Visualizing Multiple Evolution Metrics

Martin Pinzger, Harald Gall*
Department of Informatics
Univ. of Zurich, Switzerland

Abstract

Observing the evolution of very large software systems needs the
analysis of large complex data models and visualization of con-
densed views on the system. For visualization software metrics
have been used to compute such condensed views. However, cur-
rent techniques concentrate on visualizing data of one particular
release providing only insufficient support for visualizing data of
several releases.

In this paper we present the RelVis visualization approach that
concentrates on providing integrated condensed graphical views on
source code and release history data of up to n releases. Measures
of metrics of source code entities and relationships are composed
in Kiviat diagrams as annual rings. Diagrams highlight the good
and bad times of an entity and facilitate the identification of enti-
ties and relationships with critical trends. They represent potential
refactoring candidates that should be addressed first before further
evolving the system. The paper provides needed background in-
formation and evaluation of the approach with a large open source
software project.

Keywords: software evolution analysis, evolution metrics, soft-
ware visualization, Kiviat

1 Introduction

Observing the evolution of large object-oriented software systems
is challenging because of the sheer size of the systems, and because
the data that must be analyzed is multiplied by the number of re-
leases under examination. Two of the most promising techniques
to perform fruitful analyses and to tackle scalability problems are
software metrics and visualization.

Software metrics do not pose scalability problems, but usually
come in huge tables that are difficult to grasp important informa-
tion. Moreover, it is all too easy to invent new metrics whose usabil-
ity is questionable and whose definition is also sometimes fuzzy,
such as the infamous lines of code (LOC) metric. On the other side,
metrics provide condensed information of underlying source code
data, such as the complexity metrics introduced by McCabe and
Halstead. This condensed information allows users to get a clue of
the complexity of an implementation without having to dig into the
source code.

Visualization has been accepted as a useful means to understand
complex data, because visual displays allow the human brain to
study multiple aspects of complex problems in parallel [Stasko et al.

*{pinzger,gall} @ifi.unizh.ch
*fischer @infosys.tuwien.ac.at
*michele.lanza@unisi.ch

Copyright © 2005 by the Association for Computing Machinery, Inc.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for commercial advantage and that copies bear this notice and the full citation on the
first page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from Permissions Dept, ACM Inc., fax +1 (212) 869-0481 or e-mail
permissions@acm.org.

© 2005 ACM 1-59593-073-6/05/0005 $5.00

Michael Fischer®
Distributed Systems Group
TU Vienna, Austria

67

Michele Lanza®
Faculty of Informatics
Univ. of Lugano, Switzerland

1998]. However, often the visualizations themselves are hard to
interpret, and in the case of evolutionary data, they often succeed in
obscuring the relevant information.

Figure 1: A comparison of 7 Mozilla modules between release 0.92
(on the left) and release 1.7 (on the right).

For example, in Figure 1 we see a polymetric visualiza-
tion [Lanza and Ducasse 2003] of 7 Mozilla modules of two ver-
sions (0.92 on the left, 1.7 on the right) of Mozilla. The nodes rep-
resent modules with the number of contained classes for the width,
number of contained files for the height, and number of contained
directories for the color. The edges represent abstracted invocation
relationships between the modules (the width of the edges repre-
sents the weight, i.e., the number of grouped relationships). By
using this visualization technique we gather that nodes (i.e., mod-
ules) differ in size and that the nodes of both graphs are basically
connected with nearly every other node. But, comparing the two
graphs is not straight forward and differences are difficult to spot.
Thinking of larger graphs and n releases spotting the differences
and trends of node and arc metrics is even more complex if not
impossible.

The problem of the polymetric visualization technique used in
Figure 1 is in comparing the two slightly different graphs. It results
from having at least one graph per release. Consequently, polymet-
ric visualization is suitable for visualizing the information (struc-
ture and metrics) of one release but not for visualizing the informa-
tion of n releases. In this paper we concentrate on the latter issue
and introduce our RelVis approach. The objective of RelVis is to
visualize the evolution of source code entity and relationship met-
rics across n releases. For this RelVis condenses the information
from n releases into two graphs. The first graph concentrates on vi-
sualizing information about source code entities and their metrics.
The focus of the second graph is on visualizing relationships be-
tween source code entities and their metrics. Evolution of metrics
of both source code entities and their relationships is visualized as
annual rings, such as of trees showing the good and bad times of an
entity. With these rings the spectator can follow the trend of met-
rics and reason about the current state of source code entities and
relationships and how it came to this state.

Altogether, the two graphs provide a compact view on the evo-
lution of source code entities and their relationships. They facil-
itate reasoning about past behavior and anticipating future direc-

tions (i.e. trends). Critical trends, such as steadily increasing cou-
pling dependencies or increasing complexity of source code entities
and coupling dependencies are pointed out. They represent poten-
tial refactoring candidates that should be addressed before further
evolving the system.

The remainder of the paper is structured as follows: In the next
section we present related work. Section 3 describes the data that is
preprocessed and subject of visualization. The RelVis approach is
presented in Section 4. In Section 5 we demonstrate the application
of RelVis to huge amounts of source code and release history data
obtained from a well known open source web browser. In Section 6
we draw the conclusions and indicate future work.

