GINO - A Guided Input Natural Language
Ontology Editor

Abraham Bernstein and Esther Kaufmann

University of Zurich, Dynamic and Distributed Information Systems, Switzerland
{bernstein,kaufmann}@ifi.unizh.ch

Abstract. The casual user is typically overwhelmed by the formal logic
of the Semantic Web. The gap between the end user and the logic-based
scaffolding has to be bridged if the Semantic Web’s capabilities are to
be utilized by the general public. This paper proposes that controlled
natural languages offer one way to bridge the gap. We introduce GINO,
a guided input natural language ontology editor that allows users to edit
and query ontologies in a language akin to English. It uses a small static
grammar, which it dynamically extends with elements from the loaded
ontologies. The usability evaluation shows that GINO is well-suited for
novice users when editing ontologies. We believe that the use of guided
entry overcomes the habitability problem, which adversely affects most
natural language systems. Additionally, the approach’s dynamic gram-
mar generation allows for easy adaptation to new ontologies.

1 Introduction

The Semantic Web’s logical underpinning provides a stable scaffolding for ma-
chine-based processing. The common or occasional user, however, is typically
overwhelmed with formal logic. The resulting gap between the logical underpin-
ning of the Semantic Web and the average users’ ability to command formal
logic manifests itself in at least two situations. First, the gap manifests itself
when the untrained user tries to use an existing, usually graph-based, ontology
editing tool [14,12] — the editing disconnection. Second, it can be found in the
disconnection between a user’s information needs and the query (language) with
which the user tries to find the required information in an ontology [28,27,9] —
the querying disconnection. Since editing and querying are two of the major in-
teraction modes with the Semantic Web, bridging them is central to its practical
use by end users. Consequently, the question how to bridge the gap is pivotal for
the success of the Semantic Web for end users. This paper proposes to address
these two manifestations of the gap using natural language interfaces (NLIs).
NLI systems have the potential to bridge the editing disconnection between
the untrained user and the triple- and graph-based ontology editing/creating
tools. Although there are good ontology building tools [10, 17,22, 3,29, 30] edit-
ing and building ontologies is hard for experts but close to impossible for common
and occasional users [26]. NLIs can help to overcome this gap by allowing users

In proceedings of the 5th International Semantic Web Conference (ISWC 2006), Athens, GA, November 2006.

GINO - A Guided Input Natural Language Ontology Editor 145

to formulate their knowledge domain and information needs in familiar natu-
ral language (NL), rather than having to learn unfamiliar formal and complex
data manipulation and query languages. The major drawback of NLIs, however,
is their adaptivity to new domains. Even though natural language processing
(NLP) has made good progress in recent years, much current NLI research relies
on techniques that remind users more of information retrieval than NLP [19]. The
systems that can perform complex semantic interpretation and inference tend
to require large amounts of domain-specific knowledge and engineering-intensive
algorithms making the systems hardly (if any) adaptable to other domains and
applications. Hence, they have a substantial adaptivity barrier.

Even if we could provide domain-independent NLI a second problem would
arise from the users’ side. Typically, users do not know what capabilities a NL
system has. Therefore, many of their assertions/questions will not be understood
correctly or might even be rejected because the statements exceed or fall short
of the capability of the system. The mismatch between the users’ expectations
and the capabilities of a NL system is called the habitability problem [32]. Thus,
for the successful use of NLI, users need to know what is possible to say/ask
[2]. Analogously, NLI can help addressing the querying disconnection assuming
that the adaptivity barrier and the habitability problem can be overcome. As
a consequence, the domain-dependency of intelligent NLI and the habitability
problem account for the fact that we are still far away from the successful use
of full NL to command and query the Semantic Web (and arbitrary information
systems). In this paper, we argue that we can address the before-mentioned
problems by using a guided and controlled NLI that supports the user in both
the tasks of ontology building and query formulation. We present GINO, the
guided input natural language ontology editor for the Semantic Web. GINO,
an extension of the purely querying focused Ginseng [5], essentially provides
quasi-NL querying and editing access to any OWL knowledge base [18]. It relies
on a simple static sentence structure grammar which is dynamically extended
based on the structure and vocabulary of the loaded ontologies. The extended
grammar can be used to parse sentences, which strongly resemble plain English.
When the user enters a sentence, an incremental parser relies on the grammar
to constantly check the user’s entries to (1) propose possible continuations of
the sentence similar to completion suggestions in Unix shells or ”code assist”
(or intellisense) in integrated development environments and (2) prevent entries
that would not be grammatical and, hence, not executable/interpretable. Once
a sentence is fully entered, GINO uses some additional statement construction
information in the grammar to translate the quasi English sentence into new
triple sets (to add/change the ontology) or SPARQL statements [25] and pass
them on to the Semantic Web framework Jena for execution.

