
 Page 1 of 33

I2-D11
Attempto Controlled English 5: Language Extensions and Tools II

Project title: Reasoning on the Web with Rules and Semantics
Project acronym: REWERSE
Project number: IST-2004-506779
Project instrument: EU FP6 Network of Excellence (NoE)
Project thematic priority: Priority 2: Information Society Technologies (IST)
Document type: D (deliverable)
Nature of document: R/P (report and prototype)
Dissemination level: PU (public)
Document number: IST506779/Zurich/I2D11/D/PU
Responsible editor: Norbert E. Fuchs
Reviewers: Sergey Lukichev (I1), Juri Luca De Coi (I2)
Contributing participants: University of Zurich
Contributing workpackages: I2
Contractual date of delivery: 15 April 2007
Actual date of delivery: 19 April 2007

Abstract

This report presents several tracks of research on Attempto Controlled English (ACE). First, we
present the imperative mood as a new feature of version 5 of ACE. Second, we introduce an
alternative simplified DRS representation of ACE texts. Third, we discuss aspects of the logical
embedding of ACE. Fourth, we describe the verbalisation of OWL in ACE. Fifth, we present an
enhanced version of AceRules, the implementation of rules expressed in ACE. Sixth, we describe
enhancements to the Attempto services. Seventh, we list our cooperations.

Keyword List

Attempto Controlled English, ACE, Discourse Representation Structure, DRS, OWL, AceRules

Project co-founded by the European Commission and the Swiss State Secretariat for Education and
Research within the Sixth Framework Programme

© REWERSE 2007

 Page 2 of 33

 Page 3 of 33

Attempto Controlled English 5: Language Extensions and Tools II

Norbert E. Fuchs, Kaarel Kaljurand, Tobias Kuhn

Department of Informatics
&

Institute of Computational Linguistics
University of Zurich

Email: {fuchs, kalju, tkuhn}@ifi.unizh.ch

19 April 2007

Abstract

This report presents several tracks of research on Attempto Controlled English (ACE). First, we
present the imperative mood as a new feature of version 5 of ACE. Second, we introduce an
alternative simplified DRS representation of ACE texts. Third, we discuss aspects of the logical
embedding of ACE. Fourth, we describe the verbalisation of OWL in ACE. Fifth, we present an
enhanced version of AceRules, the implementation of rules expressed in ACE. Sixth, we describe
enhancements to the Attempto services. Seventh, we list our cooperations.

Keyword List

Attempto Controlled English, ACE, Discourse Representation Structure, DRS, OWL, AceRules

 Page 4 of 33

 Page 5 of 33

Contents

1. INTRODUCTION ...7

2. ACE EXTENSION: IMPERATIVE MOOD..8

3. A MODIFIED DRS REPRESENTATION..9
3.1. INTRODUCTION..9
3.2. TYPES ..9
3.3. DATA: NUMBERS AND STRINGS ..9
3.4. OTHER SMALL MODIFICATIONS ..9

4. LOGICAL EMBEDDING OF ATTEMPTO CONTROLLED ENGLISH 5.........................10
4.1. THREE FRAGMENTS OF ATTEMPTO CONTROLLED ENGLISH ..10
4.2. TRANSLATION OF ACE INTO DISCOURSE REPRESENTATION STRUCTURES....................10
4.3. VERBALISING DRSS IN ACE ..10
4.4. TRANSLATION OF ACE INTO FIRST-ORDER LOGIC ...10
4.5. VERBALISING FOL IN ACE...10
4.6. SEMANTICS...11
4.7. DECIDABILITY ..11

5. VERBALIZING OWL IN ATTEMPTO CONTROLLED ENGLISH12
5.1. INTRODUCTION..12
5.2. RELATED WORK ..12
5.3. VERBALIZING OWL..13

5.3.1. Rewriting OWL constructs ...14
5.3.2. Verbalizing OWL classes and properties ...15
5.3.3. Sentence planning...17
5.3.4. Text planning...17

5.4. PROBLEMS..18
5.4.1. OWL naming conventions ...18
5.4.2. Deeply nested class descriptions...19
5.4.3. DisjointUnion, ONLYSOME, XOR, etc ...19
5.4.4. Property axioms ..19

5.5. IMPLEMENTATION ..20
5.6. CONCLUSIONS AND FUTURE WORK ...20

6. ACERULES: EXECUTING RULES IN ACE ..21
6.1. INTRODUCTION..21
6.2. THE ACERULES SYSTEM..21

6.2.1. Semantics ...22
6.2.2. Two Kinds of Negation ..22
6.2.3. Intelligent Grouping ...23
6.2.4. Trace...24

6.3. ARCHITECTURE ...24
6.4. INTERFACES..25

7. ATTEMPTO WEBSERVICES AND WEBSITE ..28
7.1. WEBSERVICES ..28
7.2. WEBSITE ..28

8. COOPERATIONS..29

9. CONCLUSIONS ..30

 Page 6 of 33

9.1. DELIVERABLE I2-D13: REASONING, RULES, AND SEMANTIC WIKIS30
9.2. DELIVERABLE I2-D15: KNOWLEDGE ASSIMILATION AND ABDUCTIVE REASONING...........30

10. REFERENCES ..31

 Page 7 of 33

1. Introduction
Research on Attempto Controlled English (ACE) has progressed as planned. In this deliverable we
present

• imperative mood as a new feature of version 5 of ACE

• a new DRS representation of ACE texts

• aspects of the logical embedding of ACE

• the verbalisation of OWL in ACE

• an enhanced version of AceRules

• a dedicated high performance Attempto server

• addenda to the Attempto website

• cooperations with REWERSE internal and external partners

The task "data structures and operations on them and procedural attachments" originally scheduled
for this deliverable was postponed to deliverable I2-D13.

 Page 8 of 33

2. ACE Extension: Imperative Mood
Using Attempto Controlled English (ACE) in interactive environments, for instance to execute
specifications, requires that users can enter commands and directives. Thus we extended ACE 5 by a
simple form of imperatives. Here is an example

John, enter a card!

A proper name is followed by comma, an imperative sentence that contains one unnegated verb, and
an exclamation mark.

Imperatives are translated as their declarative equivalent sentence, i.e.

John enters a card.

with the (pretty-printed) discourse representation structure (DRS)
[A, B, C]
named(A, John)-1
object(A, atomic, named_entity, person, cardinality, count_unit, eq, 1)-1
object(B, atomic, card, object, cardinality, count_unit, eq, 1)-1
predicate(C, unspecified, enter, A, B)-1

In the context of the interactive environment this DRS is not interpreted as being derived from a
declarative sentence but from an imperative.

Experience will show whether this simple form of the imperative suffices, or whether it needs to be
extended.

One possible extension would allow negated verbs

John, do not enter a card!

that could then be used to introduce constraints. Another possible extension generalises the
addressees of commands

Every man who can fly a helicopter, step forward!

 Page 9 of 33

3. A Modified DRS Representation
3.1. Introduction

Texts in Attempto Controlled English (ACE) are translated into discourse representation structures
(DRS)1. Like ACE, over the last years the DRS representations underwent changes, extensions and
simplifications.

Here we summarise yet another modification of the DRS representation that takes diverse
requirements of the ACE user community into account, and introduces a few extensions and
modifications.

The new DRS representation has already been implemented and will be made public in the near
future.

3.2. Types

The current DRS representation uses types for nouns, verbs and adverbs. Some users of ACE need
these types, or even introduce their own types. Other users of ACE do not need types and remove
them before further processing the DRS.

To accommodate both user communities we introduce a type field into the lexical entries of all content
words (nouns, verbs, adjectives, adverbs). If not needed the type field can be left empty. During
parsing the information of the type field is copied into the respective DRS condition.

Furthermore, we now generate a typed and a untyped DRS representation.

• typed representation: provides type arguments for DRS conditions derived from ACE content
words

• untyped representation: is the typed representation without the type arguments

In any case, the Attempto Parsing Engine (APE) generates the typed DRS. That is, lexicons have to
provide type arguments, or the placeholder na (= not available), for content words. Users of the APE
web-service request whether they want the typed or the untyped DRS. If requested, the
untyped representation is constructed from the typed one. Only then alternative DRS representations
(XML, FOL, ...) are generated.

