
SETra 2004 Preliminary Version

Towards the Integration of CVS Repositories,
Bug Reporting and Source Code Meta-Models

Giuliano Antoniol 1 Massimiliano Di Penta 2 Harald Gall 3

Martin Pinzger 4

1,2RCOST - Research Centre on Software Technology
University of Sannio, Department of Engineering

Palazzo ex Poste, Via Traiano 82100 Benevento, Italy
3University of Zurich

Department of Informatics
4Technical University of Vienna
Information Systems Institute

Abstract

Concurrent Versioning System (CVS) repositories and bug tracking systems are valu-
able sources of information to study the evolution of large open source software systems.
However, being conceived for specific purposes, i.e., to support the development or trig-
ger maintenance activities, they do neither allow an easy information browsing nor support
the study of software evolution. For example, queries such as locating and browsing the
faultiest methods are not provided.

This paper addresses such issues and proposes an approach and a framework to consis-
tently merge information extracted from source code, CVS repositories and bug reports.
Our information representation exploits the property concepts of the FAMIX information
exchange meta-model, allowing to represent, browse, and query, at different level of ab-
stractions, the concept of interest. This allows the user to navigate back and forth from
CVS modification reports to bug reports and to source code. This paper presents the anal-
ysis framework and approaches to populate it, tools developed and under development for
it, as well as lessons learned while analyzing several releases of Mozilla.

Key words: Source Code Analysis, Release History, Bug Reports,
Object-Oriented Meta-Models

1 Email: antoniol@ieee.org
2 Email: dipenta@unisannio.it
3 Email: http://www.ifi.unizh.ch/swe/
4 Email: http://www.infosys.tuwien.ac.at/Cafe/

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs



Antoniol

1 Introduction

The use of configuration management tools in software development and mainte-
nance activities constitutes a consolidated practice, also supported by software en-
gineering principles. Versioning systems such as the Concurrent Versioning System
(CVS) are commonly adopted, especially for large-scale projects. Often version-
ing system are complemented by bug reporting tools, that constitute an essential
support for corrective maintenance.

These two families of tools are valuable sources of information to study soft-
ware evolution; CVS can be exploited to get insights about evolution in terms of
size, complexity, amount of changes, and whatever can be mined from source code
or from change logs. On the other hand, bug reporting systems provide insights
on reliability, as well as information on how an organization manages defects (e.g.,
what is the average defect fixing rate, statistics about defect severity).

CVS repositories and bug tracking systems are almost always not integrated; in-
tegration would allow maintainers and project managers to get an overall view. For
instance, it would be feasible to identify a subset of components (classes, functions
or methods above a given size) which exhibit more defects than others. Similarly,
one could analyze the relationship between defects and some language constructs
e.g., the use of pointers or inheritance versus defect proneness.

It is the opinion of the authors that the task of integrating heterogeneous sources
of information may be simplified by the adoption of a meta-model allowing to
accommodate source code abstractions, source code changes as well as details on
bug reports. Different schemata and meta-models have been proposed to represent
both procedural and object-oriented (OO) software; however, the proposed schema
either have been tailored to a specific language such as C, C++, Smalltalk or Java,
or have not been annotated with source code level details nor integrated with other
relevant source of information such as bug reports and CVS data.

This paper proposes to enrich the FAMIX information exchange meta-model [19]
with detailed information extracted from a combination of heterogeneous sources,
namely source code, CVS and bug tracking repositories. FAMIX provides the con-
cept of property which naturally leads to decorate entities of interest (e.g., classes
or methods) with a variety of details. Clearly, entity decoration depends on the par-
ticular entity. Some decorations, such as file name and subsystem name, are com-
mon to all entities. Changes and defects are decorations applicable class, method,
and function entities. Finally, other properties, such as the number of parameters,
belong exclusively to templates, methods and functions.