The main difference between GINO and full NLIs [2] is that GINO does not
use any predefined lexicon beyond the vocabulary that is defined in the static
sentence structure grammar and provided by the loaded ontologies. Furthermore,
it does not try to semantically understand the entries. Instead, GINO ”only
knows” the vocabulary that is being defined by the grammar and by the currently

146 A. Bernstein and E. Kaufmann

loaded ontologies. It relies directly on the semantic relationships of the loaded
ontology. Hence, the vocabulary is closed and the user has to follow it limiting
the user but ensuring that all queries and sentences "make sense” in the context
of the loaded ontologies and can be interpreted by simple transformations.

The remainder of the paper is structured as follows. First, we will introduce
GINO by describing how the user experiences GINO as an ontology building
and editing tool. Next, we will provide an overview of its technical setup and
functionality. We will then describe the empirical evaluation of the approach and
discuss the results, which leads to a discussion of GINO’s limitations. The paper
closes with a section on related work and some conclusions.

2 GINO - The User Experience

GINO allows users to query any OWL knowledge base using a guided input NL
akin to English. The user enters the query or sentence in English into a free form
entry field (as shown in Fig. 1). Based on the grammar, the system’s incremental
parser offers the possible completions of the user’s entry by presenting the user
with choice pop-up boxes. These pop-up menus offer suggestions on how to
complete a current word or what the next word might be. Obviously, the possible
choices get reduced as the user continues typing. Fig. 1 shows that typing the
letter ”¢” within the middle of a query or sentence causes the interface to propose
all the possible completions of the words that begin with ”c.”

: Resources | Properties |
4 hitpifvw. mooney.neligeo
& () road

guided input natural language ontology editor

AskK a question:
thereis ac |

& {2 canyon
| Clear .
& () mountain

& (O valley

Enter text/Camon | fram pop-up menu.

(&) 10w point

capital -l (S} high point
ccapitals e
state
cities bl
city © (o) capital
class & (S city
& {2 lo point
— || & (@ hi point

Fig. 1. The GINO user interface

Users can navigate the pop-up with the arrow keys or with the mouse and
choose a highlighted proposed option with the space key. Entries that are not
in the pop-up list are ungrammatical and not accepted by the system. In this
way, GINO guides the user through the set of possible sentences preventing
statements unacceptable by the grammar. Once a sentence is completed, GINO
translates the entry to triple-sets or SPARQL statements. Users who are familiar
with the common graph representations or with other ontology editors basing
on graph structures (e.g., Protégé [22]) can also edit elements of an ontology by
using the graph structure on the right side of the interface window (in Fig. 1).

GINO - A Guided Input Natural Language Ontology Editor 147

Consider a user who wants to construct a class lake, a datatype property
lakeDepth, and an instance tahoe to which the value of the before-specified
property is added. To create a new class lake and add it to an ontology that
contains geographical information the user starts typing a sentence beginning
with ”there is” or ”there exits.” The pop-up shows possible completions of the
sentence and the user can continue the sentence with ”a” and ”class.” Choos-
ing ”class” (as we want to create a class) leads to the alternatives ”"named”
and ”called.” Either choice then prompts the user to enter the class’s label
(i.e., ”lake”). Finishing the sentence with a full stop prompts GINO to trans-
late the completed sentence ”There is a class named lake” into corresponding
OWL triples that are loaded into the Jena ontology model, thereby enabling
that the class can be queried or offered in a pop-up. To ensure consistency
all entries are then checked by the JENA Eyeball RDF/OWL model checker
(http://jena.sourceforge.net /Eyeball/). The newly produced class is immediately
displayed in the graph representation on the right side of the user interface.

| ‘Resources | Properties |
_ _ ~ 4hrlp./!\/vww mooney.netigect [*
yuided input natural Ianguage ontology editor © |
state pop density |
Ask a question:) canyon area
there is a new property named lake depth \ 0 high elevation
M‘ﬂ) city popuiation
) - height
< Edit property LAKE DEPTH =] g Inzgelwmn
{®) rumber
Edit property: LAKE DEPTH 0 state population
(_) ObjectType Property (®) DataType Property 0 length
{2 lake depth
Domains: lake [#] [maa | [1ake v (3 abbreviation :
0 state area A
Ranges: Jliterat [~ [g s @ =
imountain st
Phrases: ontolouy [YT [~| [@l
unsigned short
lake
e jarad ‘ OK | ‘ Abort ‘
literal
unsigned byte
road -

Fig. 2. The GINO user interface and property editing window

In order to specify a datatype property lakeDepth to the class lake, the user
again starts a sentence with "there is.” After entering ”a” or ”a new”, the user is
offered ”property” to choose. Next, the label of the property has to be defined.
When finishing the entry ” There is a new property named lake depth” with a full
stop, a window opens where the user can now specify whether the new property
is a datatype or an object property (Fig. 2). Furthermore, domain and range can
be specified. GINO offers the possible choices for the domain/range specification
by showing the existing classes and datatypes in a pop-up. The user can, for
example, choose the previously created class lake as domain of the property and
click on ”add” to actually add the chosen class. If the property has been declared
as datatype property, GINO offers ”literal” as possible entry for the range of the

148 A. Bernstein and E. Kaufmann

property. Again, the user adds the range to the property lakeDepth. Clicking on
”ok” closes the property editing window and adds the specified information to
the Jena ontology model. The new property appears in the graph representation
as datatype property (Fig. 2). Object properties are created analogously.

