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Abstract

A data mining (DM) process involves multiple stagéssimple, but typical, process might in-
clude preprocessing data, applying a data-miniggrahm, and postprocessing the mining re-
sults. There are many possible choices for eamypestand only some combinations are valid.
Because of the large space and non-trivial intemast both novices and data-mining specialists
need assistance in composing and selecting DM gsese Extending notions developed for
statistical expert systems we present a prototgpaligent Discovery Assistant (IDA), which
provides users with (i) systematic enumerationsatiid DM processes, in order that important,
potentially fruitful options are not overlooked,dafii) effective rankings of these valid processes
by different criteria, to facilitate the choice DM processes to execute. We use the prototype to
show that an IDA can indeed provide useful enun@ratand effective rankings in the context
of simple classification processes. We discuss BowDA could be an important tool for
knowledge sharing among a team of data minersalljrwe illustrate the claims with a com-
prehensive demonstration of cost-sensitive clasdiin using a more involved process and data
from the 1998 KDDCUP competition.
Index Terms

Data mining, data-mining process, intelligent dasits, knowledge discovery

1 We thank Yan Mao for her assistance with the immeletation of the prototype system, IBM for a Facdlivard, and Carlos
Soares and our reviewers for extensive commengsior draft. We are indebted to the authors ekdy for providing the free
data-mining toolkit, to the librarians of and calntrtors to the UCI Repository, and to the orgarszard participants of the 1998
KDDCUP.



1 Introduction
Knowledge discovery from data is the result of apleratory process involving the application
of various algorithmic procedures for manipulatdeda, building models from data, and manipu-
lating the models. The Knowledge Discovery (KDpgess [Fayyad, Piatetsky-Shapiro &
Smyth, 1996] is one of the central notions of tieédfof Knowledge Discovery and Data mining
(KDD). The KD process deserves more attention ftbenresearch community; processes com-
prise multiple algorithmic components, which int#ran non-trivial ways. Even data-mining
specialists are not familiar with the full rangeaamponents, let alone the vast design space of
possible processes. Therefore, both novices atadndiaing specialists are apt to overlook use-
ful instances of the KD process. We consider ttloég will help data miners to navigate the
space of KD processes systematically, and moretefédy. In particular, this paper focuses on a
subset of stages of the KD process—those stagesghich there are multiple algorithm compo-
nents that can apply; we will call this a data min{DM) process (to distinguish it from the lar-
ger knowledge discovery process). For most of ga@per, we consider a prototypical DM
process template, similar to the one described dyad et al. [1996] and [Chapman et al.,
2000], which is shown in Figure 1. We concentrate work here on three DM-process stages:
automated preprocessing of data, application ofigtidn algorithms, and automated post-
processing of models. We have chosen this saepf vecause, individually, they are relatively
well understood—and they can be applied to a wateety of benchmark data sétdn the final
case study, we expand our view to a more involvietdbocess.
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Figure 1: The KD process (adapted from Fayad et a[1996])
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Figure 2 shows three simple, example DM procesdemcess 1 comprises simply the applica-

tion of a decision-tree inducer. Process 2 preggees the data by discretizing numeric attrib-

% More generally, because we will assemble thesepooents automatically into complete processescidmabe executed by a
user, the scope of our investigation is necesskmiyed to KD-process stages for which there eaigibmated components, and
for which their requirements and functions can fectfied. Important but ill-understood stages saslibusiness process analy-
sis” or “management of discovered knowledge” areimcluded [Senator, 2000]. We also do not consiakelligent support for
more open-ended, statistical/exploratory data aiglps has been addressed by St. Amant and Cb9@8][

“Descriptions of all of the techniques can be foima data mining textbook [Witten & Frank, 2000].
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utes, and then builds a naive Bayesian classiReocess 3 preprocesses the data first by taking a
random subsample, then applies discretization tlaenl builds a naive Bayesian classifier.
Consider an intelligent assistant that helps a dater with the exploration of the space of
valid DM processes. Aalid DM process violates no fundamental constraintgso€onstituent
techniques. For example, consider an implemematica naive Bayesian classifier that applies
only to categorical attributes (as do many impletagons). If an input data set contains numeric
attributes, simply applying this classifier is motalid DM process. However, Process 2 is valid,
because it preprocesses the data with a discienhzatutine, transforming the numeric attributes
to categorical ones. An automated system can ddkantage of an explicit ontology of data-

mining techniques, which defines the various teghes and their properties.

numeric
@ Data » Decision Tree >
e Model
® numeric | Discretize o Naive Baves
Data ™ (10bins) > yes ———
~— Model
numeric Random Discretize .
® | paa_ [ sampling (10%) (10 bins) Naive Bayes »
— Model

Figure 2: Three valid DM processes
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Figure 3: Simplified elements of a DM ontology

The Intelligent Discovery Assistant (IDA) determsneharacteristics of the data and of the de-
sired mining result, and uses the ontology to $efocand enumerate the DM processes that are
valid for producing the desired result from theagivdata. Each search operator corresponds to

the inclusion in the DM process of a different daiaing technique; preconditions constrain its

® The naive Bayesian approach generally allows itinluérom data containing continuous attributese Tinplementations used
in the data mining community often have the restiicof not handling continuous data.
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applicability and there are effects of applyingFigure 3 shows some (simplified) ontology en-
tries. Then the IDA assists the user in chooshoggsses to execute, for example, by ranking the
process (heuristically) according to what is impottto the user. The ranking shown in Figure 2
(based on the number of techniques that form the)phould be useful if the user were inter-
ested in minimizing fuss. Another user may waniniaimize run time. In that case the reverse
of the ranking shown in Figure 2 would be bettethdd ranking criteria are accuracy, cost sensi-
tivity, comprehensibility, etc., and combinatiohgiteof.

We claim that such a system can provide userstwithmain benefits:

1. a systematic enumeration of valid DM processeshep do not miss important, potentially

fruitful options;

2. effective rankings of these valid processes byethfft criteria, to help them choose be-

tween the options.

We also assert that an ontology-based IDA provatesnfrastructure for sharing knowledge
about data-mining processes, which can lead to et@bomists call network externalities. We
do not provide experimental proof for this thirdpbyhesis, but argue that behavioral research in
the area of knowledge sharing has shown such sfiieenalogous applications.

We support the first claim by presenting in deth# design of an effective IDA for cost-
sensitive classification, including a working priyfee, describing how valid plans are enumer-
ated based on an ontology that specifies the ctaistics of the various component techniques.
We show plans that the prototype produces, anceaitat they would be useful not only to nov-
ices, but even to expert data miners. We provigmart for the second claim with an experi-
mental study, using ranking heuristics. Although @0 not claim to give an in-depth treatment
of ranking methods, we demonstrate the abilityhef lDA prototype to rank potential processes
by speed and by accuracy (both of which can besasdeobjectively) and by combinations of the
two, in the context of a classification task. Myawe provide additional support for all the
claims with an empirical demonstration, using theDCUP 1998 data-mining problem, show-
ing how an IDA can take advantage of knowledge tilaoproblem-specific DM process. For

most of the paper we use simple processes, sutttose presented in Figure 2, to provide sup-



port for our claims. The final demonstration goge® more depth (but less breadth) with a par-
ticular, more complex process.
2 Motivation and General Procedure

When engaged in design activities, people rareplaeg the entire design space [Ulrich and
Eppinger, 1995, p. 79]. When confronted with a rmaablem, data miners, even data-mining
experts, often do not explore the design spaceMfdbocesses thoroughly. For example, the
ACM SIGKDD Conference holds an annual competitianyhich a never-before-seen data set is
released to the community and teams of researdailspractitioners compete to discover
knowledge from the data. KDDCUP-2000 received 8@0amts (teams) attempting to mine
knowledge from electronic-commerce data. As repbhig Brodley and Kohavi [2000], most
types of data-mining algorithm were tried by onlgraall fraction of participants.

Expert data miners may ignore many data-mining @ogres because they do not have access
to the tools; however, readily and freely availatidea-mining toolkits make this reason suspect.
More likely, experts do not use that many data-ngrtiools—especially tools that require addi-
tional pre- and post-processing or those entaiogplicated installation or execution proce-
dures (e.g., complicated parameter tweaking). dddéhe only algorithm that was tried by more
than 20% of the KDDCUP-2000 participants was deaidree induction, which often performs
reasonably well with no tweaking and with littleep'post-processing.