To reason about changes, bugs and source code entities, to relate facts or extract
statistics, we must build a traceability map between different concepts. At this
purpose, we follow an approach inspired by the diff and patch Unix utilities.
Changes are identified by means of file name and line numbers, hereby referred
as location by site. This permits the integration of the information extracted from
source code, bug reports and CVS change logs. The above choice stems from
the following observation. Modification Reports (MR) often detail involved files

2



Antoniol

and changed lines of code; once files and changed lines have been identified, the
changed context (class and method) can be located by parsing sources extracted
from a CVS repository. Vice-versa, given a contextual information (file, beginning
and ending line) it is possible to identify the a Problem Report (PR) impacting that
code region.

To verify feasibility, discover particular strengths, problems and pitfalls, the
framework was applied to several releases of Mozilla. Mozilla is a multi-million
LOCs open source project 5 managed via a CVS repository and a bug tracking
system. Source code information, CVS information and bug information were used
to decorate our instantiated meta-model. Particularly, releases from 1.0 to 1.3.1
were used as case study. At the time of writing, integration has been achieved at
the file level; more fine grained integration, namely at the class, method or line
level is only partially supported.

The main contribution of this paper can be summarized as follows:

• we provide an extension of RSF to decorate the FAMIX meta-model;
• we propose an integrated framework allowing the user to access bug reports,

CVS, and source code facts;
• we discuss lessons learned in populating a repository with several releases of

Mozilla.

The remainder of the paper is organized as follows. After a review of the related
work, Section 3 proposes our approach and presents the framework. Section 4
describes the Mozilla case study. Section 5 describes our tools developed to extract
information and to populate the repository; Section 6 reports on and summarizes
the experiences gained in populating the first release of the repository. Finally
Section 7 concludes and outlines foreseeable research activities.

2 Related Work

There is not so much work in literature related to integrate and analyze bug re-
porting and release history information. The present work stems from the release
history database of Fisher et al. [8]. The authors proposed to combine CVS revi-
sion data with bug reporting data and to add some missing information such as,
for example, merge points. The same authors also performed, on the same data, an
analysis devoted to track features [7]. Finally, Gall et al. [12] analyzed CVS release
history data for detecting logical coupling.

In [16] maintenance requests were classified according to maintenance cate-
gories as IEEE Std. 1219 [1], then rated on a fault-severity scale using a frequency-
based method. Ball et al. [5] proposed an approach for visualization of data ex-
tracted from a version control system, while a three-dimensional color visualization
of release history was proposed in [13].

Some other relevant studies have been performed in the past with the purpose of

5 http://www.mozilla.org

3



Antoniol

understanding the architecture and the evolution of the Mozilla open source project.
In particular, Godfrey et al. integrated different reverse engineering tools and used
them to extract Mozilla’s architecture [14]. Mockus et al. studied the evolution of
two large open source projects, namely Apache and Mozilla [15].

3 The Framework

The main idea adopted to locate, browse, and integrate heterogeneous informa-
tion is to rely on location by site: classes, methods, functions as well as defects
and changes must be located by file and line number. CVS systems keep track of
changes; parsing source code locates classes, methods, functions and other source
code level concepts. Bug reports are semi-structured documents; they often contain
details on impacted files and lines.

The following subsections provide details on the approaches, implemented or
under development, adopted to build traceability mapping between code area re-
gions (classes, methods, functions), PRs, and MRs.

At the time of writing sources code, PRs, and MRs are managed at different
granularity levels. Integration at file level has already been achieved; browsing at
class, method or line of code level is only supported from source code entity to
code region. Another limitation of the current implementation is the impossibility
of performing time related queries (e.g., locating classes modified before a given
date).

3.1 Bugzilla and CVS repositories

Release history data is retrieved from versioning systems such as the CVS [10] and
bug tracking systems such as Bugzilla [22]. In particular, we obtain MRs from
CVS and PRs from Bugzilla. Figure 1 depicts the nucleus of our Release History
Database with linked MRs and PRs. MRs are stored in the cvsitemlog entity and
PRs in the bugreport entity of our RHDB. Information about the file to which a MR
belongs is stored in cvsitem.

