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ABSTRACT

Traditional semantic web query languages support a
logic-based access to the semantic web. They offer a re-
trieval (or reasoning) of data based on facts. On the tra-
ditional web and in databases, however, exact querying
often provides an incomplete answer as queries are over-
specified or the mix of multiple ontologies/modelling
differences requires “interpretational flexibility.” This
paper introduces iIRDQL — a semantic web query lan-
guage with support for similarity joins. It is an exten-
sion to RDQL that enables the user to query for similar
resources in an ontology. A similarity measure is used
to determine the degree of similarity between two se-
mantic web resources. Similar resources are ranked by
their similarity and returned to the user. We show how
iRDQL allows to extend the reach of a query by find-
ing additional results. We quantitatively evaluated one
measure of SimPack — our library of similarity measures
for the use in ontologies — for its usefulness in iRDQL
within the context of an OWL-S semantic web service
retrieval test collection. Initial results of using iRDQL
indicate that it is indeed useful for extending the reach
of the query and that it is able to improve recall without
overly sacrificing precision.
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1. INTRODUCTION

Imagine the following situation: You want to buy a
used car — not just any car, but a car that has certain
properties such as a minimum age, a favorite color, and
a certain brand. All you have is a web interface that is
connected to a large, semantically annotated database
of cars, trucks, etc. When executing the query, however,
you are buried in hundreds of results (or you may not
get any answer if you overspecified the query). This
situation is very typical. People querying the semantic
web, databases, or also the web in general oftentimes
find themselves either buried in results to their queries
or with no results whatsoever. A common approach
to handle these problems is to rank the results of a
query, in the case of too many answers, or to return
similar results, when no precise matches to the query
exist [1, 4]. These two solutions require a measure of
similarity between queries and answers. Finding a good
measure of similarity is, thus, crucial for providing a
good retrieval performance.

One means for querying ontologies is RDQL (RDF Data
Query Language) [18, 19], which is a query language for
RDF [15] in Jena models [5]. RDQL allows the user to
formulate queries that return precise results. We ex-
tended RDQL with similarity joins [6] to retrieve not
only the precise results of a query but also similar ones.
In other words, our approach exploits the semantic an-
notation on the semantic web in conjunction with a sim-
ilarity measure to improve the ranking of the results of
queries for such resources. Thus, similar results may be
found in the case where no precise results to a query
exist. Additionally, if too many results are found, the
intention of our approach is to use similarity measures
to improve the ranking of the results.

We called our approach iRDQL. The i stands for impre-
cise, indicating that two or more resources do not have
to be precisely equal but should be considered as equal
with respect to their similarity value as computed by the
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ity measures. Note that it is not necessarily clear which
measure is best. On the contrary, the choice of the best



performing similarity measure is oftentimes context and
data dependent [2, 8, 14]. We, therefore, implemented
a set of similarity measures in a Java library that per-
formed well in various application domains.

The contribution of this paper is our proposed iRDQL
framework that extends traditional RDQL to allow the
use of generic similarity elements. Such a generic ele-
ment of an iRDQL query is for instance the similarity
measure by which two resources are compared when the
query is executed.

The paper is organized as follows: In Section 2 we give
a brief introduction of SimPack [3], our library of im-
plemented similarity measures for the use in ontologies.
Section 3 explains our extensions to RDQL that make
use of similarity joins and in Section 4 we illustrate the
usefulness of our approach with the preliminary results
from an evaluation, which uses a semantic web service
retrieval test collection as data-set. We close the paper
with some related and future work as well as conclu-
sions.

2. SIMPACK

SimPack is a generic library of similarity measures im-
plemented in Java. We found most of the similarity
measures in the literature and adopted them for the
use in ontologies. The library is generic, that is, the
measures can be applied to different data sources and
formats using data wrappers [7]. The question of sim-
ilarity is a heavily researched subject in the computer
science, artificial intelligence, psychology, and linguis-
tics literature. Typically, those studies focus on the
similarity between vectors [1, 16], strings [14], trees or
graphs [20], or objects [8]. In our case we are interested
in the similarity between resources in ontologies. Re-
sources may be concepts (classes in OWL [13]) of some
type or individuals (instances) of these concepts. The
remainder of this section will discuss two types of mea-
sures.!