3.3. Data: Numbers and Strings

Numbers and strings can be used as in full English. Linguistically this means that they behave as
complete singular noun phrases, i.e. they do not get a determiner, they cannot be modified by
adjectives, saxon genitives, of-prepositional phrases, or relative phrases, and they cannot be
conjoined. Furthermore, they cannot be anaphorically referred to. Numbers and strings are
represented by a new DRS condition data/3.
Strings in apposition to noun phrases are no longer allowed, i.e. the condition quoted_string/2 is
no longer part of the DRS language.

3.4. Other Small Modifications

Here is a list of other small modifications:

• the DRS condition relation/4 is slightly simplified

• the condition proper_part_of/2 is renamed to has_part/2

• the DRS representation of the query word how is simplified

• the query words where and when are removed from ACE

For details see the forthcoming documentation.

1 http://attempto.ifi.unizh.ch/site/pubs/papers/drs_report.pdf

 Page 10 of 33

4. Logical Embedding of Attempto Controlled English 5
4.1. Three Fragments of Attempto Controlled English

The syntax of Attempto Controlled English 5 (ACE 5) is described in the ACE Construction Rules2. To
investigate the logical embedding of ACE we split its language constructs into three distinct fragments.

• BASE consists of all of ACE with the exception of modality, sentence subordination, and negation
as failure; note that BASE contains logical negation (also called classical or strong negation).

• MOD consists of modality (possibility, necessity) and sentence subordination, both described in
section 4.5 of the ACE Construction Rules.

• NAF consists of negation as failure (non-provability), as described in section 4.4 of the ACE
Construction Rules.

4.2. Translation of ACE into Discourse Representation Structures

All fragments of ACE can be translated into Discourse Representation Structures (DRS) as described
in the DRS Report3.

• BASE can be translated into a variant of the standard DRS language [Blackburn & Bos 1999].

• BASE + MOD can be translated into an extension of the standard DRS language suggested by
[Bos 2004]; the translation of the fragment MOD is described in sections 2.5, 2.6, 7.3 and 10 of the
DRS Report.

• BASE + NAF can be translated into a further extension of the standard DRS language, modelled
after the extension used for MOD; the translation of the fragment NAF is described in sections 2.3
and 9.4 of the DRS Report.

4.3. Verbalising DRSs in ACE

DRSs can be verbalised in ACE.

• All DRSs described in the DRS Report – in particular DRSs generated from ACE texts – can be
verbalised in Core ACE, a syntactically simplified subset of ACE [cf. REWERSE I2-D5].

• A subset of DRSs can also be verbalised in NP ACE, a subset of ACE that uses rich noun phrases
[cf. REWERSE I2-D9].

• The verbalisation tool DRACE – that translates DRSs into ACE – makes a 'best effort' to provide
NP ACE where possible and falls back to Core ACE otherwise.

• DRACE can also serve as a syntax checker for acceptable DRS input.

4.4. Translation of ACE into First-Order Logic

Concerning the translation of the three ACE fragments into the standard language of first-order logic
(FOL) we have the following results.

• BASE can be translated into a subset of FOL. This subset is defined by the translation of the
respective DRS representations into the standard language of first-order logic [Blackburn & Bos
1999].

• BASE + MOD can be translated into a subset of FOL extended by a binary relation that stands for
'possible worlds' [Bos 2004].

• NAF cannot be translated into FOL

4.5. Verbalising FOL in ACE

Since FOL plays an important role as a representation language, its verbalisation in ACE would be of
considerable interest.

2 http://attempto.ifi.unizh.ch/site/docs/ace_constructionrules.html
3 http://attempto.ifi.unizh.ch/site/pubs/papers/drs_report.pdf

 Page 11 of 33

Unfortunately, verbalising a FOL formula in ACE is not possible in general since one cannot translate
an arbitrary FOL formula into a proper DRS, that is a DRS that could be verbalised in ACE. DRSs use
a small set of predefined predicates in specific combinations. If a FOL formula does not contain the
same – or semantically equivalent – predicates in the same combinations then the FOL formula
cannot be translated into a proper DRS. Briefly, these constraints amount to the condition that a FOL
formula can only be mapped to a DRS if the DRS could be ACE'ified, i.e. that the FOL formula
corresponds to an ACE sentence.

Relevantly, these constraints are fulfilled for subsets of FOL, for instance the W3C languages OWL DL
[Kaljurand & Fuchs 2006] and OWL 1.1 [see section 5 of this deliverable]. OWL ontologies can be
verbalised in ACE since they could in principle be expressed in natural language.

4.6. Semantics

The BASE fragment and the combinations BASE + MOD and BASE + NAF can be given formal
semantics.

• BASE can be given a standard first-order model-theoretic or proof-theoretic semantics [Schwertel
2003].

• BASE + MOD can be given a possible worlds model-theoretic semantics [Bos 2004]. We are
working on a proof-theoretic semantics.

• BASE + NAF can, for instance, be given the semantics of Grosof's courteous logic programming
[Grosof 1997], or alternatively a stable model semantics with or without logical negation [Gelfond
& Lifschitz 1988, Gelfond & Lifschitz 1990].

4.7. Decidability

Concerning the decidability of ACE, we rely on results of [Pratt-Hartmann & Third 2006] who
investigated the decidability of various fragments of natural language (NL).

Pratt-Hartmann & Third used the following abbreviations: Cop (singular, existentially/universally
quantified nouns, predicative adjectives, copula with and without negation), Rel (relative clauses), TV
(transitive verbs without and with negation), DTV (ditransitive verbs without and with negation), RA
(reflexive and nonreflexive pronouns as anaphors, resolution of anaphors to closest antecedent noun
phrase in phrase structure), GA (reflexive and nonreflexive pronouns as anaphors, resolution of
anaphors by coindexing pronouns and antecedent noun phrases).

BASE, and a fortiori ACE, is not decidable since it is a superset of the NL fragment Cop + Rel + TV
+ GA that Pratt-Hartmann & Third identified as undecidable.

Pratt-Hartmann & Third identified 4 decidable fragments of NL that are also decidable fragments of
ACE:

Cop + TV + DTV
Cop + Rel
Cop + Rel + TV
Cop + Rel + TV + DTV

There is a draft version of a grammar that translates a ACE fragment into OWL 1.1. Since OWL 1.1 is
decidable and the grammar is bi-directional the respective ACE fragment is also decidable.

Whether or not one of the decidable fragments of ACE offers sufficient expressivity, depends on the
problem one tries to solve. Note that two major language constructs are missing which severely limits
expressivity.

• The absence of anaphors allows only proper names to relate sentences.

• The absence of adverbs and prepositional phrases makes modification of verbs difficult.

If the problem does not require anaphors beyond proper names then one of the more comprehensive
decidable subsets can suffice.

 Page 12 of 33

5. Verbalizing OWL in Attempto Controlled English
5.1. Introduction

The Web Ontology Language OWL has a normative syntax based on RDF and XML, languages that
are oriented towards machines and thus inherently difficult to read and write for humans. OWL can be
alternatively expressed in other RDF notations that do not use XML, or in dedicated OWL syntaxes
like the functional-style OWL Abstract Syntax notation [Patel-Schneider et al. 2004], or in the concise
syntax traditionally used for description logics. While easier to read and write for logicians and
programmers, these alternative syntaxes lack the features that would bring OWL closer to domain
experts who are likely not to be well-trained in formal methods. [Rector et al. 2004] list the problems
that users encounter when working with OWL DL and express the need for a “pedantic but explicit”
paraphrase language. In order to understand OWL, the users are also encouraged to use front-end
tools. Such tools map OWL constructs into graphical user interface widgets (tabs, checkboxes, trees,
etc.), but in general they too fail to hide the complexities of OWL.