Links between MRs and PRs are stored to the table cvsitemlogbugreport. Estab-
lishing such links is an important issue of the RHDB population process. Concern-
ing CVS and Bugzilla, this needs to be done separately. A link is stored whenever
a reference to a PR is found in a MR. PR figures in MRs are searched using reg-
ular expressions (e.g., #128764). Because these numbers are entered as free text,
results contain correct and false positive matches as well. To improve data quality,
all matched numbers are validated using information available with PRs such as
patches that contain the names of files they are applied to. If this file name corre-
sponds to the name of the file of the MR the link is validated [7]. More details on
bug report and CVS processing can be found in [7,8,12]

Summarizing, the RHDB contains versioning, change and defect relevant data
about each file of each release that has to be integrated with source model data as
described next.

4



Antoniol

cvsitemlogbugreport

cvsitemlogid
bugreportid

bugreport

id
bug_severity
short_desc
. . .

cvsitemlog

id
cvsitemid
revision
date
ladd
ldel
. . .

cvsitem

id
rcsfile
workfile
. . .

*

*

1

1

*
1

Fig. 1. “Nucleus” of the RHDB

3.2 Source Code Modeling

All the concepts available at design level, such as those modeled via UML dia-
grams, function invocation, and software metrics are extracted and represented.
The source code meta-model was inspired by the FAMIX [19] information ex-
change meta-model 6 .

FAMIX prescribes CASE Data Interchange Format (CDIF) [6] as the basis for
information exchange. Other standards and interchange formats exist, for exam-
ple XMI, an XML based interchange format [18], or the Rigi Standard Format
(RSF) [20]. The RSF origins from the Rigi program visualization, reverse engi-
neering and program understanding environment, and is a triple based specification
language that can be easily customized and imported into different tools. Figure 2
shows an RSF excerpt of a class representation. We use RSF to represent the con-
cepts of interest such as classes, class attributes and methods, types, or different
kinds of software metrics, etc.

Figure 3 shows, at a high level of abstraction, the steps carried out and the
extracted information for the Mozilla browser. To avoid problem of missing files,
wrong dependencies and compilation errors, the approach is a two phase approach.
First, the source code undergoes a preliminary compilation to produce the target
executables. Then source code is parsed and information extracted.

The two phases approach ensures that the application is properly configured for
the current instance of architecture, operating system and, in general, hardware and
software environment. Clearly, when PRs refer to configuration-dependent source
code, consistency needs to be ensured between PRs and the source code facts. This
paper focuses on source code (and thus PRs) related to a single configuration, for a
Linux operating system and Intel architecture.

To reuse already available tools, the extracted information is first represented
via an extension of an intermediate language, name Abstract Object Language
(AOL). AOL is a general-purpose design description language capable of express-

6 http://www.iam.unibe.ch/∼famoos/

5



Antoniol

type nsAutoRefCnt "Class"

contain ./dist/include/xpcom/nsISupportsImpl.h

nsAutoRefCnt

lineno nsAutoRefCnt "88"

type nsAutoRefCnt::mValue "Attribute"

belongsToClass nsAutoRefCnt::mValue

"nsAutoRefCnt"

type nsrefcnt "DataType"

hasType nsAutoRefCnt::mValue "nsrefcnt"

accessControlQualifier

nsAutoRefCnt::mValue "PRIVATE"

type nsAutoRefCnt::nsAutoRefCnt() "Method"

isAbstract nsAutoRefCnt::nsAutoRefCnt() "TRUE"

belongsToClass nsAutoRefCnt::nsAutoRefCnt()

"nsAutoRefCnt"

type nsAutoRefCnt "DataType"

hasType nsAutoRefCnt::nsAutoRefCnt()

"nsAutoRefCnt"

accessControlQualifier

nsAutoRefCnt::nsAutoRefCnt() "PUBLIC"

Fig. 2. Excerpt of a class RSF representation

Fig. 3. C++ information extraction

ing concepts available at the design stage of OO software. It has been extended to
represent software metrics, structures, templates and other facts such as methods
or functions calls. More details on AOL can be found in [2,3,4,9]. Once produced,
the AOL is scrutinized, if needed, verified, and finally mapped into the customized
RSF final representation.

