
Feature Selection with the CLOP Package

Isabelle Guyon
ETH Zürich, Switzerland

isabelle@clopinet.com

Jiwen Li
University of Zürich, Switzerland

li@ifi.unizh.ch

Theodor Mader, Patrick A. Pletscher,
Georg Schneider, Markus Uhr

ETH Zürich, Switzerland
{tmader,patrickp,scgeorg,uhrm}@student.ethz.ch

March, 2006

Abstract

We used the datasets of the NIPS 2003 challenge on feature se-
lection as part of the practical work of an undergraduate course
on feature extraction. The students were provided with a toolkit
implemented in Matlab. Part of the course requirements was that
they should outperform given baseline methods. The results were
beyond expectations: the student matched or exceeded the per-
formance of the best challenge entries and achieved very effective
feature selection with simple methods. We make available to the
community the results of this experiment and the corresponding
teaching material: http://clopinet.com/isabelle/Projects/
ETH/Feature_Selection_w_CLOP.html.

1 Introduction

In the recent years, it has been recognized by the machine learning and neural
network communities that competitions are key to stimulate research and bring
improvement. Large conferences are now regularly organizing competitions (e.g.
KDD, CAMDA, ICDAR, TREC, ICPR, CASP, and IJCNN). In 2003, we organized
a competition on the theme of feature selection, the results of which were presented
at a workshop on feature extraction [12]. The outcomes of that effort were com-
piled in a book including tutorial chapters and papers from the proceedings of that
workshop [11]. The website of the challenge remains open for post-challenge sub-
missions: www.nipsfsc.ecs.soton.ac.uk. Meanwhile, we have been organizing a
second challenge on the theme of model selection: www.modelselect.inf.ethz.ch.
As part of that effort, we have developed a Matlab toolkit based on the Spider
package [19]. All this material constitute a great teaching resource that we have ex-
ploited in a course on feature extraction: clopinet.com/isabelle/Projects/ETH.
We are reporting on our teaching experience with two intentions:

• encouraging other teachers to use challenge platforms in their curricula,
and

• providing to graduate students simple competitive baseline methods to at-
tack problems in machine learning.

The particular theme of the class is feature extraction, which we define as the
combination of feature construction and feature selection. These past few years,
feature extraction and space dimensionality reduction problems have drawn a lot of
interest. More than a passing fancy, this trend in the research community is driven
by applications: bioinformatics, chemistry (drug design, cheminformatics), text pro-
cessing, pattern recognition, speech processing, and machine vision provide machine
learning problems in very high dimensional spaces, but often with comparably few
examples. A lot of attention was given in class to feature selection because many
successful applications of machine learning have been built upon a large number of
very low level features (e.g. the “bag-of-word” representation in text processing,
gene expression coefficients is cancer diagnosis, and QSAR features in cheminfor-
matics). Our teaching strategy is to make students gain hands on experience by
working on large real world datasets (those of the NIPS 2003 challenge [8]), rather
than providing them with toy problems.

We reviewed in class basic machine learning techniques (linear predictors, neural
networks, kernel methods, and decision trees), all of which are included in the pro-
vided software package. The course devoted to feature construction included various
transforms such as the Fourier transform, and convolutional methods. We also re-
viewed a number of preprocessing methods involving noise modeling. The students
could experiment with such methods using the Gisette dataset, a handwriting
recognition task based on the MNIST data [16]. The rest of the curriculum covered
feature selection methods (filters, wrappers, and embedded methods), information
theoretic and ensemble methods. The datasets were introduced progressively in the
homework to illustrate algorithms learned in class. The class requisites included
making one complete challenge submission with results on the five datasets of the
challenge. The students had then to present their methods and results in a poster
presentation. Another requisite was to make a slide presentation of one of the
chapters of the book reporting results of the challenge.

In the remainder of the paper, we provide some details on the data and software
used. We review and analyze the results obtained by the students and draw lessons
of this experience to encourage others to use challenges as teaching resources.

2 Datasets and synopsis of the challenge

The NIPS 2003 challenge included five datasets (Table 1) from various application
domains. All datasets are two-class classification problems. The data were split into
three subsets: a training set, a validation set, and a test set. All three subsets were
made available at the beginning of the challenge. The class labels for the validation
set and the test set were withheld.

The identity of the datasets and of the features (some of which were random features
artificially generated) were kept secret during the challenge but have been revealed
since then. The datasets were chosen to span a variety of domains and difficulties
(the input variables are continuous or binary, sparse or dense; one dataset has unbal-
anced classes.) One dataset (Madelon) was artificially constructed to illustrate a
particular difficulty: selecting a feature set when no feature is informative by itself.
We chose datasets that had sufficiently many examples to create a large enough
test set to obtain statistically significant results [8]. To facilitate the assessment
of feature selection methods, we introduced a number of artificial features called
probes drawn at random from a distribution resembling that of the real features,
but carrying no information about the class labels. A good feature selection algo-
rithm should eliminate most of the probes. The details of data preparation can be
found in a technical memorandum [8].

Table 1: NIPS 2003 challenge datasets. For each dataset we show the domain it
was taken from, its type T (d=dense, s=sparse, or sb=sparse binary), the number of
features #F, the percentage of probes %P, the number of examples in the training,
validation, and test sets, and the fraction of examples in the positive class %[+], and
the ratio number of training examples to number of features Tr/F. All problems
are two-class classification problems.