An instance of the class lake can now be added by entering a simple sentence
beginning with ”there is an instance.” After continuing the sentence with ”of”
and ”class” GINO’s popup offers the list of currently defined classes. Having
chosen ”lake” the user can then add a label (e.g., tahoe) to the new instance
analogously to when entering a new class resulting in ”there is an instance of
class lake named tahoe.” Alternatively, the user could have entered a sentence
”there is a lake named tahoe” where GINO would have listed the possible classes
at the position of ”lake’ in the sentence. Values of instance attributes can also
be entered using a NL input sentence, e.g. ”the depth of lake tahoe is 1645 feet.”

The graph representation on the right side of the GINO user interface offers
an overview of the classes, properties, and instances as well as an easy editing
function. By double-clicking on an element, an edit window is opened where
the user can add, change, or delete elements, values, etc. Double-clicking on
the instance "tahoe” in the instance tree, for example, opens an edit window
showing the possible properties of the class to which the instance belongs. The
value 71645” can be entered as literal of the property lakeDepth.

3 GINO’s Technical Design

From an architectural point of view, GINO has four parts (see Fig. 3): a grammar
compiler, a partially dynamically generated multi-level grammar, an incremen-
tal parser, and an ontology-access layer (i.e., Jena; http://jena.sourceforge.net/).
When starting GINO, all ontologies in a predefined search path are loaded. For
each ontology, the grammar compiler generates the necessary dynamic grammar
rules to extend the static part of the grammar, which contains the ontology-
independent rules specifying general sentence structures. The grammar is used
by the incremental parser in two ways: First, it specifies the complete set of
parsable questions/sentences, which is used to provide the user with alterna-
tives during entry and prevent incorrect entries as described above. Second, the
grammar also contains information on how to construct the SPARQL statements
from entered sentences. Thus, a complete parse tree of an entered question can
be used to generate the resulting SPARQL statements to be executed with Jena’s
SPARQL engine ARQ. As SPARQL does not offer any data manipulation state-
ments (e.g., CREATE, INSERT, DELETE) we have to specify and execute the
generation and insertion of the corresponding triples separately by using the
Jena API in GINO’s source-code.

The incremental parser maintains an in-memory structure representing all
possible parse paths of the currently entered sequence of characters. This has
various benefits. First, it allows the parser to generate a set of possible contin-
uations (i.e., possible next character sequences by expanding all existing parse
paths, which are displayed by GINO’s popup). One parse path might generate

GINO - A Guided Input Natural Language Ontology Editor 149

Simple

Sentence L Grammar Compiler ——>

OWL Jena SPARQL
Ontology Jena Ontology Model |<-> Engine

Fig. 3. The GINO architecture

multiple options when the parser expands a non-terminal being specified in more
than one place in the grammar. Second, the parser can compare every character
entered against the possible entries providing immediate feedback when the user
attempts to enter an non-interpretable (i.e., non-parsable) sentence/character
to mitigate the habitability problem. Third, when the user has finished enter-
ing the sentence, the parser can immediately provide the set of acceptable parse
paths. When querying a simple transformation relying on the query construction
grammar elements can translate the parse paths to SPARQL queries avoiding
lengthy semantic interpretation (and possible delays in answering the query) of
the sentence as usual in NLIs. The fact that there might be multiple parse paths
possibly being ambiguous is simply handled by returning the union of answers
back to the user. When making assertions, GINO could use the parse paths to
alleviate possible ambiguities by asking the user. Currently, however, we assured
that the assertions grammar is unambiguous not requiring this interaction.
Since both the use of an ontology access layer and the construction of an
incremental parser are well documented in the literature [5], the rest of the
section will focus on the functionality of the grammar and the grammar compiler.

3.1 The Functionality of the Grammar

The grammar describes the parse rules for the sentences that are entered by the
user. Consider the following grammar excerpt as an example:

(1) <START> ::= there is a <NS_S> .

(2) <NS_S> ::= class named <ENTER_NEW_CLASS_NAME> .

(3) <NS_S> ::= <CLASS> named <ENTER_NEW_INSTANCE_NAME> .

