
DISSERTATION

WEESA - Web Engineering for
Semantic Web Applications

ausgeführt zum Zwecke der Erlangung des akademischen Grades eines
Doktors der technischen Wissenschaften

unter der Leitung von

Univ.-Prof. Dipl.-Ing. Dr.techn. Harald Gall
Institut für Informatik

Universität Zürich

und

o.Univ.-Prof. Dipl.-Ing. Dr.techn. Mehdi Jazayeri
Institut für Informationssysteme

Technische Universität Wien

eingereicht an der

Technischen Universität Wien
Fakultät für Informatik

von

Univ.-Ass. Dipl.-Ing. Gerald Reif
reif@infosys.tuwien.ac.at

Matrikelnummer: 9130640

Wien, im Mai 2005

Kurzfassung

Die wachsende Popularität des World Wide Webs hat zu einer exponentiellen Steigerung der
Zahl der Webseiten geführt. Die große Anzahl der verfügbaren Webseiten macht es Benutzern
immer schwerer benötigte Informationen zu finden. Sucht man im Web nach einer spezifischen
Information, läuft man Gefahr, die relevanten Daten in der großen Anzahl von irrelevanten Su-
chergebnissen zu übersehen. Web-Applikationen stellen derzeit Webseiten in HTML Format zur
Verfügung, in denen der Inhalt in natürlicher Sprache ausgedrückt ist. Daher ist die Semantik
des Inhalts für Computer nicht zugängig. Um es Computern zu ermöglichen dem Benutzer bei
Informationsproblemen zu unterstützen, schlägt das Semantik Web eine Erweiterung des exi-
stierenden Webs vor, welche die Semantik der Webseiten für Computer verarbeitbar macht. Die
Semantik des Inhalts einer Webseite wird dabei mit RDF Meta-Daten beschrieben. Diese Meta-
Daten beschreiben den Inhalt der Webseite in einer maschinen-verarbeitbaren Form. Die Existenz
von semantisch annotierten Webseiten ist daher die Voraussetzung für das Semantik Web.

Semantische Annotation beschäftigt sich mit diesem Problem und zielt darauf ab, semanti-
sche Meta-Daten zu natürlichsprachigen Dokumenten hinzuzufügen, um den Inhalt maschinen-
verarbeitbar zu machen. Viele Werkzeuge wurden entwickelt, um den Benutzer beim Annotie-
rungsprozess zu unterstützen. Der Annotierungsprozess ist jedoch immer noch ein eigenständiger
Prozess der nicht in den Entwicklungsprozess der Web-Applikation integriert ist. Auf der ande-
ren Seite hat die Forschung im Bereich von Web Engineering zu Methoden geführt, um Web-
Applikationen zu entwickeln und zu warten. Die vorgeschlagen Methoden unterstützen jedoch
nicht das hinzufügen von semantischen Meta-Daten.

Diese Dissertation stellt eine Technik vor, um existierende XML-basierte Web Entwicklungs-
methoden zu erweitern, um semantisch annotierte Webseiten zu erzeugen. Die Innovation des
vorgestellten Ansatzes, genannt WEESA, ist die Verknüpfung von Elementen aus einem XML
Schema mit den Konzepten die in einer Ontologie definiert sind. Diese Verknüpfung wird dann
verwendet um aus XML-Dokumenten RDF Meta-Daten zu generieren. Weiters stellen wir die
Integration des WEESA Meta-Daten Generators in die Apache Cocoon Webentwicklungsumge-
bung vor, das die Entwicklung von semantisch annotierten Webapplikationen erleichtert.

Betrachtet man nur die Meta-Daten einer einzelnen Webseite, hat man nur eine einge-
schränkte Sicht auf die Meta-Daten die die Web-Applikation zur Verfügung stellt. Für Anfra-
gen und logische Schlüsse ist es besser man hat die vollständigen Meta-Daten der ganzen Web-
Applikation zur Verfügung. In dieser Dissertation stellen wir die WEESA Wissensbasis vor.
Diese Wissensbasis wir serverseitig durch das Akkumulieren der Meta-Daten der individuellen
Webseiten erzeugt und steht dann für Anfragen und zum Herunterladen zur Verfügung.

Die Wiener Festwochen Fallstudie zeigt den praktischen Einsatz von WEESA in einer Apa-
che Cocoon Web-Applikation. Wir diskutieren die Erfahrungen aus der Entwicklung der Fallstu-
die und präsentieren Richtlinien zum Entwickeln von semantisch annotierten Web-Applikationen
mit WEESA.

Abstract

In the last decade the increasing popularity of the World Wide Web has lead to an exponential
growth in the number of pages available on the Web. This huge number of Web pages makes
it increasingly difficult for users to find required information. In searching the Web for specific
information, one gets lost in the vast number of irrelevant search results and may miss relevant
material. Current Web applications provide Web pages in HTML format representing the content
in natural language only and the semantics of the content is therefore not accessible by machines.
To enable machines to support the user in solving information problems, the Semantic Web
proposes an extension to the existing Web that makes the semantics of the Web pages machine-
processable. The semantics of the information of a Web page is formalized using RDF meta-data
describing the meaning of the content. The existence of semantically annotated Web pages is
therefore crucial in bringing the Semantic Web into existence.

Semantic annotation addresses this problem and aims to turn human-understandable content
into a machine-processable form by adding semantic markup. Many tools have been developed
that support the user during the annotation process. The annotation process, however, is a se-
parate task and is not integrated in the Web engineering process. Web engineering proposes
methodologies to design, implement and maintain Web applications but these methodologies
lack the generation of meta-data.

In this thesis we introduce a technique to extend existing XML-based Web engineering
methodologies to develop semantically annotated Web pages. The novelty of this approach is
the definition of a mapping from XML Schema to ontologies, called WEESA, that can be used
to automatically generate RDF meta-data from XML content documents. We further demonstrate
the integration of the WEESA meta-data generator into the Apache Cocoon Web development
framework to easily extend XML-based Web applications to semantically annotated Web appli-
cation.

Looking at the meta-data of a single Web page gives only a limited view of the of the in-
formation available in a Web application. For querying and reasoning purposes it is better to
have the full meta-data model of the whole Web application as a knowledge base at hand. In this
thesis we introduce the WEESA knowledge base, which is generated at server side by accumu-
lating the meta-data from individual Web pages. The WEESA knowledge base is then offered
for download and querying by software agents.

Finally, the Vienna International Festival industry case study illustrates the use of WEESA
within an Apache Cocoon Web application in real life. We discuss the lessons learned while
implementing the case study and give guidelines for developing Semantic Web applications using
WEESA.

Acknowledgements

I would like to express my deep gratitude to all of the people who have supported me during
my research.

In particular, I offer my sincerest gratitude to my supervisors, Prof. Dr. Harald C. Gall and
Prof. Dr. Mehdi Jazayeri, who introduced me to research, gave me the opportunity to pursue my
research ideas, and kept me on the right track with their advice.

It is a pleasure to acknowledge the great collaboration with the MOTION team at the Dis-
tributed Systems Group of the TU Vienna: Harald Gall, Pascal Fenkam, and Engin Kirda. The
countless nights on the train to Milan (which would have been incomplete without our dearest
Giovanni), completing the “mission impossible”, writing a user interface in six days (on the sev-
enth day we had to rest), and making a Finnish man smile – were unforgettable experiences.
Many thanks are due to Clemens Kerer for the invaluable discussions on Web engineering. Your
work on xGuide inspired me to start the WEESA project.

The Distributed Systems Group deserves my gratitude for sharing an enjoyable working en-
vironment. This thesis would not have been possible without your technical and administrative
support: organizing trips, helping me with the right form for almost every purpose, filtering the
spam, etc.

Many thanks again to Harald Gall who invited me to spend a research summer with his
group at the University of Zurich. Working in this fertile environment resulted in the prototype
implementation presented in this thesis and a WWW publication. Besides the thesis, Zurich was
also a great palace to live and for having BBQs. – Merci vielmals!

Thanks to Suzanne Whitby for proofreading the thesis, making it more readable for native
speakers and non-native speakers alike.

Finally, I would like to thank my parents who brought me up, taught me to ask questions, and
helped me to find answers, which is the basis for all science. They supported me in whatever I
did and however they could throughout my (long) student years.

Gerald Reif
Vienna, Austria, May 2005

Meinen Eltern

CONTENTS

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Domain: Engineering Semantic Web Applications 2
1.3 Contribution . 3
1.4 Structure of the Thesis . 4

2 Semantic Web Review 7
2.1 The Semantic Web Vision . 7
2.2 Standards, Recommendations, and Tools . 9

2.2.1 Resource Description Framework (RDF) 9
2.2.2 Ontology Languages . 11

2.2.2.1 RDF Schema . 12
2.2.2.2 Web Ontology Language OWL 13

2.2.3 RDF Reification . 15
2.2.4 Jena – Semantic Web Framework for Java 17

2.3 Terminology . 17

3 WEESA – Web Engineering for Semantic Web Applications 19
3.1 Semantic Annotation . 20
3.2 XML-Based Web publishing . 20
3.3 Mapping XML Schema to Ontologies . 21
3.4 Implementation . 23

3.4.1 Defining the mapping . 23
3.4.2 Generating the RDF Description . 27
3.4.3 Constraints of the WEESA implementation 29
3.4.4 Complexity . 30

3.5 Resume . 33

i

ii Contents

4 Semantic Web Applications with WEESA and Apache Cocoon 35
4.1 Apache Cocoon Web Applications . 36

4.2 WEESA Cocoon Transformer . 37

4.2.1 Associating HTML and RDF . 37

4.2.2 WEESA Cocoon transformer to generate HTML+RDF 37

4.2.3 WEESA Cocoon transformer to generate RDF/XML 41

4.3 Resume . 44

5 Building the Knowledge Base of the Semantic Web Application 45
5.1 Meta-Data Model of the Web Application . 46

5.2 Accumulating Meta-Data with WEESA . 47

5.2.1 WEESA Knowledge Base Architecture 47

5.2.2 Maintaining the Knowledge Base . 48

5.2.3 RDF Reification . 50

5.3 WEESA KB Implementation . 52

5.3.1 Knowledge Base Management . 53

5.3.2 Query Interface . 55

5.3.3 KB Management Interface . 58

5.3.4 WEESA Read DOM Session Transformer 59

5.3.5 Not Found (404) detection . 60

5.3.6 Update Daemon . 60

5.3.7 Snapshot Daemon . 61

5.4 Resume . 62

6 The Vienna International Festival (VIF) Case Study 63
6.1 Embedding RDF/XML into the HTML Page . 64

6.1.1 VIF Semantic Web Application using the VIF Ontology 67

6.1.2 VIF Semantic Web Application using the iCalendar Ontology 74

6.2 Using the WEESA Knowledge Base . 76

6.3 Linking to an External RDF/XML Meta-Data Description 80

7 Using WEESA in Semantic Web Applications 83
7.1 Lessons Learned . 83

7.2 Required Skills to Specify the WEESA Mapping Definition 87

7.3 Guidelines for developing WEESA Semantic Web Applications 88

Contents iii

8 Related Research Areas 93
8.1 Web Engineering . 93

8.1.1 Semantic Web Engineering . 94

8.1.2 Web Engineering based on Semantic Web Technology Artifacts 94

8.1.3 WEESA Compliant Web Engineering Methodologies 95

8.2 Semantic Annotation . 96

8.2.1 Manual Annotation . 97

8.2.2 Semantic Interpretation of XML Structures 98

8.2.3 Mapping based Annotation . 99

9 Conclusion and Future Work 101
9.1 Conclusion . 101

9.2 Future Work . 103

9.2.1 Semantic Search Engine . 103

9.2.2 Semantic Clipboard . 104

Appendix 107

A XML Schema for WEESA Mapping Definition 107

B MyTunes Sample Ontology 113

C WEESA KB Management Ontology 115

D VIF Ontology 117

Bibliography 121

iv Contents

LIST OF FIGURES

2.1 Different XML documents to express the same fact. 9

2.2 RDF graph of a single statement. 11

2.3 RDF/XML syntax of the statement defined in Figure 2.2. 11

2.4 RDF graph of the example ontology for an online record shop. 13

2.5 RDF graph of ontology that uses the ontology from Figure 2.4. 14

2.6 RDF graph of a reified RDF statement. 16

2.7 Reified RDF statement in RDX/XML Syntax. 16

2.8 Java programm to define an RDF statement using the Jena framework. 17

3.1 Definition of the WEESA mapping at the design level and RDF meta-data gen-
eration at the instance level. 22

3.2 XML document for an album. 24

3.3 WEESA mapping definition for the album example. 25

3.4 Ontology used for our MyTunes example. 26

3.5 Pseudo-code for processing the WEESA mapping. 28

3.6 Snippet from the generated RDF graph. 29

4.1 Pipeline of a typical Cocoon Web application 36

4.2 RDF meta-data included in the HTML <script> element 38

4.3 Cocoon pipeline for the WEESA HTML+RDF generation. 39

4.4 Pipeline definition using the WEESAReadDOMSession transformer 40

4.5 Sample XML document aggregated from several parts. 41

4.6 Pipeline for the HTML page generation that uses the AddRDFLink transformer
to add the <link> element to the HTML page. 42

4.7 Configuration of the AddRDFLink transformer. 42

4.8 Cocoon pipeline for the WEESA RDF/XML generation. 43

v

vi List of Figures

4.9 Configuration of the WEESA transformer. 43

4.10 OWL/RDF logo to reference the meta-data description. 44

5.1 Architecture of the WEESA knowledge base. 47

5.2 WEESA mapping definition including the additional attributes to maintain the
knowledge base. 49

5.3 Reified RDF statement in the WEESA KB with the information needed to main-
tain the knowledge base. 52

5.4 Functional units and classes of the WEESA KB. 54

5.5 Sample configuration file of the WEESA KB. 55

5.6 Sample SeRQL query that returns the URL of the Web page the RDF statement
originated from. 56

5.7 Interface of the Query Service to the WEESA KB. 57

5.8 Java code sample of an Apache XML-RPC client. 58

5.9 Interface of the KB Management Service to the WEESA KB. 59

5.10 Configuration of the WEESAReadDOMSession transformer to write to the
WEESA KB. 60

5.11 Handling of the 404 not found error in the Cocoon pipeline. 61

6.1 Screen-shot of an event description Web page of the VIF Web application. 65

6.2 Cocoon Pipeline definition for a VIF event Web page in the sitemap.xmap
configuration file. 66

6.3 VIF ontology for the Vienna International Festival case study Web application. . 67

6.4 XML file of a VIF event Web page. 68

6.5 WEESA mapping definition for a VIF event Web page using the VIF ontology.
Part 1/2 . 70

6.6 WEESA mapping definition for a VIF event Web page using the VIF ontology.
Part 2/2 . 71

6.7 RDF graph of the meta-data generated for the event Web page. 73

6.8 RDF graph of the meta-data generated for the VIF homepage. 74

6.9 WEESA mapping definition for the VIF homepage. 75

6.10 WEESA mapping definition for a VIF event Web page using the iCalendar on-
tology. Part 1/2 . 77

6.11 WEESA mapping definition for a VIF event Web page using the iCalendar on-
tology. Part 2/2 . 78

6.12 RDF graph of the meta-data generated for and event page using the iCalendar
ontology. 79

List of Figures vii

6.13 Sample SeRQL query to the WEESA KB of the VIF Semantic Web application. . 80

6.14 RDF graph of the Query result. 81

9.1 Overview of the architecture of the SWEET project. 104

viii List of Figures

LIST OF TABLES

5.1 WEESA ontology to maintain the RDF statements in the knowledge base. 51

ix

x List of Tables

CHAPTER 1

INTRODUCTION

The killer app will not be a shrink-wrapped program that sells millions.
The killer app will be a Web site that touches millions of people and

helps them to do what they want to do.

Lou Gerstner

1.1 MOTIVATION

Over the last decade the World Wide Web (WWW) has emerged to an important part of our
everyday life. Companies, organizations, and people use the WWW as a powerful tool to share
information: Companies offer Web pages to advertise and sell their products. Educational in-
stitutions present teaching material and online training services on the Web. Public authorities
provide eGovernment services to make administrative tasks more efficient and citizen-friendly.
User groups maintain Web portals to exchange information within their community.

The popularity of the WWW lead to an exponential growth in the number of Web pages
available in the global information space. This success, however, leads to several problems: The
huge number of available Web pages makes it increasingly difficult for users to find and access
required information. In searching the Web for a specific information, one gets lost in the huge
amount of irrelevant search results and may miss the relevant material.

Electronic commerce is currently hampered by the way information is presented. Since the
semantics of the Web pages in not directly accessible for machines, for example, shopping agents
have to use wrappers and heuristics to extract relevant product information from weakly struc-
tured HTML documents to compile a market overview.

Currently, data can be shared between applications via copy and paste only in (rich) text
format. The semantics of the data gets lost. Users, however, could benefit if data from Web

1

2 1.2 Problem Domain: Engineering Semantic Web Applications

applications could directly be further processed by desktop applications without loosing its se-
mantics.

The emerging awareness to these problems resulted in the insight that information can only be
shared and reused across application, enterprise, and community boundaries if the semantics of
the data is accessible to machines. By this means search results can be improved, the semantics
of data on Web pages can directly be accessed and further processed in software agents and
desktop applications.

Current Web applications provide Web pages in HTML format only that can be presented in
a Web browser to human users. The content of the pages is expressed via natural language and
therefore the semantics is not accessible for machines. Hence, an addition to the current Web is
needed to make the semantics of the Web pages machine-processable.

Tim Berners-Lee defines the Semantic Web as an extension of the current Web in which
information is given well-defined meaning, better enabling computers and people to work in
cooperation [9]. The meaning of the information on a Web page is formalized using semantic
meta-data that is based on concepts defined in ontologies. Therefore, the existence of semanti-
cally annotated Web pages is crucial to bring the Semantic Web to life.

Looking at the meta-data of a single Web page, however, gives only a very limited view of
the information available in a Web application. For querying and reasoning purpose it would be
better to have the whole meta-data model of the Web application at hand. Therefore, to bring the
Semantic Web to its full potential, Web applications in the Semantic Web have to offer semantic
meta-data describing the content of the HTML Web pages, and the accumulated meta-data model
of the application in a knowledge base for querying and download.

1.2 PROBLEM DOMAIN: ENGINEERING SEMANTIC WEB

APPLICATIONS

The success of the Semantic Web crucially depends on the existence of semantically annotated
Web pages. But it is still costly to develop and maintain Web applications that offer both: human-
understandable information that can be displayed by a Web browser and machine-processable
meta-data that can be processed by computers. Therefore, methodologies are needed to engineer
semantically annotated Web applications, so called Semantic Web applications.

Not much work has been done in developing methodologies to engineer Semantic Web ap-
plications. Related work, however, can be found in the following areas:

Semantic annotation aims to turn human-understandable content into a machine-processable
form by adding semantic markup [36]. Many tools have been developed that support the
user during the annotation process. But still, the annotation process is a separate task and
is not integrated in the Web engineering process.

Chapter 1: Introduction 3

Web Engineering focuses on the systematic and cost efficient design, development, mainte-
nance, and evolution of Web applications [31]. The outcome of the Web Engineering pro-
cess are Web applications that provide Web pages that can be displayed in a Web browser
but these applications lack semantic markup.

To benefit from the experiences in the related research areas a methodology to engineer Se-
mantic Web applications should be based on the research in the Web engineering community
and aim to integrate the research results from the semantic annotation community. Common
Web engineering concepts and artifacts should be reused to enable the integration into existing
Web engineering methodologies. For example, most Web engineering methodologies are based
on the concept of separation-of-concerns to define strict roles in the development process and to
enable parallel development. In addition, XML documents and XSLT stylesheets are frequently
used to separate the content of Web pages and the graphical appearance of the Web application.
Therefore, a methodology to engineer Semantic Web applications should not violate the concept
of separation-of-concerns and use the XML content documents as basis for the semantic annota-
tion process. In addition, to support developers when developing Semantic Web applications the
Semantic Web engineering methodology has to be integrated into a Web application development
framework.

A Semantic Web engineering methodology has also to account for the generation and main-
tenance of the knowledge base of the Semantic Web application. The semantic meta-data from
single Web pages have to be accumulated and integrated in the knowledge base. In addition, the
knowledge base has to be kept consistent with the data in the Web application during the life
time of the Semantic Web application.

1.3 CONTRIBUTION

In this thesis we introduce a methodology to design, implement and maintain Semantic Web
applications. Semantic Web applications are Web applications that not only offer content docu-
ments in HTML format but also semantic meta-data describing the content of the Web pages in
a machine-processable way. The proposed methodology further provides the possibility to accu-
mulate the meta-data of the individual Web pages to build the meta-data model of the whole Web
application as a knowledge base. The knowledge base is then offered for querying and download
by software agents.