2 Related Work

Software Visualization. Graphical representations of software
have long been accepted as comprehension aids. Many tools en-
able the user to visualize software using static information, e.g.,
Rigi [Miiller 1986], Hy+ [Consens and Mendelzon 1993], SeeSoft
[Eick et al. 1992], and Shrimp Views [Storey and Miiller 1995]. The
Affinity Browser described in [Pintado 1995] provides a visual rep-
resentation of object relationships in terms of dependencies.

Chuah and Eick present a way to visualize project information
through glyphs called infobugs. Glyphs are graphical objects repre-
senting data through visual parameters. Their infobug glyph’s parts
represent data about software [Chuah and Fick 1998]. The differ-
ence with our work is that they use glyphs for viewing project man-
agement data, while our work focuses on describing how a module
evolves over time. The main advantage of the infobugs is that they
are rotation-independent, while the order of the axes of our Kiviat-
diagrams is relevant.

Lanza’s Evolution Matrix based on polymetric views [Lanza and
Ducasse 2003] visualizes the system’s history in a matrix in which
each row is the history of a class. A cell in the Evolution Matrix
represents a class and the dimensions of the cell are given by evo-
lutionary measurements computed on subsequent versions.

Girba et al. used the notion of history to analyze how changes
appear in the software systems [Girba et al. 2004] and succeeded in
visualizing the histories of evolving class hierarchies.

Taylor and Munro [Taylor and Munro 2002] visualized CVS data
with a technique called revision towers. Ball and Eick [Ball and
Eick 1996] developed visualizations for showing changes that ap-
pear in the source code. These approaches reside at a different gran-
ularity level, i.e., files, and thus do not display higher-level imple-
mentation units as in our approach.

Gulla [Gulla 1992] proposes multiple visualizations of C code,
but to our knowledge there is no implementation. Collberg et
al. used graph-based visualizations to display the changes authors
make to class hierarchies [Collberg et al. 2003]. However, they do
not give any representation of the dimension of the effort and of the
removals of entities.

Riva et al. analyzed the stability of the architecture [Gall et al.
1999] by using colors to depict the changes over a period of re-
leases.

Rysselberghe and Demeyer used a simple visualization based on
information in version control systems to provide an overview of
the evolution of systems [Van Rysselberghe and Demeyer 2004].
Similar to [Gall et al. 1999], Wu et al. describe an Evolution Spec-
trograph [Wu et al. 2004] that visualizes a historical sequence of
software releases.

Grosser, Sahraoui and Valtchev applied Case-Based Reasoning
on the history of object-oriented system as a solution to a comple-
mentary problem to ours: to predict the preservation of the class
interfaces [Grosser et al. 2002]. They also considered the interfaces
of a class to be the relevant indicator of the stability of a class.

68

Metrics. Metrics are a way to assess the quality and complexity
of software [Fenton and Pfleeger 1996]. In combination with visu-
alization it has become a traditional technique used to deal with the
problem of analyzing the history of software systems.

Lehmann used metrics starting from the 1970’s to analyze the
evolution of the IBM OS/360 system. Lehmann, Perry and Ramil
explored the implication of the evolution metrics on software main-
tenance [Lehman et al. 1998]. They used the number of modules
to describe the size of a version and defined evolutionary measure-
ments which take into account differences between consecutive ver-
sions.

Gall ef al. also employed the same kind of metrics while ana-
lyzing the continuous evolution of the software systems [Gall et al.
1998]. They analyzed the history of changes in software systems
to detect the hidden dependencies (i.e., logical couplings) between
modules. However, their analysis was focused on release history
data but did not take into account source code.

Burd and Munro analyzed the influence of changes on the main-
tainability of software systems. They define a set of measurements
to quantify the dominance relations which are used to depict the
complexity of the calls [Burd and Munro 1999].

3 Evolution Data

The visualization technique to use strongly depends on the data to
be visualized and on the information that should be communicated
to the user. In the context of this paper the data to be visualized
stems from source code and configuration management systems, in
particular the concurrent versions system (CVS) [Fre 2003].

Parsing techniques are applied to selected source code releases
to retrieve a source code model per release. They contain the im-
plementation relevant facts comprising the principal source code
entities (e.g., files, classes, methods, etc.) and the relationships be-
tween them (e.g., class inheritance, method calls, etc.). Data from
the configuration management system is obtained by applying our
release history populator tool set. Extracted release history data
adds information about modifications to parsed source code entities,
basically, who changed which file when. Based on this information
the logical coupling dependencies between source files are com-
puted as described in [Fischer et al. 2003]. They indicate pairwise
changes of source files and are key relationships for software evo-
lution analysis as demonstrated by our previous and related work.
Logical coupling data per release is integrated into the correspond-
ing extracted source code model to have one common evolution
data repository [Pinzger et al. 2004].

