
The NExT Process Workbench:
Towards the Support of Dynamic Semantic Web Processes

Abraham Bernstein, Michael Daenzer
University of Zurich

Institute for Informatics
8050 Zurich, Switzerland

{bernstein, daenzer}@ifi.unizh.ch

Abstract

Traditional process support systems offer the promise of
software assembled from service elements. The typical ap-
proach is a static composition of atomic processes to more
powerful services. In the real world, however, processes
change over time: business needs are rapidly evolving and,
thus, changing the work itself and relevant information may
be unknown until workflow execution run-time. Hence, the
traditional, static approach does not sufficiently address the
need for dynamism. Based on applications in the life sci-
ence domain this paper puts forward five requirements for
dynamic process support system. Specifically, these demand
a focus on a tight user interaction in the process discovery,
composition, and execution phases. The system and the user
establish a continuous feedback loop resulting in a mixed-
initiative kind approach. We also present a prototype imple-
mentation NExT, which embodies this approach and present
a preliminary validation based on a real-world scenario as
well as a comparison with other process support tools.

1. An Illustrating Scenario - As is

Peter, our example scientist, wants to determine the 3D
structure of a bio-molecule using NMR spectroscopy – a
procedure that uses the magnetic resonances of protons
within molecules to deduce the molecule’s structure. First,
he writes down the most complex parts of the NMR ex-
periment’s process sequence on a piece of paper. He skips
all the standard steps, as he is able to perform them blind-
folded. After having made his rough experimental plan, he
feels confident to start the experiment. He inserts his sam-
ple into the spectrometer and runs the measurement – essen-
tially the observation of proton resonances of the molecule
triggered by a sequence of appropriate magnetic pulses. He
then starts the analysis of the results: the measured reso-

nance spectrum needs to be scaled and some properties must
be retrieved by observation, all standard tasks, which Peter
would really like to automate. Next he needs to use soft-
ware tool A to count the peaks in his spectrum, which is
followed by the identification of the resonances of the indi-
vidual protons. Unfortunately, tool A is not able to do so.
So Peter would like to invoke software tool B, which does,
however, use a different input format. This forces him to
transform the data manually before he can feed it to tool B
and continue with his plan.

At some point, however he stumbles on a problem with
his experiment, which he doesn’t know how to solve. He
vaguely remembers two publications about a similar prob-
lem and reads them. Unfortunately, he cannot find any in-
formation about the processes used. So, he decides to talk
to his advisor, who is, however, visiting a conference over-
seas. As Peter does not have his experimental process plan
in an electronic format, he needs to describe his intentions
in prose, which leads to several misunderstandings during
the phone call. Having overcome his experimental problem
he studies some intermediate results returned from the spec-
trometer. Peter immediately realises that he forgot to repeat
a proceeding measurement with adapted parameter values
rendering the current measurement useless. So, he has to
re-initiate the procedure with the new settings.

At the the end, Peter can complete his experiment with
success and wants to publish his results. Ideally, he would
like to publish the experimental procedure along with the
actual results. His paper and pencil approach to experimen-
tal process control did not record all parameter settings. So,
he skips that part and publishes his paper without any infor-
mation about his pathway to the result.

2. Introduction

As Peter’s example shows, conducting meaningful ex-
periments (in the life science domain) as well as any ex-

ploratory activities (such as in complex insurance negoti-
ations) requires a user to carry out a complex, long, and
interrelated sequence of atomic tasks. During all stages
in the life cycle of such tasks (see Figure1), the actor is
challenged by different issues that harden his work. During

Figure 1. Life cycle of exploratory processes

thecreation phase, theprocess compositionof atomic tasks
must be initially defined. In a first step abstract, atomic
tasks are sequenced together conforming to the control and
data flow specified by the user forming a higher-level com-
posite service (process choreography[16]). The size of
process compositions can be very large leading to com-
plex interrelations making it difficult to gain and maintain
an overview. Furthermore, processes (and their elements)
may change their degree of specificity (see Figure2) over
time [3]: Underspecified processes can become well spec-
ified when more information becomes available and well-
specified processes can become less specified over time
(e.g., due to the occurrence of an exception). In Peter’s
case the experiment gains specificity when he adds some
parameter settings; it looses specificity when he stumbles
upon the problem that he solves with his advisor’s help –
thus, the process moves along the specificity frontier [3]. A
system acting in domains whose processes show a varying
degrees of specificity, must be able to handle processes in
the whole spectrum as well as support their movement along
the frontier. This issue is crucial for the correct definition of
the interactions

Figure 2. The Specificity Frontier [3]

In the enactment phase, the process is executed. Most
executions of atomic processes can be automated or at least

semi-automated using appropriate software tools or access-
ing/controlling some piece of hardware equipment. Usu-
ally, more than one potential realization (or implementa-
tion/grounding) does exist for one atomic process, so choos-
ing the appropriate one (process orchestration[16]) can be
complicated.