(4) <CLASS> ::= <NCc>|<http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <NCc>
(6) <NCc> ::= water area|<http://www.mooney.net/geo#state>

(6) <ENTER_NEW_CLASS_NAME> ::= enter new_class_name

(7) <ENTER_NEW_INSTANCE_NAME> ::= enter new_instance_name

The grammar’s representation mostly follows the Backus-Naur-Form nota-
tion: Non-terminal symbols use uppercase characters (e.g., <CLASS>), whereas
terminal symbols such as named that can be displayed to the user in a pop-up
use lowercase characters. Grammar elements after the ”|” symbol denote type
restrictions. Note that we have radically simplified the example rules to keep
things understandable.

While parsing, the incremental parser recursively searches for possible matches
for the symbols on the left side of the rules and replaces them by the symbols

150 A. Bernstein and E. Kaufmann

on the right side of a conformable rule. The parse is completed when no non-
terminal symbols are left. By keeping every replacement step during the parsing
process, a parse tree of an entered sentence is successively built. Every sentence
starts with the <START> symbol. To replace the <START> symbol, this simple gram-
mar offers the terminal symbols there is a followed by the non-terminal symbol
<NS_S> and a full stop (rule 1). The terminal symbol is displayed to the user in
a pop-up menu as possible beginning of an entry. If the user enters ”there is
a”, then the parser can bind <START> to rule 1. Next, the parser tries to match
the non-terminal <NS_S>, for which this grammar offers two rules (2 and 3). If
the user enters ”class named”, the parser binds rule 2 to <NS_S> and discards
rule 3. To replace the symbol <ENTER NEW_CLASS NAME> in rule 2, only rule 6 can
be applied. The application of rule 6 replaces the non-terminal symbol by the
terminal symbol enter_new_class_name. This special terminal symbol additionally
causes the interface to provide the user with a text entry field. If the user enters
a string as label of the class (e.g., lake) and finishes the sentence with a full stop,
GINO uses the complete parse tree to generate the appropriate OWL triples and
loads them into the Jena ontology model. The new class is shown in the graph
representation of the ontology. After entering ”there is a” according to rule 1,
rules 3 and 4 provide the list of all possible class-labels. In our limited grammar,
only rule 5 binds to the terminal <CLASS>. As an alternative to entering ”class
named” as described above the user can, thus, also choose (one of) the class
labels that are shown to the user (e.g.,water area).

3.2 The Grammar Compiler

When loading an ontology, GINO generates a dynamic grammar rule for every
class, property, and instance. These dynamic rules enable the display of the labels
used in the ontology in the pop-up boxes. While the static grammar rules (all
rules above except rule 5) provide the basic sentence structures, the dynamic
rules (rule 5) allow that certain non-terminal symbols of the static rules can
be ”filled” with terminal symbols (i.e., the labels) that are extracted from the
ontology model or provide the structure to specify relationships between elements
in the ontology.

The static grammar rules provide the basic syntactic structures and phrases
for questions and declarative sentences. Its rules supply a small set of declara-
tive sentence structures such as "There is a subclass of class water area named
lake.” (static grammar terminals in courier) in order to ensure the correct trans-
lation into OWL syntax. The same grammar also handles general question struc-
tures as ”Which state borders Georgia?” as well as other types of queries such as
closed questions ("Is there a city that is the highest point of a state?”, typ-
ically resulting in an answer of ”yes” or "1no”) or questions resulting in numbers
(e.g., "How many rivers run through Georgia?”). Furthermore, it provides sentence
construction rules for the conjunction or disjunction of two phrases (or sentence
parts). The static grammar consists of about 120 mostly empirically constructed
domain-independent rules. We are currently working on specifying these rules in
an OWL-relying syntax such as SWRL (http://www.daml.org/2003/11/swrl/) to

GINO - A Guided Input Natural Language Ontology Editor 151

be able to use consistency checking and other features from standard Semantic
Web APIs.

The dynamic grammar rules get generated from the loaded OWL ontolo-
gies (rule 5 in the above grammar example). The grammar compiler essentially
parses an ontology and generates a rule for each class, instance, object property,
and data type property. To illustrate the dynamic rule generation, we will show
the translation of an OWL class into its corresponding generated rules. Con-
sider the OWL class definition (in the file specifying the URIs at http://www-
mooney.net/geo):

<owl:Class rdf:ID="waterArea">

<gino:phrase rdf:value="water areas"/>

</owl:Class>

Its transcription generates two GINO rules for noun clauses; one for the actual
class definition and one for the gino tag facilitating that plurals of nouns can be
used in GINO. Since both labels start with a consonant, the resulting rules are
describing the non-terminal <NCc> for noun clause consonants as follows (rather
than <NCv> for vowels!):

<NCc> ::= water areal|<http://www.mooney.net/geo#fwaterArea>

<NCc> ::= water areas|<http://www.mooney.net/geo#waterArea>

GINO also allows that synonyms of the labels used in the ontology model can
be included by annotating the ontology with additional tags from the gino name
space. As such, GINO generates a dynamic grammar rule for each synonym.