An alternative and less explored approach is to use natural language as a front-end to OWL. In
[Kaljurand & Fuchs 2006], we introduced the idea of a bidirectional mapping between OWL DL
ontologies and Attempto Controlled English (ACE) texts. In this paper, we focus on the verbalization
direction. Concretely, we discuss the details of verbalizing ontologies expressed in OWL 1.1 [Motik et
al. 2006] – the likely successor to the OWL standard – without using data-valued properties and extra-
logical constructs. A partial implementation of the verbalization covering the OWL DL subset of OWL
1.1 is publicly available4. This verbalization is reversible, i.e. the readers of the resulting ACE text can
edit it and then convert it back into the normative OWL representation, and are thus able to
communicate with OWL reasoners and other ontology tools.

This chapter is structured in the following way. In section 5.2 we review the related work, in section 5.3
we describe the mapping of OWL 1.1 into ACE, in section 5.4 we discuss the problems that we have
encountered, in section 5.5 we discuss the implementation, and finally, in section 5.6 we draw
conclusions and describe future work.

5.2. Related work

At the moment, the only way to explore the contents of OWL ontologies is to use OWL ontology
editors. Such tools – TopBraid Composer5, Protégé6, SWOOP7 – offer a graphical front-end with forms,
trees, wizards, etc. to enable the writing and reading of ontologies. For complex class descriptions,
however, they revert to using the syntax of description logics, and thus fail to hide the complexities of
OWL. They also restrict the user in various ways, for example names have to be declared before they
can be used and entering SubClassOf-axioms with a complex left-side is impossible in most tools.
[Dzbor et al. 2006] compared TopBraid Composer and Protégé and found several problems that both
novices and experts encountered. Recently, some tools have adopted the Manchester OWL Syntax
[Horridge et al. 2006] as a means to enter complex class descriptions. Several features, for instance
infix notation and English operator names, make the Manchester syntax more palatable than the
traditional notation of description logics. However, the lack of determiners and specifically the heavy
use of parentheses render it unnatural in comparison to English.

There is also existing work to provide more natural representations of OWL. [Hewlett et al. 2005]
verbalize OWL class descriptions and use a part-of-speech tagger to analyze the linguistic nature of
class names and then split the names apart to form more readable sentences. [Halaschek-Wiener et
al. 2006] extend this work to OWL individuals and their properties. They also validate their approach
by experimenting with seven university students, and find that they significantly prefer natural
language verbalizations to the syntax of description logics, and even more so to the Abstract Syntax,
Turtle and RDF/XML. [Mellish & Sun 2005a] discuss so called natural language directed inference to
be applied to the ontology to make the verbalization of the ontology linguistically more acceptable.
[Jarrar et al. 2006] verbalize OWL ontologies on the basis of predefined templates (e.g. Mandatory,

4 http://attempto.ifi.unizh.ch/site/documentation/verbalizing_owl_in_controlled_english.html
5 http://www.topbraidcomposer.com
6 http://protege.stanford.edu
7 http://www.mindswap.org/2004/SWOOP/

 Page 13 of 33

Exclusion, InterUniqueness). Each template contains canned text for one of a set of supported
languages. [Lukichev & Wagner 2006] describe a verbalization of an XML-based rule format R2ML
(which can be translated into SWRL [Horrocks et al. 2004]). In a more mixed approach, the ontology
editor COE8 uses natural language labels (such as “isMotherOf must be at least 2”) on otherwise
graphical representation of ontologies.

The major shortcoming of these approaches is that they lack any formal check that the resulting
verbalizations are unambiguous. In this sense, a better approach is based on controlled natural
languages that typically have a formal language semantics and come with a parser that could convert
the verbalization back into the native OWL representation so that the verbalization is not a dead end,
but rather a conversation turn in the machine-human communication. [Schwitter & Tilbrook 2004]
discuss a mapping between the controlled English PENG and various OWL subsets (RDFS,
Description Logic Programs, etc.). [Schwitter & Tilbrook 2006] extend this work to cover OWL DL
(without data-valued properties) via a bidirectional mapping that is implemented as a Definite Clause
Grammar. In this mapping, the SubClassOf-axiom is always written as an if-then sentence with
explicit anaphoric references which for simpler axioms is unnecessarily hard to read. [Bernardi et al.
2007] provide a Categorial Grammar for a controlled English (Lite Natural Language) that expresses
DL-Lite (a subset of OWL-Lite). Users may find Lite Natural Language somewhat unnatural since
restrictions in DL-Lite, for instance that negations cannot occur on the left-hand side of the
SubClassOf-axiom), are reflected in the syntax of Lite Natural Language.

Other expressive and recently developed versions of controlled English include CLCE [Sowa 2004] ,
Boeing’s Computer Processable Language [Clark et al. 2005], and E2V [Pratt-Hartman 2003] that is
shown to correspond to the decidable two-variable fragment of first-order logic. None of these
controlled languages has been used for the verbalization of OWL ontologies, although most of them
seem to have the required expressivity.

5.3. Verbalizing OWL

Verbalizing OWL ontologies in natural language and presenting the result as plain text has several
advantages. There is no need for a dedicated and possibly complex ontology editor since plain text
can be viewed and modified in any text editor. Plain text can also be easily stored, compared and
searched with existing general tools. Presentation in natural language brings further benefits —
natural language is understandable by any speaker of that language, it hides the formal syntax of
OWL, it makes it possible to apply existing natural language processing tools such as spell checking
and speech synthesis to the result.

When designing the verbalization, our first and most important decision was that the verbalization
must be reversible, i.e. the mapping of OWL constructs into ACE constructs must be injective so that
the resulting ACE text could be parsed and converted back into OWL, obtaining an ontology that is
identical or at least semantically equivalent to the original. This feature makes sure that the output of
the verbalization is not ambiguous with regards to the OWL semantics and that communication with
OWL reasoners remains possible, which further enforces the user’s correct understanding of the
ontology.

Secondly, the verbalization must be acceptable and understandable English. This requirement is
guaranteed by the ACE design decisions. Furthermore, we use ACE constructs, such as relative
clauses, that provide conciseness. In order to increase readability, we also try to avoid anaphoric
references. For instance, we prefer “Every man is a human.” to the in ACE semantically equivalent “If
there is a man then he is a human.”.

Third, the OWL to ACE mapping must be compatible with the ACE semantics, for example
SubClassOf(dog animal) must be mapped to a universally quantified (i.e. if-then or every)
sentence and not to a sentence like “A dog is a kind of an animal.” that in ACE is interpreted as having
only existential quantification.

Finally, we try to leave the structure of the input ontology as far as possible intact. It must be visible to
OWL experts how their constructs where mapped to ACE.

8 http://cmap.ihmc.us/coe/

 Page 14 of 33

Now we describe the steps involved in the verbalization: rewriting some of the class descriptions and
axioms via more general constructs, and the generation of ACE noun phrases and sentences9.

5.3.1. Rewriting OWL constructs

The main intention behind rewriting OWL constructs via more general constructs is to replace
constructs like ObjectPropertyRange that cannot directly be mapped to ACE. Also, a notion like
range cannot be directly verbalized as the ACE word ‘range’ since this would most probably not confer
the intended meaning. According to WordNet10, the word ‘range’ has 9 meanings as a noun and 8
meanings as a verb. We therefore replace most OWL constructs with general SubClassOf,
SubObjectPropertyOf, DisjointObjectProperties, and ClassAssertion axioms (see
table 1 for the rewriting rules).

9 For a detailed description of the ACE subset used in the verbalization, as well as a bidirectional Definite Clause Grammar for
this subset, see http://attempto.ifi.unizh.ch/site/documentation/owlace constructionrules.html
10 http://wordnet.princeton.edu

 Page 15 of 33

Table 1: Semantics-preserving rewriting of some OWL constructs.

5.3.2. Verbalizing OWL classes and properties

After rewriting, the remaining class descriptions map to ACE noun phrases and property descriptions
map to active and passive verbs. Note that the class description ObjectOneOf maps to a proper
name. See table 2.

 Page 16 of 33

Table 2: Verbalizing OWL property and class expressions as ACE verbs and noun phrases (including common nouns and
proper names). Note that in actual verbalizations, the word ‘something’ is often replaced by a noun representing a conjoined
named class.

