The NEPOMUK Project - On the Way to the Social
Semantic Desktop

Tudor Groza, Siegfried Handschuh, Knud Moéller
(DERI, National University of Ireland, Galway, Ireland
tudor.groza@deri.org, siegfried.handschuh@deri.org, knud.moeller@deri.org)

Gunnar Grimnes, Leo Sauermann
(DFKI Kaiserslautern, Germany
gunnar.grimnes@dfki.de, leo.sauermann@dfki.de)

Enrico Minack
(L3S Hannover, Germany, minack@I13s.de)

Mehdi Jazayeri, Cédric Mesnage
(Faculty of Informatics, University of Lugano, Switzerland
mehdi.jazayeri@unisi.ch, cedric.mesnage@lu.unisi.ch)

Gerald Reif
(University of Zurich, Switzerland, reif@ifi.unizh.ch)

Rosa Gudjonsdéttir
(Royal Institute of Technology, KTH, Sweden, rosag@kth.se)

Abstract: This paper introduces the NEPOMUK project which aims to create a
standard and reference implementation for the Social Semantic Desktop. We outline
the requirements and functionalities that were identified for a useful Semantic Desktop
system and present an architecture that fulfills these requirements which was acquired
by incremental refinement of the architecture of existing Semantic Desktop prototypes.
The NEPOMUK project is primarily motivated by three real-life industrial use-cases,
we briefly outline these and the processes used to extract required functionalities from
the people working in these areas today, and we present a selection of typical tasks
where the Semantic Desktop could be of benefit.

Key Words: Semantic Desktop, Personal Information Management, Semantic Mid-
dleware

Category: H.3.7, H5.4

1 Introduction

In traditional desktop architectures, applications are isolated islands of data —
each application has its own data, unaware of related and relevant data in other
applications. Individual vendors may decide to allow their applications to inter-
operate, so that e.g. the email client knows about the address book. However,
today there is no consistent approach for allowing interoperation and a system-
wide exchange of data between applications. In a similar way, the desktops of

different users are also isolated islands - there is no standardized architecture for
interoperation and data exchange between desktops. Users may exchange data
by sending emails or upload it to a server, but so far there is no way of seamless
communication from an application used by one person on their desktop to an
application used by another person on another desktop.

The problem on the desktop is similar to that on the Web. On the Web we
are faced with isolated data islands, and also as on the desktop there is not yet
a standardized approach for finding and interacting between applications.

The Social Semantic Desktop (SSD) paradigm adopts the ideas of the Se-
mantic Web, which offers a solution for the Web. Formal ontologies capture both
a shared conceptualization of desktop data and personal mental models. RDF
serves as common data representation. Web Services - applications on the Web -
describe their capabilities and interfaces in a standardized way and thus become
Semantic Web Services. On the desktop, applications (or rather: their interfaces)
will therefore be modeled in a similar fashion. Together, these technologies pro-
vide a means to build the semantic bridges necessary for data exchange and
application integration. The SSD will transform the conventional desktop into
a seamless, networked working environment, by loosening the borders between
individual applications and the physical workspace of different users.

The aim of the NEPOMUK project!, described in this paper, is to provide
a standardized description of a SSD architecture, independent of any particu-
lar operating system or programming language. Reference implementations will
show the feasibility of the standard. The paper is structured as follows: we start
with Section 2 by describing the engineering cycle we follow in the project. Then
we detail in Section 3 scenarios captured from real-world case-studies and in Sec-
tion 4 a list of functionalities extracted from these scenarios. Section 5 depicts
the current version of the NEPOMUK SSD Architecture, while Section 6 shows
related approaches for building the SSD. In Section 7 we state our conclusions.

2 NEPOMUK Engineering Cycle

The NEPOMUK project relies heavily on existing software developed by the
partners. On the other hand, usability research is being held with the case studies
partners by interviewing potential users of the SSD. This specific set up of the
project led us to develop our engineering cycle (Figure 1). This cycle represents
the way we intend to merge the existing technologies and the needs from users.

Clockwise, Figure 1 shows the forward engineering cycle. We analyzed the
end-user’s intended usage of the SSD, studied the different use cases and formu-
lated them into scenarios. We generalized the individual scenarios and extracted
the common functionalities that make up the SSD. These functionalities formed

! http://nepomuk.semanticdesktop.org/

Abstract \
Architecture Recoyer
Construct Specity N\
Functionalities

Generalize

Case Study Test ﬂ
Hacking

I Reverse Engineering

Specifications

design x

Classify

g .
‘\

Implementation

Figure 1: NEPOMUK Engineering Cycle

the basis to define the reference architecture which in turn lead to the service
specification and implementation that is tested by the end-users. On the other
hand, partners already started to hack components that are likely to be needed
by the SSD or had component developed before the NEPOMUK project started.
Therefore, we reverse engineered these components to get their specifications and
used the gained experience when defining the architecture.