The approach to engineer Semantic Web applications we present in this thesis is called
WEESA (WEb Engineering for Semantic web Applications). The contribution of WEESA is
the conceptual definition and prototype implementation of a mapping from XML Schema to on-
tologies that enables the efficient design of Semantic Web applications. Once the mapping is
defined in the design phase the mapping is used at runtime to automatically generate RDF meta-
data descriptions from XML content documents. WEESA follows the concept of separation-of-
concerns and can be used to extend XML-based Web engineering methodologies to semantically

4 1.4 Structure of the Thesis

annotate Web applications. To our knowledge, WEESA is the first implemented approach that
integrates semantic annotation in the Web engineering process.

In this thesis we further show the integration of the WEESA meta-data generation into
Apache Cocoon Web applications. Apache Cocoon [16] is a component based Web develop-
ment framework that uses XML/XSLT for separation-of-concerns. We integrated WEESA into
Cocoon transformer components that can then be used to realize Semantic Web applications from
scratch or to extend existing Cocoon Web applications.

The WEESA enabled Cocoon transformers also support the accumulation of meta-data from
single Web pages into the knowledge base of the Semantic Web application. The knowledge
base management component is responsible to keep the knowledge base up-to-date, to remove
outdated entries, to offer the knowledge base for download, and to provide access to the query
service of the knowledge base.

Finally, the Vienna International Festival industry case study illustrates the use of WEESA
within an Apache Cocoon Web application in real life. We discuss the lessons learned while
implementing the case study and give guidelines for developing Semantic Web applications using
WEESA.

1.4 STRUCTURE OF THE THESIS

The remainder of this thesis is structured as follows.
Chapter 2 introduces the vision of the Semantic Web and discusses the data-model, standards,

and technologies used to bring this vision into being. These building blocks form the foundation
of the idea presented in this thesis. The chapter further introduces the terms used throughout the
thesis.

Chapter 3 presents WEESA, our approach to engineer semantically annotated Web applica-
tions, that can be used to extend existing XML-based Web engineering methodologies. We intro-
duce the WEESA mapping from XML Schema to ontologies that can be used to automatically
generate semantic meta-data from XML content documents, present the prototype implementa-
tion, and discuss the asymptotic complexity of the proposed algorithm.

Chapter 4 shows the integration of the WEESA meta-data generator into the Cocoon Web
application development framework. We present two WEESA enabled transformer components
and show how they are used to develop Semantic Web applications. We further discuss different
possibilities to associate HTML Web pages and RDF meta-data.

Chapter 5 introduces the the WEESA knowledge base that is built at server side by accumu-
lating the meta-data descriptions from individual Web pages. The knowledge base is offered for
download and querying by software agents. We show the integration of the knowledge base into
the existing Cocoon infrastructure and the use of RDF reification to keep the knowledge base
up-to-date.

Chapter 6 shows the use of WEESA in the Vienna International Festival (VIF) industry
case study. We discuss the WEESA mapping definitions needed, the used Cocoon component

Chapter 1: Introduction 5

configuration, and give example scenarios how the WEESA knowledge base can be used by
software agents.

Chapter 7 discusses the experiences gained and the lessons learned while implementing the
case study, we list the qualifications a developer should have to semantically annotate a Web
application, and give guidelines for developing a Semantic Web application using WEESA.

Chapter 8 presents related work. Not much work has been done to integrate the semantic
annotation process in a Web engineering methodology. This Chapter, therefore, presents the
related research areas Web engineering and semantic annotation.

Chapter 9 concludes the thesis and gives an outlook on future work.

6 1.4 Structure of the Thesis

CHAPTER 2

SEMANTIC WEB REVIEW

We’ve all heard that a million monkeys
banging on a million typewriters

will eventually reproduce the entire works of Shakespeare.
Now, thanks to the Internet, we know this is not true.

Robert Wilensky

The first time the term “Semantic Web” came up was in 1998 when Tim Berners-Lee pub-
lished the Roadmap to the Semantic Web [7] on the homepage of the World Wide Web Consor-
tium (W3C) [97]. From then it took till 2001 to the well known Scientific America publication
“The Semantic Web” [9] and the Semantic Web Kick-Off Seminar in Finland [42,91]. Since then
a very active research community established having their own conferences and workshops. The
community came up with various standards and tools to bring the vision of the Semantic Web
into being.

This chapter gives an introduction to the vision of the Semantic Web. We give an overview
of the Semantic Web related W3C recommendations this thesis is based on. This chapter further
defines the meaning of the terms used throughout the thesis.

2.1 THE SEMANTIC WEB VISION

The increasing popularity of the World Wide Web (WWW) has changed the way we think about
our computers. Originally computers were used for computing numerical calculations [4]. With
the growing number of personal computers the dominant application domain shifted to text pro-
cessing, spread sheets, and gaming. At the present the increasing popularity of mobile computing

7

8 2.1 The Semantic Web Vision

devices such as notebooks, PDAs, and mobile phones and the possibility to connect to the Inter-
net even from public places through wireless LAN, GPRS, and UMTS further shifted our view
of computers towards an entry point to the global information space of the WWW.

Since the WWW was “born” at the CERN laboratories in 1989 the Web evolved to a global
information space that is made up of billions of Web pages. This large number of We pages
ensures that information on almost every topic is provided on the Web but makes it difficult
to find wanted information. Search engines such as Google1 and Yahoo2 aims to assist users
when searching the Web for information. Since the content of the Web pages is presented in
human language search engines have no access to the semantics of the content. This reduces the
possibilities of search engines mainly to keyword search.

For example, a user is interested in the play-time of a song on the “Alanis Unplugged” CD of
the artist “Alanis Morissette”. With current search engines a user cannot directly query the Web
for the wanted information but has to reformulate his information problem. The user has to think
of keywords that are likely to be found on a Web page that provides the play-times of the tracks
on the CD. As search result the user gets a list of Web pages that contain the keywords and the
user has to browse these pages to find the wanted information.

Even worse is the situation when the needed information cannot be found on a single Web
page. In this case the user has to formulate several queries, browse through the various search
results, and combine the information found. Computers can hardly support the user with this
problem since machines do not have access to the semantics of the Web pages.

To overcome this limitations the Semantic Web aims to make the Web’s content machine-
processable3. Tim Berners-Lee defines the Semantic Web as follows:

“The Semantic Web is an extension of the current web in which information
is given well-defined meaning, better enabling computers and people to work in
cooperation.” – Tim Berners-Lee, James Hendler, Ora Lassila; May 2001 [9]

Following this definition, the Semantic Web is not a new Web but an extension of the ex-
isting Web. This extension consists of meta-data describing the semantics of the Web pages in
a machine-processable way. Before the Web pages can be described with semantic meta-data,
an ontology has to be defined for the domain of discourse. An ontology formally describes the
concepts found in the domain, the relationships between these concepts, and the properties used
to describe the concepts. For example, in the domain of an online record shop we define concepts
such as “composer”, “album”, and “tack”; relationships such as “composed by”, and “has track”;
and properties such as “has play-time”, and “has title”. The meta-data description of a Web page

1http://www.google.com
2http://www.yahoo.com
3In the literature the term machine-understandable is used quite often instead of machine-processable. We follow

the view of Antoniou and van Harmelen in [4] and believe that machine-understandable is the wrong word because it
gives the wrong impression. It is not necessary for software agents to understand the information; it is sufficient for
them to process the information efficiently, which sometimes causes people to think the machine really understands.

Chapter 2: Semantic Web Review 9

uses the concepts, properties, and relationships defined in the ontology to give the information a
well-defined meaning.

Since the Semantic Web provides machine-processable information data can be shared and
reused across application, enterprise, and community boundaries [90]. For example, in the Se-
mantic Web the search engine problem, discussed above, can be solved by defining a database
like query to a Semantic Web search engine for the play-time of the wanted track. The search
result is then directly the requested information instead of a list of Web pages that might contain
the information.

2.2 STANDARDS, RECOMMENDATIONS, AND TOOLS

In oder to bring the vision of the Semantic Web into being the research community came with
standards, W3C recommendations, development frameworks, APIs, and databases. These lan-
guages and tools form the basic building blocks the approach presented in this thesis is based on.
In this section we give a brief introduction into the background technologies used.

2.2.1 RESOURCE DESCRIPTION FRAMEWORK (RDF)

The Resource Description Framework (RDF) [57, 61] is the data-model for representing meta-
data in the Semantic Web. Before we take a look at RDF we discuss the deficits of XML. XML
is a universal meta-language for defining markup [4]. Many tools such as parsers have been
developed that enable the information exchange between applications. However, there is no
inherent meaning associated with the nesting of the XML elements. It is up to the application to
interpret the nesting. For example, if we want to express the following fact:

The CD with the item number “1234” has the title “Alanis Unplugged”.

There are various ways to express this fact in XML. In Figure 2.1 we give two examples.

� �
<cd item="1234">
<title>Alanis Unplugged</title>

</cd>

<cd>
<item>1234</item>
<title>Alanis Unplugged</title>

<cd>� �
Figure 2.1: Different XML documents to express the same fact.

As we can see, no standard way exists to assign meaning to the nesting of the XML elements.
In RDF, however, we are able to express the meaning of fact above unambiguously. The RDF

10 2.2 Standards, Recommendations, and Tools

data-model is based on subject – predicate – object triples, so called RDF statements, to forma-
lize meta-data. RDF is domain independent in that no assumptions about a particular domain of
discourse are made. It is up to the users to define their own ontologies for the user’s domain in an
ontology definition language such as RDF Schema (RDFS) [11]. The definition of ontologies is
discussed in the following section. Unfortunately, the name RDF Schema is not a good choice,
since it suggests that RDF Schema has a similar relation to RDF as XML Schema to XML. This,
however, is not the case. XML Schema constraints the structure of the XML document, whereas
RDF Schema defines the vocabulary used in the RDF data-model. For example, the ontology to
express the fact above has to define the concept of a “CD” and the relationship “has title” in its
vocabulary.

Before we are able to express the fact above as RDF statement we have to introduce the
concept of a resource. A resource can be seen as a “thing” we want to make a statement about.
A resource can be everything; a book, a person, a Web page, a CD, a track on a CD, and so
on. Every resource is identified by a Uniform Resource Identifier (URI) [8]. In the case of a
Web page, the URI can be the Unified Resource Locator (URL) of the page. The URI does
not necessarily enable the access via the Web to the resource; it simply has to unambiguously
identify the resource.

Now we can formulate the fact from above as RDF statement. The subject, predicate, and
object are defined as follows:

Subject: The Subject is the thing (the resource) we want to make a statement about. In our
example we want to make a statement about a CD. To be able to make a statement about the
CD we use the URI "http://mytunes.com/album id1234" as resource identifier
for the CD.

Predicate: The predicate defines the kind of information we want to express about the subject.
In our example we want to make a statement about the title of the CD. To define the kind of
information we want to state about a the subject we use the URI "http://mytunes.
com/ontology#hasTitle" that references the property defined in the ontology. How
ontologies are defined we will see in the following section. The predicate is also called the
property that describes the subject resource.

Object: The object defines the value of the predicate. In our example we want to state that
the title of the CD is "Alanis Unplugged". The object can be a literal, like in our
example, or another resource represented by the object’s URI.

In the RDF data-model the statements are represented as nodes and arcs in a graph. The RDF
graph model is defined in [57]. In this notation, a statement is represented by:

• a node for the subject,

• a node for the object, and

• an arc for the predicate, directed from the subject node to the object node.

Chapter 2: Semantic Web Review 11

Figure 2.2: RDF graph of a single statement.

Figure 2.2 shows the RDF graph for the statement discussed above. Resources in the graph
are depicted as ellipses and literals are depicted as rectangles. To write down RDF statements
there exists several concrete syntaxes. In the triples notation, each statement in the graph is writ-
ten as a simple triple of subject, predicate, and object, in that order followed by a full stop. For
example, the statement shown in the graph in Figure 2.2 would be written in the triple notation
as:

<http://mytunes.com/album_id1234> <http://mytunes.com/ontology#hasTitle> "Alanis Unplugged" .

RDF also provides an XML syntax for writing down and exchanging RDF graphs, called
RDF/XML. Unlike the triples notation, which are intended as a shorthand notation, RDF/XML
is the normative syntax for writing RDF and is defined in [26]. The RDF/XML notation for the
graph shown in Figure 2.2 is given in Figure 2.3.� �
<?xml version="1.0"?>
<rdf:RDF

xmlns:mytunes="http://mytunes.com/ontology#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

<rdf:Description rdf:about="http://mytunes.com/album_id1234">
<mytunes:hasTitle>Alanis Unplugged</mytunes:hasTitle>

</rdf:Description>
</rdf:RDF>� �

Figure 2.3: RDF/XML syntax of the statement defined in Figure 2.2.

2.2.2 ONTOLOGY LANGUAGES

RDF provides a way to express simple statements about resources, using subject – predicate –
object triples. However, to use RDF we also need the possibility to the define the vocabulary that
is used in the RDF statements. This controlled vocabulary is also called ontology. For a given
domain the ontology defines the concepts found in the domain, the relationships between these
concepts, and the properties used to describe the concepts.

For example, if we take the domain of an online record shop, we can identify concepts (also
called classes) such as “CD”, “tape”, “record”, “storage media”, “artist”, and “track”. As re-
lationship between these concepts we can think of “has track”, “has artist”, or the subclass re-
lationship between “storage media” and the classes “CD”, “tape”, and “record”. As properties
to describe the classes we use “has artist name”, “has album title”, “has track name”, or “has
play-time”.

12 2.2 Standards, Recommendations, and Tools

Ontologies are defined in an ontology definition language. In the following sections we
introduce the two ontology languages the W3C defined for the Semantic Web: RDF Schema and
the Web Ontology Language (OWL).

2.2.2.1 RDF SCHEMA

RDF Schema (RDFS) [11] is a simple ontology definition language that allows users to define
the vocabulary needed to describe the resources in the domain with meta-data. To define the
ontology RDFS uses the RDF triples format. Therefore, an ontology in RDFS is modeled as RDF
graph. In RDFS users can define classes, properties, and relationships to model the concepts in
the domain.

In the following we introduce some of the basic modeling primitives to define an ontology
in RDFS. Terms that are defined in the RDFS language specification have the XML namespace
prefix "rdfs:"; terms defined in the RDF specification have the prefix "rdf:". The modeling
primitives consist of classes and properties. We start with the list of classes that are used as
resources in the ontology definition. The complete list of classes can be found in [11].

• rdfs:Class This is the class of resources that are RDF classes.

• rdfs:Literal This is the class of literal values such as strings and integers.

• rdfs:Property This is the class of RDF properties.

The property primitives are used to define relationships in the ontology. The complete list of
properties can be found in [11].

• rdf:type Relates a resource to its class. In other words, the rdf:type property is
used to declare a resource to be an instance of the given class.

• rdfs:subClassOf Relates a class to one of its superclasses. All instances of a class
are instances of its superclass. A class can be a subclass of more than one class.

• rdfs:domain Specifies the domain of the property P, that is, the class of resources that
may appear as subject in a triple with the predicate P. If the domain is not specified any
resource can be the subject.

• rdfs:range Specifies the range of a property P, that is, the class of those resources that
may appear as object in a triple with the predicate P. If the domain is not specified any
resource can be the object.

So far we have introduced some of the modeling primitives of RDFS. In Figure 2.4 we show
the RDF graph of a simple ontology for our online record shop example. For simplicity reasons
we omit the "mytunes:" namespace prefix in the discussion of the example. In the ontology
we defined three classes: StorageMedia, CD, and Track. These resources are classes, since

Chapter 2: Semantic Web Review 13

Figure 2.4: RDF graph of the example ontology for an online record shop.

they are related to the rdfs:Class resource with the rdf:type property. The class CD is
also declared to be a rdfs:subClassOf the class StorageMedia.

The ontology further defines three properties: hasTitle, trackName, and hasTrack.
The hasTrack property can only be used to describe an instance of the StorageMedia class
(and all its subclasses), since the rdfs:domain is specified. The hasTrack property can fur-
ther only take objects as value, that are an instance of the Track class, since the rdfs:range
is specified. The properties hasTitle and trackName take a literal as object, since the range
is defined to be a rdfs:Literal.

An RDF graph that uses this ontology to describe a CD is shown in Figure 2.5. The
hasTrack property points to an anonymous resource, also called blank node, that is an in-
stance of the class Track. Anonymous resources are used for resources that never need to be
referred to directly from outside the RDF description. The anonymous resource, however, is
needed to represent the instance of the Track class, that are described by the trackTitle
property.

2.2.2.2 WEB ONTOLOGY LANGUAGE OWL

The expressiveness of RDF Schema introduced in the previous section is very limited. RDF
Schema can be used to define subclass hierarchies, properties, and domain and range restrictions
of those properties [4]. However, the Web Ontology working Group of the W3C [69] identified

14 2.2 Standards, Recommendations, and Tools

Figure 2.5: RDF graph of ontology that uses the ontology from Figure 2.4.

a number of characteristic use cases [27] that cannot be covered by RDF Schema.

A number of researchers in Europe and the United States identified the need for a more pow-
erful ontology modeling language. This lead to a joint initiative to define a more expressive
language, called DAML+OIL4 [18]. DAML+OIL was in turn the staring point for the W3C
working group to define the Web Ontology Language (OWL) [72]. OWL is now a W3C recom-
mendation.

OWL provides a number of additional modeling primitives that increase the expressiveness
compared to RDFS. In the following we discuss some of the shortcomings of RDFS that can be
expressed in OWL [4]:

• Locale scope of properties. For example, we want to define a property eats that is used
in the domain of the Sheep and Tiger classes. The rdfs:range primitive cannot be
used define that a Sheep only eats plants, while the Tiger only eats meat.

• Disjoint classes. RDFS does not provide primitives to declare two classes to be disjoint.
For example, the classes Male and Female are disjoint.

• Boolean combination of classes. In some cases we have to define new classes by building
the union, intersection, or complement of other classes. For example, we want to define
the class Person to be the disjoint union of the classes Male and Female.

• Cardinality restrictions. RDFS does not provide any means to restrict the number of dis-
tinct values a property may or must take. For example, we want to specify that a person
has exactly two parents, or that a course is taught by at least one lecturer.

• Special characteristics of properties. In RDFS we cannot define that a property is transient
(e.g. “greater than”), unique (e.g. “is mother of”), or the inverse of another property (e.g.
“eats” and “is eaten by”)

4The name is a join of the names of the U.S. language DAML-ONT [19] and the European proposal OIL [67].

Chapter 2: Semantic Web Review 15

When the W3C’s Web-Ontology Working Group specified OWL it followed two goals: (1)
To define an ontology language with maximum expressiveness, (2) while providing efficient
reasoning support. Since these goals hardly goes together, the working group defined OWL as
three different sublanguages, each geared toward fulfilling different aspects of this full set of
requirements [62].

OWL Light: OWL Lite supports those users primarily needing a classification hierarchy and
simple constraints. For example, while it supports cardinality constraints, it only permits
cardinality values of 0 or 1. It should be simpler to provide tool support for OWL Lite than
its more expressive relatives, and OWL Lite provides a quick migration path for thesauri
and other taxonomies. OWL Lite also has a lower formal complexity than OWL DL [22].

OWL DL: OWL DL supports those users who want the maximum expressiveness while retain-
ing computational completeness (all conclusions are guaranteed to be computable) and
decidability (all computations will finish in finite time). OWL DL includes all OWL lan-
guage constructs, but they can be used only under certain restrictions (For example, while
a class may be a subclass of many classes, a class cannot be an instance of another class.).
OWL DL got its name due to the correspondence with description logics, a field of research
that has studied the logics that form the formal foundation of OWL.

OWL Full: OWL Full is meant for users who want maximum expressiveness and the syntactic
freedom of RDF with no computational guarantees. For example, in OWL Full we can
impose a cardinality constraint on the class of all classes, limiting the number of classes
that can be described in an ontology. It is unlikely that any reasoning software will be able
to support complete reasoning for every feature of OWL Full.

2.2.3 RDF REIFICATION

Since the approach presented in this thesis uses RDF reification, we introduce this advanced
RDF modeling primitive in this section. As explained in Section 2.2.1 RDF statements are used
to describe a resource. In some cases, however, we want to make statements about an RDF
statement. For example, we want to record who provided the particular information.

RDF provides a build in vocabulary intended for describing RDF statements. A descrip-
tion of a statement using this vocabulary is called reification of a statement. The RDF reifi-
cation vocabulary consists of the type rdf:Statement and the properties rdf:subject,
rdf:predicate, and rdf:object.