In OWL, it is possible to build complex class descriptions from simpler ones by intersection, union,
complementation and property restriction. Similarly, ACE allows building complex noun phrases via
relative clauses that can be conjoined (by ‘and that’), disjoined (by ‘or that’), negated (by ‘that is/does
not’) and embedded (by ‘that’). While the mapping of boolean operators can be found in table 2,
embedding allows us to use a relative clause to modify an object of another relative clause. For
instance, the OWL class description

ObjectIntersectionOf(
cat

ObjectComplementOf(
ObjectSomeValuesFrom(like

ObjectIntersectionOf(
dog
ObjectUnionOf(

ObjectSomeValuesFrom(attack mailman)
ObjectOneOf(Fido))))))

can be verbalized in ACE as

something that is a cat and that does not like a dog that attacks a
mailman or that is Fido

Class descriptions in OWL can be syntactically arbitrarily complex as one can use parentheses to
denote the scope of the expressions. ACE, however, has no support for parentheses. Scope
ambiguities are resolved according to a small set of interpretation rules and the users have a choice
between disentangling complex sentences, or using syntactic means to enforce the desired scoping.

For instance, the binding order of and and or favors and, but can be reversed by using a comma in
front of and. This approach is natural (as natural language doesn’t use parentheses for grouping) but
for the verbalization process it poses a problem as very complex class descriptions cannot be mapped
to ACE noun phrases.

For example, a relative clause can either modify the object (via ‘that’) or the subject (via ‘and/or that’)
of a preceding relative clause, but not a more distant noun.

Therefore, complex class descriptions like

ObjectIntersectionOf(
ObjectSomeValuesFrom(R1 ObjectSomeValuesFrom(R2 C1)
ObjectSomeValuesFrom(R3 ObjectSomeValuesFrom(R4 C2)

)

cannot be handled by ACE directly.

 Page 17 of 33

The verbalization assumes that all names used in the ontology are English words. Furthermore, that
individuals are denoted by singular proper names (preferably capitalized), named classes by singular
common nouns, and (object) properties by transitive verbs in their lemma form (i.e. infinitive form).
These restrictions are needed because the names will be used in certain syntactic constructions or will
undergo certain morphological changes. Proper names are used in the subject and object positions
without a determiner, e.g. “Every man knows John.”, “John is a man.”. Common nouns are used in the
subject and object positions with determiners ‘every’, ‘a’, ‘at least 2’, etc., and can have a plural
ending, e.g. “Every man owns at most 5 cars.”. Transitive verbs are often used in singular, but under
negation and in plural will stay in infinitive, e.g. “Every person knows a child that does not own a bike
and that has at least 3 friends that own a bike.”. In some cases, most often when verbalizing the
ObjectPropertyRange-axiom, the verb will be turned into a past participle in order to construct a
passive sentence, e.g. “Everything that is owned by something is a possession.”

In OWL ontologies, the names are URIs. Before morphological synthesis, the URI is truncated to
preserve only the part that comes after the #-sign. In case the truncation would cause ambiguity in the
names, the names are preserved as URIs.

5.3.3. Sentence planning

OWL axioms are mapped to ACE sentences (see table 3). Apart from sentences that are derived from
the ClassAssertion-axioms, all sentences are every-sentences, i.e. they have a pattern Noun-
Phrase VerbPhrase, where NounPhrase starts with every. If the verb phrase is negated, we move
the negation into the noun phrase to obtain a simpler sentence (“Every dog is not a cat.” ⇒ “No dog is
a cat.”).

Table 3: Verbalizing OWL axioms as ACE sentences. Note that the anaphoric reference ‘it’ is resolved to the most recent noun
according to the ACE interpretation rules.

In general, we try to keep the structure of the ACE sentence similar to the input axiom, and do not
verbalize an axiom as several ACE sentences. Still, for better readability we apply certain
modifications to the axioms before verbalizing: we remove negations as much as possible, e.g. “No
man owns at most 5 books.” ⇒ “Every man owns at least 6 books.”, and reorder classes in
coordination so that simple classes come first, e.g. “Everything that does not own a bike and that is a
man and that owns a car . . . ” ⇒ “Every man that owns a car and that does not own a bike . . . ”. In
our experience, even simple reordering can increase the readability significantly.

5.3.4. Text planning

Although an XML serialization has an order, there is no notion of order in the editing model of current
OWL editors. Also, OWL parsers that build the functional syntax representation of RDF triples do not
always keep the order that is originally in the XML/RDF file. Therefore, the planning of the
verbalization cannot rely on any existing order and we output the ACE text simply in the order of
verbalization of axioms about (1) individuals, (2) classes, and (3) properties.

As any linear order would have some shortcomings (for a particular reader), we have designed an
alternative, so called “index view” of the ACE text to overcome the linearity by hypertext. In this view,
the ACE text is “visualized” in HTML as an index, i.e. all names occurring in the ontology are ordered
alphabetically and each name is “explained” by listing all the sentences that contain the name. Figure
1 shows an example that originates from the “people and pets” ontology11.

11 http://protege.cim3.net/file/pub/ontologies/people.pets/people+pets.owl

 Page 18 of 33

Figure 1: Index of names used in the verbalized ontology. The “definition” of only one name, has-pet, is presented.

5.4. Problems

5.4.1. OWL naming conventions

As the quality of the verbalization depends on the morphologic and orthographic nature of the names
used for individuals, classes and properties in the input ontology, probably the most visible deficiency
of the described verbalization is caused by the naming conventions used in OWL ontologies. The
class, property and individual names are not under the control of current OWL editing tools and the
user is guided only by informal style-guides, which mainly discuss the capitalization of names (see e.g.
[Horridge et al. 2004]), or are specific to RDF such as the RoleNoun pattern12. Real-world OWL
ontologies can contain class names like Large, FifteenMinutes, NAMEDArtery, Urgent, mirrorImaged;
property names like hasTopping, offeredIn, isPairedOrUnpaired, accountName, brotherOf,
isWrittenBy; and individual names like red, married. Such names do not lend themselves well to any
verbalization scheme. Still, [Mellish & Sun 2005b] analyze the linguistic nature of class and property
names in 882 public OWL ontologies and find that these names fall, in most cases, quite well into the
categories of nouns and verbs, respectively, with only a small overlap in linguistic patterns used.
Unfortunately, their study does not discuss object properties and data-valued properties separately,
and does not analyze the morphological features of names of individuals.

Hopefully, names will become more English-like over time as ontology languages and tools evolve.
Encouragingly, OWL 1.1 adds support for anonymous inverse properties (InverseObject- Property)
and thus does not force the user to invent a new name just to be able to talk about an inverse of an

12 http://esw.w3.org/topic/RoleNoun

 Page 19 of 33

existing property. Also, the practice of attaching nouns (i.e. class names) to property names might
disappear in the presence of qualified cardinality restrictions.

5.4.2. Deeply nested class descriptions

Experience with real-world ontologies has shown that class descriptions can occasionally be very
deep and branch in complex ways. ACE, on the other hand cannot handle deeply nested structures.
We see various solutions to this. First, in an interactive environment a valid solution would be to reject
class expressions that cannot be verbalized, so that the user could simplify them. We believe that
such a natural restriction would result in more readable ontologies in the end. Secondly, we could add
to ACE a support for parentheses. Third, we could use if-then sentences which are syntactically
more expressive than every-sentences but lack conciseness. Fourth, we could try to automatically
simplify the ontology by defining new named classes and using them to rewrite the ontology. There
are several problems with the last approach – the modified ontology would not be equivalent to the
original but would only entail it; the original structure of the class description (which the ontology
author has maybe carefully constructed) is destroyed; meaningful names are difficult to construct
automatically.

5.4.3. DisjointUnion, ONLYSOME, XOR, etc

OWL 1.1 includes powerful short-hand axioms like DisjointUnion, and other forms of syntactic
sugar motivated by OWL usage patterns are discussed in the literature [Horridge et al. 2006]. ACE
doesn’t provide such short-hands and the verbalization will therefore unravel complex constructions.
For instance, DisjointUnion(person male female) would be verbalized as

No male is a female. No female is a male. Every person is a male or is a
female.