Dataset Domain T #F %P #Tr #Va #Te %[+] Tr/F

Arcene Mass Spectrometry d 104 30 100 100 700 44 0.01
Dexter Text classification s 2.104 50 300 300 2000 50 0.015
Dorothea Drug discovery sb 105 50 800 350 800 10 0.008
Gisette Digit recognition d 5000 50 6000 1000 6500 50 1.2
Madelon Artificial d 500 96 2000 600 1800 50 4

The challenge participants could submit prediction results on the validation set and
get their performance results and ranking on-line during a development period. The
validation set labels were then revealed and the participants could make submissions
of test set predictions, after having trained on both the training and the validation
set. For details on the benchmark design, see [12]. For the class, the students had
access to the training and validation set labels, but not the test labels. Thus far,
the test set labels have not been released to the public and we intend to leave it this
way to keep an on-going benchmark. The students made post-challenge submissions
to the web site of the challenge (www.nipsfsc.ecs.soton.ac.uk) to obtain their
performance on the test set.

The distributions of the original results of the challenge participants for the var-
ious datsets are represented in Figure 1.1 The distribution is rather peaked for
Gisette, indicating that this is perhaps the easiest task. Conversely, the results
are very spread out for Dorothea, probably the hardest task of all. Madelon
has a bimodal distribution, symptomatic of a particular difficulty, which was not
overcome by all the participants. We will provide explanations in Section 6. These
distributions guided us to set standards for the students accomplishments:

• We introduced in class the datasets in order of presumed complexity.
• We provided the students with baseline methods approximately in the tenth

percentile of the best methods.
• We asked students to try to outperform the baseline method and gave them

extra credit for outperforming the best challenge entry.

In the remainder of the paper, we give details on the software toolbox provided and
the students results.

3 Learning object package

The machine learning package we used for the class called CLOP (Challenge Learn-
ing Object Package) is available from the website of the “performance predic-
tion challenge” http://clopinet.com/isabelle/Projects/modelselect/Clop.
zip. We have written an QuickStart guide2 and FAQs are available.3 We present

1We show the performance on the validation set because we have many more validation
set entries than final test set entries. The results correlate well with those on the test set.

2http://clopinet.com/isabelle/Projects/modelselect/QuickStart.pdf
3http://clopinet.com/isabelle/Projects/modelselect/MFAQ.html

0 5 10 15 20 25 30 35 40 45 50
0

20

40

ARCENE

0 5 10 15 20 25 30 35 40 45 50
0

20

40

DEXTER

0 5 10 15 20 25 30 35 40 45 50
0

20

40
DOROTHEA

0 5 10 15 20 25 30 35 40 45 50
0

20

40

GISETTE

0 5 10 15 20 25 30 35 40 45 50
0

20

40

MADELON

Test error (%)

Figure 1: Distribution of the challenge participant results. We show his-
tograms of the balanced error rate (BER) for the five tasks.

below only a high level overview of the package.

Data and algorithm objects

The methods were implemented using the interface of the Spider package developed
at the Max Planck Institute for Biological Cybernetics [19]. The Spider package
on top of which our package is built, uses Matlab (R) objects (The MathWorks,
http://www.mathworks.com/). Two simple abstractions are used:

• data: Data objects include two members X and Y, X being the input matrix
(patterns in lines and features in columns), Y being the target matrix (i.e.
one column of +-1 for binary classification problems).

• algorithms: Algorithm objects representing learning machines (e.g. neural
networks, kernel methods, decision trees) or preprocessors (for feature con-
struction, data normalization or feature selection). They are constructed
from a set of hyper-parameters and have at least two methods: train and
test. The train method adjusts the parameters of the model. The test
method processes data using a trained model.

For example, you can construct a data object D:

> D = data(X, Y);

The resulting object has 2 members: D.X and D.Y. Models are derived from the
class algorithm. They are constructed using a set of hyperparameters provided as
a cell array of strings, for instance:

> hyperparam = {’h1=val1’, ’h2=val2’};
> model0 = algorithm(hyperparam);

In this way, hyperparameters can be provided in any order or omitted. Omitted
hyperparameters take default values.

To find out about the default values and allowed hyperparameter range, one can
use the “default” method:

> default(algorithm)

The constructed model model0 can then be trained on data Dtrain and tested on
data Dtest:

> [Dout, model1] = train(model0, Dtrain);
> Dout = test(model1, Dtest);

The trained model model1 is an object identical to model0, except that its pa-
rameters (some data members) have been updated by training. Matlab uses the
convention that the object of a method is passed as first argument as a means to
identify which overloaded method to call. Hence, the “correct” train method for
the class of model0 will be called. Since Matlab passes all arguments by value,
model0 remains unchanged. By calling the trained and untrained model with the
same name, the new model can overwrite the old one. Repeatedly calling the method
“train” on the same model may have different effects depending on the model.

The output data object Dout stores the result of calling the test method on the input
data in Dout.X. If the algorithm is a preprocessing, Dout.X will be the preprocessed
data matrix. If the algorithm is a classifier, Dout.X will be a vector of discriminant
values. The other member Dout.Y remains unchanged.

To save the model is very simple since Matlab objects know how to save themselves:

> save(‘filename’, ‘modelname’);

This feature is very convenient to make results reproducible, particularly in the
context of a challenge.

Compound models: chains and ensembles

The Spider (with some CLOP extensions) provides ways of building more complex
“compound” models from the basic algorithms with two abstractions:

• chain: A chain is a learning object (having a train and test method) con-
structed from an array of learning objects. Each array member takes the
output of the previous member and feeds its outputs to the next member.

• ensemble: An ensemble is a also learning object constructed from an array
of learning objects. The trained learning machine performs a weighted sum
of the predictions of the array members. The individual learning machines
are all trained from the same input data. The voting weights are set to one
by default. An interface is provided for user-defined methods of learning
the voting weights.

Compound models behave like any other learning object: they can be trained and
tested. In the following example, a chain object cm consists of a feature standard-
ization for preprocessing followed by a neural network:

> cm=chain({standardize, neural});

While a chain is a “serial” structure of models, an ensemble is a “parallel” structure.
The following command create an ensemble model em:

> em=ensemble({neural, kridge, naive});

To create more complex compound models, models of the same class with different
hyperparameters or different models can be combined in this way; chains can be
part of ensembles or ensembles can be part of chains.