Figure 4 details the steps encompassed by the box PrepProc + Compile of Fig-
ure 3. The second compilation relies on wrappers wrapping C and C++ compilers.
This is needed to avoid error prone activities required to modify by hand compi-
lation scripts and makefiles. The preprocessed files contain both application and
system information. Thus a further step may be needed to get rid of unusable in-
formation, i.e., to remove system include files.

Summarizing, RSF information comprises:

• a reverse engineered class diagram including inheritance, association and aggre-
gation relationships;

6



Antoniol

Fig. 4. C++ processing

• function and method level software metrics such as the number of passed param-
eters, the maximum nesting level, or the number of statements;

• details on template and structures; and
• location by site of classes, methods and functions.

3.3 Integrating the Information Sources

For the integration of source model and release history data, an entity common to
both information spaces has to be determined. As already stated, in the context
of this paper, we focus on source files to be the common entity because files are
subject of versioning, change and defect data as retrieved from versioning and bug
reporting systems. A finer-grained level of integration is under development and
subject of ongoing work.

In our approach, source model information is available in FAMIX conform RSF
files. Release history information is stored in a relational database and can be
queried using SQL. The key connector that links both information sources is the
unique name of files contained in both repositories. Based on these unique file
names the data integration process is performed. The process is straightforward,
and it consists of the two steps: 1) query RHDB and output results in RSF; 2)
integrate results with source model RSF files.

In the first step we query the RHDB database with respect to the dependencies
due to MR and PR data. The input to the query is a list of unique names of source
files of interest. According to Figure 1, we query the cvsitem table to get the
file identifiers which on their own, are used to query the cvsitemlog joined
with cvsitemlogbugreport and bugreport relations to get change related
dependencies between selected source files.

Regarding both MR and PR, we introduce two new relationship types rhdbCoupled
and rhdbDependent. The fundamental principle of both relationship types is
that from the point of view of changes two source files are logically coupled or
dependent if they have been affected by the same source code modification [11].

7



Antoniol

Consequently, if two source files have been checked into the source repository (i.e.,
CVS) at about the same time they are logically coupled. Furthermore, if two files
are referenced by the same PR, then from the point of view of changes they are
dependent. Additionally, we compute the number of affected MRs and PRs to de-
termine the weight of these relationships. Results of the queries are output in the
form of RSF tuples.

The second step of the integration process is concerned with integrating com-
puted RSF tuples to the source model data. This includes determining affected
source files in the source model database and computing the new edge identifiers
for each integrated rhdbCoupled and rhdbDependent relationship.

The result of the integration process comprises a source model repository en-
riched with release history data that, on its own, comprises rhdbCoupled and
rhdbDependent relationships between source file entities, as well as a weight
attribute for each relationship.

4 The Case Study

To evaluate the feasibility of integrating source code level and quality related infor-
mation, several versions of Mozilla, an open source web browser, were analyzed.
The extracted key features are reported in Table 1. Mozilla was mostly developed
in C++; the C code accounts only for a small fraction of the overall size. XML,
HTML and scripting language configuration and support programs are also present.
The latest Mozilla releases include more than 10,000 source files for a size up to
3.7 MLOC located in 2,500 subdirectories. Mozilla basically consists of 90 mod-
ules maintained by 50 different module owners. The Bugzilla bug tracking system
contains more than 180,000 PRs and the CVS repository contains about 430,000
MRs.