Everything that is a male or that is a female is a person.

While this is a valid approach that explains the notion of a covering union of pair-wise disjoint classes
to a novice OWL user, more experienced OWL users may prefer a more concise verbalization.

Also, the verbalization of a few other OWL constructs would profit if ACE provided a more concise
corresponding syntax. E.g. at the moment, ACE doesn’t support noun phrase disjunction and a
function word such as ‘only’ or ‘nothing but’. OWL’s ObjectOneOf and ObjectAllValuesFrom
would be expressed as

Every student is John or is Mary or is Bill.

No koala eats something that is not an eucalyptus-leaf.

instead of a shorter, but in ACE not allowed

*Every student is John, Mary, or Bill.

*Every koala eats nothing but eucalyptus-leaf.

5.4.4. Property axioms

The described verbalization can handle most of the OWL 1.1 constructs without using explicit
anaphoric references because relative clauses can achieve the same argument sharing effect that
anaphoric references would be otherwise needed for. For property axioms (SubObjectPropertyOf
and DisjointObjectProperties) the situation is different. E.g. transitivity would be expressed as

Everything that contains something that contains something contains it.

where the personal pronoun ‘it’ refers to the most recent noun phrase (i.e. the last ‘something’). Such
sentences can be hard to read. Using if-then sentences with explicit variables might be most clear
in the end.

If something X contains something Y and Y contains something Z then X
contains Z.

 Page 20 of 33

5.5. Implementation

The verbalization of OWL ontologies has been implemented in SWI-Prolog and is publicly available as
a REST-webservice13 which takes OWL RDF/XML as input and produces an ACE verbalization as
output (optionally in the “index”-view). The implementation doesn’t cover data-valued properties and
can currently handle only the OWL DL subset of OWL 1.1. Also, it rejects axioms that contain too
complex class descriptions (as described in section 5.4.2).

The implementation uses the Thea OWL Library14 to map OWL RDF/XML into the OWL Abstract
Syntax (in Prolog notation). Thea, in turn, uses SWI-Prolog’s semweb library15 to convert RDF/XML
into RDF triples. We then apply a relatively straight-forward mapping of the OWL Abstract Syntax to
Attempto DRS and use an existing DRS verbalizer that represents DRS implications as every-
sentences [Fuchs et al. 2006]. Note that going through the DRS might seem like a detour but we are
using the DRS as interlingua that allows us to handle also other languages like e.g. SWRL.

5.6. Conclusions and future work

We conclude that OWL can be verbalized in concise and understandable English provided that a
certain naming style is adopted for OWL individuals, classes, and properties. In order to be able to
compare our approach to existing ontology engineering approaches, we have experimentally
integrated the mapping into the Protégé editor16. This allows us to perform usability tests with users
who are familiar with current ontology editors.

Using an existing ontology editor as a host environment also alleviates some of the problems that we
have encountered. For example, the host environment can take care of things that are easier to
handle by forms (such as entering data about individuals) and wizards (e.g. entering
DisjointUnion), and support maintaining a lexicon with all the required linguistic information used
in the verbalization (e.g. forms of morphologically exceptional words). The users can thus profit from
the synergy resulting from the combination of traditional form-based ontology editing and natural
language-based editing.

13 http://attempto.ifi.unizh.ch/site/documentation/verbalizing_owl_in_controlled_english.html
14 http://www.semanticweb.gr/TheaOWLLib
15 http://www.swi-prolog.org/packages/semweb.html
16 For a demonstration of the integration into Protégé 4.0 alpha, see the screencast

http://attempto.ifi.unizh.ch/site/documentation/screencast_ace_in_protege.mov

 Page 21 of 33

6. AceRules: Executing Rules in ACE
6.1. Introduction

The AceRules rule system was introduced in the deliverable I2-D9 [Fuchs et al. 2006]. Since then,
AceRules has undergone several changes. The most important one is that it does no longer rely solely
on courteous logic programs, but it has now a multi-semantics architecture. Another important
improvement of AceRules are the different available interfaces.

The goal of AceRules is to show that controlled natural languages can be used to represent and
execute formal rule systems. ACE is used as input and output language. People with no experience of
technical notations should be able to understand, write, and execute formal rules.

6.2. The AceRules System

AceRules is a rule system prototype using the controlled natural language ACE as input and output
language. AceRules supports currently three different semantics that are implemented as two distinct
interpreter modules. AceRules is designed for forward-chaining interpreters that calculate the
complete answer set. The general approach of AceRules, however, could easily be adopted for
backward-chaining interpreters. AceRules is publicly available as a web service and through two
different web interfaces.

To make the point of AceRules clearer, let us consider the following simple program (i.e. rule set):

Everyone has a card.
If someone has a card and does not have a code then John gives him/her a
code.
No clerk has a code.
Every customer has a code.
Bill is a clerk.
Sue is a customer.
Mary does not have a code.

As we can see, this program looks perfectly like natural English. Obviously, the first four lines stand for
rules and the last three lines denote facts. In order to execute this program, AceRules uses first the
ACE parser to translate the program into a DRS. Next, the DRS is mapped to a rule structure which is
then given to the respective interpreter. The interpreter calculates the answer of the program, i.e. the
set of facts that can be deduced by the program. This answer is then backtranslated into an ACE text:
(The courteous interpreter is used here.)

Sue is a customer.
Bill is a clerk.
John gives Mary a code.
John gives Bill a code.
Sue has a code.
Sue has a card.
Mary has a card.
John has a card.
Bill has a card.
It is false that Bill has a code.
It is false that Mary has a code.

Since this answer is written in ACE again, no other formal notations are needed for the user
interaction. Even though inexperienced users might not be able to understand how the answer is
inferred, they are certainly able to understand input and output and to verify that the output is some
kind of conclusion of the input. This is the essential advantage of ACE over other kinds of formal
knowledge representation languages.

Existing work to use natural language representations for rule systems is based on the idea of
verbalizing rules that already exist in a formal representation [Halpin 04, Jarrar et al. 06, Lukichev &
Wagner 06]. In our approach, the controlled natural language is the main language that can be
translated into a formal representation (parsing) and backwards (verbalizing). It is not necessary that
the rules are first formalized in another language.

 Page 22 of 33

6.2.1. Semantics

In the beginning, AceRules relied on courteous logic programs [Grosof 1997]. Now, AceRules is
redesigned to support various semantics. The decision of which semantics to choose should depend
on the application domain, the characteristics of the available information, and on the reasoning tasks
to be performed. Thus, this decision does not have to be taken by the end-user but by the system
designer. At the moment, AceRules incorporates three different semantics: courteous logic programs,
stable models [Gelfond & Lifschitz 1988], and stable models with strong negation [Gelfond & Lifschitz
1991]. The following table shows an overview. The upper part of the table lists properties of the
respective theory. The second part shows properties of the integration into AceRules.

The original stable model semantics supports only negation as failure, but it has been extended to
support also strong negation. Courteous logic programs are based on stable models with strong
negation and allow therefore for both forms of negation.

None of the two forms of stable models guarantee a unique answer set. Thus, a certain program can
lead to several answers. Courteous logic programs eliminate this downside by the introduction of
priorities and by the restriction to acyclic programs [Apt & Bezem 1990]. The deliverable I2-D9 [Fuchs
et al. 2006] showed how the priorities are represented. We will not discuss here the acyclic-restriction,
apart from saying that it can be a heavy restriction in some situations. The advantage of courteous
semantics is that every program delivers exactly one answer.

On the basis of these properties, a system designer should decide which semantics to choose. Since
we do not want to restrict AceRules to a certain application or domain, we decided to make the
semantics exchangeable.

The three semantics are implemented in AceRules as two interpreter modules. The first interpreter
module handles courteous logic programs and is implemented natively. (The implementation of the
courteous interpreter is based on [Doerflinger 2005]). For the stable model semantics with and without
strong negation there is a second interpreter module that wraps the external tools Smodels [Niemela &
Simons 1997] and Lparse [Syrjanen 2000].

