
CocoViz: Supported Cognitive Software Visualization

Sandro Boccuzzo and Harald C. Gall
Department of Informatics, University of Zurich, Switzerland

{boccuzzo, gall}@ifi.unizh.ch

Abstract

As software evolves and becomes more and more complex,
program comprehension arises as a major concern in soft-
ware projects. The amount of data and the complexity of
relationships between the entities are unmanageable for en-
gineers without effective tool support.

In this paper, we demonstrate how CocoViz1 can help un-
derstanding software in a quick and intuitive manner. Some
of the implemented approaches have been presented inde-
pendently before[1]. However, in CocoViz we combine them
in an intuitive and easy to use manner.

1 Introduction

The main contribution is an application we call CocoViz
that software engineer take to inspect an evolving software
system and find abnormalities. CocoViz uses cognitive
shapes [1] compared to more abstract graphical represen-
tation used in approaches such as parallel coordinates [3].
Furthermore, we improve on the static polymetric views [4]
with 1) an intuitive, interactive approach to the filtering of
non relevant elements; 2) a normalization feature allowing
the representation of well-designed classes as well-shaped
cognitive metaphors (e.g., a well proportioned house), and
therefore enabling comparability of projects through visu-
alization even if the analyzed contextes differ substantially.

In the following, we describe our current implementation
of CocoViz including the key visualization and the navi-
gation concepts used to map software metrics to cognitive
metaphors.

2 CocoViz Visualization

CocoViz implements concepts to improve the mapping
of particular metrics to graphical elements following cog-
nitive metaphors. Such metrics mapping has already been
successfully applied in the RelVis approach [5] and in Poly-
metric Views by Lanza et al. [4].

1This work was partially supported by the Hasler Foundation (CH).

Dynamic Selection allows to limit the context of interest to
certain software entities (e.g., only potential God Classes -
left of Fig. 1a). The context is dynamically arranged based
on predicates that define the characteristics of the entities.
Metrics Clusters represent a set of metrics that together fa-
cilitate the visual interpretation of a software system. We
implemented them as preset mappings within our Software
Metrics Configurator. This offers an easy way to apply a
metric cluster to different visualizations and at the same
time allows a cluster to be enhanced or adjusted with other
metrics to support additional analyses.
Software Metrics Configurator is used to deal with ade-
quate metrics combinations and layouts. Similar to an audio
mixers pitcher, where different audio sources are stretched
or condensed to bring them in tune, we use the configurator
to adapt the values of the mapped metrics to meet needs of
a specific project. With such a configuration, well-shaped
entities of the software are represented as a well-shaped
glyphs. This concept also enables comparability of projects
through visualization even if the analyzed context differ.
Software Visualization Mixer (SV Mixer) adopts concepts
of an audio mixer for software visualization. Audio mixers
process the level, tone, and dynamics of audio signals with
equalizers, filters, limiters, and faders before sending the
result to an amplifier. Our software visualization mixer pro-
cesses the particular software metrics with filters, normal-
izers, and transformers before composing a visualization.
The idea is to allow for the quick adjustment of the metrics
to adapt the visualization for the analysis goal at hand.

To avoid information overload we use a simple filtering
method to specify an interval of interest for every mapped
metric (Fig. 1a bottom right). The sliders allow to quickly
select the interval of interest e.g., the highest or lowest 33%
of elements. The threshold value for every mapped metric
is currently calculated via linear regression (but not limited
to).
Metaphors or Glyphs are visual representations of soft-
ware metrics. They are generated out of a group of vi-
sual representations together with the corresponding met-
rics mapping. The mapped metric values specify the ap-
pearance of the glyphs. CocoViz uses simple and well-



Figure 1. a) CocoViz Window with Dynamic Selection, Visualization, SV-Mixer b) Element Inspector

known graphical elements familiar from daily life so that
a viewer can quickly distinguish a well shaped glyph from
a deformed one. (Fig. 1a shows the full Mozilla 1.7 open
source project program code comprised of approx. 1.7 mil-
lion lines of code with software entities drawn with the
house metaphor - detailes of the case study can be found
in [1]).
Tagging Glyphs and Visualization States in CocoViz im-
plement concepts to preserve visualization states for later
analysis. While navigating within a visualization, relevant
aspects can be tagged. The remembered aspects can then
later be analyzed and shared within a team. Tagging while
dynamically interacting in a view allows one to store the in-
teracting trail and therefore prevents engineers from getting
lost within the visualization. Furthermore such a function-
ality allows one to use other visualizations and further ex-
amine the marked entities. Besides tagging, we can store
the actual view in a snapshot.
Element Inspector gives detailed informations about the
selected software entity (Fig. 1b for example, various met-
rics, such as complexity, lines of code, etc. and their evolu-
tion over time.

3 Conclusions

With CocoViz, we implemented a tool that supports the
perception of relevant aspects in evolved software projects.
The software visualization mixer, adapts the idea of an au-
dio mixer to software visualization. With this mixer, metrics
and their respective thresholds can be interactively config-
ured. This allows to adapt the visualization to the analysis

task at hand. Especially important is the capability to filter
out irrelevant aspects to avoid information overload. The
visualizations implemented by CocoViz are based on the
concept of cognitive perceivable metaphors. A metaphor
maps the metric values of the analyzed software to a visual
representation, such as a house.

By defining a well-shaped object known to the observer,
such as a well proportioned house, deviations from a sound
design can be intuitively recognized. The configuration of
such a reference object is done using the metrics congurator
to map the software metrics to the attributes of the house,
e.g., lines of code to the height of the body and complex-
ity to the width of the roof. With this normalized house in
place, houses that are out of shape can be recognized easily
and can then be further examined.

References

[1] S. Boccuzzo and H. C. Gall. Cocoviz: Towards cognitive
software visualization. In Proc. IEEE Int’l Workshop on Vi-
sualizing Softw. for Understanding and Analysis, 2007.

[2] P. Dugerdil and S. Alam. Evospaces: 3d visualization of soft-
ware architecture. In Proc. IEEE Int’l Conf. on Softw. Eng.
and Knowledge Eng., 2007.

[3] A. Inselberg and B. Dimsdale. Parallel coordinates: a tool for
visualizing multi-dimensional geometry. In Proc. IEEE Conf.
on Visualization, pages 361–378, 1990.

[4] M. Lanza and S. Ducasse. Polymetric views — a lightweight
visual approach to reverse engineering. IEEE Trans. on Softw.
Eng., 29(9):782–795, 2003.

[5] M. Pinzger, H. Gall, M. Fischer, and M. Lanza. Visualizing
multiple evolution metrics. In Proc. ACM Symp. on Softw.
Visualization, pages 67–75, 2005.