A process enters theadaption phasewhenever an excep-
tion occurs during its execution. Exceptions may be raised,
e. g., due to hardware malfunction, software crashes, or
user interventions (see [8] for a full treatment of exception
handling). When an exception is raised the execution is,
usually, interrupted, the process must be adapted to handle
the cause of the exception, and then its execution is resumed
at the correct location. In particular the choice of the correct
resumption point is extremely important in the case of long-
running processes (e.g., a NMR measurement may run over
several weeks) as any loss of intermediate results might cost
a lot of time.

Once the experiment has finished, all its related data
must be somehow documented (e.g., for publication in
academia, to fulfill ISO 9000/9001 standards in industrial
settings, and/or to record that due process was maintained
in legal environments). We call this thepublication phase.
Traditionally, academic publications only include an infor-
mal prose report about the experimental setup but no con-
cise formal description of the processes is published seri-
ously hampering the possibility of replicating the experi-
ments (one of the pillars of science).

Most current process support systems lack support for
tight interaction between the user and the system during
all the phases of the process’s life-cycle. In our opinion
they are, therefore, not flexible enough to optimally support
users in highly dynamic domains, such as the the life sci-
ences. We propose a novel system that focuses on the user
as the driving factor and keeps him/her engaged in a tight
interaction. Based on the system’s domain knowledge and
the explicitly given information, the system should provide
contextual guidance to the user in all situations.

More specifically, based on the preliminary work [3], we
proclaim that such a system has to fulfill the following re-
quirements:

1. Support users throughout the process choreography
and orchestration steps – RequirementR1.

2. Support partial executions. An execution must be in-
terruptible and resumable to make adaptations at run-
time – RequirementR2.

3. Integrate various deductive planners and reasoners to
provide useful alternatives for the user – Requirement
R3.

4. Incorporate aCase Base. Then aCase Based Reasoner
[24] can infer useful information from past cases (from

both best and worst practices) – RequirementR4.

5. Support (semi-)automateddata mediationto connect
processes with different data formats which are trans-
formable into each other – RequirementR5.

The remainder of this paper is structured as follows: In
Section 3 we operationalize the requirements into concrete
foundational challenges for NExT, our prototypeNext-
generationExperimentToolbox and is aimed at supporting
execution of long running life science experiments. Section
4 then introduces the most important architectural and im-
plementation aspects of NExT. A preliminary validation of
the prototype in the context of the introductory scenario is
discussed in Section 5, which is followed by a comparison
with related work in section 6. We conclude with a sum-
mary and an outlook on future work.

3. Overall Operationalization of NExT

The requirements presented in the last section provide
the basic requirements for building a flexible process sup-
port system. In order to assure a clear separation of con-
cerns as well as domain independence in our NExT system
we decided to divide it into two parts: the underlying knowl-
edge bases (KBs) containing all the domain knowledge and
a generic execution support system.

3.1. The Underlying Knowledge Bases

To fulfill the requirements outlined in the last section we
will need three types of online KBs:

• A Process Librarycontaining models for all processes
(atomic processes including mappings to concrete re-
alizations and templates for composite processes)

• A Data Entity Librarycontaining models for all data
entities

• A Case Basecontaining a collection of completed pro-
cess executions with annotations (e.g., success/failure)

To address the two phases (choreography and orches-
tration) ofR1 the process library provides models for all
atomic abstract tasks with a loose coupling to their concrete
realizations (i.e., actual implementations) allowing for their
dynamic reassignment. These can be categorized into dif-
ferent types depending on their access/call approaches and
data input/output facilities. Facilities to model the map-
pings from the processes to those different types (such as
web services or local applications) of realizations should be
provided to ease the process model development.