Graph-like representations turned out to be adequate for visual-
izing this kind of data. Extracted models of source code and release
history data can be directly mapped to graphs. For instance, nodes
of graphs represent source code entities, such as files, classes, and
methods. Edges represent relationships between these entities, such
as file includes, class inheritance, method calls, or logical couplings
between modules. Nodes and edges can have several attributes that
result from source code and release history data extraction and anal-
ysis. Attributes range from the name of a source code entity to
metrics computed for it. Metrics are of particular interest because
they are measures providing implementation and evolution relevant
quality indicators.

With respect to evolution analysis the information that we want
to communicate to the user (e.g., software architect), is the evolu-
tion of metrics of source code entities and their coupling dependen-
cies. Basically, it should communicate trends, such as, the growth
of classes or the increasing / decreasing of coupling dependencies
between two classes. Spotting these trends the software architect
gets a thorough understanding of the current state of a source code
entity and its dependencies on other entities. Based on this data,

Metric Type Description
nrDirectories(e) M # of directories contained by module e
nrFiles(e) M # of files contained by module e
nrClasses(e) EM # of classes declared in e
nrFuncs(e) EM # of functions/methods implemented in e
nrVars(e) EM # of global variables and attributes declared in e
nrCouples(e) EM # of logical coupling relationships of e with other entities
nrMRs(e) EM # of modification reports involved in the logical coupling relationships
entropy(e) EM entropy of modification reports computed based on lines added and deleted
nrACouples(e) EM # of abstracted logical coupling relationships
in_nrCallers(e) EM # of functions/methods of other entities invoking functions/methods of entity e
in_nrCalls(e) EM # of in-coming function/method calls
in_nrACalls(e) EM # of abstracted in-coming call relationships
out_nrCallers(e) EM # of functions/methods of entity e invoking functions/methods of other entities
out_nrCalls(e) EM # of out-going function/method calls
out_nrACalls(e) EM # of abstracted out-going call relationships

Table 1: Excerpt of module (M) and source file (F) metrics.
Metric | Type | Description
nrCallers invokes | # of functions/methods of entity A invoking functions/methods of entity B
nrCallee invokes | # of functions/methods of entity B invoked by functions/methods of entity A (=fanOut)
nrCalls invokes | # of function/method calls between entity A and entity B
nrAccessors accesses | # of functions/methods of entity A accessing an attribute/variable of entity B
nrAccessed accesses | # of attributes/variables of entity B accessed by functions/methods of entity A
nrAccesses accesses | # of accesses of attribute/variable of entity B by functions/methods of entity A

Table 2: Excerpt of coupling metrics of relationships between source code entities (e.g., modules, files).

critical trends are highlighted and shown to the architect who then
can focus perfective maintenance activities on these entities.

The metric values for each source code entity and relationship
are obtained from the integrated source code and release history
model. In this paper we concentrate on software modules, source
files, their coupling relationships and metrics on them. A software
module is an architecture element that stems from decomposing a
system into manageable implementation units. In the context of this
paper it is denoted as a set of source files that implement a coher-
ent set of functionality which it provides to other modules over its
interface(s).

An excerpt of metrics computed for software modules and source
files is shown by Table 1. Table 2 lists relevant metrics of source
code and release history relationships. Listed metrics correspond to
the metrics (measurements) presented in related coupling research
articles, such as by Briand [Briand et al. 1999].

Measures of metrics of each entity and relationship are as-
signed to a feature vector which is an i-dimensional tuple M =
{my,my,....m;}. To communicate the evolution of entity and re-
lationship metrics feature vectors have to be tracked over n re-
leases. The release number is added to the feature vector leading to
M" = {m!,m3,...,m}}. Based on these vectors the evolution of an
entity or relationship is expressed by the following evolution matrix
E that contains n vectors with measures of i metrics:

ma ma’ mf}

mh my m
Eixn= . .

m/ m// mﬂ

Evolution matrices are computed for selected source code enti-
ties and relationships. They form the basic input to our visualiza-
tion approach. Consequently, the amount of data to be visualized
directly corresponds to the data contained by the matrices of each
entity and relationship. The following basic constraints arise:

69

1. Visualization of i metrics per entity. There are different met-
rics for each entity that have to be presented in a meaningful
way. Dependencies between metrics should be visualized.

2. Visualization of metrics across n releases. The dimension of
time in terms of release dates has to be considered to show
metric trends. For instance, it should be observable without
having the user to compare n graphs.

Taking into account these constraints we came up with the RelVis
visualization approach described in the next section.

4 RelVis Approach

A basic principle of the RelVis approach is the mapping of met-
rics to graphical attributes. A recent approach that concentrated on
such a mapping is the polymetric views introduced by Lanza et al.
in [Lanza and Ducasse 2003]. In these views nodes are represented
as rectangles whereas the width, height and color attribute of a rect-
angle are used to present source code metrics of an entity. Using
rectangles up to 3 metrics of an entity can be represented. Addi-
tionally, two metrics can be mapped to the x- and y-position of a
rectangle.

The RelVis approach is based on this principle of mapping met-
rics to graphical attributes. Instead of using graphical shapes lim-
ited in the number of representable metrics RelVis uses Kiviat dia-
grams. These diagrams are suited to present multivariate data such
as the feature vectors extracted from several releases of source code
and release history data. For similar purpose (visualizing source
code metrics) Kiviat diagrams have also been used by related visu-
alization approaches and tools.

