Introduction
The logic-based underpinnings of the Semantic Web provide
a stable scaffolding for machine-based processing. Casual or
occasional users, however, are typically overwhelmed with
formal logic. The result is a gap between the Semantic Web
and the average user who is mostly unable to command for-
mal logic. The gap manifests itself in a disconnection be-
tween the user’s information needs and the query language
with which the user tries to find the required information in
ontology-based data[Chakrabarti, 2004; Spinket al., 2001;
Spoerri, 1993]. Nevertheless, querying is a major interaction
mode with the Semantic Web; bridging it is, therefore, central
for the success of the Semantic Web for end users.

This paper proposes to address the gap by presentingNLP-
Reduce, a “näıve” but domain-independent natural language
interface for querying Semantic Web knowledge bases (KBs).
The approach is simple and does not use any complex natural
language processing (NLP) technologies. Compared to a full
NLP engine it employs only a reduced set of NLP operators,
such as synonym expansion and stemming (hence its name
NLP-Reduce), which makes the interface robust to deficient
input and completely portable. NLP-Reduce does not claim
to be “intelligent” by interpreting and understanding the input
queries; it “only” tries to link the words of a query and their
synonyms to the expressions used in a KB.

2 NLP-Reduce
The system consists of five main parts: a user interface, a lex-
icon, an input query processor, a SPARQL query generator,
and an ontology access layer.

Theuser interfaceallows the user to enter full natural lan-
guage queries, sentence fragments, or just keywords. After
executing a query, it displays the generated SPARQL query,
the results, and some execution statistics to the user.

When a KB is loaded into NLP-Reduce, thelexiconis auto-
matically built by extracting all explicit and inferred subject-
property-object triples that exist in the KB. For each triple the
synonyms of the labels are obtained from WordNet provid-
ing a larger vocabulary that can be deployed when querying.
To improve recall each word in the lexicon is additionally
stemmed using the Porter Stemmer[Porter, 1980].

The input query processorfirst reduces a query by remov-
ing stop words and punctuation marks. It then passes the
stemmed words to the query generator.

The query generatoris the core component of NLP-
Reduce. It basically tries to match the query words to the
synonym-enhanced triples stored in the lexicon and gener-
ates SPARQL queries for the matches. Consider the exam-
ple query “Where is a restaurant in San Francisco that serves
good French food?”, for which the following steps are per-
formed by the query generator:

1. The query generator first searches for triples in the lex-
icon in which at least one of the query words occurs
within the label of an object property. For the exam-
ple query the triples containing the properties<isIn >,
<isInCity >, <isInCounty >, and<isInRegion >

are returned, as they all contain the words “is” and “in.”
The query generator ranks the found triples according to
a rating system that favors triples that cover more words
as well as triples whose word stems show a better agree-
ment with the query words over others. For example,
the query words “is” and “in” get a higher score with
<isIn > than with<isInCity >.

2. The generator then searches for properties in the lexicon
that can be joined with the triples found in step 1 by the
remaining query words. In our example it searches for
the remaining query words “where,” “restaurant,” “San
Francisco,” “serve,” “good,” “French,” and “food” in
the lexicon’s triples to combine them with the triple set



identified by step 1 taking domain and range informa-
tion into consideration. Since “where” can be related to
“location” through their synonyms, the triples contain-
ing the property<location > are found. The words
“serve” and “food” both retrieve triples with the property
<foodType >. If a query word produces triples based
on several different properties, the ones with the high-
est rating score are favored. The triple sets from step 2
are then combined with the result of step 1, where the
joining element is the class “restaurant.”

3. The generator now searches for all datatype property
values that match the remaining words of the query.
For the last query words “San Francisco,” “good,”
and “French,” the triples[<Restaurant > <isIn >

‘sanFrancisco’ ], [<Restaurant > <rating >

‘good’ ], and [<Restaurant > <foodType >
‘french’ ], are retrieved. The rating system again
ranks the matches. The triples have to be combined with
the beforehand identified and joined triples conforming
to domain and range information. The class “City” with
the label‘sanFrancisco’ can be combined with the
property<isIn >, which has the range “City”.

