Analyzing Software with iSPARQL

Christoph Kiefer, Abraham Bernstein, Jonas Tappolet

Department of Informatics, University of Zurich
Binzmuehlestrasse 14, CH-8050 Zurich, Switzerland,
{kiefer,bernstein}@ifi.unizh.ch, jtappolet@access.unizh.ch

Abstract. One of the most important decisions researchers face when
analyzing software systems is the choice of a proper data analysis/ex-
change format. In this paper, we present EvoOnt, a set of software on-
tologies and data exchange format based on OWL. EvoOnt models soft-
ware design, release history information, and bug-tracking meta-data.
Since OWL describes the semantics of the data, EvoOnt is (1) easily
extendible, (2) comes with many existing tools, and (3) allows to derive
assertions through its inherent Description Logic reasoning capabilities.
We show the usefulness of EvoOnt in combination with iSPARQL — our
SPARQL-based Semantic Web query engine containing similarity joins.
Together, EvoOnt and iSPARQL can accomplish a sizable number of
tasks sought in software analyzing, such as an assessment of the amount
of change between releases, the computation of software design metrics,
or the detection of code smells. In a series of experiments with a real-
world Java project, we show that a number of software analysis tasks
can be reduced to a simple iSPARQL query on an EvoOnt dataset.

1 Introduction

Imagine the following situation: Sara is a project manager who has to report on
one of her legacy systems she successfully manages for almost 5 years. Sara’s
company wants to know about the project’s current development activity, its
defects, its number of users, and, most important, its future maintenance costs.
Somehow, Sara feels a little uncomfortable because there is no easy to use tool
to perform all of the analysis tasks for her legacy system.

This is a very typical situation in software analysis and, generally, in software
development: people analyzing their software systems either drown in a sea of
specialized, task-specific tools or find no tools whatsoever. Altogether, analyzing
large software systems can be a cumbersome and complex task.

In recent years, the rise of the Semantic Web has brought new possibilities
also for software engineers. In this paper, we present how our software evolution
ontology FvoOnt together with some off-the-shelf Semantic Web tools and our
special iSPARQL query engine can help Sara to resolve to the various software
analysis tasks involved in preparing her presentation without having to write a
single line of code. FvoOnt is a set of software ontologies and data exchange
format based on OWL. It provides the means to store all elements necessary for

software analyses including the software design itself as well as its release and
bug-tracking information. Given that OWL is a W3C recommendation, a myriad
of tools allow its immediate processing in terms of visualization, editing, query-
ing, and debugging avoiding the need to write code or use complicated command
line tools. OWL enables handling of the data based on its semantics, which al-
lows the simple extension of the data model while maintaining the functionality
of existing tools. Furthermore, given OWL’s Description Logic foundation, any
Semantic Web engine allows to derive additional assertions in the code such as
orphan methods (see Section 5.5), which are entailed from base facts.

To complement EvoOnt, we developed our iSPARQL engine that extends
the Semantic Web query language SPARQL with facilities to query for similar
software entities (classes, methods, fields, etc.) in an EvoOnt dataset. Using
a library of over 40 similarity measures, iSPARQL can exploit the semantic
annotation of EvoOnt to compute statistical propositions about, for example,
the evolution of software projects (see Section 5.2).

The remainder of this paper is structured as follows: next, we succinctly sum-
marize the most important related work. Section 3 presents EvoOnt itself, which
is followed by a brief introduction to iISPARQL. Section 5 illustrates the simplic-
ity of using EvoOnt and iISPARQL for some common software evolution analysis
tasks. To close the paper, Section 6 presents our conclusions, the limitations of
our approach, and some insight into future work.

2 Related Work

In the following, we briefly summarize a selection of interesting studies in the
field of software engineering research and the Semantic Web. Firstly, Coogle
(Code Google) [13] is the predecessor of our iISPARQL approach presented in
this paper. With Coogle we were able to measure the similarity between Java
classes of different releases of software projects. A major difference between the
two approaches is that iISPARQL does not operate on in-memory software models
in Eclipse!, but on OWL ontologies (i.e., on a well-established Semantic Web
format). Furthermore, while in Coogle the range of applicable similarity measures
is limited to tree algorithms, the range of possible measures in iISPARQL includes
all the measures from SimPack, our generic Java library of similarity measures
for the use in ontologies.?