Figure 2 shows an example of a Kiviat diagram representing
measures of six metrics of the entity moduleA. Each of the six
metrics M1,M2,...,M6 is drawn as a straight line originating in
the center of the diagram. The value of each metric m’1 7m’2...,m/6

is plotted on its corresponding line. Dependencies between adja-
cent metrics are indicated by lines drawn between adjacent met-
ric values. Arranging metrics in a certain way results in recurring
diagram-patterns that indicate critical source code entities such as
god classes. With Kiviat diagrams users quickly can spot these in-
teresting entities.

N/ /"‘

moduleA\)

M6

Figure 2: Basic Kiviat diagram with measures of 6 metrics
M1,M2,.....M6 of moduleA.

The example depicted by Figure 2 demonstrates the usefulness
of Kiviat diagrams for visualizing metrics data. Certain require-
ments have to be met to prevent diagrams to become cluttered with
information: 1) normalization of metric values to a maximal draw-
ing length to prevent over-sized Kiviat diagrams; 2) using a minima
(i.e., an offset) that is added to computed values to prevent infor-
mation cluttering in the center of Kiviat diagrams. Computed met-
ric values are drawn with respect to these minimum and maximum
drawing range. We will see later on that the limitation in size is
necessary to link Kiviat diagrams to Kiviat graphs.

4.1 Visualizing n Releases

As stated in Section 3 the objective is to communicate the evolution
of metrics of source code entities and their relationships. Kiviat
diagrams as shown and described above are suitable to visualize i
metrics of an entity at a time but how can we visualize data of n
releases?

The two principles that allow RelVis to visualize data of several
releases are (1) normalizing metric values to the range determined
by the minimum and maximum of each metric and (2) using a met-
ric to encode the time-order of releases.

Reconsidering the evolution matrix RelVis computes the max-
ima of each metric for each source code entity type across the n
releases.

! "
MAX (M;) = max(m;,m; ,...,m})
The minima of each metric can be considered 0. The effective draw-
ing length of each measure is computed by normalizing the value
by its maximum and adding an offset to it.

. X m}xc
length(m}) = of fset + MAX(M))

The constant ¢ specifies the maximum drawing size and together
with the of fset constant is used to control the size of Kiviat di-
agrams. These constants can be configured by the user. The dif-
ferent values computed for a metric across n releases are plotted
in the diagram and adjacent measures of metrics of the same re-
lease are connected. The result is a diagram that per release shows
a polygon. Since values can also decrease from release to release,
the edges forming the polygons may overlap, obscuring informa-
tion. For instance, the information if a value of a metric increases
or decreases from release to release is not always clear.

70

RelVis handles this problem in two ways. One way is to encode
the time order of releases by using different colors per release for
drawing the lines of polygons. A second solution is to encode the
sequence of releases into a metric. For instance, the release number
or the number of changes made to a source code entity (nrMRs) can
be used. Values of both metrics indicate the chronological order of
releases. Based on such metrics increasing or decreasing of other
depicted metric values can be determined.

The evolution of metrics can be further highlighted by filling the
polygons emerged between two subsequent releases and adjacent
metrics with different colors. Using appropriate color gradients,
such as the rainbow colors, the order of releases is made transparent
and strong changes in metric values are highlighted.

Strong changes in metric values are further pointed out by
putting metrics belonging together side by side. Resulting sectors
contain metrics that quantify certain aspects of the implementation
or evolution respectively and their trends. For example, by group-
ing metrics that quantify in-coming and out-going uses relation-
ships in two separate sectors of the diagram users can categorize
modules into service providers and service consumers or both.

However, when filling the polygons with different colors the or-
der of releases have to be encoded in the diagram. Otherwise, the
number of colors used in the diagram explodes (i.e., when visualiz-
ing a high number of releases) which lowers comprehensibility of
computed Kiviat diagrams.

B release 1-2
O release 2-3

M3

M2

moduleA

M6

M5

Figure 3: Kiviat diagram with 6 metrics M1,M2,..., M6 of 3 re-
leases of moduleA. M1 indicates the chronological order of re-
leases.

Figure 3 depicts an example of visualizing six metrics of
moduleA of three releases 1, 2, and 3. In this example M1 presents
the “number of changes” (nrMRs) metric specifying the chrono-
logical order of releases. Consequently, metric M2 is decreasing
whereas the values of remaining metrics increase from release 1 to
release 2. From release 2 to 3 the values of metric M2, M3, and M6
increase whereas M4 and M5 decrease.

4.2 Kiviat Graphs

As described above we use a Kiviat diagram per source code entity
to present measures of multiple metrics and their changes across
several releases. Although the diagrams provide quantitative mea-
sures they do not explicitly show the dependency relationships be-
tween source code entities. Therefore, RelVis links diagrams to
Kiviat graphs in which nodes represent source code entities and
edges the relationships between them. Figure 4 depicts an example
of a Kiviat graph with two modules.