2.1 \ector-based Measures

One group of similarity measures operates on vectors
of equal length. To simplify their discussion, we will
discuss all measures as the similarity between the (bi-
nary) vectors x and y, which are generated from the
resources R, and R, of some ontology O. The pro-
cedure to generate these vectors depends on how one
looks at the resources. If the resources are considered
as sets of features (or properties in OWL), finding all
the features for both resources results in two feature
sets which are mapped to binary vectors and compared
by one of the measures presented below in equations 1-
5. For instance, if resource R, has the properties type

'We have also introduced a formal framework of concepts
and individuals in ontologies but omit it here due to space
constraints. Please refer to [3] for further reading about the
formal framework.

and name and resource Ry type and age, the following
vectors x and y result using a trivial mapping M; from
sets to vectors:

0 0
R, = {type,name} = x' = [ name | =x=1{ 1
type 1
age 1
R, = {type,age} =y = 0 =y=[0
type 1

The typically used similarity measures for such vectors
are the cosine measure, the extended Jaccard measure,
and the overlap measure.

SiMecosine (X, y) = 11x]l2 - [ly]]2 v
. s y
SiMjaccard(X,y) = \ ¥

X3+ llyll3 —x-y

X-y (
min([[x][3, [|y[I3)
In these equations, ||x|| denotes the L'-norm of x, i.e.
|[x|| = > @], whereas ||x||2 is the L?-norm, thus
I[x|]2 = />i; |zi|>. The cosine measure quantifies
the similarity between two vectors as the cosine of the
angle between the two vectors whereas the extended
Jaccard measure computes the ratio of the number of
shared attributes to the number of common attributes
[21]. In addition, the Dice measure [11] and the Eu-
clidean distance are also implemented in SimPack.

Simoverlap (X, y) =

. 2-x-y
SiMgice (X, y) = m————— 4
dice (%) = TETE iy T @
deuclid(xv Y) = HX_YHZ (5)

The metric Euclidean distance is converted from a dis-
tance (dissimilarity) to a similarity measure using the
formula [11]

: (6)
1 + ddist (Xa y)

where dist € {euclid, manhattan, ...} is one of the
Minkowski distances (p = 1 for manhattan, p = 2 for
euclid) given by

Ly(x.y) = (Z xi — ym’) (7)
=1

2.2 Sequence-based Measures

A different mapping My from the feature set of a re-
source makes use of the underlying RDF-graph repre-
sentation of ontologies. In this mapping, a resource R is
considered as starting node to traverse the graph along
its edges where edges are properties of R connecting
other resources. These resources in turn may be con-
cepts or, eventually, data values. To illustrate the map-
ping, refer to Figures 1.1 and 1.2 that show two different

Simgist(X,y) =
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Figure 1: Partial semantic network representa-
tions of two resources Beach Surfing Profile and
Beach Broker Profile

individuals Beach Surfing Profile (R;) and Beach Bro-
ker Profile (R,). Recursively traversing these individu-
als, starting at nodes Beach Surfing Profile and Beach
Broker Profile results in the following two feature sets:

R, = {BeachSur fingProfile, hasInput, Beach,label,
BEACH, hasOutput, Sur fing, label, SURFING}

R, = {BeachBrokerProfile, hasInput, Beach, label,
BEACH, hasOutput, Broker,label, BROK ER}

Here, these sets are considered as vectors of strings,
x and y respectively. The similarity between strings
is often described as the edit distance (also called the
Levenshtein edit distance [10]), the number of changes
necessary to turn one string into another string. Here
a change is typically defined as either the insertion of a
symbol, the removal of a symbol, or the replacement of
one symbol with another. Obviously, this approach can
be adapted to strings of concepts (i.e., vectors of strings
as the result of mapping Ms) rather than strings of char-
acters by calculating the number of insert, remove, and
replacement operations to transfor vector x to vector
y, which is defined as zform(x,y). But should each
type of transformation have the same weight? Isn’t

the replacement transformation, for example, compara-
ble with a deleting procedure followed by an insertion
procedure? Hence, we could argue that the cost func-
tion ¢ should have the behavior c¢(delete) + c(insert) >
c(replace). We can then calculate the worst case trans-
formation cost xformu.(x,y) of x to y replacing all
concept parts of x with parts of y, then deleting the
remaining parts of x, and inserting additional parts of
y. The worst case cost is then used to normalize the
edit distance resulting in

zform(x,y)
T formye(x,y)

®)

Simlevenshtein (Rxa Ry) =

For the example in Figure 1, the minimum transforma-
tion cost from x to y is 3 (three replacements of weight
1). The worst case transformation cost is 9 which re-
sults in the final Levenshtein edit distance of 0.66 from
vector X to y .