Release # C # h # C++ Size Classes Methods Func. Inheri- Associa- Aggrega-

files files files Size Classes Methods Func. tances tions tions

1.0 1987 7,519 3,982 3.5 4,545 50,912 5,737 5,031 6,993 3,404

1.0.1 1995 7,603 4,022 3.5 4,561 54,742 5,740 5,051 7,006 3,440

1.0.2 1987 7,635 4,049 3.5 4,572 51,198 5,740 5,065 7,029 3,461

1.1 1997 7,674 4,054 3.6 4,594 52,453 5,742 5,095 7,048 3,466

1.2a 1984 7,769 4,058 3.6 4,475 51,104 5,741 4,992 7,107 3,514

1.2b 1991 7,972 4,122 3.7 4,512 53,697 5,794 5,029 7,141 4,804

1.2 1991 7,981 4,129 3.7 4,526 51,689 6,192 5,044 7,155 4,817

1.2.1 1991 7,981 4,129 3.7 4,524 52,953 5,794 5,044 7,156 4,817

1.3a 1823 7,880 4,145 3.6 4,574 51,827 5,809 5,081 7,157 6,090

1.3b 1830 7,924 4,164 3.6 4,589 51,580 5,836 5,101 7,339 6,200

1.3 1830 7,911 4,158 3.6 4,577 53,106 5,836 5,088 7,323 6,181

1.3.1 1830 7,935 4,198 3.7 4,577 51,453 5,836 5,088 7,323 6,181

Table 1
Mozilla releases key features

8



Antoniol

5 The Tools

Several tools were reused, modified or developed to extract and integrate informa-
tion from the different sources.

5.1 Compiler Wrappers

C and C++ compiler wrappers, mimicking the same compiler interface, have been
developed with Perl. gcc and g++ specific options as well as linker options are
fully supported and managed. Preprocessed source code is compressed to reduce
disk space usage.

5.2 C++ Information Extraction

A tool inspired by island-driven parsing [17] has been reused and modified to re-
verse engineer a class diagram and extract class level and method level metrics.
The island-parsing approach allowed to overcome most of the difficulties related
to parsing C++ code (intrinsic language difficulties, dialects such as the GNU di-
alect encountered when parsing Mozilla, etc.). The tool was developed in previous
projects to extract AOL. More details can be found in [2,3,4,9].

5.3 FAMIX Export and RSF Integration

The exporter and integration tool comprises two Perl scripts that process AOL files
and output FAMIX data in RSF, as well as integrate the data of two RSF files
into one. AOL is the format used by the C/C++ parser to output extracted facts. Al-
though all the extracted information is present, AOL lacks of representing the infor-
mation in a graph-like manner that is used by source model analysis and visualiza-
tion tools. Thus, we used the extension points of the FAMIX model to specify addi-
tional attributes that hold the various metrics extracted for each source model entity.
Furthermore, we also added two new relationships between source files to store log-
ical couplings rhdbCoupled and hidden dependencies rhdbDependend.

Two steps are performed by the exporter, namely: 1) mapping AOL to RSF
data; 2) integrating RSF files into one source model data file. Basically, the parser
generates separate AOL files for storing extracted information about source files,
classes, methods and functions. In the first step each of these files are input to
the exporter that prints out plain RSF tuples of contained information. Preliminary
checks are performed that consider the data stored in a files. For example class
and inheritance relationships of the AOL class file are checked to existence of the
base and subclass. AOL records that fail the check are not printed. In the second
step the different RSF files are integrated into on file that contains the whole source
model. During this integration process, existence checks on entities of relationships
and attribute records are performed but in this step checks involve the whole data
source.

9



Antoniol

Data about logical couplings and hidden dependencies between source files are
also available in RSF format. Hence, the integration script is applied to add this
relationships and the weight attribute to the existing source model data. The output
is a RSF file that contains the integrated source model data in FAMIX conform
RSF tuples which can be handled by existing visualization tools such as Rigi [21]
or SHriMP [23].

