
PID-49

iRDQL - Imprecise Queries Using Similarity Joins for Retrieval in Ontologies

Abraham Bernstein and Christoph Kiefer
Department of Informatics

University of Zurich
Winterthurerstr. 190, 8057 Zurich
{bernstein,kiefer}@ifi.unizh.ch

Abstract

Traditional semantic web query languages support
a logic-based access to the semantic web offer-
ing a retrieval of data based on facts. On the
traditional web and in databases, however, ex-
act querying often provides incomplete answers as
queries are over-specified or the mix of multiple on-
tologies/modelling differences requires “interpreta-
tional flexibility.” This paper introduces iRDQL, a
semantic web query language with support for sim-
ilarity joins. It is an extension to RDQL that en-
ables the user to query for similar resources in an
ontology. In the context of an OWL-S matchmak-
ing test collection we show that iRDQL is indeed
useful for extending the reach of the query improv-
ing recall without sacrificing too much precision.

1 Introduction
Imagine the following situation: you want to buy a used car,
which has certain properties such as a minimum age, a fa-
vorite color, etc. When executing the query on a semanti-
cally annotated database of cars, however, you are buried in
hundreds of results (or you may not get any answers as you
over-specified the query). This situation is very typical. Peo-
ple querying the semantic web, databases, or also the web in
general frequently find themselves either buried in results to
their queries or with no results whatsoever. A common ap-
proach to handle these problems is to rank the results of a
query, in the case of too many answers, or to return similar
results, when no precise matches to the query exist[Baeza-
Yates and Ribeiro-Neto, 1999]. To achieve the same goal
for the semantic webwe extended RDQL, a query language
for RDF [RDF Core Working Group, 2004] in Jena models
[Seaborne, 2004], with similarity joins [Cohen, 2000] to re-
trieve not only the precise results of a query but also simi-
lar ones. Thus, our approach, called iRDQL forimprecise
RDQL, exploits the semantic annotation on the semantic web
in conjunction with a similarity measure to improve the rank-
ing of the results of queries for such resources. Hence, similar
results may be found in the case where no precise results to
a query exist. Additionally, if too many results are found,
iRDQL uses similarity measures to improve the ranking of
the results.

2 iRDQL: RDQL with Similarity Joins
RDQL (RDF Data Query Language) is a query language
to formulate queries over RDF[RDF Core Working Group,
2004] in Jena models[Seaborne, 2004]. For example, it al-
lows to formulate a query that will retrieve all OWL-S[Mar-
tin et al., 2004] service resources that have profiles which
exactly match a profile calledBeach Surfing Profile(the re-
sult being theBeach Surfing Service). But what if a user
would like to find all services that have a profile similar to
the Beach Surfing Profileto get a larger variety of services?
To that goal we extended the RDQL language with two addi-
tional language constructsIMPRECISE andSIMMEASURE.
The IMPRECISE clause defines the variables of the query
whose bindings (found resources) should be matched impre-
cisely when executing the query. That is, they are added to
the result set of the query together with their correspond-
ing similarity value as computed by the similarity measure.
The measure to compare two resources is specified by the
SIMMEASUREclause. Here, any similarity measure imple-
mented in SimPack, our Java library of similarity measures
can be used[Bernsteinet al., 2005]. The query correspond-
ing to our users desiderata would look as follows (shortened):
SELECT ?S1,?P1,?P2
WHERE ?S1 presents ?P1

?P2 serviceName "beach surfing"
IMPRECISE ?P1,?P2
SIMMEASURE Levenshtein

The query looks for a service?S1 with profile ?P1 and
retrieves all profiles?P2 that have the service name”beach
surfing”. It then computes the similarity between?P1 and
?P2 returning the following result table:

S1 P1 P2 Sim

Beach Surfing Service Beach Surfing Profile Beach Surfing Profile 1.0
Beach Broker Service Beach Broker Profile Beach Surfing Profile 0.5

...

3 Experimental Evaluation
For our evaluation we chose theOWL-S-TC-v1 1 service re-
trieval test collection, which specifies a set of 406 OWL-S
[Martin et al., 2004] services and 9 queries with their “cor-
rect” answers to evaluate service matchmaking algorithms.
For each query, we generated an iRDQL statement with one

1The test collection is freely available athttp://projects.
semwebcentral.org/projects/owls-tc/

PID-49

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 20 30 40 50 60 70 80

 10 20 30 40

Pr
ec

isi
on

, R
ec

al
l,

F-
M

ea
su

re

Service Ranking

Average Precision, Recall, and F-Measure (iPM vs. iP)

avg recall (iPM)

avg recall (iP)

avg precision (iPM)

avg precision (iP)

avg f-measure (iPM)

avg f-measure (iP)

avg precision (iPM)
avg precison (iP)

avg recall (iPM)
avg recall (iP)

avg f-measure (iPM)
avg f-measure (iP)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 20 30 40 50 60 70 80

Average and Variance of Precision, Recall, and F-Measure (iPM)

Figure 1: The figure shows precision, recall, and f-measure
for all 9 Levenshtein-based[Levenshtein, 1966] queries aver-
aged for both query styles (iP vs. iPM). The smaller subfigure
illustrates the variance of the averagediPM-queries.

or two similarity joins: one applying the similarity join only
to theservice profile(callediP-query style) and a second one
applying it to theservice profile and the service’s process
model(iPM-query style). We executed each resulting iRDQL
query against all services belonging to the same domain as the
query service and ranked the results according to their simi-
larity (in the case ofiP, or average similarity foriPM).