For example, we want to express that the creator of the statement in Figure 2.2 is a
person with the staff identifier "9876". To identify this person we use the URI http:
//example.com/staffid/9876. The RDF graph of the reified statement is shown in Fig-
ure 2.6. The anonymous resource is used to represent the reified statement. The rdf:type
property defines that the anonymous resource represents the rdf:Statement. The prop-
erties are used to describe the subject, predicate, and object of the statement. The http:

16 2.2 Standards, Recommendations, and Tools

Figure 2.6: RDF graph of a reified RDF statement.

//purl.com/dc/elements/1.1/creator property is defined in the Dublin Core on-
tology (DC) [24]. DC is a meta-data standard for describing digital objects and defines prop-
erties such as creator, title, and publisher. The creator property is used to record that the
person that is identified with the URI http://example.com/staffid/9876 has made
this statement. Figure 2.7 shows the reified statement in RDF/XML syntax.

When using RDF reification the original statement is typically also stored in the RDF graph.
This means, after reifying a statement we result with four more RDF statements in the graph plus
the statements used for the description (in our example, the creator statement). Therefore,
using RDF reification increases the number of statements in the graph significantly.

� �
<?xml version="1.0"?>
<rdf:RDF

xmlns:mytunes="http://mytunes.com/ontology#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:dc="http://purl.org/dc/elements/1.1/">

<rdf:Statement>
<dc:creator rdf:resource="http://example.com/staffid/9876"/>
<rdf:subject rdf:resource="http://mytunes.com/album_id1234"/>
<rdf:predicate rdf:resource="http://mytunes.com/ontology#hasTitle"/>
<rdf:object>Alanis Unplugged</rdf:object>

</rdf:Statement>
</rdf:RDF>� �

Figure 2.7: Reified RDF statement in RDX/XML Syntax.

Chapter 2: Semantic Web Review 17

2.2.4 JENA – SEMANTIC WEB FRAMEWORK FOR JAVA

In this chapter we introduced so far W3C recommendations that were developed for the Semantic
Web. To bring the Semantic Web into being, however, program libraries and tools are needed that
are based on these recommendations and enable developers to efficiently develop applications
for the Semantic Web. In this section we introduce Jena, the framework used to implement the
approach presented in this thesis.

Jena [46] is a Java framework for building applications for the Semantic Web. Jena is open
source and has grown out of work with the HP Labs Semantic Web Programme5. It provides a
programmatic environment for RDF, RDFS, and OWL. The framework includes an RDF parser
that provides methods for reading and writing RDF in various formats such as triple notation and
RDF/XML.

The Jena Java API provides classes respectively interfaces for the language primitives of
RDF and OWL. For example, the API provides the interfaces for the Resource, Property,
and Literal primitives. In Jena, a graph is called model and is represented by the Model
interface. Figure 2.8 shows the definition of an RDF statement in a Java program using the Jena
framework.� �
// some definitions
String albumURI = "http://mytunes.com/album_id1234";
String title = "Alanis Unplugged";

// create an empty Model
Model model = ModelFactory.createDefaultModel();

// create the resource
Resource alanisUnplugged = model.createResource(albumURI);

// create the property
Property hasTrack = model.createProperty("http://mytunes.com/ontology#hasTitle");

// add the property to make an RDF statement
alanisUnplugged.addProperty(hasTrack, title);� �

Figure 2.8: Java programm to define an RDF statement using the Jena framework.

2.3 TERMINOLOGY

Understanding the meaning of terms used in a given context is crucial for effective and unam-
biguous communication. Unfortunately some confusion exists in the way terms such as Web
application, Web Service, or Web engineering are used. In this section we present our under-
standing of the terms in these context of this thesis.

Web page A Web page is a document in HTML format that is typically retrieved by Web
browsers to be displayed on screen.

5http://www.hpl.hp.com/semweb/

18 2.3 Terminology

Web application A Web application is a collection of static and/or dynamically generated Web
pages that form a unit in terms of content they provide, share a common look-and-feel, and
are available through the same base URL. A Web application can be seen as a software
application leveraging the Web as user interface.

Web Service The term Web Service is one of the most over-used terms in the Web area. In
the early days of the WWW the term was used as a synonym for Web application. More
recently the term was redefined in the context of machine-to-machine communication.
These services exchange machine readable information utilizing Web technologies such as
the Simple Object Access Protocol (SOAP) that communicates via XML messages that are
transmitted over HTTP. In the remainder of this work we restrict the use of the term Web
service to the later meaning.

Web engineering Web Engineering includes all activities involved in the design, implementa-
tion, deployment, maintenance and evolution of a Web application.

Resource A resource is a “thing” that can be referenced by an identifier. In the Semantic Web
a resource is identified by an Uniform Resource Identifier (URI). A resource can either be
accessible via the Web such as a Web page, or only be referenced such as persons, books,
wines, or places. In the Semantic Web resources are used to reference the thing that should
be described with meta-data.

RDF triple An RDF triple is a subject – predicate – object triple that is used to describe a
resource in the Semantic Web. The subject represents the resource to be described, the
predicate the property to be expressed, and the object the value of the property. RDF
triples are used to formalize semantic meta-data in the Semantic Web.

RDF statement The term RDF statement is used synonymously with RDF triple.

Semantic Web page A Semantic Web page consists of the Web page presenting the content in
HTML format, and in addition, a machine-processable meta-data description of the content
of the Web page. The machine-processable meta-data enables machines to have access to
the semantics of the content. In the Semantic Web the meta-data is represented using the
Resource Description Framework (RDF).

Semantic Web application A Semantic Web application is a Web application that provides Se-
mantic Web pages instead of Web pages. Therefore, software agent have access to the
semantics of the content of the Web pages. In addition, a Semantic Web application of-
fers the meta-data of the whole Web application in a knowledge base for download and
querying.

CHAPTER 3

WEESA – WEB ENGINEERING FOR

SEMANTIC WEB APPLICATIONS

The important thing in science is not so much to obtain new facts
as to discover new ways of thinking about them.

Sir William Bragg

In the previous chapter we introduced the vision of the Semantic Web. To bring this vision
into being, however, Web applications have to provide Web pages that are semantically anno-
tated. Unfortunately, adding semantic meta-data to Web pages is still a time consuming task. Se-
mantic annotation addresses this problem and aims to make the content of human-understandable
documents machine-processable by adding semantic markup [36]. Research projects on seman-
tic annotation lead to the development of various tools that support the user during the annotation
process. But still, the annotation process is an additional task and not yet integrated in the engi-
neering process of the Web application.

Web engineering aims to provide methodologies for the systematic and cost efficient design
and development of Web applications [31]. Current Web engineering methodologies can be used
to realize Web applications that provide Web pages in HTML format but these applications do
not provide semantic meta-data. Therefore, new methodologies are needed to engineer Semantic
Web applications.

In this chapter we introduce WEESA (WEb Engineering for Semantic web Applications),
a technique that can be used to extend existing XML-based Web engineering methodologies
to engineer semantically annotated Web applications. WEESA defines a mapping from XML
Schema to ontologies that can be used to automatically generate RDF meta-data from XML
documents. In the following chapter we show the integration of WEESA into Apache Cocoon
transformer components and the use of this transformer to develop Semantic Web applications.

19

20 3.1 Semantic Annotation

3.1 SEMANTIC ANNOTATION

The aim of semantic annotation is to transform documents into machine-processable artifacts by
augmenting them with meta-data that describes their meaning. In the Semantic Web, this meta-
data description is done using the Resource Description Framework (RDF) [57] that references
the concepts defined in one or more ontologies. Ontologies formally define concepts used in
a domain and the relationship between these concepts. An ontology is defined in an ontology
definition language such as RDFS [11], DAML+OIL [18], or OWL [72].

When adding semantic meta-data to documents, one faces several problems [74]:

• Annotating documents with Semantic markup is a time consuming task and has to be
performed in addition to the authoring process.

• The authors that annotate the documents are typically not the people who profit from the
existence of meta-data. This reduces the author’s motivation to annotate Web pages.

• The granularity of the information found in the document does not meet the needs of
granularity in the ontology. Several information items that can be found in the document
might be needed to compute the value that fits a property in the ontology.

• Looking at Web pages that provide RDF meta-data we recognize that important parts of
the content are stored twice. First, in HTML format that is displayed to the user via the
Web browser and second in the RDF description. This redundancy leads to inconsistency
problems when maintaining the content of the Web page. Changes must always be made
consistently for both types of information. Therefore, support is needed for the creation
and maintenance of Semantic Web pages.

• Many Web pages are not static documents but are generated dynamically e.g. using a
database. Annotating dynamic documents leads to performing the same task over and over
for a specific pattern of documents.

Several annotation tools have been proposed to overcome the problems listed above. Early
tools such as the SHOE Knowledge Annotator [38] concentrated mainly on avoiding syntactic
mistakes and typos when referencing ontologies. Current tools such a CREAM/OntoMat [36]
are sophisticated authoring frameworks that support the user while writing and annotating the
document and help maintaining the generated meta-data. Still, the annotation process is not
integrated in the engineering process of a Web application as proposed by the Web engineering
community.

3.2 XML-BASED WEB PUBLISHING

Web Engineering focuses on the systematic and cost efficient design, development, maintenance,
and evolution of Web applications [31]. Most Web engineering methodologies are based on

Chapter 3: WEESA – Web Engineering for Semantic Web Applications 21

separation-of-concerns to define strict roles in the development process and to enable parallel
development [51]. The most frequently used concerns are the content, the graphical appearance,
and the application logic. When we plan to design Web applications that offer semantic markup
in addition, we have to introduce a new concern, the meta-data concern.

Most Web engineering methodologies use XML and XSLT for strict separation of content and
graphical appearance. XML focuses only on the structure of the content, whereas XSLT is a pow-
erful transformation language to translate an XML input document into an output document such
as another XML document, HTML, or even plain text. Many existing Web development frame-
works such as Cocoon [16] or MyXML [52] use XML and XSLT for separation-of-concerns.

Based on this technology, editors responsible for the content only have to know the structure
of the XML file and the permitted elements to prepare the content pages. Similarly, designers
responsible for the layout of the Web application, only have to know the structure and elements
of the XML file to write the XSLT stylesheets. Finally, programmers responsible for the ap-
plication logic have to generate XML documents (or fragments) as output. An XML Schema
precisely defines the structure and the permitted elements in an XML file that is valid according
to this schema. Therefore, XML Schema can be seen as a contract the editors, designers and
programmers have to agree on [51].

Since XML is widely used in Web engineering, our approach to engineer Semantic Web
applications also uses the XML content to generate the RDF meta-data description from a Web
page. We also use the XML Schema as a contract and map the elements defined in the schema
to concepts defined in an ontology. Our goal is to use the structure and the content of the XML
document to populate the RDF triples with data.

In the proposed approach, the XML document is the basis for the HTML page as well as
for the RDF description. This helps to overcome the inconsistency problem pointed out in the
previous section.

3.3 MAPPING XML SCHEMA TO ONTOLOGIES

In our WEESA mapping we use the content of an XML document to derive its RDF meta-data
description. In the design phase of the Web application, however, we have no XML documents
at hand. We do, however, have the XML Schema definition that provides us with information
about the structure of valid XML documents. We use this information to define a mapping from
XML elements or attributes to concepts used in an ontology. Figure 3.1 shows the definition of
the WEESA mapping on the design level and how this mapping is used at the instance level to
automatically generate RDF meta-data from XML documents.

In Section 3.1 we introduced the granularity problem that arises when annotating documents.
We face the same problems when defining the WEESA mapping. It is possible that the concept
of an XML element/attribute can be mapped one-to-one to a concept defined in an ontology.
In general, however, this will not be the case. We therefore propose to dynamically compute
the missing information from the information available in the XML document. In some cases

22 3.3 Mapping XML Schema to Ontologies

mapping

generate

Ontology

RDF descriptionXML document

XML Schema

generate
via XSLT

HTML page

uses termsvalid

Design Level

Instance Level

WEESA

definition

associate

Figure 3.1: Definition of the WEESA mapping at the design level and RDF meta-data generation
at the instance level.

processing is needed to reformat the element’s content to match the datatype used in the ontology.
In other situations it might be necessary to use the content of more than one XML element to
generate the content for the RDF description.

For demonstration purpose, we use the fictitious MyTunes online CD store as an illustrative
example. For each artist listed on the online store, MyTunes offers a Web page listing their
albums and for each album, a page with the album details. Some XML elements such as the
artist name or the track titles can be mapped one-to-one to properties defined in the corresponding
class of the ontology. Other properties defined in the ontology such as the total play-time of an
album cannot be found in the XML document but can be calculated from the play-times of the
individual tracks. In this case some additional processing is needed to generate the information
required by the ontology from the data provided by the XML document. In addition to the above,
the MyTunes application offers a list of live performances for each artist. Therefore an XML
document with the begin time and the duration of the performance is provided. The ontology,
however, uses a different way to express the performance times, defining properties for the start
and end time of a performance in the event class. Therefore the content of the begin time and the
duration element have to be processed to match the two properties.

Another way in which we can address the mismatch in granularity between the XML ele-
ments and the ontology concepts is to adjust the XML Schema definition in the design phase
of the Web application. The structure of the XML document could be adapted to the kind of
information needed by the given ontology. This, however, would lead to several problems:

1. The data format to display information on the Web page to human users can conflict
with the format needed by the meta-data representation. For example, the Web page
displays a date in a human readable format such as "Tuesday, May 24 2005,
12:00am" but the ontology defines the range of the date property to use the XML Schema
xsi:dateTime format (e.g. "2005-05-24T12:00:000+01:00").

Chapter 3: WEESA – Web Engineering for Semantic Web Applications 23

2. Some information needed for the Web page might be no longer available in the XML
document. In the example above the information that May 24, 2005 is a Tuesday is not
available in the XML Schema xsi:dateTime format.

3. Over time a new ontology may become the standard ontology for the domain of the Web
application. Therefore, the XML Schema - ontology mapping should be flexible enough to
allow to change the used ontology later in the life cycle of the Web application. The change
of the ontology would result in the change of the XML Schema that represents the contract
agreed by all parties. This would result in the redesign of the whole Web application.

4. It is possible that we may have to define the mapping for already existing XML documents
and do not have the opportunity to change the schema.

Therefore, a flexible way to map the content of one or more XML elements/attributes to the
information required by the used ontology is needed. The way in which this mapping can be
implemented is detailed below.

3.4 IMPLEMENTATION

The generation of RDF descriptions based on the XML content document is done in two steps.
First, in the design phase for each XML Schema, a mapping to the ontologies has to be defined.
Second, for each XML content document the mapping rules defined in the previous step are
applied to generate the RDF representation.

3.4.1 DEFINING THE MAPPING

The starting point of the mapping is, on the one hand the XML Schema that acts as a contract in
the development process, and on the other hand, the ontologies to be used. The XML Schema
provides us with the information of the structure of a valid XML document and the elements and
attributes being used. This information can be used to define XPath [15] expressions to select an
element or attribute from an XML document. Once an element/attribute is selected, its content
is mapped to a position in an RDF statement.

The goal of the mapping definition is to populate the subject, predicate and object of the RDF
statements with data. In the mapping definition there are a number of ways in which the content
for the RDF statements can be specified: (1) a constant value, (2) an XPath expression, (3) the
return value of a Java method, and (4) a resource reference. We describe each of these methods
in more detail below:

1. A constant value can be, for example, the URI reference to a concept defined in the ontol-
ogy or terms from the RDF vocabulary, such as rdf:type, to state that a resource is an
instance of a given class.

24 3.4 Implementation

� �
<?xml version="1.0" encoding="UTF-8"?>
<album id="1234">
<artist>Alanis Morissette</artist>
<name>Alanis Unplugged</name>
<price>9.99</price>
<tracks>

<track number="1">
<name>You Learn</name>
<time>4:21</time>

</track>
<track number="2">
<name>Joining You</name>
<time>5:09</time>

</track>
<track number="3">
<name>No Pressure over Cappuccino</name>
<time>4:41</time>

</track>
<!-- ... -->
<track number="12">
<name>Uninvited</name>
<time>4:37</time>

</track>
</tracks>

</album>� �
Figure 3.2: XML document for an album.

2. An XPath expression is used to select the content of an element/attribute in the XML
document. In this case, an RDF triple is generated for each XPath match.

3. The content of more than one element/attribute might be needed to compute the informa-
tion to match a property in the ontology or a datatype conversion may have to be performed.
We use Java methods for this purpose. These methods take the content of one or more el-
ements/attributes or constants as input parameters and return a string value as content for
an RDF triple. In the mapping definition we are able to specify that the Java method has
to be called for each XPath match, resulting in the generation of a triple for each match, or
that all XPath matches are handed over as a Vector to the Java method, resulting in the
generation of only one RDF triple.

4. Unique resource identifiers are needed to populate the subject. Since most XML docu-
ments provide more information that is related to the same resource, we offer the possibil-
ity to define a resource identifier that can later be referenced to fill the RDF triples. The
mapping also allows the user to define anonymous resources. These are used for resources
that never need to be referred to directly from outside the RDF description. To define an
anonymous resource in the mapping, the resource is labeled as anonymous.

Figure 3.2 shows a sample XML document for an album in our MyTunes online CD store.
This example is used to demonstrate the use of the four ways to specify the content for the RDF
triples as described above.

Chapter 3: WEESA – Web Engineering for Semantic Web Applications 25

� �
1 <?xml version="1.0" encoding="UTF-8"?>
2 <mapping xmlns="http://www.infosys.tuwien.ac.at/WEESA#">
3 <resources>
4 <resource id="album">
5 <method>
6 <name>at.ac.tuwien.infosys.weesa.wf.MappingLib.addPrefix</name>
7 <param const="http://example.com/album#" type="java.lang.String"/>
8 <param xpath="/album/@id" type="java.lang.String"/>
9 </method>

10 </resource>
11 <resource id="track" anonymous="true" var="track_id" xpath="/album/tracks/track/@number"/>
12 </resources>
13 <triples>
14 <triple>
15 <subject ref="album"/>
16 <predicate const="http://www.w3.org/1999/02/22-rdf-syntax-ns#type"/>
17 <object const="http://example.com/MyTunes#Album" resource="true"/>
18 </triple>
19 <triple>
20 <subject ref="album"/>
21 <predicate const="http://example.com/MyTunes#hasTitle"/>
22 <object xpath="/album/name/text()"/>
23 </triple>
24 <triple>
25 <subject ref="album"/>
26 <predicate const="http://example.com/MyTunes#totalTime"/>
27 <object>
28 <method>
29 <name>at.ac.tuwien.infosys.weesa.wf.MappingLib.sumTimes</name>
30 <param xpath="/album/tracks/track/time/text()" type="java.util.Vector"
31 xresultAsVector="true"/>
32 </method>
33 </object>
34 </triple>
35 <triple>
36 <subject ref="album"/>
37 <predicate const="http://example.com/MyTunes#hasTrack"/>
38 <object ref="track"/>
39 </triple>
40 <triple>
41 <subject ref="track"/>
42 <predicate const="http://www.w3.org/1999/02/22-rdf-syntax-ns#type"/>
43 <object const="http://example.com/MyTunes#Track" resource="true"/>
44 </triple>
45 <triple>
46 <subject ref="track"/>
47 <predicate const="http://example.com/MyTunes#trackNumber"/>
48 <object const="$$track_id$$"/>
49 </triple>
50 <triple>
51 <subject ref="track"/>
52 <predicate const="http://example.com/MyTunes#playTime"/>
53 <object xpath="/album/tracks/track[@number=’$$track_id$$’]/time/text()"/>
54 </triple>
55 <triple>
56 <subject ref="track"/>
57 <predicate const="http://example.com/MyTunes#trackTitle"/>
58 <object xpath="/album/tracks/track[@number=’$$track_id$$’]/name/text()"/>
59 </triple>
60 </triples>
61 </mapping>� �

Figure 3.3: WEESA mapping definition for the album example.

26 3.4 Implementation

� �
Class: Artist Class: Track
->hasArtistName ->trackTitle
->hasAlbum (range: Album) ->playTime

->trackNumber

Class: Album Class: Event
->hasTitle ->hasEventName
->hasTrack (range: Track) ->hasLocation
->totalTime ->beginTime
->year ->endTime� �

Figure 3.4: Ontology used for our MyTunes example.

A WEESA mapping definition (see Figure 3.3) consists of two parts. In the first part, we
define the resource identifiers that may later be used. In the second part the subject, predicate,
and object of the actual RDF triples are defined. The XML Schema for the WEESA mapping
definition is shown in Appendix A.

Figure 3.3 shows the WEESA mapping definition for our album example. At the beginning
of the mapping we define the resources (lines 3-12). In the first resource with the id="album"
attribute we define an XPath expression to select the id attribute of the <album> element in
Figure 3.2. The according XPath expression is /album/@id. The content of the attribute is
then handed over to a Java method. The method name is defined in line 6. In this case the Java
method adds a prefix to the attribute value to generate a resource identifier. The parameters for
the method are defined in line 7 and 8. The first parameter is a constant used for the prefix and the
second parameter is the XPath expression to select the attribute. The return value of the method
is then used as the content in the RDF triple whenever the resource with the id="album" is
referenced.