Relationships between diagrams are drawn as filled rectangles.
To keep graphs understandable, relationships are drawn in the back-
ground with a smooth color with low contrast. With this technique
one type of relationship at a time (e.g. logical coupling) can be visu-
alized. RelVis supports the mapping of up to 3 relationship metrics

B release 1-2
O release 2-3

Figure 4: Kiviat graph with 6 metrics M1,M2,...,M6 of 3 releases
of moduleA and moduleB. The edge denotes the coupling relation-
ship between the two modules.

to graph edges using the polymetric view concept. For instance, in
Figure 4 the two metrics nrCalls and nrCallee are mapped to the
length and width of the edge between moduleA and moduleB.

Graph layout problems are prevented by using normalized Kiviat
diagrams: RelVis facilitates the application of standard layout al-
gorithms such as hierarchical or spring layout. However, as with
other graph visualization techniques problems may occur when us-
ing over-sized labels that overlap.

4.3 Multiple Relationship Metrics

Edges in a graph explicitly visualize the relationships between
source code entities. For instance, they indicate the coupling de-
pendencies. In addition to source code entities visualizing the trend
of relationships is beneficial. For instance, to find out the constantly
increasing coupling relationships between pairs of software mod-
ules. For this view on relationships RelVis computes a second graph
that presents multiple metrics of relationships with Kiviat diagrams.

Visualizing metrics of relationships adds a number of constraints
that have to be taken into account: (1) relationships can be directed
and undirected, (2) different types of relationships, and (3) graphs
are highly connected.

For each relationship between source code entities RelVis draws
a straight line indicating a coupling between two entities. The direc-
tion of relationships is indicated by the Kiviat half-diagrams that are
assigned to it. Each half-diagram indicates its direction by arrang-
ing the metrics on the right or left side of the diagram and ordering
them bottom-up or top-down.

Figure 5 depicts an example of visualizing metrics of the cou-
pling dependency between moduleA and moduleB of 3 releases
with Kiviat diagrams. The diagram on the right side with metrics
M1,M2,...,M5 ordered bottom-up depicts the relationships from
moduleA to moduleB including, for instance, the number of meth-
ods of moduleA that call methods of moduleB (nrCallers) and the
number of calls (nrCalls). The second diagram depicts the same
metrics of relationships in the other direction from moduleB to
moduleA. The two Kiviat diagrams are linked to an edge that in-
dicates the dependency between two modules. The edge itself is
drawn as a rectangle and can be used to visualize up to three met-
rics (size, width and color) that characterize the overall strength of
the coupling between two source code entities.

Trends of specific relationship metrics are visualized in Kiviat
diagrams. They show selected metrics of other relationships with-
out having to draw extra edges between node pairs. This meets the
second constraint of visualizing different types of relationships and
also aids in meeting the third constraint. When visualizing large
graphs with a high number of dependency relationships, the lay-

71

B release 1-2 M1 M5
O release 2-3

M M4

M3— M3
M4 M2
— M5 Ml —
/ / \
3 3

moduleA moduleB

Figure 5: Kiviat graph with metrics M1,M2, ..., MS of 3 releases of
the coupling dependency of moduleA with moduleB (diagram on
the right) and vice versa (diagram on the left).

out of Kiviat diagrams gets complex and needs post-processing by
the user or pre-filtering of relationships. For instance, filtering of
relationships by type or by using thresholds for certain coupling
metrics.

5 Evaluation

We demonstrate the RelVis approach by applying it to the source
code and release history data of the open source project Mozilla!.
In particular, the data to be visualized is of seven software modules
that implement services for handling the content of web-pages and
layout it in the Mozilla web browser. In this context software mod-
ules are implementation units that consist of a number of source
files implementing a coherent piece of functionality.

The objective of the visualization is to highlight interesting
and critical trends of software modules and coupling relationships.
Concerning coupling relationships and metrics we concentrated
on logical couplings derived from release history data and static
method invocations. Metrics computed correspond to those listed
in Table 1 and Table 2.

5.1 Evolution Data

Extracted source code models comprise seven releases of the se-
lected modules starting from release 0.92 (29th of June, 2001) up
to release 1.7 (17th of June, 2004). Selected releases denote ma-
jor milestones in the Mozilla project with a time delta of about
half a year. Release history data comprises all modification report
data obtained from the Mozilla source code repository up to re-
lease 1.7. The latter data was used to compute the logical coupling
relationships between the source files of selected modules [Fis-
cher et al. 2003]. Computed relationships were integrated with
the source code models of corresponding Mozilla releases [Pinzger
et al. 2004]. Based on the integrated models the metrics for the
seven software modules and their relationships were computed and
stored on a per release basis. Models together with metrics were
then input to the visualization algorithm.