6 Lesson Learned

This section summarizes lessons learned while integrating bug reports, CVS infor-
mation and data from 12 Mozilla releases.

Mozilla is a large software system, encompassing a variety of programming
languages, styles and idioms. If a language contains a feature, someone will use it
regardless of the impact it could have on understandability, portability maintainabil-
ity, or evolvability. For example, C++ is a strongly typed, OO language. However,
it retains C compatibility and considers a struct as a class only containing
public attributes. This means that there may be classes inheriting from structs e.g.,
struct nsBandData and class nsBlockBandData. It should be noted
that this is something different from wrapping a structure with a class, since it
breaks information hiding and encapsulation. nsBandData is declared as a struc-
ture and there seems to be no reason why it should not be declared as a class but
allowing access from C. In fact, a C++ compiler, compiles C code if it does not
break C++ rule e.g., a new identifier causes compilation failure. However, C and
C++ compilers have different conventions and thus the above practice may easy the
task to break C++ encapsulation from C code.

Much in the same way, we observed structures containing method declarations.
For example, nsID is a structure with three functions declared inside one of which
is both declared and defined inside Equals. Again, there is no obvious reason but
allowing an easier access from C code.

Templates constitutes a powerful mechanism to enable for parametric code de-
velopment. However, authors believe that in certain cases it may also be abused.
While, templates should be used to create new abstract data types, weird uses of
templates were found in Mozilla. For example, we found examples of templates,
e.g., nsCOMTypeInfo, used to parameterize a structure.

These latter peculiar uses or abuses opened a discussion on what should be
annotated on the meta-model, if and when the meta-model should be emended.
The information is available; however it is not completely clear if and how certain
facts have to be represented. For example, the struct nsBandData could be
represented as a class and then flagged as an OO coding style violation or we have
to extend FAMIX so that a class may inherits from structs. On the other hand,
it should be noted that coding style violation are not usually part of source code
meta-models. All in all, it further led to the need to modify the initial integration
model for example to cope with classes derived from structures or structures with
methods.

10



Antoniol

7 Conclusions and work-in-progress

Consistently integrating different repositories of large software systems, such as
the open source software Mozilla and its CVS and Bugzilla data, is a challenging
but fruitful task. It allows a user to represent, browse and query—at different levels
of abstraction—the particular concept of interest, from the source code level to the
bug report and modifications level. In this paper, we proposed a first step toward a
multi-level concept navigation framework that represents source entities in FAMIX
meta-model compliant Rigi Standard Format (RSF).

We took the Mozilla browser as a case study and extracted its C++ sources
over 12 releases into an RSF representation. This kind of data was combined with
release history data populated from filtering related bug reports and modification
reports into a release history database (RHDB). This release data integration ven-
ture allowed us to highlight problems encountered, difficulties and pitfalls.

Work–in–progress is devoted to manage the discovered information overflow
problem, and complete the integration, ensuring a finer level of detail (i.e., tracing
problems to classes and methods) and to ensure appropriate querying and browsing
capabilities.

8 Acknowledgments

This research was partially supported by the RELEASE Excellence network founded
by the European science Foundation.

References

[1] “IEEE std 1219: Standard for Software maintenance,” 1998.

[2] Antoniol, G., B. Caprile, A. Potrich and P. Tonella, Design-code traceability for object
oriented systems, The Annals of Software Engineering 9 (2000), pp. 35–58.

[3] Antoniol, G., G. Casazza, M. Di Penta and R. Fiutem, Object-oriented design patterns
recovery, Journal of Systems and Software 59 (2001), pp. 181–196.

[4] Antoniol, G., R. Fiutem and L. Cristoforetti, Using metrics to identify design patterns
in object-oriented software, in: Proceedings of 5th International Symposium on
Software Metrics - METRICS98, Bethesda MD, 1998, pp. 23–34.