The overall meta-process followed by our IDA iswhan Figure 4. The user provides data,
metadata, goals, and desiderata. Then the IDA ceespiine set of valid DM processes, accord-
ing to the constraints imposed by the user inghtsdata, and/or the ontology. This composition
involves choosing induction algorithm(s), and ajppiate pre- and post-processing modules (as
well as other aspects of the process, not conslderthis paper). Next, the IDA ranks the suit-
able processes into a suggested order based arsé¢ine desiderata. The user can select plans
from the suggestion list, hopefully aided by thekiag. Finally, the IDA will produce code for

and can execute (automatically) the suggested ggeseon the selected data.
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Figure 4: The overall process followed by an IDA

3 Enumerating Valid Data Mining Processes

Our first claim is that an ontology-based IDA camumerate DM processes useful to a data
miner. We support our claim in two ways. Firse describe how the ontology can enable the
composition of only valid plans. Second, we désprocess instances produced by our proto-
type (called IDEA), in order to provide evidencattlthey can be non-trivial. Later we will de-
scribe how problem-specific elements can be inaated into an IDA, for clarity and generality
first we concentrate on domain-independent elemehthe DM process. For example, when
presented with a data set to mine, a knowledgesdesy worker (researcher or practitioner) gen-
erally is faced with a confusing array of choic®@gitfen & Frank, 2000]: should | use C4.5 or
naive Bayes or a neural network? Should | use dligation? If so, what method? Should |

subsample? Should I prune? How do | take into@ticcosts of misclassification?

3.1 An Ontology-based Intelligent Discovery Assistant

Consider a straightforward example: a user presemgsge data set, including both numeric
and categorical data, and specifdgssificationas the learning task, along with the appropriate
dependent variable. The IDA asks the user to spédfher desired tradeoffs between accuracy
and speed of learning. Then the IDA determineskvIiliM processes are appropriate. For our
example task, decision-tree learning alone mighaggopriate. Or, a decision-tree program plus
subsampling as a pre-process, or plus pruningoastaprocess, or plus both. Are naive Bayes or
neural networks appropriate for this example? &wsmot by themselves. Not if naive Bayes
only takes categorical attributes. Typically, reduretworks only take numeric attributes. How-

ever, appropriate pre-processing (transformingitita type) may enable their use.



The IDA uses the ontology to assist the user inpmsimg valid and useful DM processes.
Basing our design on Al planning [Ghallab et a898] and semantic web services [Ankolekar et
al., 2001], the prototype’s ontology contains facle operator:

* A specification of the conditions under which theemtor can be applied, including a
pre-condition on the state of the DM process, @ gatibility with preceding operators,
and the inputs necessary for the execution of ltpariehm.

» A specification of the operator’s effects on the Phdcess’s state and on the data.

» Estimations of the operator’'s effects on attribigash as speed, accuracy, model com-
prehensibility, etc. (shown as heuristic indicatargigure 3).

* A help function to obtain comprehensible informatabout each of the operators.

In addition the ontology contains schemata for gengroblems such as target marketing. The
schemata are represented internally as complepngeusable operators with the same parame-
ters as their simple counterparts. The only diffeesis that some of the steps within the complex
operators might not be completely specified, opgrrdesign space of sub-solutions (section 5

provides an example). The collection of all schemsia case-base of proven useful processes.
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Figure 5: The data-mining ontology
(partial view, the italicized leaf nodes were ugethe ranking experiments)

Figure 5 shows a structural view of the prototypéotngy, which at the highest level groups
the DM operators into: pre-processing, inductioostgrocessing. Each group is further sub-
divided. At the leaves of this tree are the actpmrators (selected examples are shown in ital-

ics). We constructed this prototype ontology bgtfironsidering the types of operators provided



by typical data-mining toolkits. We chose the ¢éhstages of the data-mining process that have
received the most automation—resulting in a nonatiselection of operators. We then divided
these into subcategories, focusing on operatotsathald be useful for cost-sensitive classifica-
tion. Finally we chose implementations that wevailable in the Weka toolkit [Witten and
Frank, 2000]. This ontology clearly is not conipleaven for cost-sensitive learning; however,
it is sufficient for the experimental demonstrasahat follow. After the ontological structure
was in place, we called on our own expertise tovigethe operator specifics (preconditions,
postconditions, etc., discussed above). Obviodisé/pontology is limited by our knowledge. All
of this was done before the experiments below wenelucted, except as mentioned below.

Based on the prototype ontology, we built a prgietyDA, which we call IDEA I(ntelligent
Discovery Electronic Assistant). Following our general framework for IDAsee Figure 4),
IDEA first gathers dask specificatiorior the DM process, analyzes the data that thewisties
to mine and extracts the relevant meta-data, sadhetypes of attributes included (e.g., con-
tinuous, categorical). Using a GUI, the user then complement the gathered information with
additional knowledge about the data, and can gpebe type of information/model he/she
wishes to mine. IDEA’s first core component, thM-process planners described in Section
3.2. A collection of valid DM processes typicallylivcontain processes that are undesirable for
certain user goalse.g., sacrificing too much accuracy to obtain a ehddst. IDEA’s second
core component, thieeuristic rankey ranks the valid DM processes using a combinatfosev-
eral heuristic functions. The GUI also allows treem to specify tradeoffs (weights) between
ranking functions, to sort the list of plans usamy (weighted combination) of the rankings, to
examine the details of any process plan, and tergé:mcode for and to run the processes.

A final function of IDEA is to supply the users Wwian interface to the ontology. It allows users
to browse the ontology entries with a tree-likerdiehy browser. To add new operators to the
ontology requires adding a new element in the ogiptree and specifying its parameters. When
adding the Weka ID3 tree learner operator, for gdamthe user would first choose Decision
Tree as an appropriate parent in the ontology. Themser would proceed to add the appropriate
parameters. As a child of Decision tree, the ne® diperator would inherit some parameter val-

ues. The user must complement these parametersheitactual algorithm implementation and



the call interface (for Weka'’s ID3: java-class wekassifiers.trees.ld3 with the relevant method

calls or a reference to a WSbitile), and the heuristic parameters (suclsgsd = + 25).

3.2 Enumerating Valid DM Processes: IDEA’s procedure

Ouir first claim is that an IDA can produce a sysaémenumeration of DM processes that will be
useful to data miners, to help them keep from @akihg important processes. To enumerate
(only) valid DM processes, IDEA performs a straighward search of the space of processes
defined by the ontology, constrained by the restms on operator application defined in the
ontology. The structure of the search problemmerable to more complex, Al-style planning,
but so far the straightforward search has beencgarif. IDEA constructs specification of the
sequence of DM operators (i.e., the DM procesd)rttaves from the start state—the meta-data
description of the data set—to the goal state—ajjyica prediction model with some desired
properties. Starting with an empty process at the state, at every state it finds the applicable
operators using the compatibilities, adds each atper(separately) to the partial process that
brought it to the current state, and transformsstla¢e using the operator’s effects. Using the
example above, in order to apply naive Bayes, tingent state must not contain numeric attrib-
utes; which would be the case after discretizatidime planner would not apply discretization
twice, because after the first application, theestao longer would contain numeric attributes,
and thus the preconditions of discretization ngé&nwvould apply. The planner stops pursuing a
given process when it has reached either the ¢@i@ sr some “dead-end” state that will not lead
to the goal state. The planner also can add congpexator schemata to any solution. Akin to
hierarchical planning, it then must revisit all then-specified steps and treat them as planning
problems themselves (see section 5 for an example¢. central difference from traditional, Al

planning is that execution does not stop whensa Vilable solution is found. Instead the search

6 WSDL (Web Services Description Language) is an Xgiimat for describing services (or remote proced)rproviding all
information necessary to locate and call the serf@hristensen et al., 2001].

" One method of ranking by predicted speed followsrple “composition” approach that our resultsoeshow is effective.
Each DM operator in the ontology contains a heigrattry of the form <operator> <number>, wheredbperator is either +,-
¥,/ and number is an integer. Starting with altetare of 0 the algorithm visits each DM operatothe plan in the order of its
appearance then applies the <operator> and <nunib&ompute the new total score.
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returns as many valid processes as posSiatepsers of KD tools are often not able to express
their preferences precisely or completely befomrggpossible available alternatives.