<owl:Class rdf:ID="waterArea">

<gino:phrase rdf:value="water areas"/>
<gino:phrase rdf:value="body of water"/>
<gino:phrase rdf:value="bodies of water"/>

</owl:Class>

While such annotations are not necessary for GINO to run correctly, they do
extend its vocabulary and increase its usability. Additionally, they reduce the
limitation that the approach, to some extent, depends on the choice of vocabu-
lary, when the ontology was built. The more meaningful the labels of an ontology
are chosen, the wider and more useful the vocabulary provided by GINO is.

4 Usability Evaluation

To get a first feedback on the usability of GINO, we confronted six users who had
no experience in ontology building and editing whatsoever with our prototype
written in Java. We intended to find out how the controlled NLI of GINO can
support untrained and casual users in an ontology creating and editing task
and help overcome the editing disconnection. Note that we did not test GINO’s
ability to overcome the querying disconnection, as it has already been addressed
in the literature (see the related work section for more details [5, 13,23, 6, 32]).

! Thus, we handle determiner-noun (e.g., a class vs. an instance) and also subject-
predicate (e.g., Which class is... vs. Which classes are. ..) agreement.

152 A. Bernstein and E. Kaufmann

4.1 Setup of the Experiment

The experiment was based on the Mooney Natural Language Learning Data [31].
Its geography database consists of a knowledge base that contains geographical
information about the US and their logical representations. To make the knowl-
edge base accessible to GINO we translated it to OWL and designed a simple
class structure as meta model. We removed the class lake and the class river
including their instances in order to make the experiment realistic. We recruited
six subjects who were not familiar with Semantic Web technologies and ontolo-
gies; they did not even know what an ontology was in the sense of the Semantic
Web. We purposely recruited people with no computer science background as
GINO is intended for casual or occasional users. Each subject was given a two-
page introduction on what the idea of the Semantic Web is and how contents
of ontologies are basically specified (i.e., subject - predicate - object). The sub-
jects were first asked to enter a query into GINO in order to get used to the
tool. We then gave the subjects the following tasks with respect to the adapted
geography ontology. The subjects were first asked to create a class waterArea.
Second, they had to specify a new class lake as a subclass of waterArea. Next,
the subjects had to define a datatype property lakeDepth as well as an object
property isLocatedIn with the domain lake. They were then requested to add an
instance tahoe to the class lake and to enter values for the two properties’ ranges
that they had defined before. Finally, the subjects had to change the value for
the depth of Lake Tahoe (lakeDepth) from metric to the English units.

Using a key-logger, we logged and timed each key entry. At the end of the ex-
periment, we performed the SUS standardized usability test [7] — a standardized
collection of questions (e.g., I think that the interface was easy to use.”) each
answered on the Likert scale providing a global view of subjective assessments
of usability. The test covers a variety of usability aspects such as the need for
support, training, and complexity. To collect more specific details on how the
subjects experienced GINO we followed up on each SUS question with either ”If
you disagreed, what did you find difficult?” or ”If you agreed, what did you find
especially easy?”

4.2 Results of the Experiment

To our surprise all subjects successfully performed the given tasks having only
minor difficulties with the user interface (such as clicking on the wrong button).
Each subject managed to correctly add the two classes, two properties of different
type, and an instance including the specification of the values for its properties.
As only "mistake” three of the subjects mixed up the definition of domain and
range when entering the object property, but immediately corrected their error
after reconsulting the instructions. One subject even wrote down that the domain
corresponded to subject and the range to object of the subject-predicate-object
triple structure. This questions the suitability of these mathematics-rooted terms
for casual users. Examining the entry logs we found that the subjects corrected
very few of their entries (e.g., using the backspace button) indicating that they

GINO - A Guided Input Natural Language Ontology Editor 153

had quickly learned the capabilities of GINO’s NL parser. Even though we can
only hypothesize that this was due to GINO’s popup-based guidance, we know
that other NLIs without that feature suffer from the habitability problem.

The users gave GINO an average SUS score of 70.83 (¢ = 11.15, median
= 73.75), which ranges from 0 to 100. As usability is not an absolute criterion
the resulting score can only be understood relatively to others [21,24]. A sim-
ilar SUS evaluation of two NLI-based query systems, for example, resulted in
average SUS scores of 49.29 for GINO’s predecessor Ginseng [5] and 52.14 for a
controlled English based NLI SWAT [6]. As the SUS score shows, users found
GINO significantly better suited to the task. This is a very good result consider-
ing that our subjects were unfamiliar with ontology issues before the experiment
and that ”they were thrown in the deep end of ontology building/editing tasks”
after a very general and brief introduction.