4 CLOP objects provided for the class

It is easy to be overwhelmed when starting to use a machine learning package.
CLOP is an extremely simplified package, limited to a few key methods, each having
just a few hyper-parameter values with good default values. This makes it suitable
for teaching a machine learning class. More advanced students can venture to use
other methods provided in the Spider package, on top of which CLOP is built.

The CLOP modules correspond to methods having performed well in the feature
selection challenge [12]. There are five classifiers:

• kridge Kernel ridge regression (our own implementation [9]).
• naive Naive Bayes classifier (our own implementation [10]).
• neural Neural network (using Netlab [1]).
• rf Random Forest (using the original implementation [3]).
• svc Support vector classifier (using LibSVM [4]).

We limited the number of hyperparameters of each method to avoid making the
model selection problem too complex. For instance, the two kernel methods “kridge”
and “svc” use a single kernel: k(x,x′) = (coef0 + x · x′)dexp(−γ||x − x′||2). In
addition to the three hyperparameters coef0, d, and γ, the kernel methods have a
“shrinkage” parameter for regularization, corresponding to a small value added to
the diagonal of the kernel matrix.

The CLOP modules also include five preprocessors:

• standardize: Standardization of the features (the columns of the data
matrix are divided by their standard deviation; optionally, the mean is first
subtracted if center=1.)

• normalize: Normalization of the lines of the data matrix (optionally the
mean of the lines is subtracted first.)

• shift n scale: Performs x ← (x − offset)/scale globally on the data
matrix. Optionally performs in addition log(1 + x).

• pc extract: Extraction of features with principal component analysis.
• subsample: Takes a subsample of the training patterns. May be used to

downsize the training set or exclude outliers.

We also provide five feature selection methods:

• s2n: Signal-to-noise ratio coefficient for feature ranking [6].
• relief: Relief ranking criterion [15].

• gs: Forward feature selection with Gram-Schmidt orthogonalization [17].

• rffs: Random Forest used as feature selection filter (see [11], Chapter 7).

• svcrfe: Recursive Feature Elimination filter using svc [13].

All the feature selection methods chosen are either individual feature ranking meth-
ods or nested subset methods (forward selection or backward elimination). Hence,
they all provide a ranking of features as part of the trained “model”. The number
of features to be selected is a hyperparameter, which may be varied after training
to avoid recomputing the ranking.

For the feature extraction class, we provided the students with other examples of
learning objects that are not part of CLOP, but can be found in the homework in-
structions (http://clopinet.com/isabelle/Projects/ETH/#homework1). Some
of them ended up being used in the best student entries:

• convolve: Data preprocessing for images, using two-dimensional convolu-
tion.

• gauss ker and exp ker: Two examples of convolutional kernels.

• probe: Object that can be wrapped around a feature selection filter to
compute pvalues with the “probe” method (see [11], Chapter 2).

• TP: “True Positive” feature ranking filter, using as ranking index the frac-
tion of feature values that are positive when the target value is positive. It
is suitable for unbalanced data with few example of the positive class and
a sparse binary data matrix (like the Dorothea dataset).

• bias: Post-processing adjusting the bias value to optimize the BER.

The Spider provides several objects for cross-validation and other model selection
methods. A model selection object is derived from the class “algorithm” and pos-
sesses train and test methods. For instance, 10-fold cross-validation is performed
as follows:

> cv_model=cv(my_model, {’folds=10’});
> cv_output = train(cv_model, Dtrain);

We created an archive containing the CLOP software, the datasets, and the base-
line methods, provided to the students, see http://clopinet.com/isabelle/
Projects/ETH/Feature_Selection_w_CLOP.html. Sample code is provided in-
cluding examples of combinations of modules into chains and ensembles, and a
script to load data, train a model, and save the model and the results into an archive
ready to upload to the challenge web site (http://www.nipsfsc.ecs.soton.ac.
uk/submit/).

5 Performance assessment and class requisites

Performance is assessed using several metrics:

• BER: The balanced error rate, that is the average of the error rate of the
positive class and the error rate of the negative class. This metric was used
because some datasets (particularly Dorothea) are unbalanced.

• AUC: Area under the ROC curve. The ROC curve is obtained by varying a
threshold on the discriminant values (outputs) of the classifier. The curve
represents the fraction of true positive as a function of the fraction of false
negative. For classifiers with binary outputs, BER=1-AUC.

• Ffeat: Fraction of features selected.

• Fprobe: Fraction of probes found in the feature set selected.

As part of the class requirements, the student had to make one full submission to
the challenge web site, including results on the training, validation, and test set,
and the feature subset used. They were also required to submit their CLOP model.
For each dataset, the students would each earn one point if they obtained a better
BER than the baseline method, or a smaller feature set for the same BER. They
would earn two points if they matched the BER of the best challenge entry (within
the statistical error bar.) Additionally, they earned points for a poster presentation
of their results.

To build the baseline methods, we were inspired by the methods of the top ranking
challenge participants and experiments we conducted after the challenge (see [11],
Chapter 9). The top ranking challenge entries all used a combination of:

• a feature selection filter, and

• a multivariate regularized classifier.

The filters chosen ranged from using the simple Pearson correlation coefficient to
using elaborate methods such as Random Forests. The best classifiers were Bayesian
neural networks, kernel methods (regularized least square or SVM), Random Forests
and näıve Bayes.

We chose the simplest possible baseline methods, which attain performances ap-
proximately in the best tenth percentile of the challenge entries. We made sure
that outperforming those baseline methods was easy. In Table 2, we provide the
Matlab code of the baseline methods. In Table 3, we provide the results of both
the baseline methods and the best challenge entries.4

6 Student work

During the curriculum, the datasets were introduced one at a time to illustrate
topics addressed in class, based on progressive difficulty. We briefly describe the
homework assignments associated with each dataset.