Uhttp://www.mozilla.org

Nr. | Metric 0.92 0.97 1.0 1.2 1.4 1.6 1.7
1 | nrACouples 6 12 18 24 30 36 42
2 | entropy 115738 | 165695 | 189391 | 212873 | 247570 | 318324 | 337721
3 | nrMRs 30046 45600 58060 67631 83344 | 106523 | 113253
4 | nrCouples 15286 25809 34073 41112 53573 67170 71901
5 | in_nrACalls 6 6 6 6 6 6 6
6 | in_nrCallers 886 972 769 772 768 859 835
7 | in_nrCalls 1256 1307 1116 1109 1099 1459 1560
8 | nrAttrs 906 988 1118 1236 1292 1316 1293
9 | nrClasses 459 476 528 566 595 607 609

10 | nrDirs 44 45 50 50 50 50 49
11 | nrFiles 397 405 443 464 477 485 492
12 | nrFuncs 10135 10275 10634 11148 11445 11464 11398
13 | nrGlobalFuncs 333 880 288 325 341 334 330
14 | nrGlobalVars 219 227 234 262 250 237 229
15 | nrMeths 9802 9395 10346 10823 11104 11130 11068
16 | nrPackages 0 0 0 0 0 0 0
17 | nrVars 1125 1215 1352 1498 1542 1553 1522
18 | out_nrACalls 4 3 3 3 4 4 3
19 | out_nrCallers 566 597 575 575 623 638 429
20 | out_nrCalls 1339 1631 1640 1657 1761 1808 1309

Table 3: Measures of source code and evolution metrics of 7 releases of Mozilla’s DOM module.

6in_nrCallers

7 in_nrCalls 5in_nrACalls

8 nrAttrs

20 out_nrCalls

13 nrGlobalFuncs 19 out_nrCallers

14 nrGlobalVars 18 out_nrACalls

15 nrMeths
16 nrPackages

17 nrvars

DOM

Figure 6: Kiviat diagram with 20 source code and evolution metrics
of 7 subsequent releases of Mozilla’s DOM module.

5.2 Kiviat Graph - Modules

The graph showing the Kiviat diagrams of module specific met-
rics is depicted by Figure 7. Each diagram visualizes measures of
20 metrics across 7 releases. Layout of the diagrams and the rela-
tionships between them show the logical coupling dependencies be-
tween modules. For describing the details of the information shown
we picked out the diagram for the (document object model) DOM
module (located in the center of the graph). The DOM module pro-
vides functionality for storing and manipulating (e.g. JavaScript)
the content of web-pages. The diagram is shown by Figure 6.

The arrangement of metrics is as follows: metrics 1 to 4 charac-
terize the logical coupling with other modules; metrics 5 to 7 are
concerned with incoming method calls and quantify the uses of the
module by other modules; metrics 8 to 17 indicate the size of the
module in terms of contained source code entities; the remaining 3
metrics 18 to 20 denote outgoing method calls indicating the uses
of other modules by DOM.

72

The Kiviat diagram depicting the DOM module metrics reflects
the importance of the module and its central role in the Mozilla
project. The logical coupling metrics, the uses metrics, as well as
the size metrics clearly indicate a large, frequently used and strong
coupled software module. Table 3 lists the detailed measures pre-
sented by the diagram of Figure 6.

Logical couplings visualized by metrics 1 to 4 constantly in-
creased over all seven releases by an average of more than 13.800
modification reports. Size metrics visualized on the left (8 to 17) al-
most all increased showing that the DOM module constantly grew,
especially from release 0.97 to 1.0. Interesting is the number of
global functions that dramatically increased from release 0.92 to
0.97 (+547 functions), but in the next release 1.0 decreased (-592
functions) and then is constant (see also Table 3 metric number
13). Concerning the uses-dependencies the number of in-coming
method calls increased from release 0.92 to the last release 1.7 with
an interesting peak from release 1.4 to 1.6 (+360 calls). The out-
going method calls constantly increased up to release 1.6 but then
from release 1.6 to 1.7 decreased extremely (-499 calls). Appar-
ently, programmers resolved a reasonable amount (-28%) of the
coupling by method calls.

Based on the analysis of the DOM module we investigated the
Kiviat graph of Figure 7. The layout as well as the width of
edges indicate the strength of logical coupling dependencies be-
tween the 7 Mozilla modules. The modules that were changed
together most frequently are located near the center of the graph
(i.e., DOM, NewLayoutEngine, and X PToolkit). Kiviat diagrams
of these modules further point out their strong coupling and pro-
vide more detailed measures on it. For instance, although the size
of the NewLayout Engine module remains stable the number of log-
ical couplings constantly increased. Apparently, there are almost no
advances in reducing the coupling of this module.

The remaining modules MathML, XML, XSLT, and
NewHTMLStyleSystem are positioned around the three cen-
tral modules. Diagrams of the first three modules show minor
changes across releases hence indicate stable modules. In contrast,
the diagram of the latter module contains two interesting hot-spots
that are pointed out. The rirst hot-spot is through the number of
in-coming calls that from release 1.6 to release 1.7 increased by
more than 23%. Another hot-spot arises from the number of global
functions that doubled from release 0.92 to 0.97, then decreased
and finally remained constant.

1
MathML.

NewLayoutEngine

1
XSLT

10
NewHTMLStyleSystem

Figure 7: Kiviat graph of 7 Mozilla modules implementing the functionality for handling the content and layout of web-sites. Each diagram
presents 20 different source code and evolution metrics of software modules of 7 subsequent releases. Edges indicate coupling dependencies

between the modules.