3. IRDQL: EXTENDING RDQL WITH SIM-

ILARITY JOINS

RDQL (RDF Data Query Language) [18, 19] is a query
language to formulate queries over RDF [15] in Jena
models [5]. It looks at the data stored in the model as
RDF triples which consist of a subject, a property, and
an object where the object may be again a resource or
a literal respectively. For illustration purposes refer to
Figure 2 that shows a fragment of an RDF-graph of a
particular OWL-S [12] service instance (Beach Surfing
Service). Given a model that holds this instance, the
following RDQL query (shortened)

SELECT 781,7P1
WHERE 7S1 presents 7P1
7?P1 serviceName ‘‘beach surfing’’
?P1 textDescription ‘‘It returns ...’’

finds exactly the service instance Beach Surfing Service
and its profile Beach Surfing Profile. The output pro-
duced by RDQL is depicted in Table 1.

Table 1: Output of simple RDQL query
y S1 \ P1 \
| Beach Surfing Service | Beach Surfing Profile |

Suppose now you are not interested in finding exactly
the instance Beach Surfing Service that presents the
profile Beach Surfing Profile but in finding services that
present profiles similar to Beach Surfing Profile. To
achieve this goal we extended the RDQL language with
three additional language constructs which we call
IMPRECISE, SIMMEASURE and OPTIONS. The IMPRECISE
clause defines the variables of the query whose bindings
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Beach It returns information
Service beach surfing of surfing facility
Grounding of the given beach.

Figure 2: Partial semantic network representa-
tion of a concrete OWL-S service instance Beach
Surfing Service

(found resources) should be matched imprecisely when
executing the query. That is, they are added to the re-
sult set of the query together with their corresponding
similarity value as computed by the similarity measure.
The measure to compare two resources is specified by
the SIMMEASURE clause. Here any similarity measure
implemented in SimPack can be used. Additional pa-
rameters of the similarity measure can be specified by
the OPTIONS clause. The extended iRDQL syntax looks
as follows:

SELECT [selectClauseVariables]
FROM [fromClause]

WHERE [whereClausel]

AND [filterClausel]

USING [usingClause]

IMPRECISE [impreciseClauseVariables]

SIMMEASURE [similarityMeasureClause]
OPTIONS [similarityMeasureOptionsClause]

As an example consider that the three services Beach
Surfing Service, Beach Broker Service, and Abstract
Broker Service together with their corresponding ser-
vice profiles Beach Surfing Profile, Beach Broker Pro-
file, and Abstract Broker Profile are stored in a Jena
model. The query corresponding to our users desider-
ata would look like the following:

SELECT ?7S1,7P1,7P2
WHERE 781 presents 7P1
?P2 serviceName ‘‘beach surfing’’
?P2 textDescription ‘It returns ...’’
IMPRECISE 7P1,7P2
SIMMEASURE Levenshtein
OPTIONS IGNORECASE false THRESHOLD 0.7

The query looks for a service ?S1 with profile ?P1. It re-
trieves all profiles ?7P2 that have the service name “beach

surfing” and the textual description “It returns ...”.2

The similarity between 7P1 and 7P2 is computed us-
ing the Levenshtein string edit distance and is returned
with the possible combinations of ?S1, ?P1, and 7P2 as
shown in Table 2. String comparison is case sensitive.
A threshold of 0.7 is used in this example expressing
that two strings are equal if their edit distance is at
least 0.7.

4. EXPERIMENTAL EVALUATION

In order to assess the usefulness of iRDQL, we need
to evaluate it by (1) choosing a knowledge domain and
(2) specifying queries for which we (3) have a set of
relevant answers. This way, a statistical analysis of the
results of an iIRDQL query can provide a sense of the
utility of our approach. This section will describe the
experimental setup and the statistical evaluation of the
results, setting the stage for a discussion of the results
in the next section.