Both the process and the data entity library provide all
the data in a formal, machine readable language for plan-
ing and reasoning on currently running tasks addressing

R3. The data entity library contains information about
data/object types to enable (semi-)automated data media-
tion in fulfillment for R5. And, obviously, the case base
enables both automated as well as human case based rea-
soning (R4).

Note that due to the KBs NExT exhibits significant net-
work effects in the micro-economic sense: the more peo-
ple use the more attractive it becomes. If a sufficiently
large group of people in any given domain can be convinced
to publish their processes into these repositories then the
possibility of increased knowledge exchange at the process
level, the simplified possibility of collaboration in design-
ing/executing processes, and their use as case bases and do-
main KBs for planners/reasoners would make the tool even
more useful than in a single user setting. The more people
would share their knowledge the more attractive its use.

3.2. The Execution System

The NExT execution system helps users during the
whole process life cycle, from creation to publication. It
guides the user by providing her with suggestions and ideas
whenever she has to make decisions or explicitly requests
help. This simplifies her task especially in the following
phases:

• During theprocess choreographythe system’s degree
of assistance ranges between suggestions, which pro-
cesses are suitable for the next step, and the generation
of whole process plans at once (R1).

• During process composition. When two processes are
chained together by a data flow and the types of their
parameters are not identical (or “castable”) then the
system tries to resolve the mismatch or suggests so-
lutions (e.g., by mediation) to the user (R5).

• During theprocess orchestrationthe system will (1)
guide the users to concrete realizations (or implemen-
tations) and (2) help them to decide which one is suit-
able under the given constraints and the user prefer-
ences (R1)

• Whilst handling exceptionsthe system will help the
user to adapt processes at runtime and ensure that the
consistency is preserved (R2).

In general, the user and the NExT system work hand-in-
hand informing each other with newly discovered facts; an
approach known as Mixed-Initiative planning and execution
[24]. The more information and constraints the system re-
ceives from the user, the more knowledge it can infer and
present to the user, which then can use this additional in-
formation to either retrieve even more information or make
decisions, both of which become new input for the system.

User and system are, thus engaged in a continuous feedback
loop. In addition, the system continuously monitors newly
arriving information (such as detected exceptions) and ini-
tiates an interaction with the user where necessary.

The NExT user interface (UI) attempts to integrate all
the necessary tools in one interface (following the work-
bench metaphor) acting as the control center for the user’s
daily work. As all UI features should be usable by non com-
puter scientists (but domain experts) we tried to provide as
simple as possible interaction approaches. A graphical data-
flow style editor allows the user to easily create, start, pause,
and adapt workflows. During executions it also provides
her with feedback about the current state of the process and
other process related information. Interactive browsers al-
low querying and browsing the KBs at any point in time
and reasoners/planers/mediators act as wizard-like pop-ups
to impart advise whenever asked.

4. The NExT Prototype Implementation

While the last section provided some additional detail
about one possible operationalization ofR1-5 the provided
information isn’t sufficient to explain the actual functional-
ity of our NExT system. This section, therefore, provides
more background on its Meta-Model/Model and its system
implementation.

4.1. The NExT Meta-Model

In order to ensure domain independence our system’s
process meta-model defines the system’s view on both pro-
cesses and data entities (R3, R5). Code was written in
terms of meta-model concepts whereas applications may in-
herit from or extend the meta-model for their own purposes.
Both meta-models and models must be encoded in a declar-
ative, formal and machine readable family of languages that
share the same conceptual ideas to ensure a seamless inte-
gration of the two models.

Figure3 shows a simplified version of our meta-model.
The conceptProcessgeneralises the two different types of
processes:AtomicProcessandCompositeProcess. Inputs,
outputs, pre-conditions, and effects (or post-conditions) de-
fine the semantics of a process and are the minimal prop-
erties to use AI planners [6] (R3). The propertyspecificity
expresses the degree of specificity [3] for easy use in cost
or weighting functions (R1-3). An AtomicProcessaddition-
ally can be related with one or several mappings to concrete
realizations (R1). As an example, consider the abstract task
(i.e., theAtomicProcess) “ResizePicture”. Concrete realiza-
tions could be scripts using an image processor, a tool devel-
oped by oneself, or a web service providing this function-
ality. The mapping contains the specific how (and where)
to invoke a realization. ACompositeProcessconsists of

Figure 3. Simplified meta-model as an UML
class diagram

a number of processes (potentially both atomic and com-
posite), which are sequenced according to their specifica-
tion in the process modeling language. For NExT we chose
OWL-S [12] for that task, as most of the concepts we need
are already integrated (see below for NExT’s extensions to
OWL-S). TheHistoryTrail concept holds the execution his-
tory of a process. All atomic processes in their execution
sequence and all intermediate values of almost1 all param-
eters are stored together with the process description itself
and other metadata forming aCasethat is an element of the
the Case Base (R4). DataItemscan be nested to compose
complex types (R5).

