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Abstract. Business process models and object life cycles can provide
two different views on behavior of the same system, requiring that these
models are consistent with each other. However, it is difficult to reason
about consistency of these two types of models since their relation is
not well-understood. We clarify this relation and propose an approach
to establishing the required consistency. Object state changes are first
made explicit in a business process model and then the process model
is used to generate life cycles for each object type used in the process.
We define two consistency notions for a process model and an object life
cycle and express these in terms of conditions that must hold between a
given life cycle and a life cycle generated from the process model.
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1 Introduction

Business process models are nowadays a well-established means for representing
business processes in terms of tasks that need to be performed to achieve a certain
business goal. In addition to tasks, business process models also show the flow
of business objects in a process. Complete behavior of business objects is usually
modeled using a variant of a state machine called an object life cycle (see e.g. [5]).
Object life cycle modeling is valuable at the business level to explicitly represent
how business objects go through different states during their existence.

There are situations where it is beneficial or even required to use both process
models and object life cycles. Consider an insurance company that uses business
process models for execution and also maintains explicit business object life
cycles. Life cycles may serve as a reference to employees for tracking progress
of business objects. For instance, in response to an enquiry about the state of a
submitted claim, an employee can explain the current claim state to the customer
in the context of the entire claim life cycle that shows all the possible states and
transitions for claims. Another example is encountered in compliance checking,
where existing business process models are benchmarked against best practice
models (e.g. ACORD [2] and IFW [4]) given as object life cycles. Given a best
practice object life cycle, it is required to ensure that an existing business process
model is compliant with it.



When both business process models and object life cycles are used, it is re-
quired that these models are consistent with each other. Inconsistencies can lead
to unsatisfied customers or compliance violations. For example, a customer may
be discontent if he/she is incorrectly informed about the processing that still
needs to be done before his/her claim is settled. On the other hand, inconsisten-
cies between an existing process model and a best practice object life cycle lead
to compliance violations that can cause legal problems for a company.

Consistency of object-oriented behavioral models, such as scenarios and state
machines, has already been extensively studied [9, 10, 16, 18]. However, the re-
lation between business process models and object life cycles is not yet well-
understood, which makes it difficult to reason about their consistency.

In this paper, we present our approach to establishing consistency of a busi-
ness process model and an object life cycle. In Section 2, we introduce subsets
of UML2.0 Activity Diagrams (UML AD) and State Machines (UML SM) [3]
chosen for business process and object life cycle modeling, respectively. In Sec-
tions 3 and 4, we describe our proposed solution that comprises a technique for
object life cycle generation from a process model and two consistency notions
that can be checked using the generated life cycles. Finally, we discuss related
work in Section 5, and conclusions and future work in Section 6.

2 Business Process Models and Object Life Cycles

UML AD is one of the most widely used languages for business process modeling.
We consider process models in a subset of UML AD that includes action nodes
and control nodes (decision, merge, fork, join, start3, flow final and activity final
nodes). All these nodes can be connected with control and object flows. Input
and output pins are used to model connection points that allow object flows
to be attached to nodes, with the exception of start nodes that may not have
outgoing object flows. Each object pin has an inState attribute that allows one
to specify the possible states of objects passed through this pin. Data inputs
and outputs of processes are modeled using input and output parameters. Our
experience with case studies has shown that in practice most process models are
created using this subset of UML AD. Therefore, currently we do not consider
more advanced elements such as loop nodes and parameter sets, and further
assume that hierarchy in process models can be flattened. The reader is referred
to the UML AD specification [3] for further information about the language.

Figure 1 shows an example business process model for a Claims handling
process from the insurance industry that is represented in the chosen subset of
UML AD. In this diagram, we can see that the Claims handling process starts
when a Settlement in state Requested is received by the process. Next, a new
Claim object is created in state Registered by the Register new claim action.
The Claim further goes through a number of processing steps that change its
state and at the end of the process it is either found to be fraudulent, or it is
rejected or settled and subsequently closed.
3 These are called initial nodes in UML AD, but renamed here to avoid confusion with

initial states of object life cycles introduced later.
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Fig. 1. Claims handling business process model

In Figure 1 we use a slightly tailored graphical representation of the chosen
UML AD subset. We indicate object type above an object flow and not above
each pin, because we make a simplifying assumption that an object flow can only
connect two pins of the same type. We also assume that given two connected
object pins (output pin and input pin), the states associated with the output
pin are accepted by the input pin, i.e. the set of states of the output pin is a
subset of the set of states of the input pin. In Figure 1 we indicate the states
associated with the output pin on the connecting object flow.