[5] Ball, T., J. M. Kim, A. Porter and H. Siy, If your version control could talk . . . , in:
ICSE Workshop on Process Modeling and Empirical Studies of Software Engineering,
Boston, MA, USA, 1997.

[6] Committee, C. T., “CDIF Framework for Modelling and Extensibility,” Electronic
Industries Association EIA/IS-107, 1994.

[7] Fischer, M., M. Pinzger and H. Gall, Analyzing and Relating Bug Report Data for
Feature Tracking, in: 10th Working Conference on Reverse Engineering (WCRE),
Victoria, Canada, 2003, pp. 90–99.

11



Antoniol

[8] Fischer, M., M. Pinzger and H. Gall, Populating a release history database from
version control and bug tracking systems, in: Proceedings of IEEE International
Conference on Software Maintenance, Amsterdam, The Netherlands, 2003, pp. 23–
32.

[9] Fiutem, R. and G. Antoniol, Identifying design-code inconsistencies in object-oriented
software: A case study, in: Proceedings of IEEE International Conference on Software
Maintenance, Bethesda MD, 1998, pp. 94–102.

[10] Free Software Foundation, “Version Management with CVS,” 1.11.14 edition (2003),
http://www.cvshome.org/docs/manual.

[11] Gall, H., K. Hajek and M. Jazayeri, Detection of logical coupling based on
product release history, in: Proceedings of the International Conference on Software
Maintenance (ICSM ’98) (1998).

[12] Gall, H., M. Jazayeri and J. Krajewski, Cvs release history data for detecting logical
couplings, in: Proceedings of the Interational Workshop on Principles of Software
Evolution, Helsinki, Finand, 2003, pp. 13–23.

[13] Gall, H., M. Jazayeri and C. Riva, Visualizing software release histories: The use
of color and third dimension, in: Proceedings of IEEE International Conference on
Software Maintenance, Oxford, England, 1999, pp. 99–108.

[14] Godfrey, M. and E. Lee, Secrets from the Monster: Extracting Mozilla’s Software
Architecture, in: Proceeding of Second Symposium on Constructing Software
Engineering Tools, 2000.

[15] Mockus, A., R. Fielding and J. Herbsleb, Two case studies of open source software
development: Apache and Mozilla, ACM Transactions on Software Engineering and
Methodology 11 (2002), pp. 309–346.

[16] Mockus, A. and L. Votta, Identifying reasons for software changes using
historic database, in: Proceedings of IEEE International Conference on Software
Maintenance, San Jose, California, 2000, pp. 120–130.

[17] Moonen, L., Generating robust parsers using island grammars, in: Working
Conference on Reverse Engineering, 2001.

[18] OMG, “XML Metadata Interchange (XMI),” OMG Document ad/98-10-05, 1998.

[19] Software Composition Group, University of Berne, “The FAMIX 2.0 specification,”
2.0 edition (1999), http://www.iam.unibe.ch/ scg/Archive/famoos/FAMIX/.

[20] Tilley, S. R., K. Wong, M.-A. D. Storey and H. A. Müller, Programmable
reverse engineering, International Journal of Software Engineering and Knowledge
Engineering 4 (1994), pp. 501–520.

[21] Wong, K., S. Tilley, H. A. Muller and M. D. Storey, Structural redocumentation: A
case study, IEEE Software (1995), pp. 46–54.

[22] Bugzilla Bug Tracking System, http://www.bugzilla.org.

[23] Shrimp views: Simple hierarchical multi-perspective, http://shrimp.cs.uvic.ca/ (2004).

12


	Introduction
	Related Work
	The Framework
	Bugzilla and CVS repositories
	Source Code Modeling
	Integrating the Information Sources

	The Case Study
	The Tools
	Compiler Wrappers
	C++ Information Extraction
	FAMIX Export and RSF Integration

	Lesson Learned
	Conclusions and work-in-progress 
	Acknowledgments 
	References