4.2. The NExT System Implementation

When implementing NExT we used a multi-tier architec-
ture with currently four layers: theKnowledge Basesin the
back end, aData Accesslayer with theMeta-Model/Model
API, a tier containing the system functionality (Core), and
theUI tier (see also Figure4).

The back end consists of theKnowledge Basesthat are
stored in a triple store (in our case Jena2). The Data Ac-
cesslayer enables the retrieval and publication of KB items
(processes, data entities, and cases).

The Meta-Model/Model APIis responsible for read-
ing and writing the model data and (un-)marshalling them
into/from normal Java objects. Most importantly, it includes
a simple process execution engine that provides the execu-
tion primitives for the Execution Engine in the Core. Tothat

1Note that we allow certain information to be exempt from this storage
requirement when explicitly requested by the user. This is sometimes nec-
essary in scientific experiments when the amount of information becomes
prohibitively large.

2see http://jena.sourceforge.net/

Figure 4. General architecture of NExT

end we extended the Mindswap OWL-S API3 with the fol-
lowing two features: First, we added a new type of ground-
ing that an atomic process directly to a Java method. Sec-
ond, we augmented the API with a facility to interrupt and
resume a process execution.

The Core tier consists of several components acting
more or less directly on the model data. It could be used
as a framework for any other process related system. The
HelpDeskcomponent coordinates all the guidance facilities,
handles execution exceptions, manages the user interaction
of all system components, and implements all the listen-
ers observing new user inputs. To retrieve content for the
user assistance, several types of inferring mechanism may
be used. First, integrated deductive reasoners acting directly
on the semantic model items. Specifically we used the Pel-
let reasoner [20] that came with the Mindswap API. Second,
a Case Based Reasoner (theCBRcomponent) can find past
processes that are similar to the one in use. The current im-
plementation of the CBR relies on SimPack4 [4] to retrieve
similar entities. Theplanningcomponent provides a plug-
in interface with which several AI planner can be integrated
into the system. Their results will be merged together and
then be presented to the user. Most of the standard AI plan-
ners return exactly one single solution – the “optimal” one
– and assume that they have complete information about the
world during planning time. Both properties do not hold in
our application domains. First, users like to have several,
ideally weighted, alternatives instead of one single solu-
tion. Second, if exceptions are thrown during the execution

3see http://www.mindswap.org/2004/owl-s/api
4see http://www.ifi.unizh.ch/ddis/research/semweb/simpack/

or processes are long-running, the state of the world may
have changed in between. Last but not least, some informa-
tion may not become available until runtime (as described
by the specificity frontier [3] concept). A variety of exist-
ing planning tools have been already extended to operate
on OWL-S or Semantic Web Services [22, 9, 19, 13, 17]
and quite some research has been done to adapt planning
to the changing information issue [10, 1]. We leverage that
work by employing several of the above mentioned planers
through our planner plug-in interface addressingR1, 3-5.

The Execution Enginerelies on the process execution
services supplied by the Meta-Model/Model-API to enact
(or execute) a workflow. Parallel executions are supported
and the engine is able to interrupt a single execution for dy-
namic adaptation (i.e., when either an exception occurs or
the user manually interrupts the execution). Continuation
of a process is performed at the last known position where
the process is still consistent (depending on how much its
description was changed). Exceptions are tracked and feed-
back about the current state may be given to the user at
all time for execution monitoring. Unfortunately, OWL-S
doesn’t specify exceptions. We, therefore, intend to adopt
the exception conceptualisation of SWSF (Semantic Web
Services Framework) [2] for OWL-S. The Execution En-
gine, thus, fulfillsR2.

TheUI tier is based on the Eclipse5 framework. It is built
as a workbench integrating graphical tools for all important
purposes. A process editor allows the graphical creation and
editing of workflows as well as their initiation and interrup-
tion. The editor furthermore allows monitoring all process-
related information such as partial results during execution.
As mentioned above, the UI also provides suitable brows-
ing/querying interfaces for the KBs.