Associating states with object pins is optional in UML AD, but required
in our approach, as this explicit information about object states allows us to
establish a relation between a business process model and object life cycles.

For modeling object life cycles, we use a subset of the UML SM language. This
subset comprises states, with one initial state and one or more final states, and
transitions connecting the states. Transitions that are initiated by a particular
triggering event can be labeled with a trigger label. As our main application is
in a business environment, we choose a simple notation for object life cycles,
without considering composite and concurrent states of state machines.

Figure 2 shows two example life cycles for Claim and Settlement object types.
In (a), it can be seen that all objects of type Claim go through state Registered
directly after the initial state and pass through either Fraudulent or Closed
states before they reach a final state. In (b), it is shown that after a Settlement



is Authorized, the payment for the Settlement can either be made in full or in a
number of installments.
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Fig. 2. Object life cycles: (a) Claim (b) Settlement

In this paper we use the following definition for an object life cycle, adapted
from the definition of a UML State Machine in [14]:

Definition 1 (Object life cycle). Given an object type o, its object life cycle OLCo =
(S, sα, SΩ , L, T ) consists of a finite set of states S, where sα ∈ S is the initial state
and SΩ ⊆ S is the set of final states; a finite set of trigger labels L; a set of labeled
transitions T ⊆ S×L∪⊥×S, where for each transition t = (s1, l, s2), s1 is the source
state and s2 is the target state.

We assume that an object life cycle is well-formed when the initial state has
no incoming transitions, a final state has no outgoing transitions, and all other
states have at least one incoming and at least one outgoing transition.

The Claims handling process model in Figure 1 and the life cycles in Figure 2
are concerned with behavior of the same object types: Claim and Settlement.
We need to define what it means for these models to be consistent and how
to check their consistency. According to an existing methodology for managing
consistency of behavioral models [6, 8], the consistency problem must first be
identified by determining the overlap between the given models. Then, model
aspects that contribute to the consistency problem must be mapped into a suit-
able semantic domain, where consistency conditions can be defined and checked.

An overview of our proposed solution is shown in Figure 3. In Step 1, we make
the overlap between a business process model and object life cycles explicit by
adding object state information to the process model using the inState attribute
of object pins (as in Figure 1). Next in Step 2, we generate a life cycle for each
object type used in the process. This generation step takes us to the UML SM as
the semantic domain, where we can then define and check consistency between
the generated life cycles and the given ones (Step 3), which in turn allows us to
determine the consistency between the business process model and the given life
cycles (Step 4). The next two sections describe the generation of life cycles from
a process model and the proposed consistency notions, respectively.
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3 Generation of Object Life Cycles

An object life cycle generated from a given business process model for a particular
object type should capture all possible state changes that can occur for objects
of this type in the given process. Initial and final states also need to be identified
for each generated life cycle.

Given a business process model P where each object pin is associated with
a non-empty set of states, we generate an object life cycle for each object type
used in P . For an object type o, we first create an object life cycle OLCoP

that
contains only the initial state. Then, for each unique state associated with object
pins of type o, a state is added to OLCoP

. Transitions and final states are added
to OLCoP according to the generation rules shown in Figure 4.
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Each row in Figure 4 represents a high-level generation rule, where the left-
hand side shows patterns that are matched in the process model P and the right-
hand side shows what is created in the generated object life cycle OLCoP

. Con-
sider for example Rule 2 (stateChange), which is applicable when some ac-
tion A has input and output object pins of type o. When states of the output
object pin are not the same as those of the input object pin, we deduce that
action A changes the state of objects of type o. In OLCoP

, a transition from each
incoming state to each possible outgoing state for objects of type o is added, for
all cases where the outgoing state is different from the incoming state. These
transitions are labeled A to indicate that they are triggered during the execu-
tion of this action. In Rules 5 and 6, the generated transitions are given special
labels (STARTP and ENDP ) to indicate that these transitions are triggered as
the process begins and ends execution, respectively. The rules ensure that the
generated object life cycles are well-formed, provided that all object pins in the
given process model are associated with non-empty state sets. All the generation
rules are explained in detail in a longer version of this paper [13].