Highly related to our approach is the work of Hyland-Wood et al. [8]. In
their studies, the authors present an OWL ontology of software engineering con-
cepts (SEC) including classes, tests, metrics, and requirements. Their ontology
does, however, not include versioning information and data obtained from bug-
tracking systems (as modeled in our ontologies). The structure of SEC is very
similar to the language structure of Java. Note that our software ontology is
based on FAMIX [2] that is a programming language-independent model to

! http://www.eclipse.org
2 http://www.ifi.unizh.ch/ddis/simpack.html

represent object-oriented source code, and thus, is able to represent software
projects written in different programming languages.

Both, Méntyla et al. [11] and Shatnawi and Li [14] carry out an investigation
of code smells in object-oriented software source code. While the first study ad-
ditionally presents a taxonomy (in our sense an ontology) of smells and examines
its correlations, both studies provide empirical evidence that some code smells
can be linked with errors in software design.

Happel et al. [7] present their KOntoR approach that aims at storing and
querying meta-data about software artifacts to foster software reuse. The soft-
ware components are stored in a central repository. Furthermore, various on-
tologies for providing background knowledge about the components such as the
programming language and licensing models are presented. It is certainly rea-
sonable to integrate their models with ours in the future to result in an even
larger fact base used to analyze large software systems.

Dietrich and Elgar [3] present a technique to automatically detect design
patterns in Java programs based on an OWL design patterns ontology. Again,
we think it would make sense to use their approach and ontology model to collect
even more information about software projects. This would allow us to conduct
further evaluations to measure the quality of software.

Finally, we would like to point out that EvoOnt shares a lot of commonalities
with Baetle? that is an ontology which focuses heavily on the information kept
in bug databases, and that makes use of many other well-established Semantic
Web ontologies, such as the Dublin Core* and FOAF®.

3 Software Ontology Models

In this section, we describe our OWL software ontology models shown in Fig-
ure 1. We created three different models which encapsulate different aspects of
object-oriented software source code: the software ontology model (som), the bug
ontology model (bom), and the version ontology model (vom). These models not
only reflect the design and architecture of the software, but also capture infor-
mation gathered over time (i.e., during the whole life cycle of the project). Such
meta-data includes information about revisions, releases, and bug reports.

3.1 Software Ontology Model

Our software ontology model (som) is based on FAMIX (FAMOOS Informa-
tion Exchange Model) [2] that is a programming language-independent model
for representing object-oriented source code. On the top level, the ontology
specifies Entity that is the common superclass of all other entities, such as
BehaviouralEntity and StructuralEntity (see Figure 1(a)). A Behaviour-
alEntity “represents the definition in source code of a behavioural abstraction,

3 http://code.google.com/p/baetle/
4 http://dublincore.org/documents/dcq-rdf-xml/
® http://www.foaf-project.org/

(a) Software ontology model (som) (c) Version ontology model (vom)

Fig. 1. The figure depicts the OWL class hierarchy (is-a) of the three composed ontol-
ogy models. A larger version of the figure including object and data type properties is
available at http://www.ifi.unizh.ch/ddis/evoont.html.

i.e., an abstraction that denotes an action rather than a part of the state”
(achieved by a method or function). A “StructuralEntity, in contrast, repre-
sents the definition in source code of a structural entity, i.e., it denotes an aspect
of the state of a system” [2] (e.g., variable or parameter).

When designing our OWL ontology, we made, however, some changes to the
original FAMIX model: first, we introduced the three new classes Context, File,
and Directory, the first one being the superclass of the latter ones. Context is
a container class to model the context in which a source code entity appears. A
File is linked with a Revision of the version ontology (described in Section 3.3)
via the isFileForRevision property that is defined in the software ontology.
This way, it is possible to receive further information about the revisions of
the file. Furthermore, due to the nature of OWL, we were able to omit the
explicit modeling of association classes by adding new OWL object properties.
For instance, to capture a method accessing a variable, the property accesses
with domain BehaviouralEntity and range StructuralEntity is defined.

Moreover, we added the concept of software metrics to our ontology model.
The class Metric defines an object-oriented source code metric as defined in [9].
An Entity can be connected to multiple metrics to measure various aspects of
the design of the software component. This approach of integrating metrics into
our model allows us to represent object-oriented metrics in an extendible way
and to use the values of the metrics directly in our experiments (see Section 5.4).