To the questions ”Why would you like to use GINO frequently?” and ” Why
would most people learn to use GINO quickly?” the answer ”easy and intuitive”
was given four out of six times. Two subjects thought that the interface had a
clear and logic design. Nevertheless, four subjects reported that they would prefer
the support of a person for the first time, but after that they would be able to
use GINO on their own. One person specifically stated that the most convenient
feature of GINO was that one can enter elements using NL. Five subjects found
the Semantic Web fundamentals were the most difficult and time-consuming
part of the experiment. The subjects did not use the right-hand graph view to
do any editing apart from the task where they were explicitly asked to do so.

4.3 Discussion and Summary of Experimental Results

Obviously, our test does not provide (final) quantitative proof of GINO’s suit-
ability for ontology editing by casual users. As we will discuss in the limitations
section below, we need a full user evaluation with many subjects from a variety
of backgrounds to provide such evidence. Nevertheless, our experiment strongly
indicates that novice users (1) can edit ontologies with a NL-based ontology
editor without being overwhelmed by formal logic, (2) can do so with virtually
flawless results, (3) preferred using the NL entry to a direct manipulation graph-
based view, and (4) provided some interesting insight into the confusion behind
the semantics of the terms the Semantic Web uses for the general public. Con-
sequently, we can conclude that the GINO NLI has great potential to overcome
the gap between the average user’s ability to command formal logic and the Se-
mantic Web’s logic-based scaffolding. It also seemed to successfully circumvent
the habitability problem.

5 Limitations and Future Work

Although the preliminary usability evaluation showed promising results, the ap-
proach has its limitations. First, the evaluation is limited with regard to the

154 A. Bernstein and E. Kaufmann

number and choice of the subject pool as well as the extent of the task. Further-
more, our subjects had never used any other ontology tool before the experiment,
therefore making a comparison with these tools impossible. To address this issue
we intend to undertake more intensive user testing in the future to determine
whether NLIs are capable of bridging the logic gap. Such experimentation would
include an extended editing task, a larger subject pool, and the use of additional
tools as a benchmark. Specifically, we need to compare GINO with a simpli-
fied version of an ontology editor (such as Protégé [22]) to establish whether
the users’ ability to edit the ontology came from the deliberate simplification of
GINO or from its langauge capabilities. Nonetheless, we think that our results
are extremely encouraging and provide a strong indication that GINO enabled
the casual/novice users to correctly accomplish a simple ontology editing task.
Users who intend to embark on large ontology editing/design tasks, however,
might prefer to invest the time to learn a full-fledged ontology editor.

Second, GINO is not a full-fledged ontology building and editing tool. It
deliberately has a simple design to allow its use by novices (who might be over-
whelmed by advanced logic features such as quantified restrictions). However,
the simple approach can also be regarded as a strength, since the casual user is
able to handle the tool and is not confused by many complex functions.

Furthermore, the controlled language limits the expressiveness of the user,
but this restriction is not overly severe as shown in the evaluation. We think that
the limitation is justified by two benefits. First, by using a controlled NL, we can
avoid one of the biggest problems of NL: ambiguity. Handling ambiguity, in turn,
is still regarded as a prerequisite for the successful usage of NLIs [20]. Second,
the use of a controlled language (together with a guidance feature) addresses the
habitability problem.

One question which we left unanswered was GINO’s scalability. As the gram-
mar compiler generates at least one rule for every class/instance/property in the
ontology, the grammar is likely to grow very fast for large ontologies. We believe
that this issue could be easily addressed by using standard knowledge-base opti-
mization techniques such as storing instances related rules on disk and retrieving
them only when needed.

In the future, we intend to specifically address the adaptivity barrier. To
adapt a new ontology of the size of the geography ontology to GINO took us
about one hour. The task mainly consisted of adding synonyms of words and
word phrases as gino tags to the ontology. Given a graphical user interface this
task could be accomplished by a novice. M-PIRO [1], a tool for multi-lingual
ontology-based language generation, for example, found that users could do so
easily. Note that such a tool could be extended with user support functions based
on WordNet (http://wordnet.princeton.edu/).

6 Related Work

The idea of NLIs is not new. NLIs to databases have repeatedly been developed
since the seventies, but oftentimes with moderate success [2, 9, 19, 32]. Consider-

GINO - A Guided Input Natural Language Ontology Editor 155

ing the difficulties with full NL, the side step to restricted NL or menu-guided in-
terfaces, which has often been proposed, seems obvious [8, 4,11, 32]. Even though
there exist good and sophisticated ontology construction and editing tools (e.g.,
Ontolingua [10], Chimaera [17], OilED [3], Protégé [22], OntoEdit [29]), they all
follow the menu/graph-based user interface paradigm. Swoop [12] tries to make
use of people’s familiarity with standard web browsers and offers a user interface
that reflects the ”"webiness” with which people are used to interact.