The constraints in the ontology are essentialvelfuse the ontology whose overall structure is
shown in Figure 5, give the goal dassification and constrain the search only with the ordering
of the logical groupings imposed by the prototypéotogy (i.e., pre-processing precedes induc-
tion which precedes post-processing), IDEA generats,840 DM processes. Adding the con-
straints imposed by the pre- and post-conditionshef operatorS,IDEA produces 597 valid
process instances—Iess than one-half of one peafehe size of the unconstrained enumera-
tion. Adding metadata (e.g., the data set contaimseric attributes) or user desiderata (e.g., the

user wants cost-sensitive classification) allovesehumeration to be constrained even further.

3.3 Enumerating Valid DM Processes: example enumeratianfrom IDEA

The enumerations of processes produced by IDEAatré&ivial. In many cases they would be
valuable not only to novice data miners, but eweexperts.

Example 1) When IDEA is given the goal of producingcast-sensitive classifier for a two-
class problemit produces an enumeration comprising 189 DM @sses. The enumeration in-
cludes building a class-probability estimator aettisg a cost-specific threshold on the output
probability. It includes building a regression rebdnd determining (empirically) an effective
threshold on the output score. The enumeratianiatdudes using class-stratified sampling with
any classification algorithm (which transforms amoeminimizing classifier into a cost-
minimizing classifier). Novice data miners certgido not consider all these options when ap-
proaching a cost-sensitive problem. In fact, weaware of no single published research paper
on cost-sensitive learning that considers one cf efthese types of option [Turney, 1996].

Example 2) When we give IDEA the goal of producimgpmprehensible classifierthe top-

ranked DM process igsubsanpl e the instances| > ffeature selection ->

use a rule learner| > |prune the resultant rule set] Although compre-

hensibility is a goal of much machine-learning egsh, we are not aware of this process being

used or suggested. This process is interestinguseceach component individually has been

8 As long as the number of DM operators that wilblvailable to an IDA is not huge, the speed of pilag is unlikely to be
problematic. For example, with the prototype DMadogy (currently incorporating a few dozen opers}othe current DM-
process planner can generate all valid procesge® (everal hundred for problems with few constgiin less than a second.
For example: neural networks require numeric aitgb; decision-tree pruning can only apply to denisrees, etc.
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shown to yield more comprehensible models; why khouthe composition yield even more

comprehensible models? As another DM process higiniged by comprehensibility, IDEA sug-

gestspui I d a decision treel > [convert tree to rules| » [prune rul €|

set| This also is a non-trivial suggestion: it is fh®cess introduced by Quinlan [1987] and

shown to produce a combination of comprehensibdlitg high accuracy. Although the addition

to the ontology ofonvert tree to rul es|was influenced by Quinlan's work, we did not

"program” the system to produce this process. |BAposed and ranked processes based on
knowledge of individual operators. This is parkly valuable, because the addition of a new
operator to the ontology can have far-reachingcedfée.g., adding “convert trees to rules” results
in this plan being suggested strongly for compreti@a classification).

Example 3)Consider the case where the user is interesteldssification, but wants to get re-
sults fast. Does IDEA’s enumeration contain patédy useful (fast) processes? Indeed it sug-
gests processes that use fast induction algoritsmsh) as C4.5 (shown to be very fast for
memory-resident data, as compared to a wide vaokebther induction algorithms [Lim et al.,
2000]). It also produces suggestions not commoafhsidered [Provost & Kolluri, 1999]. For
example, the enumeration contains plans that usadlization as a preprocess. Research has
shown that discretization as a preprocess can peodlassifiers with comparable accuracy to
induction without the preprocess [Kohavi & Sahabh®96]; but with discretization, many induc-
tion algorithms run much faster. For example, acdieed by Provost and Kolluri, most decision
tree inducers repeatedly sort numeric attributegeasing the computational complexity consid-
erably; discretization eliminates the sorting. IDEAuggestions of fast plans also include plans
that use subsampling as a preprocess. Most resesrstudying scaling up have not considered
subsampling explicitly, but of course it producésssifiers much faster—and for large data sets
it has been shown to produce classifiers with coatga accuracies [Oates & Jensen, 1997].

4 IDAs can produce effective rankings

Large enumerations of DM processes can be unwidldig. important to help the user choose
from among the candidate processes. Rankings opBidesses can be produced in a variety of
ways. For example, static rankings of processedlifterent criteria could be stored in the sys-

tem. Flexible rankings also are important—so #snew ontological knowledge is added, the
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system can take advantage of it immediately. IDE®&duces rankings dynamically by compos-
ing the effects of individual operators. The oagy contains estimations of the effects of each
operator on each goal. For example, an inductigorithm may be estimated to have a particu-
lar speed (relative to the other algorithms). Thgka 10% random sample of the data as a pre-
process might be specified to reduce the run tigna factor of 10 (which would be appropriate
for algorithms with linear run times). Correspargly, sampling might be specified to reduce
the accuracy by a certain factor (on average) tamicrease the comprehensibility by a different
factor (cf., the study by Oates and Jensen [199¢). a given DM process plan, an overall score

is produced as the composition of the functionthefcomponent operators.

4.1 Details of ranking experiments

In order to provide a demonstration to support daim that IDAs can produce useful rank-
ings, we coupled IDEA with a code generator thategates code for the Weka data-mining tool-
kit'® [Witten and Frank, 2000]. The system generatea dade for executing the plans, as well
as code for evaluating the resulting models basedcouracy and speed of learning. We assess
IDEA’s ability to rank processes by speed and lgueacy, because these are criteria of general
interest to users and for which there are welljaiszk evaluation metrics. Furthermore, one ex-
pects a rough tradeoff between speed and accucany ¢t al, 2000], and a user of an IDA may
be interested in points between the extremes.

For the experiments in this section, we restri¢tedontology to a subset for which it is feasi-
ble to study an entire enumeration of plans thantugThe ontology subset uses seven common
pre-processing, post-processing, and inductionnigdes (for which there were appropriate
functions in Weka, see below). The experimentdd tago build aclassifier, and has as its start
state a data sebntaining at least one numeric attribuighich renders some inducers inapplica-
ble without preprocessing). Table 1 shows on #fethe list of 16 valid process plans IDEA
created for this problenun the right is a legend describing the 7 operatisest* Even this

small ontology produces an interesting variety ®-process plans. For example, the ontology

10 The choice of Weka was driven by the availabilitya large number of suitable machine learning ajpes. Weka does have
the drawback that it mostly operates on in-membmyctures making it unsuitable for exploration ofre realistic large-scale
data sets. In particular, the pre-processing stepish oftentimes entail accessing large datababesild be handled a suitable
database environment or within a full-scale dataimg pre-processing environment like Mining Martdhk and Scholz, 2003].
The last operator in Table dpe, which places an appropriate threshold on a @assability estimator, becomes a no-op for
Naive Bayesr(b) in the Weka implementation, because Weka’s implaation ofnb thresholds automatically.
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specifies that naive Bayes only considers categjaaitributes, so the planner ne€ds include
a preprocessor that transforms the data. Indettuthugjh the ontology for the experiments is very
small, the diversity of plans is greater than imgneesearch papers.

In Table 1, the first column ranks the plans byribeber of operators in the plan. This may be
interesting to users who will be executing plansaaly, who may be interested in minimizing
fuss. We will not consider this ranking further egtto reference plans by number. Heairistic
rank columns of Table 1 show a pairs of speed rankoogsputed by heuristics. The “credit-g”
ranking is a static ranking created by runningtlai plans on one, randomly selected data set
(viz., credit-g®). A static ranking makes practical sense if thgibility to add new operators is
not of primary importance. Adding new operatonsdtherwise changing the ontology) changes
the space of plans, in which case a static ramkioigld have to be updated or recomputed. The
“composition” ranking was generated by a functioc@nposition; the ontology specifies a base
accuracy and speed for each learner, and speitibésll the preprocessing operators will reduce
accuracy and will increase speed, by different anteo(see Footnote 7). The heuristic functions
are subjective, based on our experience with tfiferent data-mining techniques and on our
reading of the literature (e.g., [Liet al, 2000]). The ranking functions were fixed befare
began using Weka’s particular implementations, witle exception: because speed ratings differ
markedly by implementation, we ran Weka on one datdcredit-g) to instantiate the base speed

for the learning algorithms and the improvementdescfor sampling and for discretization.