There are various other semantics that could be supported, e.g. defeasible logic programs [Nute 1994,
Antoniou et al. 2000] or disjunctive stable models [Przymusinski 1991]. Only little integration effort
would be necessary to incorporate these semantics into AceRules.

6.2.2. Two Kinds of Negation

The handling of two kinds of negation (negation as failure and strong negation) was already explained
in the deliverable I2-D9 [Fuchs et al. 2006]. As a new feature, we support now another syntactic
variant for negation as failure. Instead of

there is a customer and it is not provable that the customer waits

we can now also write

a customer does not provably wait

This new construct “is/does not provably” allows us to express some statements in a more concise
way. Note that the two examples above are translated into the same DRS.

We think that these representations are well understandable. Even for persons that have never heard
of negation as failure, they makes some sense, even though they are probably not able to grasp all its
semantic properties.

 Page 23 of 33

6.2.3. Intelligent Grouping

Rules expressed in ACE are potentially more complex than the rules allowed in a certain rule theory.
Thus, some rules have to be rejected by AceRules because they can not be handled by the respective
interpreter. Nevertheless, there are situations where the logical representation (that is generated by
the ACE parser) is not compliant with the rule theory, but can be translated in a consistent way into a
correct rule representation. This translation we call "intelligent grouping".

To make this point clear, we present some examples using stable model semantics with strong
negation. The described procedure can be used in the same way for the other semantics. Rules of the
stable model semantics with strong negation have the form

 L0 <- L1, ... Lm, ~Lm+1, ... ~Ln

with 0 =< m =< n and each Li being a literal. A literal is an atomic proposition (Ai) or its strong negation
(-Ai). Negations are allowed to be applied only to atomic propositions or – in the case of negation as
failure (~) – to literals. Furthermore the heads of rules must contain nothing but a single literal. These
restrictions we have to keep in mind when we translate an ACE text into a rule representation. As a
first example, let us consider the following AceRules program:

John owns a car.
Bill does not own a car.
If someone does not own a car then he/she owns a house.

The ACE parser transforms this text into its logical representation (simplified):

owns(john, X)
car(X)
- (owns(bill, Y), car(Y))
- (owns(A, B), car(B)) -> (owns(A, C), house(C))

which is not yet compliant with the rule theory. It contains complex terms inside of a negation and in
the head of a rule. But considering the initial text, we would expect this example to work. In fact, it was
just formalized in an inappropriate way. This is the point where the intelligent grouping is applied. If we
aggregate some of the predicates then we end up with a simpler representation that has a correct rule
structure:

owns_car(john)
- owns_car(bill)
- owns_car(X) -> owns_house(X)

This transformation is based on a set of group patterns that are collected in a first step, and then these
patterns are used to perform the actual grouping. For our example, the following two patterns have
been used:

owns(X1, I1), car(I1) ==> owns_car(X1)
owns(X2, I2), house(I2) ==> owns_house(X2)

In such patterns, there can be two kinds of placeholders: Each Xi stands for any variable or atom, and
each Ii stands for a variable that does not occur outside of the group. This allows us to omit the
variables Ii after the transformation. From a more intuitive point of view, we can say that the phrases
"owns a car" and "owns a house" are considered atomic. This means that the car and the house do
not have an independent existence, and thus references to these objects are not allowed. If this
restriction is violated then a consistent transformation into a valid rule structure is not possible. For
example, the program

Bill does not own a car.
John owns a car X.
Mary sees the car X.

that leads to the logical representation

- (owns(bill, A), car(A))
owns(john, B)
car(B)
sees(mary,B)

cannot be translated into a valid rule structure. An error message has to be raised in such cases
informing the user that the program has an invalid structure. It has still to be evaluated how hard it is
for normal users to follow this restriction and how often such situations actually occur.

 Page 24 of 33

Concerning the grouping step, one might think that the text was just translated into a too complex
representation in the first place and that the parser should directly create a grouped representation.
The following program shows that this is not the case:

John owns a car.
The car contains a suitcase.
If someone owns something that contains something X then he/she owns X.

It is transformed by the ACE parser into:

owns(john,H)
car(H)
contains(H,S)
suitcase(S)
owns(Z,X), contains(X,Y) -> owns(Z,Y)

In this case, we need the more fine-grained representation and no grouping has to be done. In other
words, the pattern collection step returns an empty set of patterns because the program is already in a
compliant form. This and the first example start both with the sentence "John owns a car", but in the
end it has to be represented differently. Thus, the grouping is intelligent in the sense that it must
consider the whole program to find out which predicates have to be grouped.

Another important property of the grouping step is that the transformation has to be reversible. Before
verbalizing an answer set, we need to ungroup the predicates that have been grouped. In order to
achieve reversibility, we use a more complex format than the one that is introduced here.

Altogether, the intelligent grouping gives us much flexibility. A sentence like "John owns a car" is
treated as an atomic property of an object (John) or as relation between two objects (John and a car),
whichever makes sense in the respective context.

6.2.4. Trace

Sometimes, it can be very helpful to look inside of the process of the execution of a program, e.g. for
debugging. AceRules allows to trace the program execution and it verbalizes this trace information in
ACE. The trace output shows step-by-step how the final answer was deduced. Besides debugging,
users can learn from the trace output in an intuitive way how a program is executed. In AceRules, this
trace output can only be created for the courteous semantics. This is because the external programs
used for the other semantics do not support any trace feature. The following picture shows how the
AceRules web interface displays the trace output. A possible improvement would be to show not only
the temporary answer sets, but also the rules that are applied.

6.3. Architecture

The picture below shows the architecture of AceRules. (Rectangles indicate modules and arrows
indicate data flow.) Basically, a program is processed in three phases: parsing, interpretation, and
verbalization. The core modules of AceRules are the parser and the verbalizer, whereas the

 Page 25 of 33

interpreter is exchangeable. An internal rule format using Prolog notation is the interface language
between the parser and the interpreter and between the interpreter and the verbalizer.

We will now describe the details of the interpreter step. The parser step and the verbalizer step have
been explained in the deliverable I2-D9 [Fuchs et al. 2006].

Since the interpreter component is exchangeable, this step has to be described in an abstract manner.
The interpreter step can generally be subdivided into four sub-steps, where only the steps 1 and 3 are
mandatory.

1. (Compliance check) First, the program is checked if it fulfills the semantics-specific restrictions.
A sentence like "John is not a customer" is not allowed in stable model semantics without
strong negation, but it is allowed in the two other semantics. Thus, this compliance check
cannot be done by the parser but has to be done by the interpreter.

2. (Preprocessing) Depending on the inference algorithm, some preprocessing may be
necessary. E.g. unbound variables have to be eliminated if the algorithm cannot handle them.

3. (Calculation of the answer set) This step does the actual answer set calculation. It can be
delegated to an external program.

4. (Postprocessing) The resulting answer set may require some postprocessing. E.g. auxiliary
predicates that were introduced during the answer set calculation have to be removed.

Furthermore, if an external program is used for the answer set calculation then the pre- and
postprocessing steps perform the mapping to the required rule format.

6.4. Interfaces

There are different existing controlled natural language interfaces for rule systems or for the Semantic
Web in general. Most of them are query interfaces like Ginseng [Bernstein et al. 05] or LingoLogic
[Thompson et al. 05]. We will focus here on presentation and editor interfaces like NORMA [Halpin &
Curland 2006] or ECOLE [Schwitter et al. 2003]. There are also interfaces like GINO [Bernstein &
Kaufmann 2006] which can be used for queries and as an editor.

AceRules comes with three interfaces. A webservice [AceRules-Webservice] allows to integrate the
AceRules functionality into any other program. Furthermore, there are two web interfaces for human
interaction. One is a technical interface (http://attempto.ifi.uzh.ch/acerules_ti) that is
intended for advanced users that are interested in the technical background of the system. The main
web interface (http://attempto.ifi.uzh.ch/acerules) aims to be convenient for potential
end-users that are not familiar with formal notations. For the rest of this section, we will take a closer
look at this main interface. The following picture shows a screenshot.