There are some NLI-based projects that closely relate to GINO. [26] show
how (OWL) ontologies can be constructed using a controlled NL to express the
specifications. Their approach relies on a bidirectional grammar that translates
entered facts, axioms, and restrictions into OWL abstract syntax. The controlled
language does not have to be learned as a text editor guides the user through
the writing process by offering look-ahead information (i.e., word categories).
Unfortunately, no user evaluation is reported on. One major difference between
their approach and GINO is that their look-ahead feature does not show the
actual words but displays the acceptable word categories. This enhances the
cognitive load on the user, as he/she has to map the grammatical word category
to possible words. Also, their project is aimed at finding an alternative notation
to OWL resulting in logic-alike statements such as ”Iff X is a pizza then X is a
dish.” While this might be grammatically correct English, it is clearly not aimed
at the casual user but at someone who understands the general principles of first-
order logic. In contrast, [30] offers a simple controlled language for specifying
ontologies. However, it does not provide direct guidance or look-ahead support.

LingoLogic [32] is a user interface technology that combats the habitabil-
ity problem by using menus to specify NL queries and commands that can be
executed on relational databases. A parser checks a user’s entries, displays pos-
sible completions of the words/phrases to the user, and translates the entries
to the target query language SQL. In contrast to GINO LingoLogic seems to
be limited to querying databases. We did not find any data manipulation capa-
bilities. Hence, LingoLogic seems to belong to the category of NLI-based ontol-
ogy/database querying tools such as PRECISE [23], AquaLog/PowerAqua [16,
15], START [13], SWAT [6], or Ginseng [5] — the GINO predecessor. PRECISE,
Ginseng, and SWAT were evaluated with the Mooney databases [31], which also
have associated NL queries collected from users. Ginseng and SWAT were addi-
tionally tested with end users in a task setting. All evaluations show that NLIs
can be successfully used to overcome the querying disconnection. As such, they
complement our findings, which focused on bridging the editing disconnection.

7 Conclusions

In order to be usable to the casual or novice user, the logic-based scaffolding
of the Semantic Web needs to be made accessible for editing and querying. We
propose that NLIs offer one way to achieve that goal. To that end, we introduced
GINO, the guided input natural language ontology editor that allows users to
edit and query ontologies in a quasi-English guided language. Our evaluation

156 A. Bernstein and E. Kaufmann

with six end users provides some evidence that novice users are capable of vir-
tually flawlessly add new elements to an ontology. It also showed that end users
were confused by the terms for the major Semantic Web elements that the re-
search community currently uses. Additionally, we found that the use of guided
entry seemed to overcome the habitability problem that hampers users’ ability
to use most full NLIs. We believe that this paper shows the potential of NLIs for
end user access to the Semantic Web, providing a chance to offer the Semantic
Web’s capabilities to the general public.?

References

1. I. Androutsopoulos, S. Kallonis, and V. Karkaletsis. Exploiting owl ontologies
in the multilingual generation of object. In 10th European Workshop on Natural
Language Generation (ENLG 2005), pages 150-155, Aberdeen, UK, 2005.

2. I. Androutsopoulos, G. D. Ritchie, and P. Thanisch. Natural language interfaces
to databases - an introduction. Natural Language Engineering, 1(1):29-81, 1995.

3. S. Bechhofer, I. Horrocks, C. Goble, and R. Stevens. Oiled: A reason-able ontology
editor for the semantic web. In Intl. Description Logics Workshop, Stanford, CA,
2001.

4. S. Bechhofer, R. Stevens, G. Ng, A. Jacoby, and C. Goble. Guiding the user:
An ontology driven interface. In 1999 User Interfaces to Data Intensive Systems
(UIDIS 1999), pages 158-161, Edinburgh, Scotland, 1999.

5. A. Bernstein and E. Kaufmann. Making the semantic web accessible to the casual
user: Empirical evidence on the usefulness of semiformal query languages. IEEE
Transactions on Knowlwdge and Data Engineering, under review.

6. A. Bernstein, E. Kaufmann, A. Gohring, and C. Kiefer. Querying ontologies: A
controlled english interface for end-users. In 4th Intl. Semantic Web Conf. (ISWC
2005), pages 112-126, 2005.

7. J. Brooke. Sus - a "quick and dirty usability scale. In P. Jordan, B. Thomas,
B. Weerdmeester, and A. McClelland, editors, Usability Evaluation in Industry.
Taylor Francis, London, 1996.

8. S. K. Cha. Kaleidoscope: A cooperative menu-guided query interface (sql version).
IEEE Transactions on Knowledge and Data Engineering, 3(1):42—47, 1991.

9. S. Chakrabarti. Breaking through the syntax barrier: Searching with entities and
relations. In 15th European Conf. on Machine Learning (ECML 2004), pages 9-16,
Pisa, Italy, 2004.

10. R. Fikes, A. Farquhar, and J. Rice. Tools for assembling modular ontologies in
ontolingua. In AAAI/TAAI pages 436-441, 1997.