In the resource with the id="track" (line 11) we show how to define an anonymous re-
source. This is done using the anonymous="true" attribute. In this case, for each XPath
match an anonymous resource is generated. This resource definition also contains the var at-
tribute which will be discussed later in this section.

Once we have defined the resources, we can start defining the RDF triples. This is done
in the <triples> section (lines 13-60). In the first triple (lines 14-18) the subject uses the
ref="album" attribute to reference the resource with the id="album". In the predicate we
use the rdf:type constant to define the class the subject is an instance of. The object of this
triple is the URI reference to the class in the ontology (http://example.com/MyTunes#
Album). The resource="true" attribute is used to indicate that the value of the object
should be interpreted as an RDF resource. The default interpretation would be a literal. Our
sample ontology is shown in Figure 3.4. For easy understanding and clarity, we do not use
the OWL Syntax in the example, but use a trivial textual syntax instead. The MyTunes sample
ontology in OWL syntax can be found in Appendix B.

The following triples in our mapping example fill the properties of the #Album class. The
predicate defines the name of the property and the object the value. The xpath attribute of the
<object> element defines the XPath expression that has to be evaluated. The object element

Chapter 3: WEESA – Web Engineering for Semantic Web Applications 27

can also contain a <method> element to define the Java method to compute the content of the
object. Lines 28-32 show the use of a Java method where all XPath matches are handed over
as a Vector to the method indicated by the xresultAsVector="true" attribute. The
sumTimes Java method takes the individual play-times of the tracks in a Vector as parameter
and calculates the total play-time of the album.

In some cases we need additional information to select a specific element/attribute by an
XPath expression. When an XML document consists of multiple elements with the same name
at the same hierarchy level, we need a technique to select a specific element. For this purpose
we use variables. In line 11 we use the var attribute to define the track id variable. This
variable can be used in any constant or XPath expression using the $$ escape sequence at the
beginning and the end of the variable name. The variable is replaced at runtime with the actual
value. Variables can be defined together with the xpath attribute in resource definitions only.

At the end of the triples section we show that anonymous resources can be used in the same
way as any other resources in the triple definition. In the triple defined in lines 35-39 the object
uses the reference to the anonymous resource track. The following triples define the class
and the properties for this resource and show the use of the track id variable in the WEESA
mapping.

So far, we have shown how the WEESA mapping is defined. The following section shows
how this mapping can be used to generate RDF descriptions from XML documents.

3.4.2 GENERATING THE RDF DESCRIPTION

When a Web page is queried the corresponding XML document is fetched and first, the XSLT
transformation is used to generate the HTML page. Second, the RDF description has to be gen-
erated and associated with the HTML page. The way in which the RDF description is generated
is discussed in the this section.

To generate the RDF description all mappings defined for the XML document have to be
executed. Therefore, the XPath expressions have to be evaluated on the document and the result
is either used directly to populate a position in an RDF triple that is defined in the mapping or
is handed over to a Java method first. If the XPath expression matches multiple elements/at-
tributes in the XML document the procedure must be repeated for each match or alternatively,
the matches are handed over to the Java method as a Vector.

The pseudo-code in Figure 3.5 shows the principle steps that have to be applied to process
a WEESA mapping definition. Before the recursiveMapping() method can be called
all dependencies between the defined resources have to be analyzed and stored in the global
resDependencyHash. A resource R1 is dependent on resource R2 if R1 uses a variable that
is defined in R2 or R1 is used as object in a triple with the subject R2. In this case R2 has to be
processed before R1 can be resolved. The second condition is necessary since triples that relate
two resources (as defined in lines 34-38) can only be generated if the values for both resources
have been processed. The initial parameter for the recursiveMapping() method is the Set
of resources that do not depend on any other resources and can therefore be processed directly.

28 3.4 Implementation

� �
1 recursiveMapping(resourceSet)
2 if resourceSet is empty
3 generateTriples()
4 return
5

6 forall resource in resourceSet
7 if there are XPath matches
8 resourceStack.push(all XPath matches)
9 stackHash.put(resource, resourceStack)

10

11 while (stack is not empty)
12 xpath_match = stack.pop()
13 content = processContent(xpath_match)
14 globaleResourceHash.put(resource, content)
15 if resource defines variable
16 globaleVariableHash.put(variable, xpath_match)
17 recursiveMapping(resDependencyHash.get(resource))
18 else
19 recursiveMapping(empty Set)� �

Figure 3.5: Pseudo-code for processing the WEESA mapping.

For better understanding, the MyTunes mapping example from Figure 3.3 is used to illustrate
the execution of the pseudo-code. We start by analyzing the resource dependencies and discover
that the triple defined in lines 34-38 uses the resource album as subject and track as object.
Following the rule defined above, track depends on the resource album. This leaves us with
album as the only independent resource.

Now the method recursiveMapping() is called with album as parameter. Since the
resourceSet is not empty the processing continues with the two nested loops. In the outer
loop the XPath expression is executed on the XML document and the matches are put on the
stack. In our example the XPath /album/@id has only one match: 1234.

If there are XPath matches, the inner loop is processed. In the inner loop, the XPath matches
are taken from the stack, the processContent() method is called, the variables are assigned
their values, and a recursive method call is performed to process all resources that depend on
the current resource/variable environment. The processContent() method takes the XPath
matches as parameter and computes the content for the resource as defined in the mapping. If a
Java method is defined, it causes the method call and uses the return value as content. In the case
that the Java method encounters a problem, it will return the value null and no triple will be gen-
erated. If there are no more dependent resources, the recursive call is done with an empty Set.
This causes the call of the generateTriples() method. The generateTriples()
method iterates through all triples defined in the mapping and generates an instance for those
where the required resources and variables are defined in the globalVariableHash and
globalResourceHash.

Returning to our example, in the inner loop we take the first match (1234) from the stack, call
the Java method defined in line 6, compute the content for the resource (http://example.
com/album#1234), and do the recursive method call. The resourceSet for the recursive
call contains the track resource since it depends on the author resource as explained above.
In the recursive method call the execution of the XPath expression returns with a match for

Chapter 3: WEESA – Web Engineering for Semantic Web Applications 29

each track on the album and in the inner loop all the matches are processed. Since no other
resource depends on the track resource the recursive call is done with an empty Set and the
generateTriples() method is called. A part of the generated RDF graph for our example
may be found in Figure 3.6.

Figure 3.6: Snippet from the generated RDF graph.

3.4.3 CONSTRAINTS OF THE WEESA IMPLEMENTATION

In this section we discuss two known limitations of the current WEESA prototype implementa-
tions and show work-abounds where possible:

PERMUTATIONS OF METHOD PARAMETERS

If a method call is defined that takes several XPath expressions as parameter, the WEESA pro-
totype does not generate all permutations of the matches of the XPath expressions. Instead we
use the iter="true" attribute to indicate over which XPath matches should be iterated. For
the other parameters we use the first XPath match.

In our experience, this is not a critical constraint, since in the case we have an XML document
where all permutations of the matches from two XPath expressions from are needed, there is
typically a subject-predicate-object relationship between the XML structures referenced by the
XPath expressions. To express this relation we do not need both XPath expressions in a method
call, but one XPath expression is used in the resource definition for the subject and the second
XPath expression is used for the object. This way, all permutations are generated.

30 3.4 Implementation

CIRCLES IN THE RESOURCE DEPENDENCY CHAIN

Because of the dependency rule between resources, introduced in the section above, WEESA
cannot generate RDF graphs that include circles. In this case no independent resource can be
found to start the recursion. The WEESA prototype implementation prints out a warning, when
a circle is detected.

As work-around we recommend to break the circle of dependencies when specifying the
WEESA mapping definition. This can be done if one triple does not use the reference attribute
ref="resource name" as object but the constant, XPath expression, or method definition
to generate the resource identifier for the object. This work around has the disadvantage that we
cannot reuse an existing resource definition but helps to break the dependency chain.

3.4.4 COMPLEXITY

In the previous section we introduced the algorithm used in the WEESA prototype to process
the WEESA mapping definition to generate RDF meta-data from XML content documents. In
this section we present an estimation of the upper complexity bound of this algorithm.

As described above, before the WEESA mapping algorithm can be processed the resource
dependencies must be analyzed. The mapping algorithm introduced in Figure 3.5 is a recursive
algorithm. In the first recursion, all independent resources are processes. In each recursion, the
two nested loops are processed. The outer loop iterates through the resources to be processed in
this step, and the inner loop processes the XPath matches for the resource under consideration.
Finally, when a recursive method call is done. If this call is done with an empty resource set,
the recursion ends and the RDF triples are generated. Therefore we result with the following
numbers that have to be considered when estimating the upper complexity bound:

• The number of steps to analyze the resource dependencies.

• The number of recursions to process the dependent resources.

• The number of times the outer loop has to be processed.

• The number of times the inner loop has to be processed.

• The number of triples that have to be generated for the given resource/variable environ-
ment.

To be able to estimate the upper complexity bound of the WEESA mapping algorithm, we
first analyze the upper bound of the numbers listed above. To do so, we introduce a formal
notation for the dependency between two resources. If R1 and R2 are resources and resource R2

depends on R1, we write R1 → R2.
In the first step to process the WEESA mapping the resource dependencies are analyzed. The

complexity of this step is determined by the number of resources nres plus the number of triples
ntripl in the mapping definition. Therefore we have the upper complexity boundO(nres+ntriple).

Chapter 3: WEESA – Web Engineering for Semantic Web Applications 31

The complexity of the recursiveMapping() method is made up by the following itera-
tions:

1. The number of recursions is determined by the dependencies between the resources. The
longest possible dependency chain can be found when starting from one independent re-
source, all resources depend on exactly one resource, and no resource pair is dependent
on the same resource. For example assume, in the mapping definition the resources R1,
R2, and R3 are defined. An example for the longest possible dependency chain with the
independent resource R1 is R1 → R2 → R3. The length of longest dependency chain is
therefore equal to the number of resources defined in the WEESA mapping definition nres
and corresponds to the upper bound of the number of recursions.

In outer loop the set of resources of the current recursion step are processed. Since every
resource defined in the mapping is at most one time part of this set, the upper bound of
times the loop is processed is equal to the number of resources defined in the mapping
nres. In this loop the XPath expression is evaluated on the XML document and the XPath
matches are put on the stack.

If we analyze the number of recursions and the number of iterations of the outer loop in
more detail, we realize that an increasing number of recursions results in a decreasing
number of iterations of the outer loop, and vice versa. Let us discuss different cases in an
example with four resources R1, R2, R3, and R4 defined.

• In the first case we assume to have four independent resources. The recursive-
Mapping() call is done with the set containing the four elements R1, R2, R3, and
R4. Therefore the inner loop is processed four times to iterate through the four re-
sources. The recursive method is only called one time.

• In the next case we assume to have the longest possible dependency chain R1 →
R2 → R3 → R4 starting with the independent resource R1. The first recursion call
is done with the set containing only the element R1 and the outer loop is processed
only one time. The second recursive call is done with R2 in the set and the outer loop
is processed on time and so on. All together, we realize the outer loop is processed
four times.

• In the last case, let us assume the following resource dependencies: R1 → R2, R2 →
R3, and R2 → R4. The first recursive call is done with the element R1 in the set
and the outer loop is processed one time. The second recursive call is done with the
element R2 and the loop is processed one time. The third recursion is done with the
set elements R3 and R4 and the outer loop is processed two times. Again, the outer
loop is overall processed four times.

The discussion of the cases above shows that the dependencies between the resources and
the recursion ensures, that the outer loop is processed exactly one time for each resource
in the WEESA mapping definition. The upper bound of the number of recursions and
iterations of the outer loop is therefore nres.

32 3.4 Implementation

2. In the inner loop the XPath matches on the stack are processed to compute the content for
the resources. Therefore the number of runs of the inner loop is equal to the number of
XPath matches found for the resource Ri and is written as nXPath(Ri).

3. After processing the content for the resource Ri in the inner loop the recursive method
call is done. This leads either to the processing of a dependent resource or to the gen-
eration of the RDF triple in the generateTriples() method. The case of the pro-
cessing of a dependent resource is already covered in the discussion of item 1 above. In
the generateTriples() method the algorithm iterates through the list of all triples
defined in the WEESA mapping definition. The number of triples is abbreviated as ntriple.
The XPath expressions are evaluated on the XML document and an RDF triple is gener-
ated for each match. The number of XPath matches for the triple Tk when resource Ri is
processed is written as nXPath(Ri, Tk).

When we put together the results of the complexity discussion from above, we get the upper
bound complexity shown in Formula 3.1. The first part results from the dependency analysis,
and the second part from the RDF graph generation in the recursiveMapping() method.

O
(
nres + ntriple

)
︸ ︷︷ ︸
analyze dependencies

+O

(

recursion +
outer loop︷︸︸︷

nres∑

i=1

inner loop︷ ︸︸ ︷
nXPath (Ri)∑

j=1

gernerate triples︷ ︸︸ ︷
ntriple∑

k=1

nXPath(Ri, Tk)

)

︸ ︷︷ ︸
recursive mapping algorithm

(3.1)

Since the contribution to the complexity of the dependency analysis is asymptotic smaller
than the complexity of the RDF graph generation, the upper bound complexity of the WEESA
mapping algorithm can be simplified to:

O

(nres∑

i=1

nXPath (Ri)∑

j=1

ntriple∑

k=1

nXPath(Ri, Tk)

)
(3.2)

The result we got from the analysis of the pseudo-code in Figure 3.5 can also be explained
when we analyze the generated RDF graph. nXPath(Ri, Tk) represents the number how many
times the statement (triple) Tk is made about the resource Ri in the XML document. The sum∑ntriple

k=1 states that we have to check all ntriple triples whether a statement about the resource Ri is
made. nXPath(Ri) represents the number of times an instance of the resource Ri can be found in
the XML document. RDF statements have to be generated for each instance of Ri (

∑nXPath (Ri)
j=1).

The sum
∑nres

i=1 states that we have to iterate through all nres resources Ri defined in the mapping
definition.

To further simplify the formula for the upper complexity bound we make the following as-
sumptions. We have a given XML document and define nXML res as the maximum number of

Chapter 3: WEESA – Web Engineering for Semantic Web Applications 33

XPath matches for a resource in the XML document, and nXML triple as the maximum number of
XPath matches for a triple in the XML document.

nXML res = max(nXPath(Ri)) i ∈ [1, nres]

nXML triple = max(nXPath(Ri, Tk)) i ∈ [1, nres], k ∈ [1, ntriple]

These assumptions simplify the upper complexity bound from Formula 3.2 to:

O(nres · nXML res · ntriple · nXML triple) (3.3)

This result is intuitive, since the complexity depends on the number of resources and triples
defined in the WEESA mapping definition, the number of resource instances that can be found
in the XML document, and the number of statements used to describe the resources.

3.5 RESUME

In this chapter we started with an introduction into semantic annotation and XML-based Web
engineering and pointed out the deficits of the approaches proposed in these research areas when
designing and implementing Semantic Web applications. To address this problem we introduced
WEESA that is based on the experiences of semantic annotation and follows the well established
Web engineering principle of separation-of-concerns. Many Web engineering methodologies
and Web development frameworks are based on XML content documents. WEESA reuses these
existing engineering artifacts for the semantic annotation process and can therefore be integrated
in existing XML-based Web engineering methodologies. In WEESA the XML document is the
data source to generate the HTML Web page for human consumption and the RDF meta-data
description representing the content of the Web page machine-processable.

XML Schema defines the structure of valid XML documents and can therefore be seen as
the contract in XML-based Web engineering methodologies all parties involved development
process have to agree on. WEESA uses the XML Schema and defines a mapping from the
XML elements and attributes to the concepts defined in an ontology. This is done in the design
phase of the Web application. In the implementation of the WEESA Semantic Web application
the WEESA mapping definition is taken to automatically generate RDF meta-data descriptions
from XML content documents.

WEESA can also be applied together with XML-based Web engineering methodologies that
do not use XML Schema contracts. In this case, no formal contract for the Web application is
defined. In some way, the structure of the XML document, the XSLT stylesheet is applied on,
has to be defined. This can be done, for example, by defining a representative XML document.
Such an example document can be taken to define the XPath expressions to select the XML
elements/attributes to map them onto concepts defined in an ontology.

34 3.5 Resume

In this chapter we introduced the WEESA idea, the WEESA mapping definition and the
prototype implementation of the WEESA RDF meta-data generator. Opposite to other semantic
annotation tools, WEESA not only supports one-to-one mappings between the XML document
and the ontology, but uses a more flexible approach. Java methods are used to enable data
format conversations from the human-readable format needed for the Web page to the machine-
processable format for the RDF meta-data description. The Java methods further enable the
computation of information required for the meta-data description from the data available in the
XML document.

During life time of a Web application a new version of the used ontology may be issued
or a new ontology become the standard ontology to describe information in the domain of the
Web application. In this case only the WEESA mapping definition has to be adopted to the new
ontology, the rest of the Web application remains unchanged.

At the end of this chapter, we discussed the asymptotic complexity of the proposed WEESA
mapping algorithm and proved that the complexity depends on the number of resources and
triples defined in the mapping definition, the number of resource instances given in the XML
document, and the number of RDF statements used to describe these resources.

CHAPTER 4

SEMANTIC WEB APPLICATIONS WITH

WEESA AND APACHE COCOON

A complex system that works
is invariably found to have evolved
from a simple system that worked.

John Gall

In the previous chapter we introduced the WEESA mapping and illustrated how this mapping
can be used to automatically generate RDF meta-data from XML content documents. In this
chapter we show how WEESA is used to develop Semantic Web applications. To generate the
semantically annotated Web pages we have to perform two steps on the schema valid XML
document:

1. The XSLT transformation has to be performed to generate the HTML page.

2. The WEESA mapping has to be processed to generate the RDF meta-data description of
the Web page.

Once we have generated the HTML page and its RDF meta-data description we have to put
them into relation. Unfortunately, no standardized approach exists for associating RDF descrip-
tions with HTML. In [71] Palmer discusses several possible approaches. In this chapter we show
how some of the proposed associations can be implemented using WEESA.

Many Web development frameworks exist that are based on XML/XSLT that can be ex-
tended by WEESA to develop Semantic Web applications. In this thesis we show how we inte-
grated WEESA into Apache Cocoon transformer components and the use of these transformers
in Apache Cocoon Web applications.

35

36 4.1 Apache Cocoon Web Applications

4.1 APACHE COCOON WEB APPLICATIONS

In this section we briefly introduce the concept of Apache Cocoon Web applications. Apache Co-
coon [16] is a Web development framework built around the concepts of separation-of-concerns
and component-based Web development. Cocoon uses component pipelines to build Web appli-
cations where each component on the pipeline is specialized on a particular operation.

Serializer

Transformer

Transformer

Generator XML Source

Cocoon Pipeline

SAX Events

SAX Events

SAX Events

SAX Events

Schema valid XML document

Busines Logic:
XSP, JSP, Filter,
SQL, etc.

HTML page

HTML

XSLT Transformer XSL Stylesheet

Figure 4.1: Pipeline of a typical Cocoon Web application

Figure 4.1 shows the pipeline of a typical Cocoon Web application. A Cocoon pipeline
consists of a generator, an arbitrary number of transformer, and a serializer. An HTTP request
triggers the pipeline and causes the generator to read XML from a data source and produces a
stream of SAX1 [87] events as output representing the XML document. This output is the input
of a transformer or a serializer. A transformer takes the SAX events, does some transformation
(e.g. XSLT transformation), and the results are again SAX events. These events can then be
taken by another transformer or a serializer. In a typical Cocoon Web application, the business
logic (e.g. SQL queries, Java code) is processed by the transformers at the beginning of the
pipeline. The output of the business logic is a schema valid XML document that fulfills the Web
engineering contract and has the structure the XSLT stylesheet was designed for. This document
is then taken by the XSLT transformer which uses the XSLT stylesheet to produce the HTML
page. The serializer finally takes the SAX events and processes them into a character stream for
client consumption.

1SAX: Simple API for XML

Chapter 4: Semantic Web Applications with WEESA and Apache Cocoon 37

4.2 WEESA COCOON TRANSFORMER

In this section we introduce two new Cocoon transformers in which the WEESA meta-data
generator has been integrated. These transformers enable developers to realize Semantic Web
applications using the Cocoon Web development framework. Before presenting the WEESA
enabled cocoon transformer, we discuss ways to associate the HTML Web page with its RDF
meta-data description.

4.2.1 ASSOCIATING HTML AND RDF

Several techniques have been proposed to associate the HTML page and the RDF meta-data
description with one another [71]. These techniques can be classified in the following categories:

Embedding RDF in HTML: With this association style the RDF description is directly embed-
ded in the HTML page. Several ways have been proposed such as adding RDF/XML in the
<script> element, using XML notations and CDATA sections, or adding RDF base64
encoded in the <object> element. A detailed discussion of these methods can be found
in [71].