The construction of the architecture of the SSD is therefore the combination
of different parts, (1) the requirements and objectives from the vision of the SSD
driving the NEPOMUK project, (2) the functionalities from user studies (for-
ward engineering), and (3) the service specifications of existing implementations
(reverse engineering). The overlaps between these areas give us confidence in the
needs. Combining these three sources results in a complete architecture. Thus
the architecture represents a shared understanding of all partners involved in
the project and we see it as a roadmap towards the realization of the SSD.

In the next sections we present some of the scenarios which we considered as
being particularly representative for the SSD paradigm, then we show the list of
functionalities abstracted from the user study material.

3 Scenarios

The study of user needs regarding collaboration on the SSD is a major goal of
the NEPOMUK project. User studies were carried out in the project at the case
study partner sites, which are companies and research labs working in the area
of business software, biomedical research, Linux development, and management
consulting. The type of work performed varies between the case study partners,
but what they have in common is the fact that the employees are knowledge

workers, receiving, interpreting and structuring information on a daily basis.
The purpose of the user studies was to understand the work environment in or-
der to develop a SSD that meets the knowledge workers’ needs and requirements.
40 contextual interviews [4] and seven video brainstorming workshops [9] were
performed with employees at the different partner sites. To document the re-
sulting user requirements 14 personas and 40 usage scenarios [6, 7] were created,
illustrating the user needs, desires and expectations on the SSD. Personas are
fictitious persons that represent different user groups and are always based data
collected in user studies. A persona and a related scenario where the persona
uses the SSD that we will develop, is an effective way to illustrate how the users
want the SSD to operate. In this section we summarize a collection of the usage
scenarios with the help of our primary personas.

Dirk gets task from Claudia. Claudia is working on a project deliverable
and she identifies tasks to be done. She adds the tasks to the project and assigns
them to Dirk. Dirk is notified of his new tasks and he accepts the responsibility
for some of the tasks and Claudia is notified. Dirk realises that some tasks require
more specific knowledge so he declines them and suggests allocating them to
Martin. Claudia reassigns the tasks to Martin.

Josephine follows-up the project plan. Josephine is following up on an
active project she is administrating. It involves Karen and a few other trainers.
She accesses the project plan and browses to see if everything is on schedule.
The project plan is connected to the trainers calendars and all changes in their
calendar get fed directly into the project plan.

Karen edits a document with another person. Karen is to give a pre-
sentation for an existing client in a couple of days. The presentation is new and
the purpose is to sum up a series of training programs she has performed for the
client. When she is working on a slide she can see a new graphical layout sug-
gestion by Josephine who is concurrently working on the presentations graphic
form. The system allows them to collaborate, make changes, discuss and explain
their intentions and thoughts.

Karen shares experience. Karen finds the time to take care of some ad-
ministration issues. She just finished a project successfully and feels that the
experiences should be shared with her colleagues. She opens the course material,
marks it Shared, and adds a few keywords to make sure that people interested
find the material.

4 Functionalities

In order to integrate the requirements expressed in the scenarios and other ma-
terials produced in the case studies we need to use a more formal approach.
All the material was processed by a group of members of the project coming

from different areas: developers, case study partners, architects and usability
designers. The results of this workshop is an homogeneous list of functionalities
required to satisfy the scenarios. For each functionality, we provide a name, a
short textual description, inputs, outputs and the relevant material in which this
functionality was discovered. We grouped these into five cluster:

Search enables users to search for resources amongst different sources (either
locally or on the network). Users also need to find relevant resources by querying
by example.

Desktop. On their desktop, users manage resources, they use legacy ap-
plications to either create or edit documents therefore NEPOMUK needs to
integrate these applications. NEPOMUK should provide a notification manage-
ment system for the user to receive informations regarding shared resources and
configure the ways she is notified. Even when offfine, users should be able to
access relevant resources transparently. We see desktop sharing as the ability to
share applications or windows.

Profiling by logging the user’s activity, NEPOMUK should be trained to
behave according to the specific user’s needs. This automatic behaviours must
be tailorable and include annotations and information regarding trust with other
users or sources(i.e., if a user do not trust an information source, he should not
receive results from this source).