11. C. Hallett, R. Power, and D. Scott. Intuitive querying of e-health data repositories.
In UK E-Science All-hands Meeting, Nottingham, UK, 2005.

12. A. Kalyanpur, B. Parsia, and J. Hendler. A tool for working with web ontologies.
Intl. Journal on Semantic Web and Information Systems, 1(1):36—49, 2005.

13. B. Katz, J. Lin, and D. Quan. Natural language annotations for the semantic web.
In Intl. Conf. on Ontologies, Databases, and Applications of Semantics (ODBASE
2002), Irvine, CA, 2002.

2 The authors would like to thank R. Mooney’s team for having generously supplied
the dataset, Gian Marco Laube for his support in implementing the prototype, and
the anonymous reviewers for their insightful comments. This work was partially
supported by the Swiss National Science Foundation (200021-100149/1)

14.

15.

16.

17.

18.

19.

20.

21.
22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

GINO - A Guided Input Natural Language Ontology Editor 157

P. Lambrix, M. Habbouche, and M. Prez. Evaluation of ontology development
tools for bioinformatics. Bioinformatics, 19(12):1564-1571, 2003.

V. Lopez, E. Motta, and V. Uren. Poweraqua: Fisching the semantic web. In
3rd European Semantic Web Conference (ESWC 2006), pages 393-410, Budva,
Montenegro, 2006.

V. Lopez, M. Pasin, and E. Motta. Aqualog: An ontology-portable question an-
swering system for the semantic web. In 2nd European Semantic Web Conference
(ESWC 2005), pages 546—562, Heraklion, Greece, 2005.

D. L. McGuinness, R. Fikes, J. Rice, and S. Wilder. An environment for merging
and testing large ontologies. In Seventh Intl. Conf. on Principles of Knowledge
Representation and Reasoning (KR2000), pages 483-493, Breckenridge, CO, 2000.
D. L. McGuinness and F. van Harmelen. Owl web ontology language overview.
W3c recommendation, 2004.

R. J. Mooney. Learning semantic parsers: An important but under-studied prob-
lem. In AAAI 2004 Spring Symposium on Language Learning: An Interdisciplinary
Perspective, pages 39-44, Stanford, CA, 2004.

H. A. Napier, D. M. Lane, R. R. Batsell, and N. S. Guadango. Impact of a restricted
natural language interface on ease of learnng and productivity. Communications
of the ACM, 32(10):1190-1198, 1989.

J. Nielsen. Usability Engineering. Academic Press, San Diego/New York, 1993.
N. F. Noy, M. Sintek, S. Decker, M. Crubzy, R. W. Fergerson, and M. A. Musen.
Creating semantic web contents with protege-2000. IFEEE Intelligent Systems,
16(2):60-71, 2001.

A.-M. Popescu, O. Etzioni, and H. Kautz. Towards a theory of natural language
interfaces to databases. In 8th Intl. Conf. on Intelligent User Interfaces, pages
149-157, Miami, FL, 2003.

J. Preece, Y. Rogers, and H. Sharp. Interaction Design: Beyond Human-Computer
Interaction. John Wiley and Sons, New York, 2002.

E. Prud’hommeaux and A. Seaborne. Sparql query language for rdf. Technical
report, W3C Candiate Recommendation, 2006.

R. Schwitter and M. Tilbrook. Let’s talk in description logic via controlled natural
language. In Logic and Engineering of Natural Language Semantics (LENLS2006),
Tokyo, Japan, 2006.

A. Spink, W. Dietmar, B. J. Jansen, and T. Saracevic. Searching the web: The
public and their queries. Journal of the American Society for Information Science
and Technology, 52(3):226-234, 2001.

A. Spoerri. Infocrystal: A visual tool for information retrieval management. In Sec-
ond Intl. Conf. on Information and Knowledge Management, pages 11-20, Wash-
ington, D.C., 1993. ACM Press.

Y. Sure, E. Michael, J. Angele, S. Staab, R. Studer, and D. Wenke. Ontoedit:
Collaborative ontology development for the semantic web. In First Intl. Semantic
Web Conf. 2002 (ISWC 2002), pages 221-235, Sardinia, Italy, 2002.

V. Tablan, T. Polajnar, H. Cunningham, and K. Bontcheva. User-friendly on-
tology authoring using a controlled language. Research Memorandum CS-05-10,
Department of Computer Science, University of Sheffield, 2005.

L. R. Tang and R. J. Mooney. Using multiple clause constructors in inductive logic
programming for semantic parsing. In 12th European Conf. on Machine Learning
(ECML-2001), pages 466—477, Freiburg, Germany, 2001.

C. W. Thompson, P. Pazandak, and H. R. Tennant. Talk to your semantic web.
IEEE Internet Computing, 9(6):75-78, 2005.