5. Preliminary Validation –
The Introductory Scenario Revisited

Peter is very happy, he just received a copy of the NExT
Process Workbench. He has to perform exactly the same
experiment again: the determination of the 3D view of a
bio-molecule with a NMR spectrometer. He opens the pro-
cess editor and the Knowledge Base Explorer and searches
for similar projects in the past. He finds one and adopts
the process sequence from this case (see Figures5 and 6
for some example NMR process templates/cases contained
in the NExT KBs). He can easily adapt the template to his
needs and is warned by the system whenever he is violating
the consistency of the plan. After finishing this task, he feels
confident to start the experiments, so he puts his sample into
the spectrometer and starts the process execution. Given the
information in the process template the spectrometer isset-

5see http://www.eclipse.org

up automatically and the measurement is started. As soon as
the measurement has completed, the analysis of the results
is initiated The spectrum is scaled and most of the desired
property values are assigned by the system. Manual input is
required only for a few tasks. Eventually, software tool A is
automatically called to do some peak counting, the output
data is transformed to the needs of tool B and passed to it to
identify the resonances of the individual protons.

Figure 5. Overall experimental sequence for
a NMR case

Figure 6. The control flow for a (simple) ”1H
overview” experiment (first step in Figure 5)

Peter continues the execution, but at some point he does
not know how to proceed. He has no experience which mea-
surements is most appropriate for this situation. He remem-
bers two publications quite related to his research project,
so he searches and finds them in Knowledge Bases. He
then adopts the missing steps from their process sequences.
In addition, he asks his advisor to verify the solution. As
the advisor is at a conference overseas she connects to the
shared work repository and can see exactly the same infor-
mation on her own screen. She agrees on Peters solution,

who directly continues with the execution. But the system
immediately warns him that some data requirements for one
of the inserted processes are not fulfilled. As a resolution
the system suggests Peter to repeat a preceding measure-
ment with adapted parameter values.

In the end, Peter can complete his experiment with suc-
cess and needs to publish his results. He writes his prose
publication as usual but additionally he uploads the whole
case including all intermediate results, the trail of executed
processes, and all additional information he entered into the
system into a shared knowledge base of the journal. Eviden-
tally he links the two things together. Furthermore, Peter is
able to generalize a part of the process sequence for a cer-
tain type of bio molecules into a template and publishes it
in a NMR-community maintained Knowledge Base.

6. Related Work

Various types of Process Support Systems have been de-
veloped in the past 30 years. Usually, however, they either
support fixed, pre-defined, standard processes (e.g., work-
flow management Systems) or are specialized on ad-hoc
dynamic processes providing no formalisms at all (such
as e-mail or groupware). The former assist users during
the workflow creation (processes are formally defined and,
therefore, deductive reasoning upon them is possible), but
usually do not allow run-time adaptations of the processes.
Most traditional workflow support systems share the focus
on control flow as shown for example in [23]. The latter
ones are based on very informal, ad-hoc processes. Reason-
ing facilities are “out of focus” for such systems (as they
lack formal process specifications), but their ability of pro-
cess adaptations at run-time is their key feature.

More modern systems from the scientific community are
oriented towards data-flow, service orientation, and grid
computing. Prominent representatives thereof are Kepler
[11], Pegasus [7], and Taverna [15] . All of them provide all
the basic functionality. All these tools offer nice graphical
editors to create processes, help during the discovery of ap-
propriate atomic tasks by some sort of matchmaking algo-
rithms and are able to execute a process. But, none of them
is focused on the tight user integration and therefore most of
our requirements are not fulfilled (see Table1 for a compar-
ison of all systems in the light of the requirements). Taverna
and Kepler enable users to interrupt and resume process ex-
ecutions. In Taverna the user is able to edit data during an
interruption in a debugger-like interface, but in both tools
adaptations to control or data flow are not possible. Pegasus
is the only of the examined modern system, which makes
the difference between an abstract process and its realiza-
tion. Pegasus uses a partial-order planning [6] algorithm
to help users compose processes in an automated way and
in combination with Virtual Data System (VDS) [25] some

interfaces support for data mediation are provided.