3.2 Bug Ontology Model

Our bug ontology model (bom) is inspired by the bug-tracking system Bugzilla.®
The model is very shallow and defines nine OWL classes on the top level (Fig-
ure 1(b)). Issue is the main class for specifying bug reports. It is connected to
Person that is the class to model information about who reported the bug,
and also to Activity that links additional details about the current status

5 http://www.bugzilla.org/

of the bug.” Issue has a connection to Revision (see Section 3.3) via the
isResolvedIn property. This way, information can be modeled about which
file revision successfully resolved a particular bug, and vice versa, which bug
reports were issued for a specific source code file.

3.3 Version Ontology Model

The goal of our version ontology model (vom) is to specify the relations between
files, releases, and revisions of software projects. To that end, we defined the
three OWL classes File, Release, and Revision (Figure 1(c)) as well as the
necessary properties to link these classes. For example, a File has a number of
revisions and, therefore, is connected to Revision by the hasRevision property.
At some point in time, the developers of a software project usually decide to
publish a new release, which includes all the revisions made until that point. In
our model, this is reflected by the isRelease0f property that relates Release
and Revision.

4 Our Approach: iISPARQL

This section succinctly introduces the relevant features of our iSPARQL frame-
work that serves as the technical foundation to all our experiments.® iSPARQL
is an extension of SPARQL [12] that allows to query RDF graphs. It extends
the official SPARQL grammar but does not make use of additional keywords.
Instead, iISPARQL introduces the idea of wirtual triples. Virtual triples are not
matched against the underlying ontology graph, but used to configure similar-
ity joins: they specify which pair(s) of variables (that are bound to resources
with SPARQL) should be joined and compared using which type of similarity
measure. Thus, they establish a virtual relation between the resources bound to
the variables describing the resource’s similarity. A similarity ontology defines
the admissible virtual triples and links the different measures to their actual im-
plementation in SimPack, our library of similarity measures.” Next, we briefly
discuss the iISPARQL grammar and introduce some of the similarity strategies
— complex combinations of similarity measures — employed in the evaluation.

4.1 The iSPARQL Grammar

The relevant additional grammar statements are explained with the help of the
example query in Listing 1.1. This query aims at comparing two versions of a
concrete Java class from two different releases of a software project by comput-
ing the structural difference of the classes (achieved by the TreeEditDistance
measure, see Section 4.2).

" https://bugs.eclipse.org/bugs shows various concrete examples.
8 A demonstration is available at http://www.ifi.unizh.ch/ddis/isparql.html.
% http://www.ifi.unizh.ch/ddis/simpack.html

1 PREFIX isparql: <java:arq.propertyfunction.>

2 PREFIX som: <http://semweb.ivx.ch/software/som#>
3 PREFIX vom: <http://semweb.ivx.ch/software/vom#>
4

5 SELECT 7?similarity

6 WHERE {

7 7?releasel vom:name ‘‘R3_17’

8 ?release2 vom:name ‘‘R3_27?

9

10 7?filel som:hasRelease 7releasel

11 7?file2 som:hasRelease ?release2

12 7?filel som:uniqueName ‘‘org.eclipse.compare.MergeMessages.java’’
13 7file2 som:uniqueName ‘‘org.eclipse.compare.MergeMessages.java’’
14 7filel som:hasClass 7classi

156 7?file2 som:hasClass ?class2

16 7classl som:uniqueName 7uniqueNamel

17 7?class2 som:uniqueName 7uniqueName2

19 # ImpreciseBlockOfTriples (lines 20--25)

20 # NameStatment

21 7?strategy isparql:name ‘‘TreeEditDistance’’
22 # ArgumentStatment

23 “?strategy isparql:arguments (?classl 7class2)
24 # SimilarityStatement

25 7strategy isparql:similarity ?similarity

26 } ORDER BY DESC (7similarity)

Listing 1.1. iSPARQL example query.

In order to implement our virtual triple approach, we added an Impre-
ciseBlock0fTriples symbol to the official W3C SPARQL grammar expression
of FilteredBasicGraphPattern.!? Instead of matching patterns in the RDF
graph, the triples in an ImpreciseBlockOfTriples act as wirtual triple pat-
terns, which are interpreted by iISPARQL’s query processor.

An ImpreciseBlockOfTriples requires at least a NameStatement (line 21)
specifying the similarity measure and an ArgumentsStatement (line 23) spec-
ifying the resources under comparison to the iSPARQL framework. Note that
iISPARQL also supports aggregation strategies: strategies which aggregate pre-
viously computed similarity scores of multiple similarity measures to an overall
similarity value (not shown in the example). Finally, the SimilarityStatement
(line 25) triggers the computation of the similarity measure with the given input
arguments and delivers the result back to the query engine.