Data Analysis. To ease semantic annotation of unstructured documents,
such as text, users can use keyword extraction. Search results might need to be
rearranged using sorting and grouping. The use of reasoning provides with new
information.

Social. At the social level, the management of groups and users enhances
social interaction and ease resource sharing. Access rights management tackles
with the security needs. Users can publish and subscribe to relevant stream of
information, such as the modifications made to a particular resource or the
results of a search.

The discussion around these functionalities lead to the architecture which in-
tegrates the user requirements and the SSD vision. This architecture is discussed
in the following section.

5 Architecture

In this section we present an overview of the NEPOMUK architecture. The
architecture, as show in Figure 2, is organized in three layers. The NEPOMUK
SSD is made up by the user’s individual desktops which are organized in a peer-
to-peer (P2P) fashion. To support the communication between the peers, the
lowest layer is the Network Communication layer. This layer provides an Fvent-
based System, which is responsible for the distribution of the events on between

Web Blog Office . CAD Tool
§3§ ’ Browser Authoring Tool ’ Applications ’ IM Glient ‘
. . o
Applications % g :
g3 Loca Pl ’ Wiki ‘ ’ Email Client ’ ‘ ’ ‘
Services
. Community . T Task
;. g SOAP | Data Wrapping | | | | Mapping |E,,,M?ﬂ?9§m‘?@,,,
7] = =
|| ® . Access User Context Publish/
NEPOMUK & 2 | Jexiinaly | | Control || Subscribe
Semantic g || 2| ose
A = Data Services
Middleware s||E
$ 8 Storage Search
bBUS Local | Distributed Local | Distributed
Network P2P Syst M ing Syst Event-based Syst
. . ystem lessaging System vent-based System
Communication | | | | | |

Figure 2: Layered NEPOMUK Architecture.

the NEPOMUK peers. The events carry an RDF graph as payload describing
the cause of the event. The Messaging System routes the messages to receiver.
The Peer-to-Peer File Sharing System enables the shared information space. It
will be based on GridVine [2]. GridVine is based on P-Grid [1] and provides a
distributed index which supports RDQL search queries.

On top of the Network Communication Layer, the NEPOMUK Semantic
Middleware provides the core services the NEPOMUK SSD is made up from.
The goal of the NEPOMUK project is to propose a reference architecture for the
SSD that can be implemented on top of different operating systems such as MS
Windows, MacOS, and Linux. Hence, different communication techniques such
as SOAP over HTTP, OSGI?, or D-Bus® can be used for interaction between
the NEPOMUK services depending on the platform. Therefore, we decided to
use WSDL as communication technique and programming language independent
interface definition language to specify the service interfaces. The services have
to register at the Service Registry.

The Data Services are responsible to control the insertion, modification, and
deletion of resources on the NEPOMUK desktop. A resource can be a user, a
document, a calendar entry, an email, and so on. It provides a service to store
the RDF meta-data in the Local Storage. A resource and their RDF description

2 OSGi Alliance — http://www.osgi.org/
3 D-Bus — http://www.freedesktop.org/wiki/Software/dbus

can either be manually added to the NEPOMUK desktop or the Data Wrapper
or the Text Analysis service extracts the information form desktop applications
such as email clients of calendar applications. The Data Wrapper will be used
to extract meta-data form structured data sources (e.g., email headers, calendar
entries, etc.) and will be implemented based on Aperture [3]. The Text Analysis
service will be used to extract meta-data form unformatted text (e.g., email bod-
ies, text processor documents, etc.). For local queries and for offline working the
RDF meta-data is stored in the Local Storage. If a resource is shared with other
users in an information space, the meta-data is also uploaded to the distributed
index of the P2P file sharing system. The Search service can either issue a local
search in the local storage or a distributed search in the underlying P2P system.

Ideally only one ontology exists for a domain of interest such as contact
data, calendar events. In reality, however, we are faced with many ontologies of
(partly) overlapping domains (e.g., foaf and vCard for contact data). Therefore,
the NEPOMUK middleware provides a Mapping Service that can be used by
other middleware services and services in higher layers to translate RDF graphs
from a source ontology to a target ontology.

Actions a user performs on the shared information space have to be ap-
proved by the Access Control System. Depending on the group membership of a
user, maintained in the User/Group Management, the Community Management
grands the privileges to perform the action. The access rights, the user, and the
group data are stored as RDF graphs in the distributed index of the peer-to-peer
system. This data is encoded using the access right ontology and the user/group
ontology, which belong to the NEPOMUK core ontologies.