Linking to an external RDF description: The RDF meta-data description is stored in an exter-
nal document and the HTML page references to its meta-data description. This reference
can be done using the HTML <link> element [71] or using an common HTML link [37].

In the following two sections we introduce a WEESA enabled Cocoon transformer for both
categories of association styles. We introduce the WEESAReadDOMSession transformer that
embeds RDF/XML in the <script> element and the AddRDFLink transformer that adds the
<link> element to an HTML Web page and references an external RDF description generated
with the help of the WEESA transformer.

4.2.2 WEESA COCOON TRANSFORMER TO GENERATE HTML+RDF

One way to associate HTML and RDF is to embed the RDF/XML description in the <script>
element within the HTML <head>. A fragment of such a HTML document is shown in Fig-
ure 4.2. The HTML <script> element can be used to include non-HTML media in HTML
Web pages [41]. This section introduces the WEESAReadDOMSession transformer that can
be used to realize this kind of RDF – HTML association.

When developing Semantic Web applications that add the RDF meta-data to the HTML page
we have to introduce new steps to the pipeline discussed in Section 4.1. Since we need the schema
valid XML document for the XSLT transformation and for the WEESA meta-data generation,
we have two options. We can either integrate WEESA in a modified XSLT transformer that

38 4.2 WEESA Cocoon Transformer

� �
<head>
<title>My Document</title>
<script type="application/rdf+xml">

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:dc="http://purl.org/dc/elements/1.1/">

<rdf:Description rdf:about="http://www.w3.org/" dc:title="W3C Homepage"/>
</rdf:RDF>

</script>
</head>� �

Figure 4.2: RDF meta-data included in the HTML <script> element

generates RDF and HTML or we can split up the pipeline and use a specialized transformer
for the RDF meta-data generation. One of the strength of Cocoon is, that every component is
specialized on a specific task. This gives the developer the flexibility to configure the components
in the pipeline according to his requirements. Therefore we decided, to split up the pipeline to
generate HTML pages with embedded RDF/XML.

To split up the pipeline we use the WriteDOMSession transformer. This transformer
takes the input document and writes it first as DOM2 [23] into the servlet session, and second
as SAX events to its output. This is how the pipeline is split up and the XML document can
be reused later in the pipeline. After the HTML page is generated by the XSLT transformer
the WEESAReadDOMSession transformer takes the DOM-XML from the session and uses
the WEESA mapping definition to generate the RDF meta-data representation in RDF/XML
format. The WEESAReadDOMSession transformer further embeds the generated RDF/XML
in the <script> element which is then added in a user defined element of the HTML page. This
element is typically the <head> element. The serializer finally delivers the HTML+RDF page
to the client. The additional steps are shown in Figure 4.3 as light gray pipeline components. The
problems that comes with embedding the RDF meta-data in the <head> element are discussed
at the end of the this section.

The Cocoon framework uses the sitemap.xmap configuration file to define the pipelines.
Figure 4.4 shows a fragment of the sitemap file for the pipeline from Figure 4.3. Lines 3-6 in-
struct Cocoon to start a servlet session. In line 9 the generator is instructed to read the XML docu-
ment AlanisMorissetteUnplugged.xml from the content/ directory. In lines 14-17
the WriteDOMSession transformer is defined to write the XML document to the session. The
dom-name parameter gives the DOM-object the name rdf in the servlet session. The use of the
dom-root-element parameter is explained below. Line 20 configures the XSLT transformer
to use the XSLT stylesheet albumInfo.xslt. In lines 23-29 the WEESAReadDOMSession
transformer is configured. The dom-name parameter tells which DOM-object should be taken
from the session, the weesa-mapping-definition parameter names the mapping file, and
the trigger-element and position parameters tell that the generated RDF/XML should
be placed in the HTML <head></head> element. Finally, in line 32 the serializer is in-
structed to write the XML stream as HTML to the consumer.

In praxis, most Web pages consist of several parts, for example a header, the navigation
2DOM: Document Object Model

Chapter 4: Semantic Web Applications with WEESA and Apache Cocoon 39

SessionTransformer
WEESAReadDOM

XSLT Transformer

Transformer
WriteDOMSession

Transformer

Transformer

Generator XML Source

HTML + RDFSerializer

Cocoon Pipeline

DOM

SAX Events

SAX Events

SAX Events

SAX Events

SAX Events

SAX Events

Session

HTML + RDF

Schema valid XML document

Schema valid XML document

Busines Logic:
XSP, JSP, Filter,
SQL, etc.

WEESA Mapping
Definition

XSL Stylesheet

HTML

Figure 4.3: Cocoon pipeline for the WEESA HTML+RDF generation. The light gray compo-
nents are added to embed RDF/XML in the HTML Web page.

40 4.2 WEESA Cocoon Transformer

� �
1 <map:match pattern="AlanisMorissetteUnplugged.html">
2 <!-- create the session -->
3 <map:act type="session">
4 <map:parameter name="action" value="create"/>
5 <map:parameter name="mode" value="immediately"/>
6 </map:act>
7

8 <!-- read the XML file -->
9 <map:generate type="file" src="content/AlanisMorissetteUnplugged.xml"/>

10

11 <!-- here comes the business logic (if needed) -->
12

13 <!-- write the XML document to the session -->
14 <map:transform type="writeDOMsession">
15 <map:parameter name="dom-name" value="rdf"/>
16 <map:parameter name="dom-root-element" value="content"/>
17 </map:transform>
18

19 <!-- do the XSLT transformation -->
20 <map:transform type="xslt" src="style/albumInfo.xslt"/>
21

22 <!-- configure and start the WEESAReadDOMSession transformer -->
23 <map:transform type="WEESAReadDOMSession">
24 <map:parameter name="dom-name" value="rdf"/>
25 <map:parameter name="trigger-element" value="head"/>
26 <map:parameter name="position" value="in"/>
27 <map:parameter name="weesa-mapping-definition"
28 value="mapping/albumMapping.xml"/>
29 </map:transform>
30

31 <!-- serialize the output -->
32 <map:serialize type="html"/>
33 </map:match>� �

Figure 4.4: Pipeline definition using the WEESAReadDOMSession transformer

part, and a part with the actual page content. A sample XML document following this struc-
ture is shown in Figure 4.5. Depending on the structure of the Web page, not all parts of
the XML document have to be looked at when generating the RDF meta-data. For example,
only the <content> part contains information that is needed for the meta-data generation.
In this case, we have to define the WEESA mapping only for the subtree starting with the
<content> element and we have to inform the WriteDOMSession transformer only to
write the subtree following the content element as DOM to the session. This is done with
the dom-root-element parameter in line 16 from Figure 4.4.

Including RDF/XML meta-data in the HTML page using the WEESAReadDOMSession
transformer has the advantage that the business logic, typically processed at the beginning of the
pipeline, has to be computed once only for both the HTML and RDF generation. Embedding the
RDF/XML meta-data in the <head> tag of a HTML document, however, breaks HTML 4.01
[76] and XHTML [99] validity [78].

Chapter 4: Semantic Web Applications with WEESA and Apache Cocoon 41

� �
<?xml version="1.0" encoding="UTF-8"?>
<page>
<header>

<!-- here goes the XML for the header -->
</header>
<navigation>

<!-- here goes the XML for the site navigation -->
</navigation>
<content>

<!-- here goes the XML for the content of the Web page -->
</content>

</page>� �
Figure 4.5: Sample XML document aggregated from several parts.

4.2.3 WEESA COCOON TRANSFORMER TO GENERATE RDF/XML

Another way of associating RDF and HTML to one another is to use the <link> element
in the <head> of the HTML page to reference the corresponding external RDF/XML meta-
data description [71]. To generate this stand-alone RDF/XML description within Cocoon Web
applications we developed the WEESA transformer.

Cocoon Web applications that use the <link> element to associate RDF and HTML need
two pipelines: one for the generation of the HTML page, and another for the WEESA meta-data
generation. The pipeline for the HTML generation is similar to the one introduced in Section 4.1.
Only the reference to the RDF description has to be added in the <head> of the HTML page.
The reference looks as follows:

<link rel="meta" type="application/rdf+xml"
href="AlanisMorissetteUnplugged.rdf"/>

There are basically two ways of adding the <link> element to the HTML page. One is to
modify the Web application to add the element in the business logic or in the XSLT stylesheet.
The other possibility is to use the AddRDFLink transformer we developed. This transformer
is added to the pipeline for the HTML page generation between the XSLT transformer and the
serializer. The use of the AddRDFLink transformer is shown in Figure 4.6. The AddRDFLink
transformer extracts the URL of the incoming request, replaces the ".html" suffix of the path
with ".rdf", and adds the <link> with the ".rdf" URL in the <head> of the HTML page.
The request parameters in the URL remain untouched. The fragment of the sitemap.xmap
configuration file that defines the AddRDFLink transformer in a pipeline is shown in Figure 4.7.

Since the AddRDFLink transformer searches for a ".html" suffix in the URL and replaces
it with ".rdf" it can only be used in Web applications that obey the following naming conven-
tion. The path in URLs that trigger the pipeline for the HTML pages have the suffix ".html"
such as:

http://www.mytunes.com/album.html?id=1234

42 4.2 WEESA Cocoon Transformer

Transformer

Transformer

Generator XML Source

Cocoon Pipeline

SAX Events

SAX Events

SAX Events Schema valid XML document

Busines Logic:
XSP, JSP, Filter,
SQL, etc.

XSL Stylesheet

Serializer HTML page

SAX Events

SAX Events HTML

XSLT Transformer

AddRDFLink
Transformer

HTML + <link> to RDF

Figure 4.6: Pipeline for the HTML page generation that uses the AddRDFLink transformer to
add the <link> element to the HTML page.

� �
<map:transform type="AddRDFLink"/>� �

Figure 4.7: Configuration of the AddRDFLink transformer.

The path in URLs that trigger the pipeline for the RDF meta-data generation have the suffix
".rdf" such as:

http://www.mytunes.com/album.rdf?id=1234

In the pipeline for the WEESA meta-data generation that uses the WEESA transformer
the business logic is also processed at the beginning of the pipeline. The schema valid XML
document is sent to the WEESA transformer that takes the mapping definition and processes
the WEESA mapping. The RDF/XML output of the transformer is then taken by a seri-
alizer and sent to the client. The pipeline is shown in Figure 4.8 and Figure 4.9 shows a
snipped from sitemap.xmap that is used to configure the WEESA transformer. Again, the
dom-root-element parameter defines the start element of the XML subtree that should
be considered for the WEESA transformation as described in the section above, and the

Chapter 4: Semantic Web Applications with WEESA and Apache Cocoon 43

Serializer

Transformer
WEESA

Transformer

Transformer

Generator XML Source

Cocoon Pipeline

SAX Events

SAX Events

SAX Events

SAX Events

Schema valid XML document

Busines Logic:
XSP, JSP, Filter,
SQL, etc.

WEESA Mapping
Definition

RDF/XML

RDF/XML

Figure 4.8: Cocoon pipeline for the WEESA RDF/XML generation.

weesa-mapping-definition parameter defines the mapping definition to be used.� �
<map:transform type="WEESA">
<map:parameter name="dom-root-element" value="content"/>
<map:parameter name="weesa-mapping-definition"

value="mapping/artistMapping.xml"/>
</map:transform>� �

Figure 4.9: Configuration of the WEESA transformer.

Using the <link> element to associate RDF and HTML has the advantage that the RDF
description has to be generated on request only. This, however, has the drawback that the schema
valid XML document has to be generated a second time. Fortunately this does not have to be a
big disadvantage if the Cocoon caching mechanism can be used.

Although there is still no standard approach, using the <link> element to associate RDF and
HTML is the recommended approach on the “RDF Issue Tracking” homepage [79]. The used
application/rdf+xml media type (MIME type) has been defined in the IETF RFC 3870
[85]. This approach is for example used for the homepage of the mindswap project3 which
describes itself as the “first site on the semantic web” [64].

At the AIFB Karlsruhe homepage4 a standard HTML link is used
3http://www.mindswap.org/
4http://www.aifb.uni-karlsruhe.de/

44 4.3 Resume

to reference the meta-data description of a Web page. The image used for the link is shown in
Figure 4.10. The AIFB homepage was developed within the SEAL (SEmantic portAL) project
[37] which aims to provide a conceptual framework for semantic portals. This way of associating
RDF and HTML can also be done using the WEESA transformer. The HTML link simply has to
reference the pipeline for the RDF/XML meta-data generation.

Figure 4.10: OWL/RDF logo to reference the meta-data description.

4.3 RESUME

Many XML/XSLT based Web development frameworks exist that can be extended by WEESA
to simplify the development of Semantic Web applications. In this chapter we presented the
integration of the WEESA meta-data generator into the Apache Cocoon Web application deve-
lopment framework. WEESA, however, can also be integrated into other frameworks such as
the MyXML Web development kit [52] provides a template language to define static and dy-
namic Web page components that are used to compose Web pages. The PageKit Web application
framework [70] is an Apache HTTP server module that is based on the mod perlmodule which
uses templates and XML/XSLT to separate the model, view, content, and controller. The GlueX
framework [33] is an XML/XSLT-centric library for building Java servlet-based Web applica-
tions.

Two techniques exist to associate the HTML Web page with its RDF meta-data description:
The HTML page can embed its RDF meta-data description, or link to an external document
containing the its RDF description. We developed a WEESA enabled transformer component
for each association style. The WEESAReadDOMSession transformer is used to embed RDF
into HTML. The WEESA transformer is used to generate an external RDF description that can be
linked to the HTML page. To add this link the AddRDFLink can be used.

Since WEESA follows the principle of separation-of-concerns and the component architec-
ture of Cocoon no additional programming is needed for developing a Semantic Web application
compared to the development of a traditional Web application. In the development process only
two new steps are needed: (1) The WEESA mapping from the XML Schema to the ontology has
to be defined. (2) Depending on the association style between HTML and RDF, the developer
has to modify the pipeline and add the corresponding WEESA enabled transformer component.
Detailed guidelines for developing WEESA Semantic Web applications can be found in Chap-
ter 7.

CHAPTER 5

BUILDING THE KNOWLEDGE BASE OF THE

SEMANTIC WEB APPLICATION

New ideas pass through three periods:
- It can’t be done.

- It probably can be done, but it’s not worth doing.
- I knew it was a good idea all along!

Arthur C. Clarke

In the previous chapters we introduced the WEESA mapping and showed how this mapping
can be used in Cocoon Web applications to annotate single Web pages to develop Semantic Web
applications. Looking at the meta-data of a single Web page, however, gives only a limited view
of the information available in a Web application. For querying and reasoning purposes it would
be better to have the full meta-data model of the Web application at hand. Systems proposed
in literature such as SHOE [39], CREAM [36], Ontobroker [28], and SEAL [60] use a Web
crawler to collect the meta-data form single Web pages to build the meta-data model of a Web
application. Using a crawler has the advantage that the Web application and the application using
the collected meta-data are loosely coupled and can be distributed over the Internet. This loose
coupling, however, has the disadvantage that the meta-data model does not recognize any update
of the Web page and can therefore become inconsistent.

In this chapter we introduce the idea of generating the meta-data model at server side and
offer the model for download and as a service for querying. We show how WEESA Web appli-
cations can be extended to enable the meta-data accumulation from single Web pages to generate
and maintain the meta-data model of the Web application. We further discuss scenarios where
applications such as software agents can take advantage of both the downloaded meta-data model
and the query service of the Semantic Web application.

45

46 5.1 Meta-Data Model of the Web Application

5.1 META-DATA MODEL OF THE WEB APPLICATION

As described in the previous chapters, the WEESA mapping can be used to semantically annotate
Web pages. Looking at the meta-data of a single Web page, however, gives only a limited view
on the meta-data available. For querying and reasoning purpose it is better to have the meta-data
model of the whole Web application as a knowledge base (KB). The same strategy is followed
in search engines on the Web. A query is answered with the help of an indexed cache and not by
starting to extract information from pages on the Web. This indexed cache is typically generated
by Web crawlers.

A Web crawler, also known as Web spider or gatherer, is a program that browses the WWW
in an automated manner. Crawlers typically start with a list of Web pages to visit. As it visits the
pages, it identifies all links to further Web pages and adds them to the list of pages to visit. The
download pages are used for example to build the indexed cache of a search engine or to mirror
Web pages.

In the Semantic Web we are not talking about an indexed cache but of a knowledge base.
Ontobroker [28], SEAL [60], and SHOE [39] use the KB to enable reasoning and database like
queries on top of the information system. CREAMS’s OntoMat [36] uses the knowledge base
to assist the semantic annotation from documents. When a user enters a literal such as “Gerald
Reif” in the OntoMat editor the KB is queried to see if a resource identifier (i.e. URI) for this
person exists. All the systems mentioned above use a Web crawler to build their KB. The Web
crawler periodically collects information from semantically annotated documents and adds the
meta-data to the KB.

Using a crawler allows the Web application and the application generating the KB to be
loosely coupled and can be distributed over the Internet. This loose coupling, however, makes it
difficult to track the deletion or update of a Web page. The KB can therefore become inconsistent
with the actual information available on the Web server.

To overcome this inconsistency problem we suggest the generation of the KB at the server
side and to offer the KB as a service for querying. In addition a snapshot of the KB can be offered
in compressed format for download by clients. In this case the KB of a Web application can be
downloaded as a single stream rather than requiring separate requests for every single Web page.
This follows the idea proposed by the Harvester search engine architecture [10] where the index
of Web applications is created locally at server side and is then offered to brokers for download.

The download of the KB, however, again leads to the inconsistency problem discussed above.
But still, if the downloaded KB and the query service to the KB offered by the Semantic Web
application are used in symbiosis, the application can benefit from it. Static information that does
not change frequently can be retrieved from the locale copy of the KB without online access to
the Web application. Dynamic information that changes frequently can be retrieved from the
query service on demand.

Chapter 5: Building the Knowledge Base of the Semantic Web Application 47

Software Agent

Generator

Cocoon Pipeline

Transformer

SessionTransformer
WEESAReadDOM

Serializer

SAX Events HTML + RDF

XML Source

HTML + RDF

WEESA Knowledge BaseWEESA Semantic Web Application

Business Logic

KB Management
Interface

Snapshot Daemon

Query Interface
Query

Provide snapshot of KB

add RDF

Update Daemon
update RDF

Web Browser

Zipped KB
for download

RDF

Database

Knowledge Base
Management

Figure 5.1: Architecture of the WEESA knowledge base.

5.2 ACCUMULATING META-DATA WITH WEESA

So far we have discussed the use of WEESA to develop Semantic Web applications within
Cocoon. In this section we show how this infrastructure can be used to accumulate the meta-data
description of single Web pages to obtain the meta-data model of the whole Web application. We
introduce the architecture of the WEESA meta-data accumulation, discuss the tasks of the KB
management, and show the important role of RDF reification when maintaining the KB.

5.2.1 WEESA KNOWLEDGE BASE ARCHITECTURE

The principle architecture is based on the idea that every time an RDF description is generated
by the WEESAReadDOMSession transformer the description is also written to the KB of the
Web application. The architecture is shown in Figure 5.1.

When a Web browser requests a Web page from a Cocoon Web application the corresponding
pipeline is processed. The extended WEESAReadDOMSession transformer not only adds the
generated RDF meta-data to the HTML page, but writes it via the KB Management Interface to
the KB. The Knowledge Base Management is then responsible for adding the meta-data to the

48 5.2 Accumulating Meta-Data with WEESA

RDF database. This way, each request to a Web page triggers an update of the RDF statements
in the KB. The KB is then offered via the Query Interface for querying by software agents.

To keep the application scalable, the Cocoon caching mechanism can be used. When
the XML document that is read by the generator component has not been changed since
the last request, the subsequent requests are served by the Cocoon cache. This way the
WEESAReadDOMSession transformer is not processed and the meta-data is not written to
the WEESA KB.

At regular intervals the Snapshot Daemon takes an image of the KB in RDF/XML format
[26], compresses the image, and offers it for download via the Cocoon Web application. The
filename of the compressed snapshot is well defined as weesa kb.rdf.gz. The KB of a
Web application on the Server with the name http://www.example.com can therefore be
downloaded using the URL http://www.example.com/weesa kb.rdf.gz. Since this
well defined schema to locate the download-able KB an interested application can simply check
whether a Web application offers its KB for download. Using this well defined name follows the
same principles of the Robots Exclusion Protocol [86] and its robots.txt file. This file is
used by Web applications to control the behavior of Web crawlers from search engines. Details
on the download-able snapshot of the KB are discussed in Section 5.2.3.