Name R1 R2 R3 R4 R5
Taverna + partially - - +
Kepler + partially - - -
Pegasus + - + - +
Web ServiceComposer + - + - -
WSMX + - - - +

Table 1. Feature matrix for related work

The Web Service Composer [21] is a prototype which
aims at guiding the user iteratively in the process composi-
tion. The user starts with a first process step and the tool
filters finds all processes that can be chained with the initial
one based on their fit in terms of inputs and outputs. It is
to ensured that pre- and post-condition are structurally sat-
isfied, i.e., all variables used in expressions must be known
at that time. The process compositions can be executed but
any further assistance or dynamic adaptations at run-time
are out of scope of the tool.

WSMX6 is the reference implementation for WSMO and
is conceptually comparable with the Meta-Model/Model
API of our system. It does not directly provide end-user
tools (although some WSMO construction tools have been
built) but a virtual machine to run WSMO processes. An
important built-in functionality are so-called data media-
tors, which find a mapping between two data entities (both
must be modeled in an ontology) at design-time and then
actually transforms the entity at run-time. We did not find
any information about WSMO’s support for partial execu-
tions.

7. Future Work/Conclusion

In future, we intend to further develop our NExT proto-
type implementation. We are also planning to focus in a sec-
ond step on adding further planning and reasoning technolo-
gies. Furthermore, UI Integration for the interfaces of the
referenced tools in the concrete realizations (especially for
semi-automated tasks) and intuitive means for user interac-
tion are interesting, open research areas and a key factor for
success of any process support system designed for users,
which are not workflow experts. For example, how should
a non-expert enter expressions in KIF [5], SPARQL [18]
or any other logic based language without knowing syntax
and semantics of these languages by heart? Additional open
issues are the integration of exception mechanisms and en-
hanced data mediation facilities into the conceptual frame-
work, inspired by the other approaches for semantic process
frameworks such as SWSF [2] and WSMO [14]. Last,and

6 See http://www.wsmx.org for detailed information

most importantly, we intend to deploy NExT in a life sci-
ence environment, and observe its practical usage for com-
plex experimental analysis.

In this paper, we presented an approach to resolve the
non-trivial tasks of process composition, execution, runtime
adaptation, and publication in complex domains such as the
life sciences. Human beings like to be in control of the
creative and complex parts of their work. We, therefore,
believe that a process support system should have a tight
interaction with its human users. They should be assisted
throughout the whole process life cycle and standard tasks
should be executed automatically. But they need the ability
to override all decisions and take over the control. Hence, a
permanent feedback loop must be established to overcome
the complexities of the specificity frontier and react ade-
quately at all times on process specificity changes.

As our main contributions we have developed five re-
quirements for process support systems in complex experi-
mental domains. We have, furthermore, shown a basic ar-
chitecture and key implementation elements of our NExT
process support system based on Semantic Web technolo-
gies and AI planning and reasoning methodologies (plan-
ners, Case-Based Reasoning) that implements our vision.

8. Acknowledgements

We would like to thank Konstantin Pervushin for sharing
his knowledge about NMR spectrography with us and for
his fruitful ideas. Especially the illustrating scenario could
not have been drawn without his help.

References

[1] T.-C. Au, U. Kuter, and D. Nau. Web service composition
with volatile information. InProceedings of the Interna-
tional Semantic Web Conference (ISWC), 2005.

[2] S. Battle, A. Bernstein, H. Boley, B. Grosof, M. Gruninger,
R. Hull, M. Kifer, D. Martin, S. McIlraith, D. McGuiness,
J. Su, and S. Tabet. Semantic web services ontology. Tech-
nical report, 2005.

[3] A. Bernstein. How can cooperative work tools support
dynamic group processes? bridging the specificity fron-
tier. In Proceedings Computer Supported Cooperative Work
(CSCW 2000). ACM Press, 2000.

[4] A. Bernstein, E. Kaufmann, C. Kiefer, and C. Bürki. Sim-
pack: A generic java library for similiarity measures in on-
tologies. Technical report, Department of Informatics, Uni-
versity of Zurich, 2005.

[5] M. R. Genesereth. Knowledge interchange format. Tech-
nical report, Draft proposed American National Standard
(dpans), 1998.

[6] M. Ghallab, D. Nau, and P. Traverso.Automated Planning,
theory and practice. Elsevier, 2004.