4Two separate rankings were done before and after the release of the validation set
labels. The Best challenge performance are the best of all entries, with or without the
knowledge of the validation set labels. The performances of the baseline method are
obtained by training with both training and validation data, except for Dorothea, where
it was found that including the validation set data as part of training degrades performance.

Table 2: Baseline methods provided to the students. For each dataset we
provided a simple method attaining performances approximately in the best tenth
percentile of challenge entries.

Dataset Code of the baseline method

Arcene my svc=svc({‘coef0=1’,‘degree=3’,‘gamma=0’,‘shrinkage=0.1’});
my model=chain({standardize,s2n(‘f max=1100’),normalize,my svc})

Dexter my svc=svc({‘coef0=1’,‘degree=1’,‘gamma=0’,‘shrinkage=0.5’});
my model=chain({s2n(‘f max=300’),normalize,my svc})

Dorothea my model=chain({TP(‘f max=1000’),naive,bias})
Gisette my svc=svc({‘coef0=1’,‘degree=3’,‘gamma=0’,‘shrinkage=1’});

my model=chain({normalize, s2n(‘f max=1000’),my svc})
Gisette my svc=svc({‘coef0=1’,‘degree=4’,‘gamma=0’,‘shrinkage=0.1’});
(pixels) my model=chain({convolve(exp ker({‘dim1=9’, ‘dim2=9’})), ...

normalize, my svc})
Madelon my svc=svc({‘coef0=1’,‘degree=0’,‘gamma=1’,‘shrinkage=1’});

my model=chain({probe(relief,{‘p num=2000’,‘pval max=0’}), ...
standardize,my svc})

Table 3: Performances comparison. The table shows the balanced error rate of
the baseline method BER0, the corresponding number of features n0, the fraction
of features used by the baseline method, the performance of the best challenge
entry BER∗ with its error bar δBER, and the best performance achieved by the
students BER with their post-challenge entries. The students earned one point
for BER < BER0 or {BER = BER0 and n < n0}. They earned 2 points for
BER < BestBER + δBER. We also show the training time of the best student
models on a 1.5GHz Pentium.

Baseline Feat# % Challenge best Student Training
Dataset BER0 n0 feat. BER∗ ± δBER BER time (s)

Arcene 14.70 1100 11 11.90± 1.20 10.48 3.8
Dexter 5.00 300 1.5 3.30± 0.40 3.25 1.2
Dorothea 12.37 1000 1 8.54± 0.99 9.3 0.7
Gisette 1.80 1000 20 1.26± 0.14 1.11 11.2
Gisette (pixels) 1.06 784 NA NA 0.78 127.9
Madelon 7.33 20 4 6.22± 0.57 6.22 7.8

Gisette: Feature construction.

The students worked first on the Gisette dataset for several weeks. Gisette
is a handwriting recognition task, providing easy-to-visualize patterns. This al-
lows students to experiment with feature construction and preprocessing. In
the first three homework assigments (http://clopinet.com/isabelle/Projects/
ETH/#homework1), the students were asked to write their first “learning object”, play
with data visualization tools, and make their first entry on the challenge web site.
We made several suggestions of simple-to-implement preprocessing objects, such as
raising the input variables to a given power or binarizing the data. No knowledge of
the identity of the features of the Gisette data was provided at this stage. The next
two homework (http://clopinet.com/isabelle/Projects/ETH/#homework4 fo-
cused on trying feature construction objects. The identity of the features of the
Gisette data was revealed (for the challenge, the features included original pixels,
products of pixels, and meaningless “probe” features). A program to visualize the

digit images was provided as well as a number of examples of feature construc-
tion learning objects, implementing principal component analysis (PCA), k-means
clustering, convolutional methods, and filter bank methods, including Fourier and
Hadamard transforms. The most successful method turned out to be the simple
“blurring” with a smoothing kernel (Figure 2). This result is consistent with ex-
periments on digit recognition formerly reported [7].

Dexter: univariate filters.

We chose Dexter, the test classification dataset, for the next series of assign-
ments (http://clopinet.com/isabelle/Projects/ETH/#homework7). For Dex-
ter, univariate feature selection filters combined with a simple linear SVM clas-
sifier perform well. It is therefore a terrain of choice to learn about univariate
filter methods and how to optimize the number of features with statistical tests or
cross-validation. To that end, we taught in class a number of univariate statistical
tests, including the Ttest and the Ftest. We implemented example learning ob-
jects, which rank the features according to a given test statistic and compute the
pvalue and False Discovery Rate (FDR).5 The pvalues of well know test statistics
such as the Student T statistic6 are either known analytically or tabulated. Since
ranking indices are not limited to well studied test statistics, permutation tests or
the “probe” method are used to empirically estimate pvalues and FDRs (see [11],
Chapter 2). According to the probe method, random meaningless features bearing
no predictive power are added to the original features and ranked with them. One
way to generate such probes is to permute randomly columns of the original matrix.
For a given value of the ranking index r0 , the pvalue is estimated as the fraction of
probes having ranking indices r larger than r0. The FDR is estimated as the ratio
of the pvalue and the fraction of real features with r ≥ r0. We provided the students
with the “probe” learning object, an object wrapping around any feature ranking
filter and calculating pvalues and FDRs using the “probe” method. The number of
features can be determined by setting a threshold on the pvalue or the FDR. When
using cross-validation, the student had also to devise strategies to optimize both
the number of features and the hyper-parameters.

Madelon: Multivariate feature selection.

The Madelon dataset was artificially generated. It can be thought of as a mega-
XOR problem. Clusters of data points were put at the vertices of a 5 dimensional
hypercube and randomly labeled. In this way, no projection in 1, 2, 3, or 4 di-
mensions shows a reasonable class separation, making the problem intrinsically
multivariate. This difficulty may explain the bimodal distribution of the BER of
the challenge participants (Figure 1). Working on Madelon was an opportunity
for students to experiment with multivariate filters such as Relief, or try wrappers
or embedded methods with non-linear multivariate classifiers, such as SVMs (see
http://clopinet.com/isabelle/Projects/ETH/#homework10).