12 This is not strictly true for the Weka implemeiuat for which naive Bayes is augmented with a itgestimator for process-
ing numeric attributes. The Weka implementationldde considered naive Bayes plus a particularenicrpreprocessor.
13 We did not use credit-g as a testing data setiiregperiments.
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Table 1: 16 process plans and rankings

Dataset name| Size
heart-h 294
heart-c 303
ionosphere 351
balance-scale 625
credit-a 690
steps heuristic rank diabetes 768
credit-g | composition Legend for operators used in plans vehicle 846
speed speed anneal 898
Plan# 1 |c4.5 13 13 acronym |name/algorithm vowel 990
Plan # 2 |part 16 16 rs Random sampling ((esult_ credit-g 1000
Plan # 3 |rs, c4.5 2 5 instances = 10% of input inst.) segment 2310
Plan#4_Jrs, part 85 10 fod  Fixed-bin discretization (10 bins) move 3029
Plan # 5 |fbd, c4.5 12 11 dna 3186
Plan # 6 |]fbd, part 15 14 cbd Class-based discretization gene 3190
Plan # 7 |cbd, c4.5 11 12 (Fayyad & Irani's [1993] MDL adultio 3256
Plan # 8 |chd, part 14 15 45 C4.5 (using Witten & Frank's hypothyroid 3772
Plan # 9 [rs, fbd, c4.5 4 3 ) [2000] J48 implementation) .
Plan # 10 |rs, fbd, part 6.5 8 part Rule Learner (PART, Frank & \?vlgteformﬁooc gggg
Plan # 11 |rs, cbd, c4.5 5 4 Witten [1998])
Plan # 12 |rs, cbd, part 6.5 9 b Naive Byes (John & Langley pagg - 5473
Plan # 13 [fbd, nb, cpe 8.5 6 [1995]) optdigits 5620
Plan # 14 |cbd, nb, cpe 10 7 e CPE-thresholding post- Insurance 9822
Plan # 15 |rs, fbd, nb, cpe 1 1 p processor letter 20000
Plan # 16 |rs, cbd, nb, cpe 3 2 adult 32561

Table 2: Beset names and sizes

Our experiments—to assess the feasibility of usingDA to provide rankings by speed and
by accuracy—compare the proposed rankings to rgelgenerated by actually running the plans
on the data sets. For the experiments, we useth@3sets from the UCI Repository [Blake &
Merz, 2001], each containing at least one numeétiitbate. The data sets and their total sizes are
listed in Table 2. Unless otherwise specified,dach experiment we partitioned each data set
randomly into halves (we will refer to these subsas  and 3). We used ten-fold cross-
validation within @ to compute average classification accuracy andageespeed—which then
are used to assess the guality of the ex-antengsikand to construct the “actual” (ex-post) rank-
ings for all comparisons. (We will use thesDlater, to construct auto-experimentation rarnging

the {D,, Dy} partitioning ensures that all results are compkra
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speed accuracy

credit-g ranking composition auto-
ranking experiment.

- — heart-h 0.39 0.30 -0.06
Plan Name Cred!t—g COmpO.S|t|0n D2 ("acltual") heart-c 0.62 0.59 0.06
ranking | ranking ranking ionosphere 0.80 0.70 0.20
Plan # 2 16 16 16 balance-scale 0.82 0.81 0.55
Plan # 6 15 14 15 credit-a 0.94 0.91 0.71
Plan # 8 14 15 14 diabetes 0.55 0.64 0.49
Plan # 1 13 13 13 vehicle 0.94 0.95 0.91
Plan # 7 11 12 12 anneal 0.98 0.92 0.90
Plan # 4 9 10 11 vowel 0.90 0.93 0.90
Plan #5 12 1 10 segment 0.89 0.92 0.92
Plan # 14 10 7 9 move 0.90 0.95 0.87
Plan # 10 7 8 8 dna 0.98 0.94 0.91
Plan # 12 7 9 7 gene 0.92 0.95 0.88
Plan # 3 2 5 6 adult10 0.97 0.97 0.86
Plan # 13 9 6 5 hypothyroid 0.95 0.91 0.96
Plan # 11 5 4 4 sick 0.95 0.89 0.18
Plan # 9 4 3 3 waveform-5000 0.90 0.94 0.94
Plan # 16 3 2 2 page 0.86 0.85 0.74
Plan # 15 1 1 1 optdigits 0.89 0.87 0.84
insurance 0.95 0.93 0.84
letter 0.90 0.96 0.96
adult 0.93 0.98 0.86
mean 0.86 0.85 0.70
median 0.90 0.92 0.86

Table 3: Adult data set rankings by speed Table 4Spearman ranks for ranking heuristics

for speed and accuracy

4.2 Ranking by Speed

Our first experiments examine whether the heusstian be effective for ranking DM proc-
esses by speed. Since being able to rank well dégtsig most important for larger data sets, con-
sider the largest of our data sets: adult. Taldb®vs the two rankings and the actual (ex-post)
ranking based on the average run times for alpthes. The table is sorted by the actual ranking,
and the table entries are the positions of each iplaeach ranking (i.e., 1 is the first plan in a
ranking, 2 the next, etc.). Both heuristics rankyweell. For the credit-g ranking (on the adult
data set) Spearman's rank-correlatipn ©.93 and for the composition ranking=r0.98 (recall
that perfect rank correlation is 1, no correlat®0, and a perfectly inverted ranking is -1).

Table 4 shows for all the domains the correlatioetsveen the rankings produced by the heu-
ristics and the rankings based on the actual spelddse the data sets are presented in order of
increasing size (large ones toward the bottom)ghlighted in bold are the cases wheye 0.5
(all but the smallest data séf). Neither heuristic is superior, but both are ffee; for both

ranking heuristics, the average is approximatgty@.85.

¥ The choice of 0.5 was ad hoc, but was chosen @etoming the experiment. Examining hand-crafgetkings with varioussr
values seemed to indicate that 0.5 gave rankirgjddbked good.
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4.3 Ranking by Accuracy — Using Auto-Experimentation

Our next set of experiments examines whether ti#edén be effective for ranking DM proc-
esses by accuracy. Note that one would not expduot table to do nearly as well at this task as
for ranking by speed. Nevertheless, it would bipfaéto be able to give users guidance in this
regard, especially when a system proposes a prooaeszining a component with which the user
is not familiar—if the process were ranked highily dxcuracy, it would justify learning about
this new component. However, our attempt to useistec scores, similar to those that were
successful for ranking by speed, did not producsiqudarly good accuracy rankings. Fortu-
nately, an IDA can perforrauto-experimentatigncomposing process plans and running its own
experiments to produce a ranking of the plans leymcy™® Although this may be the best pos-
sible ranking method (albeit time consuming), aarekperimental evaluations of the accuracies
of predictive models produce only estimations @f élccuracy of the models on unseen data. The
quality of the rankings of DM processes producedigh estimation will vary (e.g., by data-set
size), and for any particular domain must be detethempirically.

We now present an experiment to assess the e#feetsg of such a procedure. For each do-
main, IDEA composed DM process plans and genenatekia code for the plans and for their
evaluations via cross-validation. For each datatBe cross-validation was performed on data
subset B to produce an estimation of the accuracy that doesult from running the plan on a
data set from the domain. These accuracies we tasconstruct a ranking of the DM-process
plans by accuracy for each data set. These raskimgn were compared to the ranking produced
on data set P(identically to all previous experiments). TaBldists the resulting rank correla-
tions in the rightmost column. As expected, thekically determined rankings are considera-

bly better for the larger data sets: averaged(.86 for the data sets with >= 5000 records.

4.4 Trading off Speed and Accuracy

For large data sets auto-experimentation provides gccuracy rankings, but one pays a consid-
erable run-time price as the data-set size growsatW a user is willing to trade off some speed
for a better accuracy ranking, but does not haeetithe for full-blown auto-experimentation

(i.e., running all the plans on all the data)? aMernative is to perform auto-experimentation on

15 This is not an option for speed rankings, bec#us@uto-experimentation process itself may beyjwéme consuming.
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subsamples of the data to estimate the accuragyngafor the full data set. We now demon-
strate that our IDA can allow users to trade offlgy of ranking for timeliness.