5.3 Kiviat Graph - Relationships

The graph depicted by Figure 8 presents detailed measures of the
coupling dependencies between the seven Mozilla modules. Di-
agrams are attached to edges that represent logical coupling rela-
tionships. Metrics visualized by the diagrams concern method calls
and variable accesses between modules (see Table 2.

The graph highlights strong changes of metric values. Interest-
ing hot-spots are, for instance, the relationships between the mod-
ules NewLayoutEngine and NewHTMLStyleSystem, XPToolkit
and DOM, DOM and NewHTMLStyleSystem. The latter invokes
relationship presents a decrease of method calls from DOM to
NewHTMLStyleSystem (from release 1.6 to 1.7) by 501. Tak-
ing into account the module diagrams of the previous graph this
corresponds to the decreasing out-going (DOM) and in-coming
(NewHT MLStyleSystem) metrics. Apparently, in the implemen-
tation of release 1.7 man power has been assigned to decouple the
two modules.

Kiviat diagrams depicting the metrics of the coupling relation-

73

ship between X PToolkit and DOM indicate an initial decrease of
method calls but then a high increase from release 1.4 to 1.6 (+242)
and 1.7 (+89). This adds to the coupling of the DOM module in
the last two releases that also is highlighted by the DOM’s Kiviat
diagram in Figure 7.

The other two interesting relationships both point out an in-
crease of variable accesses from release 1.0 to 1.3a. For instance,
the accesses from NewLayout Engine to NewHT MLStyleSystem in-
creased from 9 to 432 accesses. Despite the fact that the module
contains a high number of global variables (847 in release 1.7) this
is a dramatic increase of the coupling between these modules.

5.4 Results

Summarized the findings from the case study with the seven
Mozilla modules were:

e The DOM module is the most critical cost factor.

F - nrAccesses
E - nrAccessed

D - nrAccessors

C - nrCalls

B - nrCallee
A - nrCallers

MLS(y\eSys(em

Figure 8: Kiviat graph of module coupling dependencies with 6 metrics of 7 subsequent releases of invokes and accesses relationships

between the Mozilla modules.

e Coupling between the three major modules implementing
content and layout handling was high and remains high - this
will further increase maintenance costs of these modules.

e Three modules (XML, XSLT, MathML) are stable.

e From release 1.6 to 1.7 work has been assigned to decouple
the two modules DOM and NewHTMLStyleSystem - how-
ever, coupling between DOM and X PToolkit increased.

6 Conclusions

Users that analyze the evolution of software systems are inter-
ested in meaningful higher-level representations that facilitate un-
derstanding and interpretation of results. Huge amounts of complex
data have to be broken down to meaningful graphs that inspire hu-
man minds.

In this paper we introduced a multivariate visualization tech-
nique, RelVis, that builds on Kiviat diagrams. Kiviat diagrams

74

are designed to visualize multivariate data such as source code
and evolution metrics and have been used for this purpose by re-
lated approaches. RelVis breaks down the huge amount of data ex-
tracted from configuration management systems (CVS) and several
releases of source code of a software system to source code enti-
ties, their relationships and metrics. Information then is mapped to
Kiviat graphs that visualize measures across selected releases. Ba-
sically, RelVis outputs two such graphs one focusing on node met-
rics and the other one on metrics of coupling relationships. Both
graphs present condensed views on the current state of the imple-
mentation and how it came to this state.

In particular, graphs point out strong changes of metrics that in-
dicate positive or negative trends in metrics. By highlighting these
trends RelVis allows the user to identify the critical source code en-
tities and direct perfective maintenance activities to these hot-spots.

Examples of Kiviat diagrams and graphs are presented in the
case study with the large open source software system Mozilla. Re-
sulting graphs clearly highlighted critical as well as positive trends
and demonstrated the potential of using RelVis to visualize evolu-

tionary data.

In on-going and future case studies we plan to improve and ex-
tend the RelVis approach, for instance, to investigate the application
of 3D Kiviat diagrams. Further, we plan to conduct experiments
testing different sets and arrangements of metrics to identify evolu-
tion patterns and relationships between metrics.

7 Acknowledgments

The work described in this paper was supported in part by the
Austrian Ministry for Infrastructure, Innovation and Technology
(BMVIT), the Austrian Industrial Research Promotion Fund (FFF),
the European Commission in terms of the EUREKA 2023/ITEA
project FAMILIES (http://www.infosys.tuwien.ac.at/Cafe/) and the
European Software Foundation under grant number 344.

References

BALL, T., AND EICK, S. 1996. Software visualization in the large.
IEEE Computer, 33—-43.

BRIAND, L. C., DALY, J. W., AND WUST, J. K. 1999. A uni-
fied framework for coupling measurement in object-oriented sys-
tems. /EEE Transactions on Software Engineering 25, 1 (Jan-
uary), 91-121.

BURD, E., AND MUNRO, M. 1999. An initial approach towards
measuring and characterizing software evolution. In Proceedings
of the Working Conference on Reverse Engineering, WCRE ’99,
168-174.

CHUAH, M. C., AND EICK, S. G. 1998. Information rich glyphs
for software management data. IEEE Computer Graphics and
Applications (July), 24-29.