 Page 26 of 33

We claim that a Semantic Web interface for end-users (in the sense of an editor interface) should fulfill
the following three properties which partly overlap. They hold for ontologies and rules in the same
way.

1. Technical notations should be hidden. The users should not see any technical language (e.g.
any XML-based language), but instead there should be a well-understandable and intuitive
representation. Novice users should be able to understand the semantic representations after
a very short learning phase.

2. The interface should guide the users during modification and creation of the formal
representations. The users should not need to read any manuals or other documentation
before they can start using the system, but they should be able to learn how to interact with
the system while using it.

3. The users should be supported by a context-sensitive and comprehensive help feature.
Especially in the case of errors, the users should be led immediately to a corresponding help
article. These articles should be concise suggestions how to solve the problem.

Altogether, these three properties ensure that the Semantic Web interface has a shallow learning
curve which we consider to be crucial for the success of the Semantic Web.

AceRules uses ACE as input and output language. No other notations are needed. Thus, AceRules
fully satisfies the first condition. Furthermore, AceRules has a help feature which is shown in a
browser-internal window. The help window is browsable in the sense that articles can contain links
pointing to other articles. There is a help article for every error that can occur, as shown in the picture
below. If an error has occurred, then the user is directed to the respective article. Thus, AceRules
fulfills the third condition as well.

 Page 27 of 33

AceRules gives also some help for the modification of existing programs and for the creation of new
sentences. Nevertheless, we have to admit that it can only partially fulfill the second condition. For a
real guidance of the user, a predictive editor as in the ECOLE interface would be needed. Such an
editor guides the user step-by-step through the creation of a sentence and makes it impossible to
create syntactically incorrect representations. ECOLE uses a controlled natural language called PENG
[PENG-Nutshell] which is very similar to ACE.

 Page 28 of 33

7. Attempto Webservices and Website
7.1. Webservices

The Attempto webserver was ported to a dedicated machine, resulting in overall performance gains of
all tools by a factor 3 - 5.

Furthermore, there were several improvements to the Attempto Parsing Engine (APE):

• faster response times (up to 3x in case of short input texts)

• better error and warning messages

 - missing determiner: John owns car.

 - undefined propername: Peeter owns a car.

 - malformed file, in case the user lexicon doesn't conform to the specification

 - no longer warning message for possessive pronouns

• paraphraser

 - webclient now supports just one type of paraphrase

 - webservice continues to support both previously available paraphrasing modes

 - paraphrase helps users to realise that sentences like "a cat is an animal" are existentially, not
 universally, quantified

• new concise lexicon format

• lexicon now supports past participle

• modality in questions supported: Can John wait?
There are several new Attempto tools:

• AceRules webservice

• 2 AceRules webinterfaces

• AceWiki webinterface

• improved DRS ⇒ OWL translation supporting key features of OWL 1.1

• webinterface of the OWL verbaliser

7.2. Website

Several items were added to the Attempto website – among them

• screencast of the ACE ⇔ OWL translations
• screencast of AceRules

• listing of the built-in lexicon of APE

• OWL ACE construction rules
• proposal for ACE authoring tools

 Page 29 of 33

8. Cooperations
We are pleased to report that we are cooperating with several REWERSE internal and external groups
who use Attempto Controlled English. Here is a summary:

• REWERSE I1 started to work on the translation of ACE into R2ML

• REWERSE I2 continues to work on using ACE as input language for the Protune system

• several REWERSE external groups make use of the APE web service: for instance the
Rensselaer Polytechnic Institute (USA) and the Weizman Institute (Israel)

• N. E. Fuchs spent 2 months at Macquarie University (Sydney); result is an ESWC'07 paper on
web annotations in controlled natural language

• a new cooperation with Yale University and other partners in the field of clinical practice guidelines
started in April 2007; funding by NIH

 Page 30 of 33

9. Conclusions
Here is the updated contents of the two remaining deliverables of the controlled natural language track
of I2.

9.1. Deliverable I2-D13: Reasoning, Rules, and Semantic Wikis

We will extend the ACE reasoner RACE to give explanations to “why/why not” queries and to
investigate hypothetical “what if” queries. On the basis of the AceRules system we will provide an
interface that facilitates the use of ACE for existing rule systems, for instance the Protune policy rules.
We will extend and redesign the AceWiki system to demonstrate how ACE can be used in the context
of semantic wikis. Furthermore, we will extend ACE by data structures and operations on them and by
procedural attachments.

9.2. Deliverable I2-D15: Knowledge Assimilation and Abductive Reasoning

We will demonstrate the consistent and non-redundant assimilation of ACE sentences to existing ACE
texts, and apply knowledge assimilation to the AceWiki system. The ACE reasoner RACE will be
extended by abduction to answer queries of the form “under which conditions does . . . occur”. Since
this will be the last REWERSE deliverable, we will try to collect and to evaluate user feedback on the
usability and acceptability of ACE.

 Page 31 of 33

10. References
[AceRules-Webservice] AceRules Webservice. Attempto Documentation, 9 January 2007,
http://attempto.ifi.uzh.ch/site/documentation/acerules_webservice.html

[Antoniou et al. 2000] G. Antoniou, M.J. Maher, D. Billington. Defeasible logic versus Logic
Programming without Negation as Failure. In The Journal of Logic Programming 42, 47-57, 2000

[Apt & Bezem 1990] Krzysztof R. Apt, Marc Bezem. Acyclic programs. In Logic Programming, 617-
633, MIT Press, 1990

[Bernardi et al. 2007] Raffaella Bernardi, Diego Calvanese, and Camilo Thorne. Lite Natural
Language. In IWCS-7, 2007.

[Bernstein & Kaufmann 2006] Abraham Bernstein, Esther Kaufmann. GINO - A Guided Input Natural
Language Ontology Editor. 5th International Semantic Web Conference (ISWC 2006), 144-157,
Springer, 2006

[Bernstein et al. 2005] Abraham Bernstein, Esther Kaufmann, Christian Kaiser. Querying the Semantic
Web with Ginseng: A Guided Input Natural Language Search Engine. 15th Workshop on Information
Technology and Systems (WITS 2005), 45-50, 2005

[Blackburn & Bos 1999] L. Blackburn, J. Bos. Representation and Inference for Natural Language, A
First Course in Computational Semantics. Vol. II, Working with Discourse Representation Structures.
1999

[Bos 2004] J. Bos. Computational Semantics in Discourse: Underspecification, Resolution and
Inference. Journal of Logic, Language and Information. 13:139-157. 2004

[Clark et al. 2005] Peter Clark, Philip Harrison, Thomas Jenkins, John Thompson, and Richard H.
Wojcik. Acquiring and Using World Knowledge Using a Restricted Subset of English. In FLAIRS 2005,
pages 506–511, 2005.

[Doerflinger 2005] Marc Dörflinger. Interpreting Courteous Logic Programs, Diploma Thesis.
Department of Informatics, University of Zurich, 2005

[Dzbor et al. 2006] Martin Dzbor, Enrico Motta, Carlos Buil, Jose Gomez, Olaf G¨orlitz, and Holger
Lewen. Developing ontologies in OWL: An observational study. In OWLED 2006, 2006.

[Fuchs et al. 2006] Norbert E. Fuchs, Kaarel Kaljurand, and Tobias Kuhn. Deliverable I2-D9. Attempto
Controlled English 5: Language Extensions and Tools I. Technical report, REWERSE, 2006.
http://rewerse.net/deliverables.html.