IDEA ran the process plans for the six largesadagts (each having 5000 or more total re-
cords) on increasingly larger subsets of the d&aecifically, for each domain’s;Pwe selected
random subsets of 10%, 20%, ..., 100% of the datar. ekch subset, IDEA performed cross-
validation to determine empirically an expecteduaacy ranking, identically to the previous ex-
periment. For this experiment, we consider only ¢#hght DM-process plans that do not (al-
ready) contain random sampling. Figure 6 plotsrrk correlations as the size of the sample
grows, and in bold shows the average rank coroglads size grows. As expected, the largest
samples give better rankings than the smallest. oResthe 100% sample, all are above 0.5, and
all but optdigits are above 0.8. On the other hémdseveral of the data sets (page, adult, Jetter

the rankings with the 10% sample are not much b#téa random.

1

0.9 4
0.8 1 —&— waveform-5000
0.7 1 —l—page
E 06 | —A— optdigits
< —¥— insurance
€ 05
5 —@— letter
g 041 —+—adult
)
0.3 1 average
0.2 1 average (w/o optdigits)

0.1
0

10 20 30 40 50 60 70 80 90 100
% of data sampled

Figure 6: Rank correlations and sample size

With one notable exception, the rank correlatioesdme relatively stable when about half of the
data have been seen. The optdigits curve is uhukeaank correlations do not increase and do
not become more stable as more data are usedheFumvestigation shows that optdigits is, in
an important sense, too easy. Specifically, allhmé$ perform extremely well, even with small
training sets, so it is not possible to rank theeamngfully beyond a certain level. The last se-

ries in Figure 6 (bold and marked witih)agraphs the average without the optdigits dataysh
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ing that the average performance is as desirec(giyincreasing, but with decreasing marginal
benefits).

In sum, the results in this section demonstrateith& possible for an IDA to produce effective
rankings of generated processes by different dedmldspeed and accuracy), and to produce
rankings that make tradeoffs between the two.

5 Demonstration with a more complex DM process

We now present the results of a final set of expents, to demonstrate further the power of
IDAs. The prototypical DM-process template that wged for the discussions and experiments
above was straightforward—as was necessary tod¢e our notion of an IDA and to run
experiments on a suite of benchmark data sets. eMeny in real-world situations the DM
process can be more complex [Agrawal, 1998]. Werashat in such cases the potential value
of an IDA is even greater, because there is greated for expertise in technique and process.

The data we use for our demonstration were theestibf the 1998 KDDCUP. The rationale
for choosing the KDDCUP 1998 dataset was threefaildt, the data set highlights the strengths
of the planning-and-ranking approach: the combomatf human insight about the problem and
machine support for the systematic exploratiorhefdesign space. Second, it allows us to show
the applicability of IDEA in the context of a moo®mplex, cost-sensitive learning problem,
rather than the straightforward classification peab used for the previous demonstrations. Fi-
nally, the data set has already been preprocesseasesely, making it suitable for our prototype,
which concentrates on the building of the clasatfan model, not on feature construction and
selection. Even with the extensive preprocesshregKDDCUP 1998 problem is not trivial.

The KDDCUP 1998 problem was to select a subsetistbeners to whom to mail solicitations,
in order to maximize profit (revenues minus thet@dsmailing). Participants built models from
the training data, using a wide variety of diffdrerethods. To determine the winners, the organ-
izers evaluated (on a separate test set for whiehrtie answers were hidden) how much profit
each team’s model would have garnered. More spally, KDDCUP 1998 was based on data
from a fund-raising campaign undertaken by a natimeterans association. The customer base
was a set of individuals who donated in prior caigms and the goal was to select those from

whom to solicit donations in the current campaidtach observation in the data set is an indi-
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vidual, and includes (for example) the responsthéoprior campaign. The training set from the
competition consists of 95412 records and thedestonsists of 96367 records. The mailing
cost is $0.68 and the average donation is $15.60 avirange of $1-$200. The donation fre-
guency is about 5% of the population. Using theadifstrategy of mailing to everyone, the av-
erage profit over the test set is $10,560. Theutdctresults of KDDCUP 1998 are presented in
Table 5. For our experiment, we use the variabéesl by Zadrozny and Elkan [2004].

[ Participants Profit %Gain

Urban Science $14,712 39.32
SAS $14,662 38.84
#3 $13,954 32.14
#4 $13,825 30.92
5 $13,794 30.63
46 $13,598 28.77
7 $13,040 23.48
48 $12,298 16.46
9 $11,423 8.17
#10 $11,276 6.78
#11 $10,720 1.52
#12 $10,706 1.38
#13 $10,112 -4.24
#14 $10,049 -4.84
15 $9,741 -7.76
16 $9,464 -10.38
17 $5,683 -46.18
#18 $5,484 -48.07
#19 $1,925 -81.77
20 $1,706 -83.84
#21 (354) -100.51

Table 5: Results of 1998 KDDCUP

This was a challenging competition: the spread betwthe different competitors is quite large.
Notice that 9 of 21 entries produced lower prdfitan did the default strategy of mailing to eve-
ryone. In fact, the last-place entry actually lkmginey. The winners achieved a 39% increase in
profit over the default strategy. Notice also ttit winners are experts in this sort of data min-
ing: Urban Science specializes in building modetgdrget marketing (and in fact, they also won
the 1997 KDDCUP). In second place is SAS, who hbBee extensive experience with this sort
of modeling. The competitors with the lower scamesst likely applied data mining tools in the
manner typical of data-mining/machine-learning aeske. As we will demonstrate, ts&aight-
forward application of existing tools is insufficient féiigh-level performance on these data.

However, the inclusion of application-specific, DMecess-related knowledge is. As we will

16 Note that selection and construction of featutes is part of the KD process. We do not treairtfie this paper, except in
Limitations, below.
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show, it is essential for IDEA to incorporate apgtion-specific process knowledge. First let us
consider how IDEA performs without doing so.

We followed a methodology intended to mimic theoaillpmic portion of the process that
KDDCUP competitors would have taken (i.e., not unithg feature construction and selection).
Specifically, we create rankings of DM processassatering only the training set (estimating the
profit that would be obtained). To assess theityual a ranking, we calculate the “actual” prof-
its on the test set. The 1998 KDDCUP focused orohlpm of cost-sensitive classification: clas-
sify into one of two categories, solicit or do ntatking into account the cost of false positives
(the mailing costs) and the cost of false negat(ttes lost revenue). We use a larger set of in-
duction algorithms than in the experiments abow,ftr clarity, for this experiment we do not

consider pre- and post-processing explicitly.

Process\N: |[Create dummi¢s> [Neural Network> [Classification by regressipn

Procesd.in: [Create dummies |Linear Regressigr> [Classification by regressipn

Process og(CPE): [Create dummiés> |Logistic Regression(CPE» [CPE-Threshholding

Proces\NB(CPE): |Discretization> |Naive Bayes (CPEP |CPE-Threshholdirig

ProcesRule(CPE): [Rule Learner(CPEY |CPE-Threshholding

ProcesT(CPE): |Decision Tree(CPEY» |CPE-Threshholding

Figure 7: DM processes generated for cost-sensitiedassification

Figure 7 shows 6 DM processes generated for cositse classification. As mentioned
above, a wider variety of learning algorithms (frdkfeka) is used here, and only one process
with each algorithm is generated. Specificallg finst two processes produce regression mod-
els: process “NN” is the application of a neurawurk learner and process “Lin” is the applica-
tion of linear regression. As mentioned in sect®o8, regression models can be converted to
cost-sensitive classification models by a postmscethat chooses (by experimenting with the
training data) an appropriate threshold on theipted (output) value (“classification by regres-
sion”). Both of these algorithms require categairicariables to be preprocessed into a set of
binary “dummy” variables. The last four procesass algorithms that create “class probability

estimators,” which give an estimation of the praligithat a new example belongs to the class
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in question (here, “will donate”). Such a model danconverted to a cost-sensitive classifier
with a postprocessor that chooses a thresholdidediseoretically, taking into account the mis-
classification costs. Process Log(CPE) uses logisgression, which also requires preprocess-
ing of categorical variables into dummies. ProcBd{CPE) uses naive Bayes, for which
discretization is used as a preprocess. ProcesdefCORE) and DT(CPE) build rule-based and
decision-tree models, respectively; these do roptire the preprocessing of numeric or categori-
cal variables.