4.2 Similarity Strategies

Currently, iISPARQL supports all of the about 40 similarity measures imple-
mented in SimPack. The reference to the implementing class as well as all nec-
essary parameters are listed in the iSPARQL ontology. It is beyond the scope
of this paper to present a complete list of implemented strategies. Therefore,
Table 1 summarizes the four similarity strategies that we use in Section 5. We
distinguish between simple and engineered strategies: simple strategies employ
a single, atomic similarity measure of SimPack, whereas engineered strategies

10 Note that we refer to the W3C SPARQL working draft of October 4, 2006.

Strategy Explanation

Levenshtein String similarity between, for instance, class/method names: Levenshtein string edit
measure (sim-|distance measuring the relatedness of two strings in terms of the number of insert,
ple) remove, and replacement operations to transform one string into another string [10].

TreeEditDis- [Tree similarity between tree representations of classes: measuring the number of
tance measure|steps it takes to transform one tree into another tree by applying a set of elementary
(simple) edit operations: insertion, substitution, and deletion of nodes [13].
Graph mea-|Graph similarity between graph representations of classes: the measure aims at
sure (simple) |finding the maximum common subgraph (MCS) of two input graphs [15]. Based on
the MCS the similarity between both input graphs is calculated.
Custom- User-defined Java class similarity measure: determines the affinity of classes by
ClassMeasure |comparing their sets of method/attribute names. The names are compared by the
(engineered) |Levenshtein string similarity measure. Individual similarity scores are weighted and
accumulated to an overall similarity value.

Table 1. Selection of four iISPARQL similarity strategies.

are a (weighted) combination of individual similarity measures whose resulting
similarity scores get aggregated by a user-defined aggregator.

5 Experimental Results

We conducted five sets of experiments: (1) code evolution measurements: visual-
izing changes between different releases; (2) refactoring experiments: evaluation
of the applicability of our iSPARQL framework to detect code smells; (3) metrics
experiments: evaluation of the ability to calculate software design metrics; (4)
ontological reasoning experiments: investigation of the reasoning power within
our software ontology models; and (5) density measurements: determining the
amount of bug-fixing and “ordinary” software development as measured by all
software engineering activities.

5.1 Experimental Setup and Datasets

For our experiments, we examined 206 releases of the org.eclipse.compare
plug-in for Eclipse. To generate an OWL data file of a particular release, it is
first automatically retrieved from Eclipse’s CVS repository and loaded into an
in-memory version of our software ontology model, before it gets exported to an
OWL file. To get the data from CVS and to fill our version ontology model, the
contents of the Release History Database (RHDB) [5] for the compare plug-in
are loaded into memory and, again, parsed and exported to OWL according to
our version ontology model. While parsing the CVS data, the commit message of
each revision of a file is inspected and searched for bug IDs. If a bug is mentioned
in the commit message as, for instance, in “fized #67888: [accessibility] Go To
Next Difference stops working on reuse of editor”, the information about the bug
is (automatically) retrieved from the web and also stored in memory. Finally,
the data of the in-memory bug ontology model is exported to OWL.

5.2 Experiment 1: Code Evolution Visualization

With the first set of experiments, we wanted to evaluate the applicability of
our iISPARQL approach to the task of software evolution visualization (i.e., the

w0 & 00 &
A31 R3_1 R3_1

a0 0 e 100 120

(a) CustomClassMeasure (b) TreeEditDistance (c) GraphMeasure

“
M
a.
ﬁ
[1 o-
|

(d) BufferedCanvas (e) CompareEditor (f) Utilities

W 0 w0 e a0

oo

Fig. 2. Figures 2(a—c) depict the computed heatmaps of the between-version compari-
son of all the classes of releases R3_1 and R3_2 using three different similarity strategies.
Furthermore, the history of changes for three distinct classes of the project is illustrated
in Figures 2(d—f).

graphical visualization of code changes for a certain time span in the life cycle of
the software project). To that end, we compared all the Java classes of one major
release with all the classes from another major release with different similarity
strategies. Listing 1.1 (see Section 4.1) shows the corresponding query for a par-
ticular class and the TreeEditDistance measure. The results for the releases R3_1
and R3_2 are shown in Figure 2. The heatmaps mirror the class code changes
between the two releases of the project by using different shades of gray for dif-
ferent similarity scores in the interval [0, 1]. Analyzing the generated heatmaps,
we found that the specialized CustomClassMeasure performed best for the given
task. The combination of method/attribute set comparisons together with the
Levenshtein string similarity measure for method/attribute names (Figure 2(b))
turned out to be less precise. In all our experiments, the GraphMeasure (Figure
2(c)) was the least accurate indicator for the similarity of classes.