[Gelfond & Lifschitz 1988] Michael Gelfond, Vladimir Lifschitz. The stable model semantics for logic
programming. In Proceedings of the 5th International Conference on Logic Programming, 1070-1080,
MIT Press, 1988

[Gelfond & Lifschitz 1991] Michael Gelfond, Vladimir Lifschitz. Classical negation in logic programs
and disjunctive databases. In New Generation Computing, 9:365-385, 1990

[Grosof 1997] Benjamin N. Grosof. Courteous Logic Programs: Prioritized Conflict Handling For Rules.
IBM Research Report RC 20836. Technical report, IBM T.J. Watson Research Center, 1997

[Halaschek-Wiener et al. 2006] Christian Halaschek-Wiener, Jennifer Golbeck, Bijan Parsia, Vladimir
Kolovski, and Jim Hendler. Image browsing and natural language paraphrases of semantic web
annotations. In First International Workshop on Semantic Web Annotations for Multimedia (SWAMM),
Edinburgh, Scotland, May 22nd 2006.

[Halpin 2004] Terry Halpin. Business Rule Verbalization. In Anatoly Doroshenko, Terry Halpin,
Stephen W. Liddle, Heinrich C. Mayr (editors), Proceedings of Information Systems Technology and
its Applications, 3rd International Conference ISTA 2004, Lecture Notes in Informatics, 2004

[Halpin & Curland 2006] Terry Halpin, Matthew Curland. Automated Verbalization for ORM 2. In
Robert Meersman, Zahir Tari, Pilar Herrero et al. (editors), On the Move to Meaningful Internet
Systems 2006: OTM 2006 Workshops, Lecture Notes in Computer Science 4278, 1181-1190,
Springer, 2006

[Hewlett et al. 2005] Daniel Hewlett, Aditya Kalyanpur, Vladimir Kolovski, and Chris Halaschek-
Wiener. Effective Natural Language Paraphrasing of Ontologies on the Semantic Web. In End User
Semantic Web Interaction Workshop (ISWC 2005), 2005.

 Page 32 of 33

[Horridge et al. 2006] Matthew Horridge, Nick Drummond, John Goodwin, Alan Rector, Robert
Stevens, and Hai H Wang. The Manchester OWL Syntax. In OWLED 2006, 2006.

[Horridge et al. 2004] Matthew Horridge, Holger Knublauch, Alan Rector, Robert Stevens, and Chris
Wroe. A Practical Guide To Building OWL Ontologies Using The Prot´eg´e-OWL Plugin and COODE
Tools. Edition 1.0. Technical report, The University Of Manchester, 2004.
http://www.coode.org/resources/tutorials/.

[Horrocks et al. 2004] Ian Horrocks, Peter F. Patel-Schneider, Harold Boley, Said Tabet, Benjamin
Grosof, and Mike Dean. SWRL: A Semantic Web Rule Language Combining OWL and RuleML. W3C
Member Submission 21 May 2004. Technical report, W3C, 2004. http://www.w3.org/Submission/
2004/SUBM-SWRL-20040521/.

[Jarrar et al. 2006] Mustafa Jarrar, Maria Keet, and Paolo Dongilli. Multilingual verbalization of ORM
conceptual models and axiomatized ontologies. Technical report, Vrije Universiteit Brussel, February
2006.

[Kaljurand & Fuchs 2006] Kaarel Kaljurand and Norbert E. Fuchs. Bidirectional mapping between
OWL DL and Attempto Controlled English. In Fourth Workshop on Principles and Practice of Semantic
Web Reasoning, Budva, Montenegro, 2006.

[Lukichev & Wagner 2006] Sergey Lukichev and Gerd Wagner. Deliverable I1-D6. Verbalization of the
REWERSE I1 Rule Markup Language. Technical report, REWERSE, 2006. http://rewerse.net/
deliverables.html.

[Mellish & Sun 2005a] Chris Mellish and Xiantang Sun. Natural Language Directed Inference in the
Presentation of Ontologies. In 10th European Workshop on Natural Language Generation, Aberdeen,
Scotland, August 8–10th 2005.

[Mellish & Sun 2005b] Chris Mellish and Xiantang Sun. The Semantic Web as a Linguistic Resource.
In Twentysixth SGAI International Conference on Innovative Techniques and Applications of Artificial
Intelligence, Peterhouse College, Cambridge, UK, December 12–14th 2005.

[Motik et al. 2006] Boris Motik, Peter F. Patel-Schneider, and Ian Horrocks. OWL 1.1 Web Ontology
Language Structural Specification and Functional-Style Syntax. Technical report, W3C, 2006. http:
//www.w3.org/Submission/owl11-owl\ specification/.

[Niemela & Simons 1997] I. Niemelä and P. Simons. Smodels – an implementation of the stable model
and well-founded semantics for normal logic programs. In Proceedings of the 4th International
Conference on Logic Programming and Nonmonotonic Reasoning, Lecture Notes in Artificial
Intelligence, volume 1265, 420-429, Dagstuhl, Germany, July 1997

[Nute 1994] Donald Nute. Defeasible Logic. In Handbook of Logic in Artificial Intelligence and Logic
Programming, Volume 3: Nonmonotonic Reasoning and Uncertain Reasoning, 353-395, Oxford
University Press, 1994

[Patel-Schneider et al. 2004] Peter F. Patel-Schneider, Patrick Hayes, and Ian Horrocks. OWL Web
Ontology Language Semantics and Abstract Syntax. W3C Recommendation 10 February 2004.
Technical report, W3C, 2004. http://www.w3.org/TR/owl-semantics/.

[PENG-Nutshell] PENG in a Nutshell. Macquarie University, Australia, 2 January 2003,
http://www.ics.mq.edu.au/~rolfs/peng/nutshell.html

[Pratt-Hartman 2003] Ian Pratt-Hartmann. A two-variable fragment of English. Journal of Logic,
Language and Information, 12(1):13–45, 2003.

[Pratt-Hartmann & Third 2006] I. Pratt-Hartmann, A. Third. More Fragments of Language. Notre Dame
Journal of Formal Logic. Volume 47, Number 2. 2006

[Przymusinski 1991] Teodor C. Przymusinski. Stable Semantics for Disjunctive Programs. In New
Generation Computing, volume 9, number 3/4, 401-424, 1991

[Rector et al. 2004] Alan L. Rector, Nick Drummond, Matthew Horridge, Jeremy Rogers, Holger
Knublauch, Robert Stevens, Hai Wang, and Chris Wroe. OWL Pizzas: Practical Experience of
Teaching OWL-DL: Common Errors & Common Patterns. In Enrico Motta, Nigel Shadbolt, Arthur
Stutt, and Nicholas Gibbins, editors, Engineering Knowledge in the Age of the Semantic Web, 14th
International Conference, EKAW 2004, volume 3257 of Lecture Notes in Computer Science, pages
63–81. Springer, October 5–8th 2004.

[Schwertel 2003] U. Schwertel. Plural Semantics for Natural Language Understanding: A Computa–

 Page 33 of 33

tional Proof-Theoretic Approach. PhD thesis. University of Zurich. 2003

[Schwitter & Tilbrook 2004] Rolf Schwitter and Marc Tilbrook. Controlled Natural Language meets the
Semantic Web. In S. Wan A. Asudeh, C. Paris, editor, Australasian Language Technology Workshop
2004, pages 55–62, Macquarie University, December 2004.

[Schwitter et al. 2003] Rolf Schwitter, Anna Ljungberg, David Hood. ECOLE: A Look-ahead Editor for
a Controlled Language. In Proceedings of EAMT-CLAW03, Controlled Language Translation, Dublin
City University, 141-150, 2003

[Schwitter & Tilbrook 2006] Rolf Schwitter and Marc Tilbrook. Let’s Talk in Description Logic via
Controlled Natural Language. In Logic and Engineering of Natural Language Semantics 2006,
(LENLS2006), Tokyo, Japan, June 5–6th 2006.

[Sowa 2004] John F. Sowa. Common Logic Controlled English. Technical report, 2004. Draft, 24
February 2004, http://www.jfsowa.com/clce/specs.htm.

[Syrjanen 2000] Tommi Syrjänen. Lparse 1.0 User's Manual. 2000.
http://www.tcs.hut.fi/Software/smodels/lparse.ps

[Thompson et al. 2005] Craig W. Thompson, Paul Pazandak, Harry R. Tennant. Talk to Your Semantic
Web. In IEEE Internet Computing, 9(6):75-79, 2005