The NEPOMUK middleware logs the actions a user performs on the re-
sources on his desktop. The logged data is stored in the Local Storage and is
analyzed by the User Context Manager to capture the current working context
of the user. The working context of the user is used to suggest meaningful actions
to the user depending on the task a user is currently working on.

The Publish/Subscribe System allows users to subscribe to events in the
NEPOMUK system. The subscriptions are stored as SPARQL queries [10]
which are matched against the RDF payload of the events. When the subscrip-
tion, i.e., the SPARQL query, matches the event, the Messaging System looks
up the preferred notification media (e.g., email, instant messaging, SMS) and
delivers the messages. The Messaging System is further used for synchronous
and asynchronous communication between NEPOMUK users.

The NEPOMUK Middleware provides the core services of the NEPOMUK
architecture. These services can be accessed via the NEPOMUK API. An appli-
cation programmer can build usage specific services on top of the NEPOMUK
API. By using the functionality provided by the API, the programmer can im-
plement new functionality according to the end-users’ business requirements.

Hence, the basic set of services provided by the NEPOMUK API can be cus-
tomized and extended by businesses and organizations. For example, a company
might be interested in integrating Task Management system whereas another
might be interested in having document versioning support for resources. The
end-user specific services are shown in dashed boxes in Figure 2.

The top layer of the architecture is the presentation layer. It provides a user
interface to the services provided by the NEPOMUK desktop. The presentation
layer is built using the NEPOMUK API. Many desktop applications are possible
sources for resources that should be managed by NEPOMUK. Therefore, each
desktop application should integrate support for the NEPOMUK Middleware.
Since this assumption does not hold for most applications, we developed plug-ins
and add-ons to enable a seamless integration for popular applications such as the
MS Office Suite, which for example extract email or calendar data and adds them
as resources to the NEPOMUK desktop. However, with in the NEPOMUK
project we develop applications such as Wikis or Blog Tools that have generic
support for the SSD and build directly on tho of the NEPOMUK API.

In addition, the Knowledge Workbench is the central place to browse, query,
view, and edit resources and their meta-data. This way the Knowledge Work-
bench aims to replace current file management tools such as the File Explorer.
If the SSD is extended by usage specific services, the application programmer
has also to provide the corresponding user interface in the Presentation Layer.

6 Related Work

In the following we review the most important projects related to establishing
a SSD. These projects are coming from the research, business, as well as the
open-source community. After a brief general overview of each project, we want
to learn from the related work as the conclusion of this section.

Gnowsis Semanic Desktop. The first research project targeting a Seman-
tic Desktop system is the Gnowsis Semantic Desktop [12]. Its goal is to comple-
ment established desktop applications and the desktop operating system with
Semantic Web features, rather than replacing them, while primarily focusing on
Personal Information Management (PIM). The thesis addresses the problems of
how to identify and represent desktop resources in an unified RDF graph.

Haystack. A major research project concerning an integrated approach in
our field is Haystack [11]. Application-created barriers of information represen-
tation and accessibility are removed by simply replacing these applications with
Haystack’s word-processors, email client, image manipulation, instant messaging
and other functionality. Haystack was ground-breaking in terms of the dynamic
creation of user interfaces, but ended before establishing any standards.

Semex. Another relevant Personal Information Management tool is Semex
(SEMantic EXplorer) [8]. Semex concentrates on the problem of Reference Rec-

onciliation, meshing objects and relations seamlessly together. They combine
three measures for this approach being evaluated on one of the author’s private
dataset. In contrast, NEPOMUK will add more reconciliation algorithms from
the Semantic Web and evaluate the data integration in industry scenarios.

IRIS. The idea of the PIM system IRIS [5] is to have an integrated environ-
ment, similar to Haystack, but based on standard software, which is integrated
into one coherent interface, allowing to classify and display related information.
By today, the project lists only one publication introducing their approach.

Apogée. The Apogée project aims at building a framework to create En-
terprise Development Process-oriented desktop applications, independent from
vendor or technologies. Probably due to its status of an industrial project, it
aims at implementing state-of-the-art features, but not beyond.

All integrated Semantic Desktop systems faced similar problems. First prob-
lem is evaluation and verification of the ideas in industry settings. Most systems
like TRIS or Semex are not evaluated yet, they are only used by the developers
in self-experiments. With its case studies;, NEPOMUK will provide a testbed
to show the implications of the whole Semantic Desktop in both, industrial en-
vironments and open-source communities.