Furthermore, to shed some light on the history of a single Java class, we
measured the similarity of the class from one release and the (immediate) next
release and repeated this process for all classes and releases. This resulted in an

. Ri,R; . o
array of values sim_;"’. 7, each value expressing the similarity of the same class of
two different releases R; and R;. However, to visualize the amount of change, we

plotted the inverse (i.e., 1 — simfl;’ﬁj) as illustrated in Figures 2(d—f) that show

the history of changes for three distinct classes of the project. There are classes

such as BufferedCanvas which tend to have fewer changes as the project evolves
over time. Other classes such as CompareEditor (Figure 2(e)) are altered again
and again, probably implying some design flaws or code smells. Then again,
there are classes which tend to have more changes over time as shown in Figure
2(f) for the class Utilities.

5.3 Experiment 2: Detection of Code Smells

In a second set of experiments, we evaluated the applicability of our iISPARQL
system to the task of detecting code smells [6]. In other words, the question is
whether iISPARQL is able to give you a hint that there might be a problem in the
code. Can iSPARQL tell you if it could be solved, for instance, by refactoring the
current state? In order to solve this task, we selected two candidate smells, which
we thought could be identified in the compare plug-in: alien spider anti-pattern
and long parameter list.

The alien spider anti-pattern denotes the case where many objects all mu-
tually “know” each other, which is, first, bad object-oriented software design;
and second, could lead to an uncomfortable situation when changes are made
to a particular object, because, most probably, many other objects holding
a reference to the changed object have to be modified too. We successfully
identified the two-class version of the alien spider anti-pattern in the compare
plug-in by executing the query shown in Listing 1.2. The query returns a sin-
gle result that states that the class PatchWizard uses a reference to the class
InputPatchPage and vice versa. Inspecting class PatchWizard, one encounters
the line addPage(fPatchWizardPage = new InputPatchPage(this)); expressing
that a class InputPatchPage is instantiated and the instantiator (PatchWizard)
is passed as a reference. Supposing that some of the functionality of PatchWizard
used by InputPatchPage is changed in the future, InputPatchPage also has to
be adapted. Therefore, it could make sense to remove such mutual dependencies
to overcome problems when the interface that a class exposes is changed.

PREFIX som: <http://semweb.ivx.ch/software/som#>

1
2
3 SELECT 7classl 7class2

4 WHERE {

5 7?classl som:hasAttribute ?varl .

6 7class2 som:hasAttribute ?var2 .

7 ?var2 som:hasDeclaredClass ?classl .
8 7?varl som:hasDeclaredClass ?class2 .
9 FILTER(?classl != ?7class2)

10

Listing 1.2. Alien spider query pattern.

Long method parameter lists are ugly, hard to understand, difficult to use,
and chances are very high to change them over and over again [6]. In order
to find the methods with long parameter lists in the Eclipse compare plug-in,
we used the query given in Listing 1.3. The 10 topmost answers to the query
are shown in Table 2. The method merge of the interface IStreamMerger takes

Class Method Number of parameters
IStreamMerger merge 9
TextStreamMerger merge 9
CompareFilter match 7
RangeDifferencer createRangeDifference3 7
TextMergeViewer mergingTokenDiff 7
TextMergeViewerHeaderPainter drawBevelRect 7
Differencer findDifferences 6
Differencer traverse 6
RangeDifferencer rangeSpansEqual 6
‘WorkspacePatcher readUnified Diff 6

Table 2. Results of long parameter list query pattern.

nine parameters as input, and so does TextStreamMerger’s merge method be-
cause it implements IStreamMerger. These methods are possible candidates for
a refactoring to improve the overall design, usability, and quality of the software.

PREFIX som: <http://semweb.ivx.ch/software/som#>
PREFIX agg: <java:arq.propertyfunction.>

1

2

3

4 SELECT 7method 7parametercount

5 WHERE {

6 ?method som:hasFormalParameter ?formalParameter
7 “?parametercount agg:countParameters ?method

8 FILTER(?parametercount > 5)

9 } ORDER BY DESC(7parametercount)

Listing 1.3. Long parameter list query pattern.

5.4 Experiment 3: Applying Software Metrics

With our third set of experiments, we wanted to demonstrate the possibility of
calculating software design metrics using our iSPARQL system. Such metrics
are explained in detail in [9]. For illustration purposes, we have chosen two of
them which we will succinctly discuss in this section. Note that there is a close
connection between code smells and metrics in the sense that metrics are often
used to identify possible design flaws in object-oriented software systems.