Figure 1 shows average precision, recall, and f-measure for
both query styles (iP vs. iPM). The numbers on the x-axis
express the ranking of the services in the query’s result set.
The precision of the iRDQL query is 1.0 for a result set of size
one indicating that on average all of the services inside that
result set are correct answers. The overall trend of precision
is decreasing since the result set is constantly growing until its
size reaches the total number of services of the domain. The
recall of the iRDQL query increases as additional (relevant)
services are added to the result set of the query.

The behavior in Figure 1 illustrates the usefulness of our
approach. In each of the domains, an exact query (i.e., an
RDQL query with no similarity extension) yields exactly one
result: the only perfect match. While this result has 100%
precision it has rather poor recall. The use of the impreci-
sion extension for RDQL allowed us to extend the reach of
the query to find additional correct matches without (at least
initially) overly decreasing recall. As a comparison of both
query styles shows, an increased use of similarity operators
leads to better retrieval performance:iPM significantly out-
performsiP on all measures as shown by a t-test (precision:
1.4e−19, recall: 9.8e−21, f-measure:5.7e−19). Obviously,
this evaluation of iRDQL can only serve as an illustration. A
thorough evaluation will have to consider (1) an evaluation
of the approach’s robustness towards the use of different sim-
ilarity measures[Bernsteinet al., 2005], (2) explore differ-
ent combination approaches for multiple similarity measures,
and (3) investigate the computational consequences of using
similarity joins over precise joins.

4 Conclusions
In this paper we introduced our approach of extending RDQL
with similarity joins to find not only precise matches to a
query but also a set of similar matches. Our implementa-
tion was inspired by Cohen’s approach[Cohen, 2000] of us-
ing similarity joins to solve the problem of combining infor-
mation from different databases. He uses a standardtf-idf
scheme[Baeza-Yates and Ribeiro-Neto, 1999] to compute the
similarity between columns from different tables. The main
difference to our approach is that we are not dealing with flat
tables (i.e., data in first normal form) but with complex (ontol-
ogized) objects (i.e., data stored inNF 2—Non First Normal
Form[Schek and Scholl, 1986]). This calls for a deeper inves-
tigation of similarity measures that rely on the structure of an
ontology. Thus, further research is necessary to find the best
performing similarity measure for the combination of iRDQL
and OWL-S semantic web service descriptions. In accor-
dance to Cohen’s work we claim that the approach presented
in iRDQL provides the basis for combining the strengths of
logic-based precise querying and similarity-based retrieval.

References
[Baeza-Yates and Ribeiro-Neto, 1999] R. Baeza-Yates and

B. Ribeiro-Neto. Modern Information Retrieval. ACM
Press, 1999.

[Bernsteinet al., 2005] Abraham Bernstein, Esther Kauf-
mann, and Christoph Kiefer. SimPack: A Generic Java
Library for Similarity Measures in Ontologies. Technical
report, University of Zurich, Department of Informatics.
http://www.ifi.unizh.ch/ddis/staff/
goehring/btw/files/ddis-2005.01.pdf ,
2005.

[Cohen, 2000] William W. Cohen. Data Integration Using
Similarity Joins and a Word-Based Information Represen-
tation Language.ACM Trans. Inf. Syst., 18(3):288–321,
2000.

[Levenshtein, 1966] V. I. Levenshtein. Binary codes capa-
ble of correcting deletions, insertions and reversals.Soviet
Physics Doklady, vol. 10:707–710, 1966.

[Martin et al., 2004] David Martin, Mark Burstein, Jerry
Hobbs, Ora Lassila, Drew McDermott, Sheila McIlraith,
Srini Narayanan, Massimo Paolucci, Bijan Parsia, Terry
Payne, Evren Sirin, Naveen Srinivasan, and Katia Sycara.
OWL-S: Semantic Markup for Web Services.http:
//www.w3.org/Submission/OWL-S/ , November
2004.

[RDF Core Working Group, 2004] RDF Core Working
Group. RDF Primer. http://www.w3.org/TR/
rdf-primer/ , 2004.

[Schek and Scholl, 1986] H. J. Schek and M. H. Scholl. The
Relational Model With Relation-Valued Attributes.Inf.
Syst., 11(2):137–147, 1986.

[Seaborne, 2004] Andy Seaborne. Jena Tutorial – A Pro-
grammer’s Introduction to RDQL. http://jena.
sourceforge.net/tutorial/RDQL/ , 2004.

PID-49

Figure 1: The figure shows the graphical user interface of our iRDQL query tool. The user can enter queries in the text field. In
this particular example, every concept of typehumanis compared to every object of typeorganism. The results are ranked by
their degree of similarity and displayed to the user in the table below.

Brief Explanation of Demonstration

In the demonstration we will show our current implementa-
tion of iRDQL. It includes a graphical user interface that al-
lows the user to load several ontologies in which similar ob-
jects are to be found. The user can enter iRDQL queries in
a text field which subsequently get processed by the query
engine. The results can then either be presented as the tex-
tual query evaluation engine output or in the form of a ta-
ble (as shown in Figure 1), where each of the query-variables
and the similarity measure’s output get entered into their own
columns. The table can be sorted by each column by clicking
into its header.

All similarity measures implemented in SimPack, our
generic Java library of similarity measures for the use in on-
tologies can be used in the iRDQL queries. Thus, the demon-

stration will also provide the user of the tool with a more de-
tailed view and explanation of SimPack and its implementa-
tion. The tool is still under development will, therefore, still
change in appearance and have additional functionality.