5For a given value of a test statistic t0 used for feature ranking (the larger, the more
relevant), the pvalue or “false positive rate” is the fraction of irrelevant features whose
test statistic t exceeds t0. The False Discovery Rate (FDR) is the ratio of the number of
irrelevant features with t ≥ t0 over the total number of features with t ≥ t0.

6The T statistic used for feature selection is the ratio of the difference of the means of
the 2 classes to the class standard deviation.

Index: 5 Class: 1

5 10 15 20 25

5

10

15

20

25

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

Index: 5 Class: 1

5 10 15 20 25

5

10

15

20

25

Figure 2: Example of digit from the Gisette dataset. The original digit
(left) is a 28x28 gray level pixel image. It was transformed to the right image by
convolving with a smoothing kernel (top).

Arcene: Heterogeneous data.

The Arcene dataset was the object of study for the next two homework assignments
(http://clopinet.com/isabelle/Projects/ETH/#homework12). It presents two
difficulties: a small training set and heterogeneous data (coming from 3 sources).
Therefore, it is a good dataset to further study multivariate feature selection algo-
rithms, and experiment with mixtures of experts or ensemble methods.

Dorothea: Unbalanced data.

The Dorothea dataset was the object of the last homework assignments (http://
clopinet.com/isabelle/Projects/ETH/#homework14). We think it is the hardest
dataset, based on the huge spread in the distribution of results of the participants
(Figure 1): it is easy to badly overfit on that problem because there are 100,000
features but only 800 training examples. It is also a very unbalanced dataset, with
less than ten percent of the examples belonging to the positive class. The other
datasets were either balanced or almost balanced. The students learned that SVMs
can overfit and that Näıve Bayes is sometimes a safe choice. The students also
learned to post-fit the bias to compensate for class imbalance.

The best student entries are shown in Table 4. The training set and validation
set of the challenge were merged into a single training set. The hyper-parameters
were adjusted by cross-validation (usually 5-fold cross-validation). The final model
is trained on all the available labeled data (training plus validation set).7 As indi-
cated in Table 4, the training times are modest (of the order of 1-10 seconds per
model, except for Gisette when the pixel representation is used, because of the
time consuming preprocessing). Most students matched the performances of the

7For Dorothea, where it was found that including the validation set data as part of
training degrades performance, only training data were used.

Arcene Dexter Dorothea Gisette Madelon
0

5

10

15

B
E

R

Baseline method
Challenge best
Student best

Figure 3: Result comparison. The student performances matched (within the
statistical error bar) or exceeded the performances of the best challengers.

best challenge entries (within the statistical error bar) and therefore earned the
maximum number of points (Table 3 and Figure 3). Some student entries even
exceeded the performance of the best challenge entries. We think that the achieve-
ments of the students are remarkable. They exceeded our expectations. Of course,
it can be argued that they had several advantages over the competitors, and in par-
ticular access to test results on-line. However, this does not diminish significantly
their achievement since many other post-challenge entries were made since the end
of the challenge and hardly any matched or outperformed the best results of the
challengers.

It is noteworthy that, for their final entries, the student methods do not depart very
much from the baseline method. However, this does not mean that they did not
explore other methods. Indeed, at the beginning, they were rather daring and even
implemented algorithms they had heard about in other classes. Unfortunately, given
the time that they could devote to that class, it is not surprising that they could
not easily outperform with new ideas the baseline methods, which are the result
of learning from the designs of the best challenge entrants and extensive cross-
validation experiments (see [11], Chapter 9). The grading system prompted them
to get the best possible performance, but also rewarded them for their creativity by
encouraging them to report negative results in their poster presentation.

The order of introduction of the datasets was based on their difficulty estimated
by the spread of the BER distribution of the challenge entrants (Figure 1). This
turned out to be a good choice. However, one drawback of using Gisette for the
first homework assignment is that it is a large dataset. Some students ran into
computational problems or memory limitation problems on their laptops, which
generated some frustration.

General observations can be made about the best models. All of them use simple
classifiers linear in their parameters (näıve Bayes [10] and SVMs [2]). The näıve

Table 4: Methods employed by the best student entries.

Dataset Code of the methods employed

Arcene my svc=svc({‘coef0=2’,‘degree=3’,‘gamma=0’,‘shrinkage=0.1’});
my model=chain({relief(‘f max=1400’),normalize,my svc})

Dexter my svc=svc({‘coef0=1’,‘degree=1’,‘gamma=0’,‘shrinkage=0.5’});
my model=chain({s2n(‘f max=4500’),normalize,my svc})

Dorothea my model=chain({TP(f max=15000),normalize, ...
relief(f max=700’),naive,bias});

Gisette my svc=svc({‘coef0=1’,‘degree=3’,‘gamma=0’,‘shrinkage=1’});
my model=chain({s2n(‘f max=1000’), normalize, my svc})

Gisette my svc=svc({‘coef0=1’,‘degree=4’,‘gamma=0’,‘shrinkage=0.1’});
(pixels) my model=chain({convolve(gauss ker({‘dim1=5’, ‘dim2=5’})), ...

normalize,my svc})
Madelon my svc=svc({‘coef0=1’,‘degree=0’,‘gamma=0.3’,‘shrinkage=0.3’});

my model=chain({relief(‘f max=20’),standardize,my svc})

Bayes and linear SVM are also linear in their input components: the decision func-
tion is of the form f(x) = w · x + b, where x is the feature vector to be classified,
w is the weight vector, and b the bias. The non-linear SVM has a decision func-
tion of the form: f(x) =