Table 6 shows the ranking of these processes lmaed profit, the actual profit calculated on
the test set, and the resulting percentage gain tbeedefault strategy of mailing to everyone.
The profit was estimated by auto-experimentati@in@ cross-validation, as above) on the train-
ing data. Note that except for the neural netwadssifier, the ranking by estimated profit is
perfect. Unfortunately, even without the erroe firocedure would have placed onfy @f 21)
in the competition. What's worse, only one of grecesses actually beats the default strategy of
mailing to everyone. To be fair, this was a veiffiallt problem for data miners not intimate
with modeling for problems such as target marketilmgleed, the participants in the contest were
serious data-mining researchers and tool vendodspaly half were able to do significantly bet-

ter than the default strategy.

Plan Rank Profit %Gain Legend for Operjl;clars L_J;ed in Plans

NN 1 $6,919 -34.4g| (2SloyM {hame/algorithm

- 48 Decision Tree
Lin 2 $11,968 13.33 Log Logistic Regression
Log(CPE) 3 $10,520 -0.37| NB Naive Bayes
Rule(CPE) 4 $9,924 -6.02 Rule Rule Learner
NB(CPE) 5 $9,538 -9.68f |Lin Linear Regression
DT(CPE) 6 $8,496 -19.54f NN Neural Network

Table 6: Process plans ranked by estimated profishowing actual profit and gain over default stratgy

What did the winner(s) do differently? They did nge more complicated mining algorithms.
Rather,they used a different DM procesme that is known by specialists to be partidylaf-
fective for target marketing. Specifically, as wimoin Figure 8, a class probability estimator
(CPE) is built to estimate the probability of daoat separately, a regression model is built
(from the donors in the training set) to estimdte amount to be donated conditioned on the
presence of a donation. These two models are inssaimbination: the product of the two, for

any individual, estimates his/her expected donatithrihe expected donation is greater than the
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cost of the promotion to that individual, in thigse $0.68, then a mailing should be sent. Oth-

Pre- CPE learner |
processing

erwise it should not.

Expected
Donation
= CPE * Regr

Training Prediction
data data

v Pre- Regression Regression
i > dict
processing learner prediction
Regression
model
LiModel Construction Model Use

Figure 8: Target Marketing Process

We claim that such process knowledge, in this ebseit how to combine techniques to form
effective special-purpose DM processes, can becdattdan IDA’s ontology by specialists, sub-
sequently to be brought to bear by others. Theialis can simply add the target marketing
process as a problem-solving schema to the ontoldgte that there still is a large degree of
freedom, even given such a process template. \ypatof learner should be used for class-
probability estimation? What type of regressorive® the learner, what type of pre-/post-
processing is required? Using hierarchical plagnthe IDA constructs DM processes within
the constraints imposed by this template, in adidito the simpler, default template (which we
used in previous sections).

For our final experiment, we considered the cossiwe plans built with both the default
template and the plans built with the target-manigetemplate. In order not to bias the ranking
with our prior knowledge (we know what the winnelig), we use only auto-experimentation
(cross-validation) to rank processes. In additmmhe six process plans produced with the de-
fault (linear) DM process template, using the targarketing template produces eight additional
plans: the cross product of the available CPE &rar(four) and the available regression learners
(two). All the plans then are ranked by their esti®ea profit, produced via cross-validation on
the training set. If one plan were to be submitted contest such as the KDDCUP competition,
it would be the highest-ranking plan. Of course,ivave the luxury of examining the entire list.

The fourteen process plans, ranked by cross-validaestimated profit, are listed in Table 7
along with their test-set profits and the perceatggin (loss) over the default mailing strategy.

The estimated ranking reflects the actual profikiag quite well (with a couple notable glitches;
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Spearman’sgr= 0.798). Indeed, the range of gains is remayksainhilar to the actual ranking of
submissions to the contest (note that we excludeckegses such asp ust) build a sim

pl e decision tree, which produces zero profit). The top-ranked plardeed are com-
petitive with the winners’ submissions. The peimétte plan is the one used by the winning
submission, and performs comparably in terms ofitprdVe did not expect the IDA to perform
this well, because we figured SAS and Urban Sciemagst have left some tricks up their sleeves
(e.g., proprietary twists on the modeling algorifim The top-ranked process actually would

have beaten the winning submission.

(l Plan Rank | Actual Profit %Gain ||

|[Log(CPE) + NN 1 $14,914 41.23

|[Cog(CPE) + Lin 2 $14,778 39.95

|[Rule(CPE) + NN 3 $13,672 29.47)

|[Rule(CPE) + Lin 4 $13,456 27.42)

|[DT(CPE) + NN 5 $11,055 4.69

"NN - 6 $6,919 '34'48" Legend for Operators Used in Plans
"D_T(CPE) * Lin 7 $10,843 2.68] acronym _[name/algorithm

[ILin 8 $11,968 13.331  oT Decision Tree
[lLog(CPE) 9 $10,520 037 Log Logistic Regression
|[NB(CPE) + NN 10 $10,070 -4.64(  |NB Naive Bayes
|[RULE(CPE) 11 $9,924 -6.02[| [Rule Rule Learner
|[NB(CPE) 12 $9,538 -9.68] Lin Linear Regression
(INB(CPE) + Lin 13 $10,113 423 NN Neural Network
[IDT(CPE) 14 $8,496 -19.54]  [cPE Class Prob. Estimator

Table 7: Process plans ranked by estimated profishowing actual profit and gain over default stratgy

These results illustrate not only the power oflib& generally to enumerate and to rank proc-
esses effectively, but also the power of the IDA&nowledge-sharing device. If one specialist
includes knowledge about the target-marketing m®cand another includes knowledge about
neural networks, and yet another includes knowledtgrit logistic regression, other users would
benefit from the IDA’s composition of these to foemop-performing DM process. Furthermore,
the example illustrates how the specialist knowéedlout the target marketing process together
with the systematic exploration of solutions byl2A can lead to surprisingly useful results.

6 Related Work

An IDA provides users with non-trivial, personaliz&atalogs” of valid DM-processes, tai-
lored to their task at hand, and helps them to sb@mong these processes in order to analyze
their data. We know of little work that directlyusies IDAs for the overall DM-process, al-
though some have argued that they are importarszfBl 1998; Morik 2000]. There is, how-

ever, quite a long tradition of work that addressesne of the same goals (such as
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recommending and ranking) or using similar techegj(e.g., planning, auto-experimentation,

and the use of ontologies) for recommending andafioking individual induction algorithms.

6.1 The Use of IDAs

Especially in the European community, researchexse hargued for the importance of IDAs.
Morik [2000], for example proposes to use a casethaepository to store successful chains of
pre-processing operatars. As pre-processing chains are partial DM procestes insights
gained should complement our work, and ideally ddo¢ integrated with a system such as
IDEA. The European Metal projééhas as one of its foci IDA-like systems; we are aware

of any existing system that uses background knaydexhd/or experimentation to compose and
rank DM processesalthough Brazdil argues that it is important tost [Brazdil, 1998].

The only implemented IDA-like system we are awarevas presented by Enged$ al, who
describe a user-guidance module for DM processésdc@ITRUS ([Engels, 1996], [Engett
al.,, 1997], [Wirthet al, 1997], and [Verdenius and Engels, 1997]). Intipalar, the user-
guidance module uses a task/method decompositiban@asekarast al., 1992] to guide the
user through a stepwise refinement of a high-1®MlI process, in order to help the user to con-
struct the best plan using a limited model of opens. Finished plans are compiled into scripts
for execution. The system is implemented by extegp@PSS Inc.’s Clementine® system, which
provides a visual interface to construct DM-proesssanually.