PREFIX som: <http://semweb.ivx.ch/software/som#>
PREFIX agg: <java:arq.propertyfunction.>

1

2

3

4 SELECT ?GodClass ?7NOM ?7NOA

5 WHERE {

6 7?GodClass som:hasMethod ?Method

7 7?NOM agg:countMethods ?7GodClass

8 FILTER(?NOM > 15)

9 7?GodClass som:hasAttribute 7Attribute
10 ?NOA agg:countAttributes ?GodClass
11 FILTER (?NOA > 15)

12 } ORDER BY DESC (?NOM)

Listing 1.4. God class query pattern.

To give a simple example, consider the query shown in Listing 1.4: the goal of
this query is to detect possible God classes in the compare plug-in. A God class
is defined as a class that potentially “knows” too much (its role in the program

10

God class NOM |NOA
TextMergeViewer 115 91
CompareUIPlugin 46 42
ContentMergeViewer 44 36
CompareEditorInput 38 23
EditionSelectionDialog 30 26
CompareConfiguration 28 20
InputPatchPage 27 23
Diff 25 16
ComparePreferencePage 16 18

Table 3. Results of God class query pattern.

Buggy class NOB
TextMergeViewer 36
CompareEditor 16
Patcher 15
PreviewPatchPage 13
ResourceComparelnput 12
DiffTreeViewer 10
Utilities 10
CompareUIPlugin 9
StructureDiff Viewer 9
PatchWizard 6

Table 4. Results of bug reports query pattern.

becomes all-encompassing), in our sense, has a lot of methods and instance
variables. The query in Listing 1.4 calculates two metrics: NOM (number of
methods) and NOA (number of attributes). Both metrics can be used as an
indicator for possible God classes. The results are shown in Table 3. Having a
closer look at class TextMergeViewer, one can observe that the class is indeed
very large with its 4344 lines of code. Also CompareUIPlugin is rather big with
a total number of 1161 lines of code. Without examining the classes in more
detail, we hypothesize that there might be some room for refactorings, which
possibly result in smaller and more easy to use classes.

To support or discard our hypothesis, we measured the number of bug re-
ports issued per class, because we assume a correlation between the number of
class methods (attributes) and the number of filed bug reports. To that end,
we executed the query presented in Listing 1.5. Indeed, there is a correlation
as the results in Table 4 clearly show: the two classes TextMergeViewer and
CompareUIPlugin are also among the top 10 most buggiest classes in the project.

PREFIX vom: <http://semweb.ivx.ch/software/vom#>
PREFIX bom: <http://semweb.ivx.ch/software/bom#>
PREFIX agg: <java:arq.propertyfunction.>

1

2

3

4

5 SELECT 7file 7NOB

6 WHERE {

7 “7issue bom:isResolvedIn ?revision
8 7file vom:hasRevision ?revision
9 7?7NOB agg:countIssues ?file

0 } ORDER BY DESC(?NOB)

=

Listing 1.5. Bug reports query pattern.

11

5.5 Experiment 4: Ontological Reasoning

Our fourth set of experiments aims at demonstrating the benefits of automated
reasoning about facts given our introduced OWL software ontology models. Be-
cause these models are specified in OWL-DL, we can apply the OWL reasoners
from Jena!! or the Pellet reasoner'? to perform ontological reasoning.

To give an example, we have chosen the query shown in Listing 1.6 that should
find orphan methods (i.e., methods that are not called by any other method in the
project). The query finds all 7orphanMethod’s, gets any isInvokedBy and filters
those which passed through the optional branch. This query requires ontological
reasoning because isInvokedBy is defined as owl:inverseOf invokes in our
software ontology model. In other words, results of the form method1 isInvokedBy
method?2 must be inferred from the invokes-statements. To do so, we loaded the
software ontology model into a Jena model with an OWLMicro reasoner attached
to it and executed the query against this inference model.

The query returns numerous results of which we only present one of them
here. It finds, for instance, the public method discardBuffer () declared on the
class BufferedContent. This method is never invoked by any other class in the
plug-in. Orphan methods could possibly be removed from the interface of a class
without affecting the overall functionality of the system to result in a more clean
and easy to understand source code.

1 PREFIX som: <http://semweb.ivx.ch/software/som#>

2 PREFIX rdf: <http://www.w3.o0rg/1999/02/22-rdf-syntax-ns#>
3

4 SELECT ?orphanMethod

5 WHERE {

6 7orphanMethod rdf:type som:Method .