∑
k αkk(xk,x) + b, where k(., .) is a similarity measure

called “kernel” function and the αk are weights. The sum runs over a subset of the
training examples called “support vectors”. The learning algorithms differ in the
way the weights w, αk, and b are computed. Both the näıve Bayes and linear SVM
are known to be robust against overfitting: they get good predictive performance
(generalization) even when the dimensionality of input space (number of features)
is large compared to the number of training examples. But, there are gradings in
the robustness: näıve Bayes>linear SVM>non-linear SVM. Many theoretical ar-
guments have been made to explain this, principally based on the computation of
performance bounds [18]. There is an informal way of understanding this in terms
of “effective dimensionality”: The näıve Bayes classifier is a “univariate” linear clas-
sifier in the sense that the overall decision is made by a simple voting, using the
individual predictive power of the feature as voting weight. Thus its effective dimen-
sionality is very low. The linear SVM is a “multivariate” linear classifier, thus its
effective dimensionality will be generally higher than that of the näıve Bayes. The
non-linear SVM is formally equivalent to a linear SVM in a large dimensional fea-
ture space of φ vectors: f(x) = w ·φ+b, where w =

∑
k αkφk and k(xk,x) = φk ·φ.

Hence its effective dimensionality tends to be larger than that of the linear SVM.

If we use the ratio of number of training examples to number of features to assess
the danger of overfitting (Table 1), we can see that Madelon and Gisette are
in the overfitting green zone (ratios larger than one), Dorothea is in the red
zone (ratio much smaller than one), and Dexter and Arcene are in the middle
range. Using this as a rule of thumb to choose the classifier, the non-linear SVM
may be applied to Gisette and Madelon without fear, the more conservative
linear SVM to Arcene and Dexter, and the very conservative näıve Bayes to
Dorothea. This rule-of-thumb predicts rather well the best student entries, with
the exception of Arcene: here, we would have expected the linear SVM to perform
best, but the non-linear SVM has a slight performance advantage, perhaps due to
the heterogeneous nature of the Arcene data. This demonstrates the robustness
of the non-linear SVM against overfitting, particularly its “soft-margin” version [5],

which provides additional regularization, via the so-called “shrinkage” parameter in
our implementation.

Another observation is that feature selection is performed with only three simple
filters:

• TP: A filter useful for highly unbalanced classes like Dorothea to pre-select
“true positive” features being at least sometimes “present” in representa-
tives of the positive class [20].

• s2n: A simple univariate filter, which ranks features according to the
“signal-to-noise” (s2n) ratio [6], that is, for a given variable/feature, the
separation of the means of the two classes, relatively to the standard devi-
ation.

• relief: A filter which ranks features according to their separating power
“in the context of other features”. The Relief algorithm [14] uses an ap-
proach based on the nearest-neighbor algorithm. For each example, the
closest example of the same class (nearest hit) and the closest example
of a different class (nearest miss) are selected. The score of the ith vari-
able/feature is computed as the average over all examples of the magnitude
of the difference between the distance to the nearest hit and the distance
to the nearest miss, in projection on the ith variable.

The simplest question we could ask about feature selection is: “Can we get better
performance by reducing the feature set?” The answer to this question is not easy
to give because good classifiers, which are robust against overfitting, perform well
without feature selection. In the analysis of the results of the challenge (see [11],
Chapter 9), we could not answer this question satisfactorily because the winning
entry used 100% of the features. In this study, our entries outperform or match the
best challenge entries, within the statistical error bar, and they use less than 100% of
the features. Hence, feature selection can indeed yield performance improvements.
But we prefer rephrasing the question as follows: “Can we effectively reduce the
feature set while improving or not significantly degrading performance?”.
Three indicators are used to give a quantitative answer to this question:

• The fraction of features used Ffeat.

• The false discovery rate (FDR). The FDR is the fraction of irrelevant
features in the selected feature set. It is estimated by the ratio of the
fraction of “probes” in the selected features and the fraction of probes in
the original feature set: FDR ' Fprobe/F ∗probe. A large FDR is indicative
of Type I errors (false positive, i.e. irrelevant features wrongly selected).

• The ZBER statistic. A statistically significant increase in balanced error
rate BER, compared to BER∗ obtained using all the features, is indicative
of Type II errors (false negative, i.e. relevant features wrongly discarded).
We define ZBER = (BER−BER∗)/σ∆, where σ∆ is the standard deviation
of BER − BER∗.8 For small training sets, the benefit of reducing the
dimensionality may outweigh the loss of information by discarding useful
features, so the BER may actually be better than BER∗, making ZBER

an imperfect indicator of Type II errors.
8Paired test statistics would be more powerful, but since in this analysis the differences

are quite significant, we adopt the simple Z statistic. σ∆ is computed as
√

σ∗2 + σ2 where
for n test examples, σ∗2 = BER∗(1 − BER∗)/n, and σ2 = BER(1 − BER)/n. For
unbalanced classes, we replace the number of samples n by twice the number of samples
of the smallest class.

Table 5: Effectiveness of feature selection. The table shows the number n of
“balanced” samples, the BER of the full model, the BER of the model built with
the reduced feature set, the standard deviation of the difference, the corresponding
Z statistic, the fraction of features used, the fraction of probes of the full and the
reduced model, and the false discovery rate FDR ' Fprobe/F ∗probe.
For all datasets, the reduced model is the best student model and the full model
is built with the same hyperparameters. for Dexter, we show both the student
model (s) and the baseline model (b).