This work is similar to our approach as it providles user with assistance when constructing
DM processes, and uses Al planning techniquesohtrast, our approach is based on two no-
tions that have led us in a different directiontst: even with a well-specified goal it is very-di
ficult to discern the one best plan, because tiselte of running data-mining methods are
difficult to predict. Secondly, users' goals amsided tradeoffs often cannot be specified easily
or completely at the onset of an investigation.isTis because many desiderata are tacit and dif-
ficult to specify precisely (e.g., one may haveaaersion to certain representations, based on
experience with the domain experts). MoreoveryKkadge discovery is an exploratory process;

users must be given as much flexibility as possili@ IDA presents the user with many valid

17 see http:/www-ai.cs.uni-dortmund.de/FORSCHUNG/BRRTE/MININGMART/index.eng.html
18 MetaL stands for “Meta-Learning,” the processazfrhing models of the performance of learning dlyors as a function of
characteristics of data sets; see http://www.csdziuk/Research/MachineLearning/metal.html.
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plans to choose from and helps him/her to choosengrthem, via rankings based on different
criteria (and on combinations thereof). The uses ho obligation to choose the highest-ranked
plan in any given ranking—all of the plans in thaking will be valid.

Akin to the approach of Engels and colleagues, iBargt al. [1999] introduce a method that
generates data-analysis programs using prograrhesiatbased on a declarative specification of
the data-analysis problem. The declarative smatifin is a generalized Bayesian network. This
approach is similar to ours, in that it composew K& programs from a declarative problem
specification. It differs from our approach in thiaattempts to synthesize the one best program
for data analysis (based on a optimization spextifhia) rather then providing the user with a
series of options and help to trade off the attebwf the different programs. The use of a deduc-
tive reasoning system for process synthesis igaditte in that it allows guiding the planning

process using new declarations rather than charigenglanner.

6.2 Projects with Related Goals: Recommending and Rankg

A variety of research projects address issues dagarecommending/selecting optimal induc-
tion algorithms (rather than processes) and rankidgction algorithms. The knowledge gener-
ated from such projects could help to populate @A’ ontology, as well as to inform the
construction of more advanced functions for rankprgcesses. The MLT-Consultant [Craw
1992] was one of the first such systems. It us®lY&LIN-style knowledge base [Davis 1984]
with a Hypertext-based GUI to recommend to a usealgorithm to choose (from a machine-
learning library). Several projects have since istidhe selection of individual induction algo-
rithms or subcomponents of algorithms based oraiceforms of background knowledge. For
example, Brodley [1995] chooses subcomponentsrin &ohybrid decision tree, based on expert
knowledge of algorithm applicability. In EuropestBtatLog project [Michie et al., 1994] has
investigated what induction algorithms to use giymarticular circumstances. Brazdil et al.
[1994], Gama & Brazdil [1995], and others, use rretas drawn from experimental studies, to
help predict which algorithms will be better; thées consider measurable characteristics of the
data (e.g., number of cases, number of attribktespsis). This notion of “meta-learning” is the

basis for the MetalL project, mentioned above. Rmailario & Kalousis [2001] use a case-

19 see http:/iwww.nce.up.pt/liacc/ML/statlog/indexttht
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based system to advise users regarding which imsuatgorithm (and its respective parameter
settings) to choose given a particular data-miesg.

A different tradition of meta-level systems for @ahining [Buchanan et al., 1978], sometimes
called "automatic bias selection,” involves theestbn of one of the following, based in part on
feedback from the performance of the learner: volaadp terms, the induction algorithm itself,
components of the induction algorithm, parameterghe induction algorithm [desJardins and
Gordon, 1995]. Bias-selection work generally assuhe goal is accuracy maximization, but
also applies to other desiderata [Tcheng et a89;1Brovost and Buchanan, 1995].

Addressing the need for improved ranking methoegeal research projects have studied the
use of experimental comparison to rank individaduiction algorithms. Brazdil [1998] summa-
rizes some prior methods. This work is closehatesd to our ranking of DM processes (espe-
cially since one may put a conceptual box aroundM process and call it an induction
algorithm, although this obscures important issteggarding the composition of processes).
More recently, Brazdil and Soares have studiedrdéin&ing of individual induction algorithms,
based on (functions of) their performances on puesly seen data sets [Brazdil & Soares, 2000;
Soares and Brazdil, 2000]. They compare variouhoas for ranking, which perform compara-

bly, and they consider ranking combining accurawy speed.

6.3 Projects using similar techniques: Landmarking, Planing, Knowledge Management,
and Ontologies

As we have seen, many of the component methodsseagefor building IDAs have been the
subject of recent study, especially in the Europganmunity. Several researchers have studied
the notion of using fast processes (of differems3ao help estimate the performance of less
efficient ones. Pfahringest al [2000] and Firnkranz and Petrak [2001] provideraiews of
such “landmarking” techniques. In particular, Betf2000] shows the effectiveness of using
subsamples from the data set in question to prediath learning algorithm will yield the lowest
error on the entire data set; the technique woeksarkably well—although it should be noted
that for large data sets often one can achievedghracy with a surprisingly small subset of the
data (cf., progressive sampling [Provestal, 1999]). On the other hand, the relative perform
ance of algorithms can change markedly with thelwarhof data [Perlichet al, 2001].
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One important related research area is the doniatatstical expert systems (cf. [Gale 1985],
[Hand, 1994]), which are generally concerned witbving statistical advice. Most of the sys-
tems we are aware of based their advice on sortistist@ strategy, which is defined by Olford
and Peters [1985] as “... the reasoning used byxberenced statistician in the course of analy-
sis of some aspect of a substantive statisticddlena’ (p. 337). Typically, those strategies are
hand-coded to contain the multiple analysis alt&raa of different problems such as regression
analysis [Oldford, 1997]. They help to guide thalgsis of data by a human, to inform about
which steps are likely to work next, and to allowedt execution. In contrast to our approach
they do not offer support for a systematic explorabf the design space of possible processes
(beyond the hand-coded strategies) nor for th&ative rankings.

St. Amant and Cohen [1998] study intelligent, cotepipased support for open-ended, statis-
tical/exploratory data analysis. While focusing smmewhat different application areas—their
approach on statistical, exploratory data analgsi ours on the DM process—both approaches
employ mixed-initiative planning, where an Al-plamrproposes different courses of action. The
two approaches differ, however, in how the humahthe machine share control of the process.
Statistical/exploratory analysis necessitates bieptep guidance, where the user can evaluate
each step and get advice on what to do next. Qumoaph, on the other hand, presents the user
with all possible plans and forecasts of theiratige) performance, allowing the user to choose
one (or more) of the plans, run it, and then rethensystem based on insights gained. This latter
approach is better suited in a domain (like knogéediscovery) where algorithms may run for
extended periods of time. It may be worthwhile teate a hybrid approach that combines step-
by-step guidance with overall planning allowing foe support of both types of data analysis.

The European Mining Mart project [Morik and Schd@903] stores best-practice cases of pre-
processing chains that were developed by expemensers. The project developed a data-
mining workbench, which allows users to draw orasecbase to develop new data-mining proc-
esses. Given its close integration with a dataltafeuses on very large, real-world data sets.
Mining Mart is similar to our approach, in thapitovides process-oriented discovery assistance
to users based on an operator meta-model [SchdlEaler, 2002] and a case-base. It differs in

that it does not provide users any planning factit active support while choosing among the
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cases stored in the database. Finally, even ththegMining Mart meta model is richer then the
one we chose (it describes not only the operatatralso captures meta-data about the dataset), it
does not seem to take advantage of inheritancerésatwhich can vastly simplify the implemen-
tation and engineering of an ontology. Our appraaadomplimentary to Mining Mart and much
could be gained from combining the strengths ohlagproaches.

Kerberet al.[1998] document the DM process using active littkOM processes (that have
been visually programmed) and to the rationaleriajor design choices. They collect these de-
scriptions in a repository. This approach faciétathe reuse of DM processes, resulting in a
knowledge managemesistem for DM processes. It is complementary to approach, as it
emphasizes the documentation and retrieval of lpaswvledge, which could be integrated well
with our notion of active support as representetD#s.

The only work of which we are aware that uses asli@k ontology within a meta-level ma-
chine-learning system is described by Suyama & Yarolai [1998]. As far as we can tell, this
system uses the ontology to guide the composibgrgenetic programming, of fine-grained in-

duction algorithm components.
7 Discussion, Limitations and Future Work

We have argued for a systematic exploration ofdésign space of DM processes, without
which users (even experts) seldom are systematilceiin search of the DM-process space and
therefore may overlook important, useful DM proesssOur IDA does not mimic the behavior
of experts, who often use heuristics to pre-prumeehtypothesis space to a “consideration set.”
This often leads experts to overlook excellent tofs, which lie outside of their consideration
set [Ulrich and Eppinger 1995].