COLLBERG, C., KOBOUROV, S., NAGRA, J., PITTS, J., AND
WAMPLER, K. 2003. A system for graph-based visualization
of the evolution of software. In Proceedings of the 2003 ACM
Symposium on Software Visualization, ACM Press, 77-86.

CONSENS, M. P., AND MENDELZON, A. O. 1993. Hy+: A
hygraph-based query and visualisation system. In Proceeding
of the 1993 ACM SIGMOD International Conference on Man-
agement Data, SIGMOD Record Volume 22, No. 2, 511-516.

Eick, S. G., STEFFEN, J. L., AND ERrIC E., JR., S. 1992.
Seesoft—a tool for visualizing line oriented software statistics.
IEEE Transactions on Software Engineering 18, 11 (Nov.), 957—
968.

FENTON, N., AND PFLEEGER, S. L. 1996. Software Metrics:
A Rigorous and Practical Approach, second ed. International
Thomson Computer Press, London, UK.

FISCHER, M., PINZGER, M., AND GALL, H. 2003. Populating
a release history database from version control and bug tracking
systems. In Proceedings of the International Conference on Soft-
ware Maintenance, IEEE Computer Society Press, Amsterdam,
Netherlands, 23-32.

FREE SOFTWARE FOUNDATION. 2003. Version Management with
CVS, 1.11.14 ed. http://www.cvshome.org/docs/manual.

GALL, H., HAJEK, K., AND JAZAYERI, M. 1998. Detection of
logical coupling based on product release history. In Proceedings
of the International Conference on Software Maintenance 1998
(ICSM °98), 190-198.

75

GALL, H., JAZAYERI, M., AND RIVA, C. 1999. Visualizing soft-
ware release histories: The use of color and third dimension. In
Proceedings of the International Conference on Software Main-
tenance, IEEE Computer Society Press, Oxford, UK, 99-108.

GirBA, T., DUCASSE, S., AND LANZA, M. 2004. Yesterday’s
weather: Guiding early reverse engineering efforts by summa-
rizing the evolution of changes. In Proceedings of ICSM 2004
(International Conference on Software Maintenance), 40—-49.

GROSSER, D., SAHRAOUI, H. A., AND VALTCHEV, P. 2002. Pre-
dicting software stability using case-based reasoning. In Pro-
ceedings of the 17th International Conference on Automated
Software Engienering, IEEE Computer Society Press, Edin-
burgh, Scotland, UK, 295-298.

GULLA, B. 1992. Improved maintenance support by multi-version
visualizations. In Proceedings of the 8th International Confer-
ence on Software Maintenance (ICSM 1992), IEEE Computer
Society Press, 376-383.

LANZA, M., AND DUCASSE, S. 2003. Polymetric views — a
lightweight visual approach to reverse engineering. /EEE Trans-
actions on Software Engineering 29, 9 (September), 782—795.

LEHMAN, M. M., PERRY, D. E., AND RAMIL, J. F. 1998. Im-
plications of evolution metrics on software maintenance. In Pro-
ceedings of the International Conference on Software Mainte-
nance (ICSM 1998), 208-217.

MULLER, H. A. 1986. Rigi — A Model for Software System Con-
struction, Integration, and Evaluation based on Module Inter-
face Specifications. PhD thesis, Rice University.

PINTADO, X. 1995. The affinity browser. In Object-Oriented
Software Composition, O. Nierstrasz and D. Tsichritzis, Eds.
Prentice-Hall, 245-272.

PINZGER, M., FISCHER, M., AND GALL, H. 2004. Towards
an integrated view on architecture and its evolution. In In Pro-
ceedings of the Software Evolution through Transformations:
Model-based vs. Implementation-level Solutions, Elsevier Elec-
tronic Notes in Theoretical Computer Science, to appear.

STASKO, J. T., DOMINGUE, J., BROWN, M. H., AND PRICE,
B. A., Eds. 1998. Software Visualization — Programming as
a Multimedia Experience. The MIT Press.

STOREY, M.-A. D., AND MULLER, H. A. 1995. Manipulating
and documenting software structures using shrimp views. In
Proceedings of the 1995 International Conference on Software
Maintenance, IEEE Computer Society Press, Opio, France, 275—
284,

TAYLOR, C. M. B., AND MUNRO, M. 2002. Revision towers.
In Proceedings of the Ist International Workshop on Visualiz-
ing Software for Understanding and Analysis, IEEE Computer
Society, 43-50.

VAN RYSSELBERGHE, F., AND DEMEYER, S. 2004. Studying
software evolution information by visualizing the change history.
In Proceedings of the 20th International Conference on Software
Maintenance, IEEE Computer Society Press, Chicago, Illinois,
USA.

Wu, J., SPITZER, C. W., HASSAN, A. E., AND HoLT, R. C.
2004. Evolution spectrographs: Visualizing punctuated change
in software evolution. In Proceedings of the 7th International
Workshop on Principles of Software Evolution, IEEE Computer
Society Press, Kyoto, Japan, K. Inoue, T. Ajisaka, and H. Gall,
Eds., 57-66.