4.1 OWL-S Test Collection

We chose the OWL-S-TC-v1 [9] semantic web service re-
trieval test collection as the knowledge domain for our
evaluation.® This collection specifies a set of 406 OWL-
S services of six different domains (i.e., communication,
economy, education, food, medical, and travel). The col-
lection is intended to support the evaluation of the per-
formance of OWL-S semantic web service matchmaking
algorithms. For each domain, the collection specifies a
number of queries along with a set of relevant answers.
For instance, if querying for a service called City Broker
Service that should provide the best hotel reservation
service for a given city, the collection specifies 13 ad-
ditional services (such as City Financial Agent Service,
Clity organization Service, etc.) which are considered as
relevant answers to this query.

4.2 Experimental Setup

The following steps were necessary to evaluate our ap-
proach: For each query, all OWL-S services of the same
domain as the query are loaded into a Jena model.
(Each service is specified in a separate OWL-S file and
one by one loaded into the model.) Next, we (auto-
matically) generated a proper iRDQL statement from
the OWL-S query file.* For each iRDQL query we ap-
plied the mapping M5 (see Section 2.2) to the resources
that should be matched imprecisely and compared the
resulting vectors of strings using the Levenshtein sim-
ilarity measure as explained in Section 2.2. Both, the

2In our current approach 7P2 acts just like a target for com-
parison, i.e., all retrieved profiles 7P1 are compared against
this target 7P2.

Although not applied at the moment, additional query ex-
pansion methods can be used as, for instance, described in
[23] to further extend the query’s search space.

3The test collection is freely available as open source at
http://www.semwebcentral.org.

4Refer to appendix A that shows a complete iRDQL query
as produced by our implementation.



Table 2: Output of the extended iRDQL example query

| St [ P1

| P2 [ Sim |

Beach Surfing Service

Beach Surfing Profile

Beach Surfing Profile | 1.0

Beach Broker Service

Beach Broker Profile

Beach Surfing Profile | 0.85

Abstract Broker Service | Abstract Broker Service | Beach Surfing Profile | 0.7

OWL-S profile that is presented by a service and the
service’s process model are declared as imprecise. That
is, when searching for a service with some profile P and
model M the query is intended to find and rank all ser-
vices that have a similar profile P’ and model M’.®> As
final similarity value we chose the average of the simi-
larities of the service profiles (P and any of P’) and the
process models (M and any of M’).

4.3 First Results

In Figure 3.1, precision, recall, and f-measure [22] for
the query french_english_converterService are depicted.®
The test collection names 10 services out of 26 be-
ing relevant to this query. The numbers n on the x-
axis express the first n top-ranked services of the re-
sult set of the executed iIRDQL query. In other words,
the number expresses the size of the result set of re-
trieved services, all of which are top-ranked and listed
in descending order of their similarity to the service
french_english_converterService.

In Figure 3.1, the precision of the iRDQL query is 1.0 for
a result set of size one to eight indicating that all of the
services inside that result set are considered as correct
answers to the query service french_english_converter-
Service. The overall trend of precision is decreasing
since the result set is constantly growing until its size
reaches the total number of services held in the model.
The recall of the iRDQL query constantly increases as
additional relevant services are added to the result set
of the query. At a result set size of 14, the recall reaches
1.0 expressing that all relevant services are found and
included in the result set.

The behavior observed in Figure 3.1 (as well as in Fig-
ures 3.2 to 3.6) illustrates the usefulness of our ap-
proach. In each of the domains, an exact query (i.e.,
an RDQL query with no similarity extension) yields ex-
actly one result: the only perfect match. While this re-
sult has 100% precision it has a rather poor recall (10%
for the query french_english_convertorService, similar
results in other domains). The use of the imprecision
extension for RDQL allowed us to simply extend the

SWe call this query style iPM when querying for both, sim-
ilar profiles as well as similar process models, respectively.
5The f-measure combines recall and precision in a single
efficiency measure (it is the harmonic mean of precision and
recall).

2 x recall * precision

f-measure = —
recall + precision

reach of the query and find additional correct matches
without (at least initially) overly decreasing recall.

In addition, to further evaluate our approach we gen-
erated the Levenshtein-based iRDQL statement that
applies the similarity join only to the service profile
(called iP). Figure 4 shows the average precision, re-
call, and f-measure for each of the query styles (iP vs.
1PM). Actually, as the comparison of both query styles
shows, an increased use of similarity operators leads
to better retrieval performance: iPM (which has two
similarity joins) significantly outperforms iP (only one
similarity join) on all measures as shown by a t-test
(precision: p = 1.4e719 recall: p = 9.8¢72!, f-measure:
p=>5.7e ).