7 OPTIONAL { ?orphanMethod som:isInvokedBy ?invoker }

8 FILTER (!bound(?invoker))

9 }

Listing 1.6. Orphan method query pattern.

5.6 Experiment 5: Defect and Evolution Density

With our final set of experiments, we aim at determining a file’s as well as a whole
software project’s Defect and Fvolution Density. Note that in this context, we
consider files as “containers” for classes and instance variables (i.e., they may
contain multiple classes as well as inner classes). Inspired by Fenton [4], we define
the defect density DEDy of a file f as

NOB
NOR S

where NOR is the number of revisions of a file in a versioning system (NOR’s
query pattern is omitted here since it looks very similar to NOB’s in Section 5.4).

DED; =

" http://jena.sourceforge.net/inference/
12 http://www.mindswap.org/2003/pellet/

12

Class NOR|NOB|EVD |DED
StatusLineContributionltem 3 3 [0.000(1.000
CompareNavigator 3 2 10.333|0.667
IResourceProvider 4 2 0.500]0.500
DifferencesIterator 10 5 0.500]0.500
PatchProjectDiffNode 2 1]0.5000.500
IStructureCreator 11 4 10.636|0.364
PreviewPatchPage 37 13 [0.649]0.351
UnmatchedHunkTypedElement 3 1 0.667]0.333
WorkerJob 3 1]0.667(0.333
ResourceComparelnput 38 12 10.684]0.316
Patcher 51 15]0.706 |0.294
CompareEditor 57 16 [0.719]0.281
RangeDifference 11 3 |0.727]0.273
ResizableDialog 11 3 0.727(0.273
‘WorkspacePatcher 11 3 0.72710.273

Table 5. Evolution and defect density of the org.eclipse.compare plug-in.

In other words, Equation 1 computes the ratio of the number of bug reports over
the total number of revisions of a file f.

Next, we define a file’s/project’s Fvolution Density as counterpart to defect
density. When we refer to evolution density, we think of all the changes made
to a software system which were not bug-fixing, but “ordinary” software devel-
opment, such as functional extension and improvement, adaption, and testing.
The evolution density £V Dy of a file f is defined as:

EVD;=1— DEDy (2)

Table 5 lists evolution and defect density for the 15 topmost classes of the
org.eclipse.compare plug-in in descending order of defect density. Visualizing
the defect density (Figure 3(a)) brings to light some interesting facts: first, only
about 25% of all source files contain bugs at all. Nearly 75% of the code is free
of defects (measured by the reported bugs); second, the concentration of the
errors is exponentially decreasing (i.e., only few files have a high concentration
of bugs). This is further illustrated in Figure 3(b) that shows a histogram of the
number of classes in the project per 0.1 DED interval.

Finally, to calculate measures over all software engineering activities in the
project, Total Evolution Density (TEV D) and Total Defect Density (T DED)
are defined as shown in Equations 3 and 4:

St EVD;

n

TEVD = (3)

t_,DED
rpED = 2= PEDL (4)
n
For the org.eclipse. compare plug-in R3_2_1, the value for T’DED is 0.054,
which expresses that 5.4% of all activities in the project is due to bug-fixing and
94.6% due to functional extension etc. These findings seem to contradict those
of Boehm [1] who found that about 12% of all software engineering tasks are

13

DED - Defect Density

o
=
Number of occurrence

50 100 150 200 ©700-0.1 0.1-02 02-03 03-04 04-05 0.5-06 06-07 07-08 08-08 08-10
Files (Numbered from 1 to 207) DED ciassos

(a) DED per file. (b) DED histogram.

Fig. 3. The figure shows the defect density DED per file and the number of classes
per 0.1 DED interval in the org.eclipse.compare plug-in R3_2_1.

bug-fixing. We hypothesize that the time span of the measurements and the bug
reporting discipline (among others) are reasons for this divergence in results and
postpone it to future work to prove or reject this hypothesis.

6 Conclusions, Limitations, and Future Work

In this paper, we presented a novel approach to analyze software systems us-
ing Semantic Web technologies. Based on the Semantic Web query language
SPARQL, our iSPARQL framework together with EvoOnt provide the abil-
ity to examine software represented in OWL. This format is principally used
within the Semantic Web to share, integrate, and reason about data of vari-
ous origin. We evaluated the use of this format in the context of analyzing the
org.eclipse.compare plug-in for Eclipse.