[7] Y. Gil, V. Ratnakar, E. Deelman, M. Spraragen, and J. Kim.
Wings for pegasus: A semantic approach to creating very
large scientific workflows. InProceedings of the OWL:
Experiences and Directions 2006 (OWL-06), Athens, GA,
2006.

[8] M. Klein and C. Dellarocas. A knowledge-based approach
to handling exceptions in workflow systems.Computer
Supported Cooperative Work: The Journal of Collaborative
Computing, 9(3-4):399–412, 2000.

[9] M. Klusch, A. Gerber, and M. Schmidt. Semantic web ser-
vice composition planning with owls-xplan. In1st Inter-
national AAAI Fall Sympsoium on Agents and the Semantic
Web, 2005.

[10] U. Kuter, E. Sirin, B. Parsia, D. Nau, and J. Hendler. Infor-
mation gathering during planning for web service composi-
tion. Journal of Web Semantics, 3(2), 2005.

[11] B. Ludscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger-
Frank, M. Jones, E. Lee, J. Tao, and Y. Zhao. Scientific
workflow management and the kepler system.Journal for
Concurrency and Computation: Practice Experience, Spe-
cial Issue on Scientific Workflows, 2005.

[12] D. Martin, M. Burstein, J. Hobbs, O. Lassila, D. McDer-
mott, S. McIllraith, S. Narayanan, M. Paolucci, B. Parsia,
T. Payne, E. Sirin, N. Srinivasan, and K. Sycara. Owl-s se-
mantic: Markup for web services. 2004.

[13] S. McIlraith and T. Son. Adapting golog for composition
of semantic web services. InProceedings of the Eighth In-
ternational Conference on Knowledge Representation and
Reasoning (KR2002), 2002.

[14] A. Mocan and E. Cimpian. Wsmx data mediation. Technical
report, ESSI WSMO working group, 2005.

[15] T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger,
M. Greenwood, T. Carver, K. Glover, M. R. Pocock,
A. Wipat, and P. Li. Taverna: A tool for the composition
and enactment of bioinformatics workflows bioinformatics
journal 20(17) pp 3045-3054, 2004.Bioinformatics Jour-
nal, 20(17):3045–3054, 2004.

[16] C. Peltz. Web services orchestration and choreography.
Computer, Innovative Technology for Computing Profes-
sionals, 2003.

[17] S. R. Ponnekanti and A. Fox. Sword: A developer toolkit
for web service composition. InProceedings International
WWW Conference(11), Honolulu, Hawaii, USA, 2002.

[18] E. Prud’hommeaux and A. Seaborne. Sparql query language
for rdf. Technical report, W3C Candidate Recommendation,
2006.

[19] M. Sheshagiri, M. desJardins, and T. Finin. A planner for
composing service described in daml-s, workshop on plan-
ning for web services. InInternational Conference on Auto-
mated Planning and Scheduling, 2003.

[20] E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and Y. Katz.
Pellet: a practical owl-dl reasoner.Journal of Web Seman-
tics.

[21] E. Sirin, B. Parsia, and J. Hendler. Composition-driven
filtering and selection of semantic web services. InAAAI
Spring Symposium on Semantic Web Services, 2004.

[22] E. Sirin, B. Parsia, D. Wu, J. Hendler, and D. Nau. Htn
planning for web service composition using shop2.Journal
of Web Semantics, 1(4):377–396, 2004.

[23] W. van der Aalst. Don’t go with the flow: Web services
composition standards exposed.IEEE Intelligent Systems.
Web Services - Been there done that? Trends Controversies,
2003.

[24] M. M. Veloso, A. M. Mulvehill, and M. T. Cox. Rationale
supported mixed-initiative case-based planning. InIAAI-97,
Innovative Applications of Artificial Intelligence, 1997.

[25] Y. Zhao, M. Wilde, I. Foster, J. Voeckler, J. Dobson, E. Glib-
ert, T. Jordan, and E. Quigg. Virtual data grid middleware
services for data-intensive science. InMiddleware 2004,
Concurrency, Practice and Experience, 2004.

	. An Illustrating Scenario - As is
	. Introduction
	. Overall Operationalization of NExT
	. The Underlying Knowledge Bases
	. The Execution System

	. The NExT Prototype Implementation
	. The NExT Meta-Model
	. The NExT System Implementation

	. Preliminary Validation -- The Introductory Scenario Revisited
	. Related Work
	. Future Work/Conclusion
	. Acknowledgements