Second problem is that the projects do not consider collaborative work and
the interconnection of Semantic Desktops at all. They concentrate on a single
user scenario, whereas NEPOMUK also tackles collaborative knowledge work.

Last and probably most significant problem is integration. While for example
DBin shows the aspect of collaborative work, it does not connect to desktop
applications. Though Haystack provides a well evaluated user interface, it does
not re-use established Desktop applications users are used to, thus faces the user
with a new environment. Further, none of the projects established standards
which would increase interoperability and reusability.

Each system accommodates singular beneficial features, but also suffers from
flaws like usability problems, bad performance, or missing functionality. These
projects are designed as an integrated system, and despite the fact that most
prototypes are open-source, it is not straightforward to reuse components of
one for the other in order to amplify their features and extinguish their weak-
nesses. In contrast, NEPOMUK will establish a framework and standards so
that components can be reused and are interoperable, creating a better whole.

7 Conclusion

This paper has given a very brief overview of the motivations, goals and progress
of the NEPOMUK project. We have described the features and functionalities
that our vision of a Social Semantic Desktop requires, based on observation of
real knowledge-workers and their struggle with information integration using

today’s technology. Using an engineering process where we worked backwards
from the desired functionalities and requirements, while simultanously refined
a collection of existing Semantic Desktop research prototypes, we devised an
architecture for the Semantic Desktop. This architecture enabled us to build a
prototype featuring some of the required functionalities, and it is released as
open-source and is available for download from the NEPOMUK Web-site?.
The core aim of the NEPOMUK project is to specify an standard for Se-
mantic Desktop communication and processing. We are basing our work on well-
established standards of Web and Semantic Web technologies, and we hope that
our Semantic Desktop standards in turn will provide a fertile ground for future
projects. By having a flexible and easily extendible architecture we hope that
over the next years any developer looking to solve information integration prob-
lems on the desktop will look to NEPOMUK as a framework for their projects,
thus by the time the project is ending, NEPOMUK will have become a useful
entity in it’s own right, with an active community and untold possibilities.

References

1. K. Aberer, P. Cudré-Mauroux, A. Datta, Z. Despotovic, M. Hauswirth,
M. Punceva, and R. Schmidt. P-grid: a self-organizing structured p2p sys-
tem. SIGMOD Record, 32(3):29-33, 2003

2. K. Aberer, P. Cudré-Mauroux, M. Hauswirth, and T. V. Pelt. Gridvine: Build-
ing internet-scale semantic overlay networks. In 3th International Semantic Web
Conference ISWC 2004, pages 107-121. Springer Verlag, 2004.

3. Aperture a java framework for getting data and metadata, Last visited March
2007. http://aperture.sourceforge.net/

4. H. Beyer and K. Holtzblatt. Conteztual Design ? Defining Customer-Centered
Systems. Academic Press, San Diego.

5. A. Cheyer, J. Park, and R. Giuli. Iris: Integrate. relate. infer. share. In S. Decker,
J. Park, D. Quan, and L. Sauermann, editors, Proc. of Semantic Desktop Work-
shop at the ISWC, Galway, Ireland, November 6, volume 175, November 2005.

6. A. Cooper. The Inmates are Running the Asylum: Why High-Tech Products Drive
Us Crazy and How to Restore the Sanity. SAMS, Indianapolis, 1999.

7. A. Cooper and R. Reinman. About Face 2.0: The Essentials of Interaction Design.
John Wiley & Sons, 2003.

8. X. Dong and A. Y. Halevy. A platform for personal information management and
integration. In CIDR, pages 119-130, 2005.

9. E. Mackay, A. Ratzer, and P. Janecek. Video artifacts for design: bridging the
gap between abstraction and detail. In Designing interactive systems: processes,
practices, methods, and techniques, DIS ’00. ACM Pres, 2000.

10. E. Prud’hommeaux and A. S. eds. SPARQL query language for RDF. W3C Work-
ing Draft, 4. Octoberl 2006. http://www.w3.org/TR/rdf-sparql-query/

11. D. Quan, D. Huynh, and D. R. Karger. Haystack: A platform for authoring end
user semantic web applications. In International Semantic Web Conference, pages
738-753, 2003.

12. L. Sauermann. The gnowsis-using semantic web technologies to build a semantic
desktop. Diploma thesis, Technical University of Vienna, 2003.

4 http://dev.nepomuk.semanticdesktop.org