To illustrate the power of using EvoOnt and iSPARQL, we conducted five
sets of experiments in which we showed, first, that iISPARQL and its impre-
cise querying facilities are indeed able to shed some light on the evolution of
software systems; second, that iSPARQL also helps to find code smells, hence,
fosters refactoring; third, that it enables the easy application of software design
metrics to quantify the size and complexity of software; forth, that it, due to
OWL’s ontological reasoning support, furthermore allows to derive additional
assertions, which are entailed from base facts; and fifth, that it enables defect
and evolution density measurements expressing the amount of bug-fixing and
“ordinary” software development as measured by all software engineering tasks.

A limitation of our approach is the loss of information due to the use of our
FAMIX-based software ontology model. Language constructs such as switch-
statements are not modeled in our ontology. The effects are that measurements
on the statements level of source code cannot be conducted.

Last, the current performance of our system is not satisfactory. Computing
the heatmaps for even a small software project as the compare plug-in takes

14

more than an hour (depending on the employed similarity measure). Also, the
amount of memory it takes to load and process the generated OWL data files
is huge, almost exceeding the maximal available memory in our Java virtual
machine (the memory load is even larger if reasoning is turned on).

It is left to future work to analyze iISPARQL’s applicability to other software
analysis tasks, such as bug prediction. We also think it makes sense to insert the
results of some queries back into the model (e.g., the results of some metric com-
putations), which would further boost the performance of our approach. Also, we
want to investigate different, more precise similarity measures to determine the
affinity of software entities. Coming back to the introductory example, iISPARQL
seems to be a practical and easy to use tool to help Sara analyze her software
project along a multitude of dimensions, making sure that she will neither drown
in a sea of diffusion nor be criticized by her company’s executives.

References

1. B. W. Boehm. Software Engineering Economics. Prentice Hall, 1981.
2. S. Demeyer, S. Tichelaar, and P. Steyaert. FAMIX 2.0 - The FAMOOS Inf. Ex-
change Model. Technical report, University of Berne, Switzerland, 1999.

3. J. Dietrich and C. Elgar. A Formal Description of Design Patterns Using OWL.

In Proc. of the 2005 Australian Software Engineering Conf., Brisbane, Australia,

2005.

N. E. Fenton. Software Metrics: A Rigorous Approach. Int. T. Comp. Press, 1991.

5. M. Fischer, M. Pinzger, and H. Gall. Populating a Release History Database from
Version Control and Bug Tracking Systems. In Proc. of the Int. Conf. on Software
Maintenance, pages 23-32, Amsterdam, Netherlands, 2003.

6. M. Fowler. Refactoring. Addison-Wesley, 1999.

7. H.-J. Happel, A. Korthaus, S. Seedorf, and P. Tomczyk. KOntoR: An Ontology-
enabled Approach to Software Reuse. In Proc. of the 18th Int. Conf. on Software
Engineering and Knowledge Engineering, San Francisco, CA, 2006.

8. D. Hyland-Wood, D. Carrington, and S. Kapplan. Toward a Software Maintenance
Methodology using Semantic Web Techniques. In Proc. of the 2nd Int. IEEE Ws.
on Software Evolvability at ICSM 06, pages 23-30, Philadelphia, PA, 2006.

9. M. Lanza and R. Marinescu. Object-Oriented Metrics in Practice. Springer, 2006.

10. V. I. Levenshtein. Binary Codes Capable of Correcting Deletions, Insertions and
Reversals. Soviet Physics Doklady, 10:707-710, 1966.

11. M. Méntyl4, J. Vanhanen, and C. Lassenius. A Taxonomy and an Initial Empirical
Study of Bad Smells in Code. In Proc. of the Int. Conf. on Software Maintenance,
Washington, DC, 2003.

12. E. Prud’hommeaux and A. Seaborne. SPARQL Query Language for RDF. Tech-
nical report, W3C, 2006.

13. T. Sager, A. Bernstein, M. Pinzger, and C. Kiefer. Detecting Similar Java Classes
Using Tree Algorithms. In Proc. of the 2006 Int. Ws. on Mining Software Reposi-
tories, New York, NY, 2006.

14. R. Shatnawi and W. Li. A Investigation of Bad Smells in Object-Oriented Design
Code. In Proc. of the 3rd Int. Conf. on Information Technology: New Generations,
Washington, DC, 2006.

15. G. Valiente. Algorithms on Trees and Graphs. Springer, 2002.

=~

15

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