For emphasis we have discussed novice users amdt &gers. However, this is not a true di-
chotomy—there is a spectrum of expertise along whisers reside. For the most novice, any
help with DM process planning will be helpful. Rbe most expert, an IDA could be useful for
double-checking, and for automating previously narasks, as well as for suggesting addi-
tional processes. For others along the expentisetsum, IDAs will have both types of benefits.
Furthermore, even among experts, different users tdferent expertise: a data miner trained in
the statistics community and a data miner fromnttaehine-learning community can be experts

and novices with respect to different methods. IBA may help to educate any user. For ex-

-28 -



ample, when the system produces a highly rankedthkt a user had not considered previously,
the user can examine the ontology, and become ttlioa some new aspect of the DM process.

A unigque benefit of an explicit ontology is the sygy it can provide between teams of users.
If users contribute to the ontology, other usestantly receive the benefit of their contributions.
Thus, an IDA may exhibit what economists cadltwork externalitieor network effectsthe
value to each user increases as the “network” grots IDA becomes more valuable to each
user as the number of contributing users growd. ugérs get the benefit of each contributor’s
work automatically. No single member must be ekjmeall data-mining technology.

Consider the following example of network effegtsaction. Jill is a member of a large team
of data miners, with several on-going projects. il&/feading the statistics literature she discov-
ers a technique calledlual scaling[Nishisato, 1994], a preprocessing operator traisforms
categorical data into (scaled) numeric data, ineamer particularly useful for classification. Jill
codes up a new preprocessor (caD$) and uses it in her work. Such discoveries ndyraak
isolated; they do not benefit a team's other ptsjeelowever, consider what happens if Jill sim-
ply addsDS into the IDA. When another team member, Jacks tse system, DM-process plans
may be generated that uBS (when appropriate). In some cases, these plarsbeihighly
ranked (wherDS is likely to do a good job satisfying Jack's ai@g In such cases, Jack could
experiment withDS immediately, or could read about it (using thewoentation Jill added), or
could follow pointers to the literature, or couldIdlill directly and talk to her about it. Theygb
the tool brings to bear shared knowledge in theéexdrof a particular need.

While we have provided no true experimental suppartthis assertion (adding the target-
marketing template did greatly improved the perfance of IDEA for the KDDCUP-1998 prob-
lem), empirical studies of the social aspects awiedge sharing provide support for analogous
claims in different application domains. Pentlat892], for example, shows how workers in a
software hotline use a shared database as a clemraledge-sharing tool to become more effec-
tive as a team. Ackerman and Mandel [1999] show hdmowledge-sharing tool helps scien-
tists (astrophysicists) to learn from each othev hm perform specific data analysis tasks.

We are not suggesting automating the DM procesdiypin contrast, intricate user interaction

is critical to successful discovery. We have shdivat it is possible to provide automated,
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knowledge-basedssistancdor certain aspects of DM process design. We bale covered a
few aspects so far, and for the most part onlyéprototypical linear process. For example, our
current prototype does not produce cyclic proceasdsour code generator does not yet produce
code for more-complicated components, such astiiteréeature selection (e.g., around a sub-
process), wrappers for parameter tweaking, or pssijve sampling. This is the subject of on-
going work—we do not believe that there are fundataderoadblocks. However, it should be
clear that the space of DM processes will grow, mwde knowledge or interaction may need to
be brought to bear than is evident in the demotnsii; we have provided here. On the other
hand, this difficulty faces human data miners all a® IDAs, and the result seems to be that
even expert humans end up using only a small saiadé, those with which they are familiar.
Even a moderately effective IDA would expand thgs s

Our experiments with rankings serve to demonsttase valid processes can be ranked effec-
tively. As stated above, we have not yet studmedgroduction of rankings in depth. Our IDA
ranks the enumerations by characteristics suclpeeds accuracy, and model comprehensibility.
Some of those desiderata, such as speed and acduase clear objective measures. Others are
highly subjective. A statistician, for example, mtigate a logistic regression equation as being
very comprehensible, whereas a physician might Aatecision tree, on the other hand, might
have the opposite result. Such preferences couéthteged directly into a user-specific ontology,
or could be discovered using relevance feedbackadstby the IDA.

The related work on ranking inducti@tgorithmsshould be very helpful for designing IDAs,
but also provides important caveats. For exanqleuse of the Spearman rank-correlation co-
efficient in effect weights equally the positiongdughout a ranking. However, for our pur-
poses, the processes near the top of the rankoizaply would be the critical ones (especially
for large number of generated process plans). eSaatral. [Soares, Costa & Brazdil, 2001] in-
troduce a weighted modification to Spearman’s coieffit, that takes into account position in the
ranking. This same group of researchers also mainhbther challenges in comparing rankings,
stemming from the fact that the “ideal” rankingitglly is based only on estimates of the true

error rates [Brazdil and Soares, 2000] [SoareszdIr& Costa, 2000].
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Ranking DM processes using auto-experimentatigesaihe concern of multiple comparisons
problems that are likely to make overfitting arussWe shouldn’t forget, though, that the explo-
ration might also lead to better solutions. Funti@re, this problem is not only a problem of an
IDA, but also of a manual exploration of multiplups. One could argue, for example, that the
data mining community is overfitting the UCI datasdHence, once the ontology is large there
will be a chance that overfitting becomes an isdimzertheless, one needs to be aware of and
deal with appropriately (if possible) in order tod better solutions through process planning.

An additional issue is that our current prototypesinot rely on detailed meta-data (beyond at-
tribute type). Exploring detailed meta-data t@mif the ranking by extending the findings of the
Statlog and METAL projects mentioned above to DMagasses could lead to better ranking and
we plan to explore this further.

Furthermore, we only have considered here parteeoprocess that are relatively well under-
stood. Preprocessing existing variables, inducigorithms, and post-processing learned mod-
els have received considerable attention in tlegalitre. Other parts of the process are not as
well understood or documented. For example, atihofieature construction has received re-
search attention for years, our understanding ahadmd how to use it effectively pales in com-
parison with our understanding of these other prtbe process. Consider the KDDCUP 1998
problem we presented above. We ignored the iskfeature construction, which (we assume)
was crucial to success in the competition. Doesigh knowledge exist to provide an IDA an
ontology that will be effective to assist a usettmieature construction? To our knowledge, this
has yet to be shown convincingly. However, if galig effective methods or problem-specific
heuristics exist, an IDA should be able to incogperthem. We also have assumed that the user
will perform the selection of the discovery task{sperform. A separate task is intelligent assis-
tance for the selection of discovery tasks. Tywscally is ignored in discussions of the knowl-
edge discovery process, but was addressed in laaolyledge discovery work by Lenat [1982]
and recently by Livingston, Rosenberg, and Buchg2@fla,b].

Finally, although studies such as this are necgdsarthe development of useful IDAs, we
also need well-designed (and executed) user sttal@ssess whether IDAs actually are effective

in helping real data miners. Such studies could pisvide indication of which features of IDAs
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are most effective in supporting the knowledge aliscy process and, therefore, provide guid-
ance for further improvements of IDAs.
8 Conclusion
Both novices and specialists need assistance iigatang the space of possible DM processes.
We presented an ontology-based IDA, arguing theait generate valid, non-trivial, and some-
times surprisingly interesting DM-process instandagther, we have given empirical evidence
that it is possible for IDAs to rank process inses effectively by speed and by accuracy, and
have argued that they could rank by model compghgity. Finally, we have argued that IDAs
can be particularly useful as a knowledge-sharmgrenment for teams of data miners, creating
network effects wherein the tool becomes incredgwvajuable as it gets more and more users.
The knowledge discovery process has been a kegepoin the field of KDD for a decade,
but very little research addresses it explicithfter having undertaken this work, we understand
better why. Treating the DM process requires mémdous breadth of knowledge of research
and practical technique. Even most researchens kmby a fraction of what is necessary to do a
comprehensive job of building an ontology (and weainly have mistreated certain topics, al-
though we have been careful). In retrospect, Wievmeven more strongly that in order for re-
search on the knowledge discovery process to adyaystems like IDAs are essential—they
document and automate parts of the process thdiedter understood, in order for research to

concentrate on the large areas that are not weénstood.
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