Figure 5 shows life cycles for Claim and Settlement object types (right-hand
sides of (a) and (b), respectively) generated from the Claims handling process
model in Figure 1 according to the generation rules presented in this section.

In the next section we show how generated object life cycles are used for
defining consistency conditions to establish whether a given process model is
consistent with a given life cycle for a particular object type.

4 Consistency of Object Life Cycles

We identify two consistency notions for a given business process model and
an object life cycle: life cycle compliance and coverage. A given process model
is compliant with a given life cycle for a particular object type, if the process
initiates only those state transitions for objects of this type that are defined in
the given life cycle. Compliance allows objects of the given type to traverse only
a part of their given life cycle in the process. On the other hand, coverage requires
that objects traverse the entire given life cycle in the process, but additional
transitions not defined in the given life cycle may also be incurred in the process.

Depending on the circumstances, one or both of these consistency notions
may be required to hold. For example, if the Claims handling process (Figure 1)
is used for execution and the Claim life cycle (Figure 2 (a)) is referenced by em-
ployees for interpreting the state of Claim objects, both compliance and coverage
must hold. If the process is not compliant with the life cycle and takes Claim
objects into states not shown in the life cycle or performs different transitions,
this will disconcert the employees. On the other hand, customers will be incor-
rectly informed and thus unsatisfied if the process does not provide a coverage of
the life cycle. An example of this occurs if a customer expects a Claim in state
Granted to eventually reach state Settled according to the given life cycle, but
this never happens in the Claims handling process.

We next give more precise definitions of compliance and coverage, providing
consistency conditions that must hold between a life cycle generated from a



process model for a particular object type and a given life cycle for that type.
We first give two definitions that simplify the expression of consistency conditions
that follow. Definitions 2 and 3 can be applied to any two object life cycles:
OLCo = (S, sα, SΩ , L, T ) and OLC ′o = (S′, s′α, S′Ω , L′, T ′).

Definition 2 (State correspondence). A state correspondence exists between a state
s ∈ S and a state s′ ∈ S′, if and only if one of the following holds: s = s′, s = sα and
s′ = s′α, or s ∈ SΩ and s′ ∈ S′Ω.

Definition 3 (Transition correspondence). A transition correspondence exists be-
tween a transition t = (s1, s2) ∈ T and a transition t′ = (s3, s4) ∈ T ′ if and only if
there are state correspondences between s1 and s3, and between s2 and s4.

In Definition 2, we define a state correspondence between two states in differ-
ent object life cycles if the states are equal (i.e. have the same name), if they are
both initial states or they are both final states. In Definition 3, we define a tran-
sition correspondence between two transitions if there are state correspondences
between their sources states and between their target states.

In Definitions 4 and 5, P is a given process model, OLCo = (S, sα, SΩ , L, T )
is a given life cycle for object type o and OLCoP

= (SP , sαP
, SΩP

, LP , TP ) is the
life cycle generated from P for o.

Definition 4 (Life cycle compliance). A business process model P is compliant
with an object life cycle OLCo if and only if for each transition tP ∈ TP that is not
labeled STARTP or ENDP , there exists a transition t ∈ T such that there is a corre-
spondence between tP and t.

According to Definition 4, life cycle compliance requires that each transition
in the generated object life cycle has a transition correspondence to some transi-
tion in the given life cycle. However, there are two exceptions to this consistency
condition: transitions labeled STARTP and ENDP in the generated object life
cycle. These transitions are generated when the given process model P has in-
put or output parameters of object type o. We do not place restrictions on these
transitions, thus allowing objects of type o to be received by and passed from
the given process in any state and not necessarily a state following the initial
state or preceding a final state.