4. As there are no more query words left, the query genera-
tor now generates the corresponding SPARQL query for
the join of the retrieved triples that achieved the highest
scores in steps 1 to 3. Additionally, it removes seman-
tically equivalent duplicates and passes the SPARQL
query to the ontology access layer.

The resulting SPARQL query that the query generator
assembled for the example query is (note that we simplified
the query by removing the URIs):

SELECT distinct * WHERE{
?Restaurant <#location > ?Location .
?Restaurant <#rating > ‘good’ .
?Restaurant <#foodType > ‘french’ .
?Restaurant <#isIn > ?City .
?City <#label > ‘sanFrancisco’ .
?Restaurant <#type > <#Restaurant > .
?City <#type > <#City > . }

To execute the generated SPARQL query, NLP-Reduce
uses Jena asontology access layerand the Pellet reasoner.

3 Preliminary Evaluation
To evaluate the performance of NLP-Reduce, we imple-
mented a protoype in Java. We translated two Mooney nat-
ural language KBs[Tang and Mooney, 2001] into OWL and
ran the provided 251 queries on the restaurant KB and the
879 queries on the geography KB. As NLP-Reduce abandons
any complex linguistic analysis, it obviously cannot answer
queries which require a dependency structure of the sentence
elements (e.g., “Which restaurants are closer to...?”). There-
fore, some queries provided by the Mooney data sets could
not be answered.

NLP-Reduce successfully answered 94.6% (192 queries)
of the restaurant queries, thereby achieving 69.6% average

recall and 67.7% average precision. The system could also
provide an answer for 66.0% (308 queries) of the geography
queries with an average recall of 76.4% and an average pre-
cision of 70.7%. Note that we calculated recall and precision
in a very strict manner, i.e., we assigned 0% recall as well as
0% precision to queries such as “How many Chinese restau-
rants are there in the Bay Area?” if NLP-Reduce found 1016
restaurants instead of the correct number 1047 to the query.

Though the results are not striking, we believe that the ap-
proach is promising. NLP-Reduce processes queries as bag
of words not exploiting sophisticated linguistic or semantic
techniques (except the use of WordNet and the Porter stem-
mer) as typical NLP systems do. Dependencies between
words or phrases in the queries are only identified by the rela-
tionships that exist between the elements in the queried KB.
The approach, therefore, highly depends on the quality and
choice of vocabulary of the KBs.This weakness is also its
major strength, as it does not need any adaptation for new
KBs, i.e., it is completely portable.Under this perspective,
the retrieval performance is surprisingly good.

4 Conclusions
In order to be usable by casual users, the logic-based scaf-
folding of the Semantic Web needs to be made accessible for
querying. We think that natural language interfaces show a
potential for end-user access to the Semantic Web but suffer
from their inapplicability to new domains and their depen-
dency on correct user input. To that end, we introduced NLP-
Reduce, which is completely portable and robust to ungram-
matical input. Preliminary evaluation results have shown that
our simple, domain-independent approach provides a chance
to offer the Semantic Web’s capabilities to the general public.

References
[Chakrabarti, 2004] Soumen Chakrabarti. Breaking through

the syntax barrier: Searching with entities and relations. In
15th European Conference on Machine Learning (ECML
2004), pages 9–16, Pisa, Italy, September 2004.

[Porter, 1980] Martin F. Porter. An algorithm for suffix strip-
ping. Program, 14(3):130–137, 1980.

[Spinket al., 2001] Amanda Spink, Wolfram Dietmar,
Jansen Major B.J., and Saracevic Tefko. Searching the
web: The public and their queries.Journal of the Amer-
ican Society for Information Science and Technology,
52(3):226–134, 2001.

[Spoerri, 1993] Anselm Spoerri. InfoCrystal: A visual tool
for information retrieval management. InSecond Intl.
Conference on Information and Knowledge Management,
pages 11–20, Washington, D.C., 1993. ACM Press.

[Tang and Mooney, 2001] Lappoon R. Tang and Raymond J.
Mooney. Using multiple clause constructors in inductive
logic programming for semantic parsing. In12th Eu-
ropean Conference on Machine Learning (ECML-2001),
pages 466–477, Freiburg, Germany, 2001.