Dataset n BER∗ BER σ∆ −ZBER Ffeat F ∗probe Fprobe FDR

Arcene 700 0.1186 0.1048 0.0127 1.09 0.14 0.30 0.04 0.14
Dexter (s) 2000 0.0410 0.0325 0.0049 1.75 0.23 0.50 0.55 1.1
Dexter (b) 2000 0.0410 0.0395 0.0049 0.31 0.02 0.50 0.08 0.15
Dorothea 160 0.3094 0.0930 0.0372 5.82 0.01 0.50 0.03 0.05
Gisette 6500 0.0180 0.0111 0.0020 3.49 0.20 0.50 0.00 0
Madelon 1800 0.4872 0.0622 0.0120 35.53 0.04 0.96 0.00 0

For simplicity, we use the 2σ rule: if ZBER > 2, we consider BER to be significantly
worse than BER∗. Conversely, ZBER < −2 indicates that BER is significantly
better than BER∗.9 If we find a classifier for which ZBER < −2 and for which Ffeat

is significantly lower than one, we will give a positive answer to the first question:
Yes, we can get better performance by reducing the feature set. But, if the FDR
remains large, the feature selection is ineffective, even though the performance has
improved.

To evaluate the impact of selection, we reran the best models without feature se-
lection, keeping the same hyper-parameters. We summarize the results in Table 5.
For the three last datasets, feature selection is very effective: the feature selection
yields significantly better results at the 2% risk level (−ZBER > 2)10 and the FDR
is zero or near zero. Let us take a closer look at some of the results:

Arcene:

For Arcene, without performance degradation, the feature set can be reduced to
14% of its initial size, with a 14% false discovery rate. Therefore, feature selection
is quite effective despite the fact that no performance improvement is gained.

Dexter:

For Dexter, the student entry selected many features, in an effort to match the
performance of the best challenge entry. Consequently, the FDR suffers. But, the
baseline method, with a performance only moderately worse, obtains a good FDR
of 15%. Therefore, here again feature selection is quite effective if we are willing to
sacrifice a little in performance.

Dorothea:

For Dorothea, compared to the full model, our reduced model has very signifi-
cantly better performances. The fraction of features used is very small (1%), and so
is the FDR (5%). The best student entry did not quite match the performance of
the best challenge entry (the BayesNN-large of Radford Neal, BER=0.0854) using

9This corresponds for a one-tailed ztest to a risk of 2% of being wrong.
10At the 4% risk level, the 4 last ones are significant.

100% of the features. Yet, sacrificing a little in performance, very significant and
effective feature set reduction is achieved.

Gisette:

The best results on the Gisette dataset were obtained with the knowledge of the
identity of the features, using smoothed images (Figure 2. However, some student
entries, which did not make use of this additional knowledge, also outperformed
the best challenge entry. This is the result shown in Table 5. We see that the
feature selection is very effective for Gisette: Using only 20% of the features, a
significant reduction in error rate is achieved, and an undetectable false discovery
rate is attained.

Madelon:

For the Madelon dataset, the data being artificial, we know by construction that
only 20 features are relevant (with some redundancy). Yet one entry in the chal-
lenge (the BayesNN-DFT-combo+v of Radford Neal and Jianguo Zhang) reaches
the smallest test BER achieved so far (6.22%), using 100% of the features. Both the
baseline method and the best student challenge entry select all 20 relevant features.
Hence the performance improvement of the student entry compared to the base-
line method is due to a better hyper-parameter choice. The FSPP2(unpublished)
method of Shen Kaiquan achieves the same performance with only 12 features.
This illustrates the effectiveness of Relief to select the relevant features, but its
ineffectiveness to remove unnecessary feature redundancy.

7 Conclusions and future work

A challenge can be more than a one-time event. It can become an on-going life
benchmark and a teaching tool. By leaving the website of the NIPS2003 feature
selection challenge open for post-challenge submissions (http://www.nipsfsc.ecs.
soton.ac.uk/), we have given to graduate students and researchers the opportunity
to compare their algorithms to well established baseline results. Since the end of
the challenge, the number of entrants has almost doubled. During the only down
time of the site (when the building burnt!) numerous requests of re-activating it
were received.

In this paper, we have demonstrated that even undergraduate students can get
their hands dirty and “learn machine learning from examples”, with a success that
exceeded our expectations. All of them easily outperformed the baseline methods
we provided them and most of them matched the performances of the best chal-
lengers (within the statistical error bar) or even exceeded them. We hope that this
experience will be followed by similar other attempts. In the mean time, we make
available all of our teaching material, data and code.

The results obtained mark also a victory of simple methods. All the models used
to match or outperform the best challenge entries use a combination of simple
normalization, feature selection filters (signal-to-noise ratio, Relief, or fraction of
true positive), and a näıve Bayes or a support vector machine classifier. There
was no need to use ensemble methods or transduction. However, univariate feature
selection and linear classifiers did not always suffice.

With this study, we could reach more conclusive results regarding the effectiveness
of feature selection than by analyzing the results of the challenge. The winning

challenge entry used no feature selection, i.e. had significantly better results than
other entries using feature selection. The student entries used a reduced feature set
while matching or outperforming the performance of the best challenge entry. For
three datasets the reduced model using a small fraction of the original feature set
significantly outperformed the full model and the false discovery rate approached
zero.

This paper by no means marks an end point to the problem of feature selection or
even to solving the tasks of the NIPS2003 feature selection challenge. Our explo-
rations indicate that there is still much room for improvement. In particular, since
we have released the identity of the features, it is now possible to introduce domain
knowledge in the feature construction process. To a limited extent we have seen
that this strategy show promises on the Gisette datasets: a simple smoothing of
the pixel image allowed us to boost performances.