5.2.2 MAINTAINING THE KNOWLEDGE BASE

To build the KB of a Semantic Web application one possibility is to directly access the back-
ground database of the Web application to process the data for the meta-data model. This,
however, results in the reimplementation of the business logic. Therefore, in our approach
we reuse the existing infrastructure of the Cocoon Web application and use the extended
WEESAReadDOMSession transformer to fill the KB with data. Reusing the existing infras-
tructure of the Semantic Web application has the advantage that the business logic, implemented
by the Cocoon pipeline, is also used to process the data for the meta-data model. This loose cou-
pling between the Web application and the KB, however, leads to problems when maintaining
the meta-data model and keeping it up-to-date. In the following we discuss these problems and
our proposed solution in detail.

Populating the KB: With the proposed procedure the KB is incrementally filled. Each time a
Web page is requested its meta-data is written to the KB. This means, we initially start
with an empty KB. To generate the KB of the whole Web application, each available Web
page has to be requested. We use the Cocoon command line interface for this purpose. A
built-in Cocoon crawler follows every internal link, requests the Web page, and therefore
causes the meta-data generation. This is used to initially fill the KB.

Page Deletion Handling: When a Web page has been deleted, the corresponding RDF state-
ments have to be removed from the KB. Therefore, the KB management has to be in-
formed, when a requested Web page cannot be found. In this case the Web server typically
sends a 404 “not found” page back to the client. In the Cocoon pipeline definition we can

Chapter 5: Building the Knowledge Base of the Semantic Web Application 49

catch the “not found” event and inform the KB management about the URL of the page
that was not found. The KB management can then cause the deletion of all RDF state-
ments that originated from this Web page. To do so, the KB management has to be able
to identify the RDF statements that were generated for a given URL. This means we have
to store the origin information of each RDF statement in the KB. This is done using RDF
reification.

Content Change Handling: When an editor changes the content of a Web page, they typically
browses to the page and check for the correct presentation of the changes. In this case, the
RDF meta-data is generated within the Cocoon pipeline and an update in the KB is issued.
The update first removes all RDF statements from the KB that originated from the Web
page with the given URL and adds the newly generated meta-data.

However, if the content of the background database of the Web application is changed and
the dynamic Web page that is based on the database is not queried, no update to the KB is
issued and the KB becomes inconsistent with the content of the Web application. To avoid
this, we add the last modification time and the update interval to the RDF statements for
each Web page. This enables the Update Daemon in the KB management to periodically
check for outdated RDF statements and to issue an update with the data from the Web
application.

Figure 5.2 shows a fragment of the modified WEESA mapping definition to define the
update interval. The updateEvery attribute in line 4 informs the update daemon that
RDF statements originated from this mapping definitions have to be updated at least every
120 minutes. For static pages the updateEvery attribute can be omitted. In this case,
the update daemon does not check for updates for this kind of Web page.� �

1 <?xml version="1.0" encoding="UTF-8"?>
2 <mapping xmlns="http://www.infosys.tuwien.ac.at/WEESA#"
3 writeDB="false"
4 updateEvery="120">
5 <resources>
6 <!-- here goes the resources definitions-->
7 </resources>
8 <triples>
9 <!-- here goes the triples definitions-->

10 </triples>
11 </mapping>� �

Figure 5.2: WEESA mapping definition including the additional attributes to maintain the
knowledge base.

Filtered Meta-model building: It is not necessary to add the meta-model of each Web page to
the KB of the Web application. For example, the meta-data of the personal shopping cart
page should not be added. But adding meta-data to such a page is still useful. Therefore
an attribute is added to the WEESA mapping definition to instruct the WEESA enabled
transformer not to write the meta-data to the KB for these types of pages.

50 5.2 Accumulating Meta-Data with WEESA

The writeDB="false" attribute in line 3 of Figure 5.2 instructs the WEESAReadDOM-
Session transformer not to write the RDF meta-data to the WEESA KB. If the attribute
is not given, the default behavior is that the RDF meta-data is written to the KB.

Providing access to up-to-date information: When a snapshot of the KB is downloaded by a
client and queried locally, the local KB and the actual data of the Web application may
become inconsistent. For some types of information this is not a problem since it is rather
static and does not change often. The artist and the track titles on a CD are examples
of information that does not change often. However, other types of information such as
the price of a CD might change frequently and it may be necessary to have access to
latest data from the Web application. Therefore we use reification to store the URL to the
RDF statements of the Web page. This way the client is able to request the actual RDF
statements on demand.

This overview summarized the tasks of the KB management component. Details on the actual
realization can be found in the implementation section of this chapter.

5.2.3 RDF REIFICATION

As mentioned in the previous section, RDF reification has an important role when maintaining
the meta-data in the WEESA KB. RDF reification can be used to store information about RDF
statements. The KB management component uses reification to store information about the
origin, the last update, and the update interval for each RDF statement in the KB. To do so an
ontology is needed. Table 5.1 lists the attributes in the WEESA KB ontology that are used
to maintain the WEESA KB. The namespace prefix for the WEESA KB ontology is http:
//www.infosys.tuwien.ac.at/weesa/kb#. The OWL syntax of the WEESA KB
ontology can be found in Appendix C.

When using RDF reification for each RDF statement an anonymous resource is generated.
The subject, predicate, and object of the RDF statement that should be reified are represented
as rdf:subject, rdf:predicate, and rdf:object properties of this anonymous re-
source. In addition, the property rdf:type with the object rdf:statement indicates that
this anonymous resource is used to represent an RDF statement. A reified RDF statement is
shown in Figure 5.3 at the bottom left of the RDF graph with the light gray background. The
other part of the graph in the figure uses the WEESA ontology to specify information that is
needed to maintain the WEESA KB.

The use of RDF reification increases the number of RDF statements in the KB signif-
icantly. To represent the reification of the simple RDF statement that the artist with the
artist ID http://example.com/artist#4321 has the hasArtistName “Alanis
Morissette” four RDF statements are needed. The necessary statements are shown in the
light gray part at the bottom left of Figure 5.3. In addition we provide six more statements to
represent the information needed to maintain the KB. This means for each RDF statement from
a Web page we have to store ten more RDF statements in the WEESA KB.

Chapter 5: Building the Knowledge Base of the Semantic Web Application 51

Property Description
weesa:description Description of a reified RDF statement in the WEESA KB.

The object is always an anonymous resource that is in turn
described by the following properties.

weesa:url URL of the Web page that caused the generation of the RDF
statement.

weesa:rdf URL to the Cocoon pipeline that generates the up-to-date
RDF meta-data description of the Web page.

weesa:lastUpdate Time and date of the last update of the RDF statement in
xsi:dateTime format.
(e.g. 2005-05-21T13:20:00.000-01:00)

weesa:updateEvery Update interval of the RDF statement in minutes. (optional)
weesa:validUntil Time when the Update Daemon has to update the

RDF statement. The time is equivalent to the sum
of the lastUpdate time and the updateEvery up-
date interval. The value is the time in milliseconds
since midnight, January 1, 1970 UTC. The value is
identical with the one obtained from the Java method
System.currentTimeMillis() (optional)

Table 5.1: WEESA ontology to maintain the RDF statements in the knowledge base. The
namespace weesa has to be substituted with: http://www.infosys.tuwien.ac.at/
weesa/kb#

Not all applications that do download a snapshot of the KB need all the information provided
by the reified statements in the WEESA KB. Therefore the Snapshot Daemon provides two
snapshots of the KB for download:

1. A full snapshot of the WEESA KB including all reifications. A software agent that down-
loads this KB is able to locally check the time of the last update of a statement and can
query the URL of the Web page the RDF statement originated from.

The predefined name to download this snapshot is: weesa kb.rdf.gz (as discussed in
Section 5.2.1)

2. A snapshot of the WEESA KB that contains only the RDF statements accumulated from
the Web pages of the Web application without the reified information added by the KB
Management. But still, a software agent can use the Query Interface of the KB Manage-
ment to obtain detailed information on the RDF statements.

The predefined name to download this snapshot is: weesa kb not reified.rdf.gz

52 5.3 WEESA KB Implementation

Figure 5.3: Reified RDF statement in the WEESA KB with the information needed to maintain
the knowledge base.

5.3 WEESA KB IMPLEMENTATION

In this section we introduce the WEESA KB prototype implementation in detail. We discuss the
technologies the prototype is built on, introduce the main Java classes, and explain the configu-
ration of the WEESA KB.

A central component of the WEESA KB is the RDF database that is used to store and main-
tain the accumulated RDF statements. For the prototype implementation we chose to use the
Sesame RDF database [12, 93]. Sesame is an open source RDF database (RDF DB) with sup-
port for RDF Schema inferencing and querying. To query the database Sesame supports the
SeRQL [92], RDQL [80], and RQL [50] query language. For the WEESA KB we use the
SeRQL query language.

As discussed in Section 5.2.1 the KB Management offers services to work on the WEESA
KB. The KB Management Interface is used to add RDF statements to the KB and the Query
Interface is used to query the WEESA KB. These services are implemented as XML-RPC ser-
vices. XML-RPC [101] is a protocol that uses XML to encode remote procedure calls (RPC)
and uses HTTP as its transport protocol. Implementations of the XML-RPC protocol exists for
many platforms and programming languages such as perl, C/C++, Java, .Net, and Python. For
the WEESA KB prototype we chose to use the Java Apache XML-RPC implementation [100].

Chapter 5: Building the Knowledge Base of the Semantic Web Application 53

Figure 5.4 shows the functional units of the WEESA KB architecture and the classes these
units consist of. The main class is the WeesaKB class. This class is responsible for reading the
configuration file, and to start and stop the WEESA KB. It instantiates and starts the XML-RPC
Server that hosts the KB Management and Query service. These services are represented in the
figure by the KBManagementInterface and the QueryInterface. The WeesaKB class
further starts the Update and Snapshot Daemon. The KBmanager class and the Reificator
helper class are responsible to write and query the RDF DB. A detailed discussion of the classes
in Figure 5.4 is given is the subsequent sections.

The prototype implementation of the WEESA KB is based on a Semantic Web application
that embeds the RDF meta-data description in the <head> of the Web page. Therefore the
HTML+RDF pipeline that is based on the WEESAReadDOMSession transformer (see Sec-
tion 4.2.2) is used in the Cocoon Web application. When the Update Daemon issues the update
of the RDF description of a Web page, however, only the RDF description is needed and the
HTML page does not have to be generated. Hence, we use the RDF/XML pipeline that is based
on the WEESA transformer in addition (see Section 4.2.3). In order to select the correct type of
pipeline we use the following naming convention: The path in a URL of an HTML Web page
has the suffix “.html”; the path in the URL of the RDF description of a Web page has the suffix
“.rdf”.

The configuration file is used to specify the filename of the RDF DB and to set the port
number the XML-RPC server listens to. It further defines the time intervals the Update and the
Snapshot Daemon should run and sets the directory where the Snapshot Daemon should write the
compressed images of the KB that they can be downloaded via the Web application. A sample
configuration file and a detailed description of each parameter is shown in Figure 5.5.

To start the WEESA KB, the main method of the WeesaKB class takes the location of the
configuration file as command line parameter. The command to start the WEESA KB looks as
follows:

java WeesaKB wessaKB.config

We also provide a class to gracefully shutdown the WEESA KB. In the main method of
the ShutdownWeesaKB class an XML-RPC call is sent to the shutdown method of the KB
Management Interface to shutdown the WEESA KB. The command to shutdown the KB also
takes the location of the configuration file as command line parameter to have access to the port
the XML-RPC server listens to:

java ShutdownWeesaKB weesaKB.config

5.3.1 KNOWLEDGE BASE MANAGEMENT

As discussed in Section 5.2.1 the KB Management is responsible for maintaining the meta-data
in the WEESA KB. The KBmanager class and the Reificator helper class implement this

54 5.3 WEESA KB Implementation

+
sh

ut
do

w
n(

) :
 v

oi
d

+
m

ai
n(

) :
 v

oi
d

W
ee

sa
K

B

+
re

ify
A

nd
A

dd
R

D
F(

) :
 b

oo
le

an

+
sh

ut
do

w
n(

) :
 b

oo
le

an
+

no
tF

ou
nd

()
 :

bo
ol

ea
n

K
B

M
an

ag
em

en
tIn

te
rfa

ce

+
qu

er
y(

) :
 S

tri
ng

+
ge

tU
pT

oD
at

eO
bj

ec
t()

 :
V

ec
to

r
+

ge
tR

D
FU

R
L(

) :
 S

tri
ng

+
ge

tU
R

L(
) :

 S
tri

ng

Q
ue

ry
In

te
rfa

ce

U
pd

at
eD

ae
m

on

+
ru

n(
) :

 v
oi

d

S
hu

td
ow

nW
ee

sa
K

B

+
m

ai
n(

) :
 v

oi
d

+
re

ifi
ca

te
()

 :
vo

id

+
ge

tR
D

FG
ra

ph
()

 :
G

ra
ph

+
ad

dD
es

cr
ip

tio
n(

) :
 v

oi
d

+
se

tR
D

FG
ra

ph
()

 :
vo

id

−
re

ify
S

ta
te

m
en

ts
()

 :
vo

id

R
ei

fic
at

or

+
fin

dA
llW

ee
sa

R
ei

fic
at

io
ns

()
 :

G
ra

ph
+

up
da

te
O

ut
da

te
dS

ta
te

m
en

ts
()

 :
vo

id
+

fin
dU

R
Lf

or
S

ta
te

m
en

t()
 :

S
tri

ng
+

fin
dU

pT
oD

at
eO

bj
ec

t()
 :

V
ec

to
r

+
qu

er
y(

) :
 S

tri
ng

+
fin

dS
ta

te
m

en
ts

Fo
rP

ag
e(

) :
 G

ra
ph

+
re

ify
A

nd
A

dd
R

D
F(

) :
 S

tri
ng

+
re

m
ov

e(
) :

 v
oi

d

K
B

m
an

ag
er

S
na

ps
ho

tD
ae

m
on

+
ru

n(
) :

 v
oi

d
w

ee
sa

_k
b_

no
t_

re
ifi

ed
.rd

f.g
z

w
ee

sa
_k

b.
rd

f.g
z

H
TM

L+
R

D
F

pi
pe

lin
e

40
4

no
t f

ou
nd

R
D

F/
X

M
L

pi
pe

lin
e

X
M

L−
R

P
C

 S
er

ve
r

S
hu

td
ow

nW
ee

sa
K

B

C
oc

oo
n

W
eb

 A
pp

lic
at

io
n

W
E

E
S

A
 K

B

S
es

si
on

 T
ra

ns
fo

m
er

W
E

E
S

A
R

ea
dD

O
M

R
D

F

D
at

ab
as

e

Figure 5.4: Functional units and classes of the WEESA KB.

Chapter 5: Building the Knowledge Base of the Semantic Web Application 55

� �
Filename of the WEESA knowledge base file
database_file=sesame.db

Service port of the XML-RPC service
Used to offer the KB Management and the Query service of the WEESA KB
xml_rpc_service_port=9999

Time interval for the Update Daemon in minutes
If the interval is set to 0 the Update Daemon is not started
update_daemon_interval=60

Time interval for the Snapshot Daemon in minutes
If the interval is set to 0 the Snapshot Daemon is not started
snapshot_daemon_interval=60

Directory to put the snapshots of the WEESA KB
Caution, the directory has to be readable by the Web server
snapshot_directory=/opt/htdocs/snapshots� �

Figure 5.5: Sample configuration file of the WEESA KB.

responsibility. The KBmanager class is the only class that directly accesses the Sesame RDF
DB. It provides methods to the other classes to add, remove and query the DB. If a user decides
to use a different RDF DB, such as the RDF Forth Suite [2], only this class has to be adapted.

The reifyAndAddRDF method is used to add the RDF description of a Web page to the
WEESA KB. The parameters of the method are the RDF/XML description of the Web page and
the information that should be added via reflection, such as the URL to the RDF description and
the Web page, and the update interval for the Update Daemon. The Reificator helper class
is initialized with this information and reifies all RDF statements. Before the reified statements
are added to the RDF DB, the DB is queried if it already contains statements that originated
from the Web page. If so, these statements are replaced by the up-to-date description of the Web
page. The Reificator class further provides constants representing the URIs of the properties
defined in the WEESA KB ontology as defined in Table 5.1.

Most of the other methods of the KBmanager class are used to query the RDF DB. For ex-
ample the findURLforStatementmethod is used to find the URL of the Web page the given
RDF statement originated from. The SeRQL query used in this method is shown in Figure 5.6.
The query method can be used to issue a user defined query on the RDF DB. The result is
returned in RDF/XML format. The findAllReifications method returns an RDF graph
that contains all reifications that were added by the Reificator to be able to maintain the
WEESA KB. This graph can be used to remove all added reifications from the WEESA KB.

5.3.2 QUERY INTERFACE

The Query Interface is an XML-RPC service that allows the outside world to query the WEESA
KB. The interface provides methods with predefined queries for typical use cases and a method
for user defined SeRQL [92] queries. Figure 5.7 shows the methods provided by the interface.
In the following we discuss the methods in more detail:

56 5.3 WEESA KB Implementation

� �
SELECT
url

FROM
{_Statement} rdf:type {rdf:Statement},
{_Statement} rdf:subject {subject},
{_Statement} rdf:predicate {predicate},
{_Statement} rdf:object {object},
{_Statement} weesa:description {descriptionId},
{descriptionId} weesa:url {url}

WHERE
subject = <subject-to-search-for> AND
predicate = <predicate-to-search-for> AND
object = object-to-search-for

NAMESPACE
weesa http://www.infosys.tuwien.ac.at/weesa/kb#� �

Figure 5.6: Sample SeRQL query that returns the URL of the Web page the RDF statement origi-
nated from. The queried statement has the subject subject-to-search-for, the predicate
predicate-to-search-for, and literal object object-to-search-for.

getURL() The getURL method takes three strings as parameters representing the subject, pred-
icate, and object of an RDF statement. The fourth objectIsResource boolean param-
eter indicates whether the object is a resource (true) or the object is a literal (false).
The return value of the method is the URL to the Web page from where the given RDF
statement originated from.

This query can be used by a software agent that downloaded the not reified WEESA KB
to get the URL of the Web page of a given RDF statement. This URL can then be used to
display the Web page from where the statement originated.

getRDFURL() The getRDFURL method takes three strings as parameters representing the
subject, predicate, and object of an RDF statement. The fourth objectIsResource
boolean parameter indicates whether the object is a resource (true) or the object is a lit-
eral (false). The return value of the method is the URL of the RDF description of the
Web page from where the given RDF statement originated.

This query can be used by software agents that need the up-to-date meta-data description
of a Web page for a given RDF statement.

getUpToDateOject() The getUpToDateObject method takes two strings as parameters
representing the subject and predicate of an RDF statement. The method queries the
WEESA KB for the up-to-date object value for the given subject/predicate. Since it is
possible for an RDF graph to contain more than one statement for a given subject/predi-
cate, the return value is the Vector of all corresponding object values.

When a software agent works on the downloaded snapshot of the WEESA KB, the down-
loaded KB and the actual data of the Web application may become inconsistent. For some
types of information this is not a problem since it is rather static and does not change often.
The artist and the track titles on a CD are examples of information the does not change of-

Chapter 5: Building the Knowledge Base of the Semantic Web Application 57

� �
/**
* Interface of the WEESA KB Query Service
*/

public interface QueryInterface {
/**
* Query for the URL of the Web page the RDF statement originated from.
*
* @param subject of the statement
* @param predicate of the statement
* @param object of the statement
* @param objectIsResource true if the object is a resource, false if

a literal
* @return URL of the Web page
*/

public String getURL(String subject, String predicate, String object,
boolean objectIsResource);

/**
* Query for the URL of the RDF description of the Web page.
*
* @param subject of the statement
* @param predicate of the statement
* @param object of the statement
* @param objectIsResource true if the object is a resource, false if

a literal
* @return URL of the RDF description
*/

public String getRDFURL(String subject, String predicate, String object,
boolean objectIsResource);

/**
* Queries the up-to-date value of the object in statements with the
* given subjec/predicate.
*
* @param subject of the statement
* @param predicate of the statement
* @return Vector of all up-to-date objects in the WEESA KB
*/

public Vector getUpToDateObject(String subject, String predicate);
/**
* User defined SeRQL CONSTRAINT query on the WEESA KB
*
* @param query performed on the WEESA KB
* @return query result in N triples format
*/

public String query(String query);
}� �

Figure 5.7: Interface of the Query Service to the WEESA KB.

58 5.3 WEESA KB Implementation

ten. Other types of information such as the price of a CD might change frequently and the
getUpToDateObject method can be used to obtain the up-to-date value.

query() The query method takes a SeRQL CONSTRUCT query [92] as parameter and returns
the query result as a String in RDF/XML format. This method can be used for any user
defined query on the WEESA KB.