Definition 5 (Life cycle coverage). A business process model P provides a coverage
of an object life cycle OLCo if and only if all of the following conditions hold between
OLCo and OLCoP : (a) For each transition t ∈ T there exists a transition tP ∈ TP such
that there is a correspondence between t and tP , (b) There are no transitions labeled
STARTP or ENDP in TP .

Condition (a) in Definition 5 requires every transition in the given object life
cycle to have a transition correspondence to some transition in the generated life
cycle. Furthermore, condition (b) requires that the given process does not have
input or output parameters of the given type, hence objects of this type must
be created and reach their final states within the process boundaries.



We next illustrate the notions of life cycle compliance and coverage using
examples. Figure 5 shows the given object life cycles for the Claim and Set-
tlement object types on the left and the object life cycles generated from the
Claims handling process on the right. Transitions that have a correspondence
between them are marked with the same number, while transitions without a
correspondence are marked with a cross.
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Fig. 5. Consistency of Claim and Settlement object life cycles

The Claim life cycles in Figure 5 (a) satisfy all the consistency conditions
for life cycle coverage. Condition (a) from Definition 5 is satisfied since all the
transitions in the given Claim life cycle have a correspondence to transitions
in the generated Claim life cycle, and condition (b) is satisfied since the gener-
ated Claim life cycle does not contain transitions labeled STARTP or ENDP .
Therefore, the Claims handling process provides a coverage of the given Claim
life cycle. However, the Claims handling process is not compliant with this life
cycle, due to transitions in the generated life cycle without transition correspon-
dences to transitions in the given life cycle. Figure 5 (b) shows that the Claims
handling process is compliant with the given Settlement life cycle, but does not
provide a coverage for it.

5 Related Work

A related research area is object life cycle inheritance, where consistent spe-
cialization of behavior is required (see e.g. [5, 11, 14]). Currently, our main goal



is to establish a link between business process models and object life cycles, and
life cycle inheritance is not in focus. However, sometimes it may be required that
the relation between a given process model and an object life cycle is a certain
type of specialization. Thus, it would be beneficial for our approach to make use
of the consistency notions already defined for life cycle inheritance.

Another related area is synthesis of state machines from scenarios [18, 16],
where scenario specifications are used to generate state machines for the ob-
jects that participate in these scenarios. There are several significant differences
between process models and scenarios however, e.g. process models do not gen-
erally describe alternative scenarios and show the flow of objects between tasks
rather than interaction between objects via messages modeled in scenarios. In
state machine synthesis, it is possible that a synthesized state machine contains
so-called implied scenarios [15, 12], i.e. behaviors that are not valid with respect
to the original scenario specifications. A similar phenomenon can occur in our
life cycle generation step, which we plan to investigate further as future work.

Our consistency notions are related to the concepts of equivalence and re-
finement of formal process specifications [7]. However, as discussed in [17], it is
challenging to apply the existing definitions to languages such as UML AD and
SM, as they do not have an agreed formal semantics. As future work we intend
to establish a relation of our consistency notions to the existing equivalence and
refinement definitions and investigate which are most appropriate in practice.

6 Conclusion and Future Work

Consistency of business process models and object life cycles needs to be
ensured in situations where process models manipulate business objects with an
explicitly modeled life cycle. In this paper we have presented our approach to
establishing this consistency. Our main contributions include a precise definition
of two consistency notions, namely life cycle compliance and coverage, and a
supporting technique for the generation of object life cycles from process models
that enables consistency checking. With regards to tool support, we have devel-
oped a prototype as an extension to the IBM WebSphere Business Modeler [1]
that allows us to capture object states in business process models, generate life
cycles from process models and check the consistency conditions.

As future work, we intend to validate the proposed approach using a larger
case study. We also plan to extend the approach to enable compliance and cov-
erage checking for several process models that use objects of the same type and
a life cycle for this type. Further future work includes an investigation of im-
plied scenarios in the context of our life cycle generation and establishing a clear
relation between our proposed consistency notions and the existing equivalence
and refinement definitions.
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