Acknowledgments

The experiments were carried out as part of a lecture on feature extraction taught at
ETH Zürich. We are extremely grateful to Prof. Joachim Buhmann for his support
and encouragements and to Peter Orbanz for help and advices. We are very thankful
to the institutions that have contributed data: the National Cancer Institute (NCI), the
Eastern Virginia Medical School (EVMS), the National Institute of Standards and Tech-
nology (NIST), DuPont Pharmaceuticals Research Laboratories, Reuters Ltd., and the
Carnegie Group, Inc. We also thank the people who formatted the data and made them
available: Thorsten Joachims, Yann Le Cun, and the KDD Cup 2001 organizers. The
Challenge Learning Object Package (CLOP) is based on code to which many people have
contributed: The co-developers and beta-testers of CLOP: Amir Reza Saffari Azar and
Gideon Dror. The creators of the Spider: Jason Weston, Andre Elisseeff , Gikhan BakIr
, Fabian Sinz. The developers of the packages attached: Chih-Chung Chang and Chih-
JenLin Jun-Cheng (LIBSVM), Chen, Kuan-Jen Peng, Chih-Yuan Yan, Chih-Huai Cheng,
and Rong-En Fan (LIBSVM Matlab interface), Junshui Ma and Yi Zhao (second LIBSVM
Matlab interface), Leo Breiman and Adele Cutler (Random Forests), Ting Wang (RF
Matlab interface), Ian Nabney and Christopher Bishop (NETLAB), Thorsten Joachims
(SVMLight), Ronan Collobert (SVM Torch II), Jez Hill, Jan Eichhorn, Rodrigo Fernan-
dez, Holger Froehlich, Gorden Jemwa, Kiyoung Yang, Chirag Patel, Sergio Rojas. The
CLOP project was partially supported by the National Science Foundation under Grant
N0. ECS-0424142. Any opinions, findings, and conclusions or recommendations expressed
in this material are those of the authors and do not necessarily reflect the views of the
National Science Foundation.

References

[1] Christopher M. Bishop. Neural networks for pattern recognition. Oxford Uni-
versity Press, Oxford, UK, 1996.

[2] Bernhard Boser, Isabelle Guyon, and Vladimir Vapnik. A training algorithm
for optimal margin classifiers. In Fifth Annual Workshop on Computational
Learning Theory, pages 144–152, Pittsburgh, 1992. ACM.

[3] Leo Breiman. Random forests. Machine Learning, 45(1):5–32, 2001. http:
//citeseer.ist.psu.edu/breiman01random.html.

[4] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: a library for support vector
machines, 2001. Software available at http://www.csie.ntu.edu.tw/~cjlin/
libsvm.

[5] C. Cortes and V. Vapnik. Support vector networks. Machine Learning, 20:273 –
297, 1995.

[6] T. R. Golub et al. Molecular classification of cancer: Class discovery and class
prediction by gene expression monitoring. Science, 286:531–537, 1999.

[7] I. Guyon, V. Vapnik, B. Boser, L. Bottou, and S. A. Solla. Structural risk
minimization for character recognition. In J. E. Moody, S. J. Hanson, and
R. P. Lippmann, editors, Advances in Neural Information Processing Systems
4. Proceedings of the 1991 Conference, pages 471–479, San Mateo, CA, 1992.
Morgan Kaufmann.

[8] Isabelle Guyon. Design of experiments of the NIPS 2003 variable selection
benchmark. Technical report, 2003. http://www.nipsfsc.ecs.soton.ac.uk/
papers/Datasets.pdf.

[9] Isabelle Guyon. Kernel ridge regression tutorial. Technical report, 2005, http:
//clopinet.com/isabelle/Projects/ETH/KernelRidge.pdf.

[10] Isabelle Guyon. Näıve bayes algorithm in CLOP. Technical report, 2005, http:
//clopinet.com/isabelle/Projects/ETH/NaiveBayesAlgorithm.pdf.

[11] Isabelle Guyon, Steve Gunn, Masoud Nikravesh, and Lofti Zadeh, Editors.
Feature Extraction, Foundations and Applications. Studies in Fuzziness and
Soft Computing. Physica-Verlag, Springer, http://clopinet.com/isabelle/
Projects/NIPS2003/call-for-papers.html, 2006, in press. See also on-
line supplementary material: http://clopinet.com/isabelle/Projects/
NIPS2003/analysis.html.

[12] Isabelle Guyon, Steve R. Gunn, Asa Ben-Hur, and Gideon Dror. Result analysis
of the NIPS 2003 feature selection challenge. In NIPS, 2004. http://books.
nips.cc/papers/files/nips17/NIPS2004_0194.pdf.

[13] Isabelle Guyon, Jason Weston, Stephen Barnhill, and Vladimir Vapnik. Gene
selection for cancer classification using support vector machines. Machine
Learning, 46(1-3):389–422, 2002.

[14] K. Kira and L. Rendell. A practical approach to feature selection. In D. Sleeman
and P. Edwards, editors, International Conference on Machine Learning, pages
368–377, Aberdeen, July 1992. Morgan Kaufmann.

[15] K. Kira and L. A. Rendell. A Practical Approach to Feature Selection. In Pro-
ceedings of the 9th International Conference on Machine Learning, ICML’92,
pages 249–256, San Francisco, CA, 1992. Morgan Kauffman.

[16] Y. LeCun and C. Cortes. The MNIST database of handwritten digits. http:
// yann. lecun. com/ exdb/ mnist/ .

[17] H. Stoppiglia, G. Dreyfus, R. Dubois, and Y. Oussar. Ranking a random fea-
ture for variable and feature selection. Journal of Machine Learning Research,
3:1399–1414, 2003.

[18] V. Vapnik. Statistical Learning Theory. John Wiley & Sons, N.Y., 1998.
[19] J. Weston, A. Elisseeff, G. BakIr, and F. Sinz. The Spider machine learning

toolbox. http: // www. kyb. tuebingen. mpg. de/ bs/ people/ spider/ , 2005.
[20] Jason Weston, Fernando Pérez-Cruz, Olivier Bousquet, Olivier Chapelle,

André Elisseeff, and Bernhard Schölkopf. Feature selection and transduc-
tion for prediction of molecular bioactivity for drug design. Bioinformatics,
19(6):764–771, 2003.