To access the WEESA KB Query Interface, a software agent has to implement an XML-
RPC client. Figure 5.8 shows the sample Java code of an XML-RPC client using the Apache
XML-RPC package [100]. In this example the XML-RPC server runs on the host http://
example.com port 9999. The parameters for the XML-RPC method call are put in a Vector
following the sequence of the parameters in the signature of the method definition in the interface.
The actual XML-RPC method call is done using the XmlRpcClient.execute method. The
first parameter is the method name as defined in the interface and the second parameter the
parameter-vector. The return value has to be casted to the type defined in the interface definition.
The sample SeRQL query in the figure returns all RDF statements in the WEESA KB.� �
XmlRpcClient xmlrpc = new XmlRpcClient("http://example.com:9999");
Vector params = new Vector ();
params.add("CONSTRUCT\r *\r FROM\r {subject} predicate {object}");
String result = (String) xmlrpc.execute("query", params);� �

Figure 5.8: Java code sample of an Apache XML-RPC client.

5.3.3 KB MANAGEMENT INTERFACE

The KB Management Interface is an XML-RPC service that is internally used to maintain the
WEESA KB. Figure 5.9 shows the methods provided by the interface. In the following we
discuss the methods in more detail:

reifyAndAddRDF() The reifyAndAddRDF method is used by the Cocoon Web application
to write the meta-data description of a Web page to the WEESA KB. The method is called
by the WEESAReadDOMSession transformer in the HTML+RDF pipeline. The parame-
ters of the reifyAndAddRDF method are the meta-data description in RDF/XML format
and the information that is needed to reify the RDF statements (see Section 5.2.3). The
method then reifies all RDF statements from the description and adds them to the WEESA
KB.

The modifications that are needed to enable the WEESAReadDOMSession transformer
to write the meta-data to the WEESA KB are discussed in Section 5.3.4.

notFound() When a not-existing Web page has been requested, it is not found by the Cocoon
Web application and the WEESA KB has to be informed that the page with this URL

Chapter 5: Building the Knowledge Base of the Semantic Web Application 59

� �
public interface KBManagementInterface {

/**
* Used to reify and add RDF meta-data descriptions to the WEESA KB.
*
* @param rdfxml String of RDF statements in RDF/XML format to be reified and
* added to the WEESA KB
* @param url of the Web page the RDF statements originated from
* @param rdfurl URL to the RDF description of the Web page
* @param lastUpdateDate time of last update
* @param updateEvery interval the RDF description ot this Web page should be
* updated in the WEESA KB
* @return true if everything was ok
*/

public boolean reifyAndAddRDF(String rdfxml, String url, String rdfurl,
Date lastUpdateDate, String updateEvery);

/**
* If a Web page no longer exists this method call removes all RDF
* statements from the WEESA KB that originated from this Web page.
*
* @param url of the Web page that does no longer exist.
* @return true if everything was ok
*/

public boolean notFound(String url);
/**
* Shutdown the WEESA KB instance.
*
* @return true if everything was ok
*/

public boolean shutdown();
}� �

Figure 5.9: Interface of the KB Management Service to the WEESA KB.

does not exist. This is done with the notFound method that takes the URL that caused
the “404 not found” error as parameter. The method then causes the deletion of all RDF
statements in the WEESA KB that originated from the Web page with the given URL.

The handling of the 404 not found error in the Cocoon pipeline definition is discussed in
Section 5.3.5.

shutdown() The shutdown method is used in the ShutdownWeesaKB class to shutdown the
WEESA KB from the command line.

5.3.4 WEESA READ DOM SESSION TRANSFORMER

To accumulate RDF meta-data descriptions from single Web pages in a WEESA Web application
the meta-data has not only to be added to the HTML page when a Web page is queried, but also
written to the WEESA KB. Therefore we extended the WEESAReadDOMSession transformer
to write the generated meta-data via the reifyAndAddRDF method of the KBManagement-
Interface to the WEESA KB. To be able to access the WEESA KB XML-RPC service,
the transformer has to know the host and port of the service. This information is defined
with two additional parameters in the WEESAReadDOMSession transformer definition in the

60 5.3 WEESA KB Implementation

Cocoon sitemap.xmap configuration file. Figure 5.10 shows the definition of the trans-
former. The weesa-kb-host parameter gives the hostname the WEESA KB runs on and
the weesa-kb-port parameter the port the XML-RPC service listens to.� �
<map:transform type="WEESAReadDOMSession">
<map:parameter name="dom-name" value="rdf"/>
<map:parameter name="trigger-element" value="head"/>
<map:parameter name="position" value="in"/>
<map:parameter name="weesa-mapping-definition"

value="mapping/albumMapping.xml"/>
<map:parameter name="weesa-kb-host" value="http://example.com"/>
<map:parameter name="weesa-kb-port" value="9999"/>

</map:transform>� �
Figure 5.10: Configuration of the WEESAReadDOMSession transformer to write to the
WEESA KB.

As discussed in Section 5.2.2 it is not necessary for the meta-data of every Web page to
be written to the WEESA KB. For user-specific pages, such as a shopping cart, the meta-data
is not of public interest. Therefore, the modified WEESAReadDOMSession has to check the
writeDB attribute in the WEESA mapping definition (see Figure 5.2) to decide whether the
meta-data has to be added to the KB.

5.3.5 NOT FOUND (404) DETECTION

In the event that the Web application encounters a “404 not found” error, the WEESA KB has
to be informed that the Web page with this URL does not exist. Therefore, we have to add an
additional step in the pipeline responsible for the error handling in the Cocoon sitemap.xmap
configuration file. Figure 5.11 shows the pipeline for the error handling. The <map:act>
element in lines 4-7 defines the call of the weesa-not-found action. In this action the
notFound method of the KBManagementInterface is called. To be able to access the
XML-RPC service the weesa-kb-host parameter gives the hostname the WEESA KB runs
on and the weesa-kb-port parameter gives the port of the XML-RPC service.

5.3.6 UPDATE DAEMON

In Section 5.2.2 we discussed the need for a “Content Change Handling” when maintaining the
WEESA KB. When the information is changed in the background database of the Web appli-
cation, the WEESA KB and the data available in the Web application can become inconsistent.
Therefore the Update Daemon has to periodically check for RDF statements with an outdated
update interval.

The UpdateDaemon class is implemented as a Java TimerTask that runs in regular inter-
vals and searches for outdated RDF statements in the WEESA KB. The time interval in minutes
is set by the update daemon interval parameter in the configuration file (see Figure 5.5).

Chapter 5: Building the Knowledge Base of the Semantic Web Application 61

� �
1 <map:handle-errors>
2 <map:select type="exception">
3 <map:when test="not-found">
4 <map:act type="weesa-not-found">
5 <map:parameter name="weesa-kb-host" value="http://example.com"/>
6 <map:parameter name="weesa-kb-port" value="9999"/>
7 </map:act>
8 <map:generate type="notifying"/>
9 <map:transform src="stylesheets/system/error2html.xslt">

10 <map:parameter name="contextPath" value="{request:contextPath}"/>
11 <map:parameter name="pageTitle" value="Resource not found"/>
12 </map:transform>
13 <map:serialize status-code="404"/>
14 </map:when>
15

16 <map:otherwise>
17 <map:generate type="notifying"/>
18 <map:transform src="stylesheets/system/error2html.xslt">
19 <map:parameter name="contextPath" value="{request:contextPath}"/>
20 </map:transform>
21 <map:serialize status-code="500"/>
22 </map:otherwise>
23 </map:select>
24 </map:handle-errors>� �

Figure 5.11: Handling of the 404 not found error in the Cocoon pipeline.

When the Update Daemon finds an outdated statement, it gets the URL of the RDF description of
the Web page from the reified data using the weesa:rdf property and replaces the outdated de-
scription with the up-to-date meta-data description received from the RDF pipeline of the Cocoon
Web page. For this purpose the Update Daemon uses the updateOutdatedStatements
method of the KBmanager class.

5.3.7 SNAPSHOT DAEMON

The SnapshotDaemon is implemented as a Java TimerTask that runs periodically and takes
a snapshot of the current status of the WEESA KB. The time interval in minutes is set by the
snapshot daemon interval parameter in the configuration file (see Figure 5.5). As in-
troduced in Section 5.2.3 two snapshots of the KB are taken: one including all reifications that
were added to maintain the KB using the WEESA KB ontology (weesa kb.rdf.gz) and one
without these reifications (weesa kb not reified.rdf.gz).

Both snapshots are in RDF/XML format and compressed with the gzip (GNU zip) com-
pression utility [35]. The Snapshot Daemon stores the snapshots in the directory set with the
snapshot directory parameter in the WEESA KB configuration file (see Figure 5.5). The
access rights of this directory and the two snapshot files have to be set so that the Web application
is able to read them.

62 5.4 Resume

5.4 RESUME

In this chapter we argued that for querying and reasoning purpose the full meta-data model the
of whole Web application is needed. Therefore the WEESA knowledge base (KB) accumulates
the meta-data descriptions for the individual Web pages and maintains them in an RDF database.
Opposite to Web crawlers proposed in literature, our approach generates the KB at server side.
This has the advantage, that the KB can be kept consistent with the content of the Web applica-
tion.

To fill the WEESA KB with data, the pipeline infrastructure of the Cocoon-based WEESA
Semantic Web application is used. We extended the WEESAReadDOMSession transformer to
write the generated RDF meta-data to the WEESA KB. This enables the reuse of the existing
infrastructure such as the business logic, results, however, in some effort to keep the KB up-to-
date. The WEESA KB management accomplishes this task. When a Web page is requested that
does not exist on the server, the Web application informs the KB management to delete meta-
data that originated form this Web page. To trace content changes in the Web application the
Update Daemon of the KB management polls in regular intervals the Web application and issues
an update of the KB.

The KB management stores the accumulated meta-data in an RDF database. For maintenance
purpose, the stored RDF triples are reified with information such as the last modification date,
the update interval, the URL to its HTML page, and the URL to the RDF description on the Web
application. Reifying all accumulated RDF statements significantly increases the number of RDF
statements stored in the RDF DB. Therefore we suggest that a future version of the WEESA KB
should be based on the recently proposed RDF Named Graphs [13]. A Named Graph is an RDF
graph which is assigned a name in form of a URI. In the case of the WEESA KB the RDF meta-
data description of a Web page can be seen as a Named Graph with the URL as its name. Using
Names Graphs has the advantage that not every individual statement has to be annotated with
the origin and last update information, but the whole RDF graph generated for a Web page. This
reduces the number of statements in the RDF DB significantly.

The Snapshot Daemon of the KB management periodically takes snapshots of the WEESA
KB and offers them for download via the Web application to enable reasoning at the client side.
Two snapshots are offered for download: one including all reifications that were added for main-
tenance purpose, and one without reification.

The WEESA KB management further provides an XML-RPC service to query the WEESA
KB. The query interface provides predefined queries for common tasks and the possibility to
formulate user defined queries in the SeRQL query language. The WEESA KB query service
can be used by software agents to query and reason in the KB of the Semantic Web application.
A Future Version of the WEESA KB should also support the SPARQL query language and
protocol [75], which is currently a W3C working draft.

CHAPTER 6

THE VIENNA INTERNATIONAL FESTIVAL

(VIF) CASE STUDY

The most likely way for the world to be destroyed, most experts agree,
is by accident. That’s where we come in;

we’re computer professionals.
We cause accidents.

Anonymous

So far we have introduced the WEESA mapping, the Cocoon components that can be used
to build Semantic Web applications, and the infrastructure to build the meta-data model of the
Semantic Web application. In this chapter we show how these ideas are used in an industry case
study. As a case study we have used the Vienna International Festival (VIF) Web application and
reimplemented it as a WEESA Semantic Web application.

The Vienna International Festival1 (German: Wiener Festwochen) is a major cultural event
in Vienna. This annual festival usually lasts six to eight weeks over a period in May and June.
The festivities take place in various theater locations and concert halls and consist of operas,
plays, concerts, musicals, and exhibitions. The VIF Web application is a database supported
application that provides a detailed event description of each hosted event, an online ticket shop,
press reviews, and an archive over the events of the last 52 years. For the WEESA case study we
use the event descriptions and the ticket shop and semantically annotate the corresponding Web
pages. Below we list the Web pages that make up the case study and discuss the meta-data the
pages provide:

1http://www.festwochen.at

63

64 6.1 Embedding RDF/XML into the HTML Page

VIF Homepage: Entry point to the VIF Web application. It provides general information about
the festival and a navigation bar to the features of the Web application. The meta-data
consists of the contact information of the festival.

Program overview pages: List of events of the festival. There is one list of all events and
several lists for the events of a specific event category (such as concert, performing arts,
etc.) The meta-data consists of the events, location, and the category of the event.

Event description: Detailed information about the event. It contains information such as the
title, description, location, date, etc. of the event. Figure 6.1 shows the screen-shot of
an event description Web page of the festival. The meta-data reflects the event details
provided by the Web page.

Ticket shop receipt: Receipt of the bought ticket. It is the final acknowledgement of the shop-
ping process in the online ticket shop containing all the details of the specific event. The
meta-data reflects event details of the bought ticket.

When we chose the case study application we decided not to design a new Web application
from scratch but to adopt an existing one. This decision has the advantage that we are able to
work out the differences between the design of traditional Web applications and Semantic Web
applications.

In this chapter we take the VIF case study and discuss several realizations of the Semantic
Web application with different requirements. In Section 3.3 we introduced the WEESA mapping
and argued that the mapping has to leave the flexibility to change the ontologies used without
redesigning the whole Web application. To demonstrate this flexibility in this chapter we first
show the implementation of the case study using a self defined VIF ontology and second the
realization based on the iCalendar ontology [45, 77, 84]. We further demonstrate the use of both
possibilities to associate RDF and HTML introduced in Chapter 4 and discuss example scenarios
how the WEESA knowledge base of the VIF case study can be used by software agents. A
discussion of the experiences gained in the case study and hints developers should follow when
designing WEESA Semantic Web applications can be found in the following chapter.

6.1 EMBEDDING RDF/XML INTO THE HTML PAGE

In this section we introduce the realization of the VIF case study Web application that embeds
the RDF meta-data description in the <head> element of the HTML page. We first show the
Cocoon pipelines that configure the Web application and second introduce the WEESA mapping
definitions used for the meta-data generation.

The VIF Web application was originally implemented using MyXML [52]. MyXML is a Web
application framework that is based on separation-of-concerns. For our case study we took the
existing database and reimplemented the Web application based on the Cocoon Web application
framework. To do so, we followed the steps introduced in Chapter 3 and defined the XML

Chapter 6: The Vienna International Festival (VIF) Case Study 65

Figure 6.1: Screen-shot of an event description Web page of the VIF Web application.

Schema as contract of the Web application and the XSLT stylesheet to generate the HTML page.
The business logic of the application is implemented using XML server pages (XSP) [102]. XSP
pages are XML files that can contain Java code and database queries that are processed at server
side. When a Cocoon serverpage generator component reads the XSP page it processes
the contained code and replaces it with the computed value. The output of the serverpage
generator is then an XML document.

In Section 4.2.2 we introduced the WEESAReadDOMSession transformer and showed how
this transformer is used in a Cocoon pipeline to embed RDF in HTML. This pipeline setup is
also used in our case study Web application. The information flow in the pipeline is shown in
Figure 4.3. Figure 6.2 depicts the pipeline definition in the Cocoon sitemap.xmap configu-
ration file. In the VIF Web application the business logic is processed at the beginning of the
pipeline by the serverpage generator that is defined in line 9. The output is then a stream of
SAX events that represents the XML Schema valid XML document, the XSLT stylesheet and the

66 6.1 Embedding RDF/XML into the HTML Page

� �
1 <map:match pattern="Event.html">
2 <!-- create the session -->
3 <map:act type="session">
4 <map:parameter name="action" value="create"/>
5 <map:parameter name="mode" value="immediately"/>
6 </map:act>
7

8 <!-- process the business logic in the xsp file -->
9 <map:generate type="serverpages" src="docs/Event.xsp" />

10

11 <!-- write the XML document to the session -->
12 <map:transform type="writeDOMsession">
13 <map:parameter name="dom-name" value="rdf"/>
14 <map:parameter name="dom-root-element" value="site"/>
15 </map:transform>
16

17 <!-- do the XSLT transformation -->
18 <map:transform type="xslt" src="stylesheets/Event.xsl">
19 <map:parameter name="navi" value="eprog"/>
20 <map:parameter name="id" value="{request-param:cat}"/>
21 </map:transform>
22

23 <!-- configure and start the WEESAReadDOMSession transformer -->
24 <map:transform type="WEESAReadDOMSession">
25 <map:parameter name="dom-name" value="rdf"/>
26 <map:parameter name="trigger-element" value="head"/>
27 <map:parameter name="position" value="in"/>
28 <map:parameter name="weesa-mapping-definition" value="mappings/eventMapping.xml"/>
29 <map:parameter name="weesa-kb-host" value="localhost"/>
30 <map:parameter name="weesa-kb-port" value="9999"/>
31 </map:transform>
32

33 <!-- serialize the output -->
34 <map:serialize type="html" />
35 </map:match>� �

Figure 6.2: Cocoon Pipeline definition for a VIF event Web page in the sitemap.xmap con-
figuration file.

WEESA mapping definition were designed for. The following steps in the pipeline have already
been explained in Section 4.2.2.

As explained in Chapter 5 the WEESAReadDOMSession transformer writes the generated
meta-data description in addition via an XML-RPC call to the WEESA KB. To keep the KB up-
to-date, the Update Daemon periodically requests for an update of the meta-data description of a
Web page. In this case only the RDF/XML representation of the Web page has to be generated.
The XSLT transformation for the HTML page does not have to be processed. Therefore we use
the pipeline that is based on the WEESA transformer as introduced in Section 4.2.3. Again, the
business logic at the beginning of the pipeline is processed by the serverpage generator.

To enable Cocoon to select the correct pipeline to service an incoming request, each pipeline
has a pattern matcher defined at the beginning of the pipeline definition. This pattern matcher
matches the path information of the URL and triggers the processing of the pipeline. The matcher
for our example pipeline in Figure 6.2 is defined in line 1 and matches the path "Event.html".

As a naming convention in our case study the path in the URL to a pipeline that generates

Chapter 6: The Vienna International Festival (VIF) Case Study 67

a HTML+RDF page ends with ".html" and to a pipeline that generates RDF/XML ends with
".rdf". Therefore the URL to the HTML page of the event with the id “23” looks as follows:

http://www.festwochen.at/Event.html?eventid=23

The corresponding URL to the RDF/XML document is:

http://www.festwochen.at/Event.rdf?eventid=23

In the following sections we explain the WEESA mapping definitions for the VIF case study
and show that the used ontology can be changed by only changing the WEESA mapping defini-
tions.

6.1.1 VIF SEMANTIC WEB APPLICATION USING THE

VIF ONTOLOGY

As we did not find an appropriate ontology for cultural festivals on the Web we defined our
own VIF ontology to describe the festival details. The ontology provides four main classes:
Festival to describe the festival itself; Event to describe an event; EventDate to describe
the begin and end date of an event; and Ticket to store information about the tickets bought.
In addition there is a subclass of the Event class for each event category in the festival. The
classes and properties of the VIF ontology are shown in Figure 6.3. For reasons of clarity, we
do not use the OWL Syntax in the example, but use a simple textual syntax instead. The VIF
ontology in OWL syntax can be found in Appendix D.� �
Class: Event Class: EventDate
-> hasEventName -> beginDate
-> hasEventDescription -> beginTime
-> hasLocation -> endDate
-> language -> endTime
-> eventDate (range: EventDate)
-> directedBy Class: Festival
-> ticketShopURL -> hasFestivalName
-> boughtTicket (range: Ticket) -> hasEvent (range: Event)

Class: Concert (subclass of Event) Class: Ticket
Class: Exhibition (subclass of Event) -> hasPrice
Class: February1934 (subclass of Event) -> quantity
Class: Music (subclass of Event)
Class: PerformingArts (subclass of Event)
Class: Zeit_zone (subclass of Event)
Class: Forumfestwochen (subclass of Event)� �

Figure 6.3: VIF ontology for the Vienna International Festival case study Web application.