Obviously, this evaluation of iRDQL can only serve as
an illustration. A thorough evaluation will have to (1)
compare the approach’s robustness towards the use of
different similarity measures and mappings, (2) explore
different combination approaches for multiple similar-
ity measures, (3) investigate the computational conse-
quences of using similarity joins over precise joins, and
(4) investigate the quality of queries constructed by de-
velopers in the light of these new constructs.

5. CONCLUSIONS AND FUTURE WORK

In this paper we introduced our approach of extend-
ing RDQL with similarity joins to find not only precise
matches to a query but also a set of similar matches.
For this purpose, iRDQL uses a similarity measure to
determine the degree of similarity between two seman-
tic web resources. Although we used only a single simi-
larity measure, SimPack implements a number of mea-
sures, all of which can be used within iRDQL. Finding
the right measure to determine the similarity between
resources highly depends on the field of application and
the format of the data to be compared. Thus, further
research is necessary to find the best performing similar-
ity measure for the combination of iIRDQL and OWL-S
semantic web service descriptions.

Our implementation was inspired by Cohen’s approach
[6] of using similarity joins to solve the problem of com-
bining information of relations from different, hetero-
geneous databases. Cohen uses similarity joins to inte-
grate such databases which are assumed to store textual
information. He uses a standard #f-idf scheme [1] and
the cosine measure (see equation 1) to compute the sim-
ilarity between fragments of text. The difference to our
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Figure 4: The figure shows the average precision, recall, and f-measure for the 9 queries of the
collection (iP vs. iPM). iPM significantly outperforms ¢P on precision, recall, and f-measure.

approach is that we are not dealing with flat tables (i.e.,
data stored in first normal form) but with complex (on-
tologized) objects (i.e., data stored in NF?—mnon first
normal form [17]). This calls for a deeper investigation
of similarity measures that rely on the structure of an
ontology. In accordance with Cohen’s work we claim
that the approach presented in iRDQL provides the ba-
sis for combining the strengths of logic-based precise
querying and similarity-based retrieval.
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APPENDIX
A. COMPLETE iRDQL QUERY

SELECT ?7s, 7p, 7pl, 7m, 7ml

WHERE (7s rdf:type sv:Service)
(?s sv:supports 7g)
(?g rdf:type gr:WsdlGrounding)
(?g sv:supportedBy 7s)
(?s sv:presents 7pl)
(?pl rdf:type pr:Profile)
(7pl sv:isPresentedBy 7s)
(?s sv:describedBy 7m1)
(?m1 rdf:type px:ProcessModel)
(?m1 sv:describes 7s)
(?p rdf:type pr:Profile)
(?p sv:isPresentedBy 7sl)
(?s1 rdf:type sv:Service)
(?p pr:serviceName ?sn)
(7p pr:textDescription 7sd)
(?p pr:hasInput ?7inl)
(?p pr:hasOutput 7outl)
(?inl px:parameterType 7ini1PT)
(7inl rdfs:label 7inlL)
(7outl px:parameterType 7outlPT)
(?outl rdfs:label 7outll)
(?m rdf:type px:ProcessModel)
(?m sv:describes 7s2)
(7s2 rdf:type sv:Service)
(?m pr:hasProcess 7x)
(7x rdf:type px:AtomicProcess)
(?x px:hasInput ?7in2)
(?x px:hasOutput 7out2)
(?in2 px:parameterType 7in2PT)
(7in2 rdfs:label 7in2L)
(7out2 px:parameterType 7out2PT)
(?out2 rdfs:label 7out2L)

AND ?sn =~ /beach surfing/i

AND ?sd =" /It returns information.../i
AND ?in1 =~ /_BEACH/

AND 7outl =~ /_SURFING/

AND ?7inl eq 7in2

AND 7outl eq 7out2

USING sv for <Service.owl#>
pr for <Profile.owl#>
px for <Process.owl#>
gr for <Grounding.owl#>

IMPRECISE 7p, ?7pl
IMPRECISE ?m, ?7mi

SIMMEASURE Levenshtein
OPTIONS IGNORECASE false THRESHOLD 0.7;