For a detailed discussion of the WEESA mapping definition we chose the Web page of a
VIF event. Following the WEESA approach introduced in Chapter 3, we first define the XML
Schema for the Web page. Since the XML Schema is good for defining the structure of XML

68 6.1 Embedding RDF/XML into the HTML Page

� �
1 <?xml version="1.0" encoding="ISO-8859-1"?>
2 <site>
3 <content>
4 <left_frame>
5 <tickets href="EShop?id=23"/>
6 <location id="22">Hall E at MuseumsQuartier</location>
7 <link_new href="images/english/shared/saalplaene/halle_e_Rattenfaenger.gif">
8 <desc>seetplan</desc>
9 </link_new>

10 </left_frame>
11 <main>
12 <event id="23"/>
13 <category id="29"/>
14 <title>Der Rattenfaenger (The Pied Piper)</title>
15 <description>
16 More than a decade has gone by since the premiere of Friedrich Cerha [...]
17 </description>
18 </main>
19 <right_frame>
20 <image src="images/english/shared/photos/Rattenfaenger_02_2_small.JPG"></image>
21 <desc>Photo: Cornelia Illius</desc>
22 <value_pair>
23 <sub_title>Directed by</sub_title>
24 <description>Friedrich Meyer-Oertel</description>
25 </value_pair>
26 <value_pair>
27 <sub_title>Choir training</sub_title>
28 <description>Andreas Weiss</description>
29 </value_pair>
30 <value_pair>
31 <sub_title>Choreography</sub_title>
32 <description>Jo Ann Endicott</description>
33 </value_pair>
34 <value_pair>
35 <sub_title>Venue:</sub_title>
36 <description>Hall E at MuseumsQuartier</description>
37 </value_pair>
38 <value_pair>
39 <sub_title>Language:</sub_title>
40 <description>German</description>
41 </value_pair>
42 <value_pair>
43 <sub_title>Length:</sub_title>
44 <description>110 mins, 1 interval</description>
45 </value_pair>
46 <sub_title>Shown on:</sub_title>
47 <dates id="161">
48 <edate>Thu, June 10, 2004</edate>
49 <date>2004-06-10</date>
50 <time>19:30</time>
51 </dates>
52 <dates id="162">
53 <edate>Fri, June 11, 2004</edate>
54 <date>2004-06-11</date>
55 <time>19:30</time>
56 </dates>
57 </right_frame>
58 </content>
59 </site>� �

Figure 6.4: XML file of a VIF event Web page.

Chapter 6: The Vienna International Festival (VIF) Case Study 69

documents but not good for human readability we show an example instance document that is
valid to this schema. The document is shown in Figure 6.4. The XML document splits the Web
page into three parts: the left frame, the main part, and the right frame. The header
containing the logo and the navigation bar is not included in XML document but added by the
XSLT stylesheet.

The WEESA mapping definition for a VIF event Web page is shown in Figure 6.5 and 6.6. In
Section 3.4.1 we already introduced the available elements/attributes in the mapping definition
and their functionality. Therefore, we focus on some specialties in this mapping definition.

In a Semantic Web application, one resource identifier should be used for the same resource
on all Web pages throughout the whole Web application. In our example, the same URI should
be used as resource identifier for one event. In the VIF Web application, the information about
the events is stored in the DB with the event id as key. This DB key is used in the XML document
in line 12 as value for the id attribute from the <event> element. In lines 4-10 of the mapping
definition we define the URI that is used as resource identifier for the event we want to make
statements about. The URI is made up of the prefix and the value of the id attribute. Since we
use the same prefix and DB key to generate the resource identifier for the event on all Web pages
that make a statement about the event, we can guarantee that the same URI is used for the same
event throughout the whole Web application.

In lines 15-25 of the mapping definition we define the triple that defines the class the event is
an instance of. In the XML file the event category is defined in line 13 with the id attribute of
the <category> element. The id="29" stands for the category Music event. For the RDF
triple, however, we need the URI of the corresponding category class form the VIF ontology
(http://www.festwochen.at/ontology#Music) instead of the numerical category
id. Therefore we use the selectEventCategory Java method that takes the namespace
prefix of the VIF ontology and the category id as parameter and returns the URI of the corre-
sponding class. The resource="true" attribute of the <object> element in line 18 of the
mapping definition forces that a resource is generated instead of a literal. For a future version of
the WEESA mapping we plan to introduce an if or switch element to cover such cases without
using a Java method.

In the right frame of the screen-shot in Figure 6.1 a list of event details is given. These details
consist of a heading such as “Directed by” and a value, in this case “Friedrich Meyer-Oertel”.
The value pairs can be found in lines 23-46 of the XML document in Figure 6.4. In the mapping
definition we use these value pairs to fill the properties describing the event. In lines 36-40 of the
mapping definition we use the XPath expression to match the <sub title> element with the
"Directed by" string to select the corresponding value for the object. The use of value pairs
in the design of the XML document has the advantage that content editors have the flexibility
to “invent” new headings when writing instance documents. This flexibility, however, has the
drawback that the value pairs can only be matched by a string comparison. A different string for
the <sub title> element such as "Direction" would lead to a mismatch and no triple is
generated. As an alternative, if the set of all possible values for the <sub title> element are
known at the design time of the XML Schema an element for each possible value can be used (in

70 6.1 Embedding RDF/XML into the HTML Page

� �
1 <?xml version="1.0" encoding="UTF-8"?>
2 <mapping writeDB="true" updateEvery="120">
3 <resources>
4 <resource id="event">
5 <method>
6 <name>at.ac.tuwien.infosys.weesa.wf.MappingLib.addPrefix</name>
7 <param const="http://www.festwochen.at/event#" type="java.lang.String"/>
8 <param xpath="/site/content/main/event/@id" type="java.lang.String"/>
9 </method>

10 </resource>
11 <resource id="date" anonymous="true" var="date_id" xpath="/site/content/right_frame/dates/@id"/>
12 <resource id="festival" const="http://www.festwochen.at"/>
13 </resources>
14 <triples>
15 <triple>
16 <subject ref="event"/>
17 <predicate const="http://www.w3.org/1999/02/22-rdf-syntax-ns#type"/>
18 <object resource="true">
19 <method>
20 <name>at.ac.tuwien.infosys.weesa.wf.MappingLib.selectEventCategory</name>
21 <param const="http://www.festwochen.at/ontology#" type="java.lang.String"/>
22 <param xpath="/site/content/main/category/@id" type="java.lang.String" iter="true"/>
23 </method>
24 </object>
25 </triple>
26 <triple>
27 <subject ref="event"/>
28 <predicate const="http://www.festwochen.at/ontology#hasEventName"/>
29 <object xpath="/site/content/main/title/text()"/>
30 </triple>
31 <triple>
32 <subject ref="event"/>
33 <predicate const="http://www.festwochen.at/ontology#hasDescription"/>
34 <object xpath="/site/content/main/description/text()"/>
35 </triple>
36 <triple>
37 <subject ref="event"/>
38 <predicate const="http://www.festwochen.at/ontology#directedBy"/>
39 <object xpath="/site/content/right_frame/value_pair[sub_title=’Directed by’]/description/text()"/>
40 </triple>
41 <triple>
42 <subject ref="event"/>
43 <predicate const="http://www.festwochen.at/ontology#language"/>
44 <object xpath="/site/content/right_frame/value_pair[sub_title=’Language:’]/description/text()"/>
45 </triple>
46 <triple>
47 <subject ref="event"/>
48 <predicate const="http://www.festwochen.at/ontology#ticketShopURL"/>
49 <object>
50 <method>
51 <name>at.ac.tuwien.infosys.weesa.wf.MappingLib.addPrefix</name>
52 <param const="http://www.festwochen.at/" type="java.lang.String"/>
53 <param xpath="/site/content/left_frame/tickets/@href" type="java.lang.String"/>
54 </method>
55 </object>
56 </triple>
57 <triple>
58 <subject ref="event"/>
59 <predicate const="http://www.festwochen.at/ontology#hasLocation"/>
60 <object xpath="/site/content/description/location/text()"/>
61 </triple>
62 <triple>
63 <subject ref="event"/>
64 <predicate const="http://www.festwochen.at/ontology#eventDate"/>
65 <object ref="date"/>
66 </triple>� �

Continued in Figure 6.6.

Figure 6.5: WEESA mapping definition for a VIF event Web page using the VIF ontology.
Part 1/2

Chapter 6: The Vienna International Festival (VIF) Case Study 71

Figure 6.5 continued:� �
67 <triple>
68 <subject ref="date"/>
69 <predicate const="http://www.w3.org/1999/02/22-rdf-syntax-ns#type"/>
70 <object const="http://www.festwochen.at/ontology#EventDate" resource="true"/>
71 </triple>
72 <triple>
73 <subject ref="date"/>
74 <predicate const="http://www.festwochen.at/ontology#beginTime"/>
75 <object>
76 <method>
77 <name>at.ac.tuwien.infosys.weesa.wf.MappingLib.extractBeginTime</name>
78 <param xpath="/site/content/right_frame/dates[@id=’$$date_id$$’]/time/text()" type="java.lang.String"/>
79 </method>
80 </object>
81 </triple>
82 <triple>
83 <subject ref="date"/>
84 <predicate const="http://www.festwochen.at/ontology#beginDate"/>
85 <object xpath="/site/content/right_frame/dates[@id=’$$date_id$$’]/date/text()"/>
86 </triple>
87 <triple>
88 <subject ref="date"/>
89 <predicate const="http://www.festwochen.at/ontology#endTime"/>
90 <object>
91 <method>
92 <name>at.ac.tuwien.infosys.weesa.wf.MappingLib.extractEndTime</name>
93 <param xpath="/site/content/right_frame/dates[@id=’$$date_id$$’]/time/text()" type="java.lang.String"/>
94 </method>
95 </object>
96 </triple>
97 <triple>
98 <subject ref="date"/>
99 <predicate const="http://www.festwochen.at/ontology#endTime"/>

100 <object>
101 <method>
102 <name>at.ac.tuwien.infosys.weesa.wf.MappingLib.calculateEndTime</name>
103 <param xpath="/site/content/right_frame/dates[@id=’$$date_id$$’]/time/text()" type="java.lang.String"/>
104 <param xpath="/site/content/right_frame/value_pair[sub_title=’Length:’]/description/text()" type="java.lang.String"/>
105 </method>
106 </object>
107 </triple>
108 <triple>
109 <subject ref="date"/>
110 <predicate const="http://www.festwochen.at/ontology#endDate"/>
111 <object xpath="/site/content/right_frame/dates[@id=’$$date_id$$’]/date/text()"/>
112 </triple>
113 <triple>
114 <subject ref="festival"/>
115 <predicate const="http://www.w3.org/1999/02/22-rdf-syntax-ns#type"/>
116 <object const="http://www.festwochen.at/ontology#Festival" resource="true"/>
117 </triple>
118 <triple>
119 <subject ref="festival"/>
120 <predicate const="http://www.festwochen.at/ontology#hasFesitvalName"/>
121 <object const="Wiener Festwochen"/>
122 </triple>
123 <triple>
124 <subject ref="festival"/>
125 <predicate const="http://www.festwochen.at/ontology#hasEvent"/>
126 <object ref="event"/>
127 </triple>
128 </triples>
129 </mapping>� �

Figure 6.6: WEESA mapping definition for a VIF event Web page using the VIF ontology.
Part 2/2

72 6.1 Embedding RDF/XML into the HTML Page

our example a <directedBy> element). The use of the correct element for the title can then
be enforced by validating the XML document.

As we already explained, we revised an existing Web application for our VIF case study. In
the Web application some information is maintained in a well defined format since it is used in
the business logic of the Web application. Other information, however, is stored as a user defined
string. For example, the date of an event is used in the ticket shop and therefore stored in the well
defined "yyyy-mm-dd" format (e.g. "2005-06-21"). But the time when a performance
starts is only used for information purpose on the Web page. Our experience with the VIF case
study showed that content editors used the <time> element to enter strings in a format such
as "hh:mm", "hh:mm to hh:mm", or "hh:mm till hh:mm". For some events also the
Length: of the event is defined in a string such as "110 mins, 1 interval" (lines 43-
46). To fill the begin and end time property in the meta-data description with data, however, the
time information is needed in a well defined format.

When redesigning the Web application this new requirement has to be taken into account
and the XML Schema has to be designed in a way that the content editors are forced to provide
the information in a well defined format. But still, we can use Java methods in the WEESA
mapping definition to extract the needed information from the existing information in the XML
document. In line 77 of the mapping definition the extractBeginTime method is used to
search a string for the first occurrence of the "hh:mm" pattern. The method then returns the
extracted time in XML Schema time format (xsi:time) and fills the beginTime property.
In line 92 the extractEndTime method is used to extract the second "hh:mm" pattern from
the time string and fills the endTime property. If the pattern does not occur a second time,
no such triple is generated. The calculateEndTime method defined in line 102 takes two
parameters: the unformatted time string and the <description> of the <value pair>with
the <sub title> "Length:". The method tries to extract the start time from the time string
and the duration in minutes from the length description. It adds the two times and returns the end
time to fill the endTime property of the ontology.

The RDF graph of the meta-data generated for the VIF event Web page using the XML
document in Figure 6.4 and the WEESA mapping definition from Figure 6.5 and 6.6 is shown
in Figure 6.7.

Most of the event details found on the event Web page are static and do not change frequently.
The link to the online shop, however, is only shown when tickets for this event are available in
the online ticket shop. The appearance of the link is controlled by the <tickets> element in
the XML document (line 5 of Figure 6.4). If the <tickets> element is missing, the link is
not shown and the triple providing the ticketShopURL (defined in lines 46-56 of Figure 6.5)
is not generated for the meta-data description. To keep the information if tickets are available
up-to-date in the WEESA KB the Update Daemon has to periodically request an update of the
RDF description of an event. The update interval in minutes is defined by the updateEvery
attribute in line 2 of the mapping definition.

After the detailed discussion of the meta-data generated for VIF event Web pages we give
a brief overview of the meta-data generated for the program overview, the ticket shop, and the
homepage of the VIF Web application. The program overview Web pages only provide a list

Chapter 6: The Vienna International Festival (VIF) Case Study 73

Figure 6.7: RDF graph of the meta-data generated for the event Web page.

of events filtered by the event category. Therefore, the meta-data description contains for each
event an instance from the Event class or its subclasses described by the event name and the
location property. Since this Web page makes statements about events we have to ensure that
the same URIs are used as resource identifiers as on the corresponding Web page with the event
description. This is done by providing access to the DB key of the event in the XML document,
as described above.

The ticket receipt Web page, the user gets as the final acknowledgement of the shopping
process in the online ticket shop, contains the event details for the events for which the user
bought tickets. The meta-data generated for these events is similar to the one generated for the
event Web pages and includes in addition the price and the number of tickets bought for the event.
Again, the resource identifier for the event has to be the same as the one on the corresponding
event page. Since this information is not of public interest, the meta-data is not added to the
WEESA KB. This is indicated by the writeDB="false" attribute in the mapping definition.

The VIF homepage itself does not contain much information that can be transformed for the
meta-data description. But we use this Web page to provide meta-data about principle informa-
tion of the VIF festival. This information contains the contact address and the phone number of
the festival office. To specify this information we use the vCard ontology [43]. Since this in-
formation is static, the corresponding RDF/XML fragment can directly be put into the <head>

74 6.1 Embedding RDF/XML into the HTML Page

Figure 6.8: RDF graph of the meta-data generated for the VIF homepage.

element of the Web page. In this case study, however, we show that the WEESA mapping can be
used to generate static RDF content that is not derived from the content of a Web page. Figure 6.8
shows the RDF graph of the meta-data description for the VIF homepage that is generated using
the mapping definition depicted in Figure 6.9. The resource definitions (lines 3-8) do not use
any XPath reference to the XML document. Instead, the resources are defined as constants or
anonymous. The following triple definitions in Figure 6.9 are like the definitions that we have
seen in the examples so far. Since the meta-data generated for the homepage is static, the Up-
date Daemon of the WEESA KB does not have to check for updates. This is indicated with the
missing updateEvery attribute in line 2 of Figure 6.9.

The use of the meta-data description from the whole Web application in the WEESA KB
that is accumulated form the meta-data descriptions of the individual Web pages is discussed in
Section 6.2.

6.1.2 VIF SEMANTIC WEB APPLICATION USING THE

ICALENDAR ONTOLOGY

In this section we take the Semantic Web application developed in the previous section and
change the ontology that is used to semantically annotate the Web pages. The goal of this case
study implementation is to show that the ontology being used can be changed without modifying
the structure of the XML pages or the business logic of the Web application. Only the WEESA

Chapter 6: The Vienna International Festival (VIF) Case Study 75

� �
1 <?xml version="1.0" encoding="UTF-8"?>
2 <mapping writeDB="true">
3 <resources>
4 <resource id="festival" const="http://www.festwochen.at"/>
5 <resource id="address" anonymous="true"/>
6 <resource id="organization" anonymous="true"/>
7 <resource id="phone" anonymous="true"/>
8 </resources>
9 <triples>

10 <triple>
11 <subject ref="festival"/>
12 <predicate const="http://www.w3.org/1999/02/22-rdf-syntax-ns#type"/>
13 <object const="http://www.festwochen.at/ontology#Festival" resource="true"/>
14 </triple>
15 <triple>
16 <subject ref="festival"/>
17 <predicate const="http://www.festwochen.at/ontology#hasFesitvalName"/>
18 <object const="Wiener Festwochen"/>
19 </triple>
20 <triple>
21 <subject ref="festival"/>
22 <predicate const="http://www.festwochen.at/ontology#hasFesitvalName"/>
23 <object const="Wiener Festwochen"/>
24 </triple>
25 <triple>
26 <subject ref="festival"/>
27 <predicate const="http://www.w3.org/2001/vcard-rdf/3.0#ORG"/>
28 <object ref="organization"/>
29 </triple>
30 <triple>
31 <subject ref="organization"/>
32 <predicate const="http://www.w3.org/2001/vcard-rdf/3.0#Orgname"/>
33 <object const="Wiener Westwochen"/>
34 </triple>
35 <triple>
36 <subject ref="festival"/>
37 <predicate const="http://www.w3.org/2001/vcard-rdf/3.0#ADR"/>
38 <object ref="address"/>
39 </triple>
40 <triple>
41 <subject ref="address"/>
42 <predicate const="http://www.w3.org/2001/vcard-rdf/3.0#Street"/>
43 <object const="Lehargasse 11"/>
44 </triple>
45 <triple>
46 <subject ref="address"/>
47 <predicate const="http://www.w3.org/2001/vcard-rdf/3.0#Locality"/>
48 <object const="Vienna"/>
49 </triple>
50 <triple>
51 <subject ref="address"/>
52 <predicate const="http://www.w3.org/2001/vcard-rdf/3.0#Pcode"/>
53 <object const="1060"/>
54 </triple>
55 <triple>
56 <subject ref="address"/>
57 <predicate const="http://www.w3.org/2001/vcard-rdf/3.0#Country"/>
58 <object const="Austria"/>
59 </triple>
60 <triple>
61 <subject ref="festival"/>
62 <predicate const="http://www.w3.org/2001/vcard-rdf/3.0#TEL"/>
63 <object ref="phone"/>
64 </triple>
65 <triple>
66 <subject ref="phone"/>
67 <predicate const="http://www.w3.org/1999/02/22-rdf-syntax-ns#value"/>
68 <object const="+43-1 589 22-0"/>
69 </triple>
70 <triple>
71 <subject ref="phone"/>
72 <predicate const="http://www.w3.org/1999/02/22-rdf-syntax-ns#type"/>
73 <object const="http://www.w3.org/2001/vcard-rdf/3.0#work" resource="true"/>
74 </triple>
75 <triple>
76 <subject ref="phone"/>
77 <predicate const="http://www.w3.org/1999/02/22-rdf-syntax-ns#type"/>
78 <object const="http://www.w3.org/2001/vcard-rdf/3.0#voice" resource="true"/>
79 </triple>
80 </triples>
81 </mapping>� �

Figure 6.9: WEESA mapping definition for the VIF homepage.

76 6.2 Using the WEESA Knowledge Base

mapping definitions have to be adopted.
In this case study we use the iCalendar ontology [45, 77] instead of the self-defined VIF on-

tology. The iCalendar ontology is designed for the domain of calendar events and is based on the
iCalendar RFC 2445 [84]. This RFC specifies the text based Internet calendaring and scheduling
file format that is used in applications such as Apple’s iCal [44] and Mozilla’s Sunbird [96].

Since we reuse the Web application developed in the previous section, the Web pages pro-
vided and the structure of the XML documents remain the same. Again, we take the event Web
page for a detailed discussion of the WEESA mapping definition and the generated meta-data.
Figures 6.10 and 6.11 show the mapping definition that is designed for the iCalendar ontology
which is applied on the XML document in Figure 6.4 of the previous section.

Opposite to the VIF ontology, in the iCalendar ontology, an instance of the Vevent
class, representing an event of the festival, can have only one begin and end date. Therefore,
for each performance day of an event an instance of the Vevent class is generated. The
mapping definition is straight forward, except for the use of three new Java methods. The
extractStartDate method used in line 61 of Figure 6.10 takes the time and date as pa-
rameters and returns the time and date in XML Schema date-time format (xsi:dateTime).
The method uses the same pattern to extract the time from the time string as described in
the previous section. The extractEndDate method used in line 82 of Figure 6.11 tries
to extract the end time from the time string and returns the formatted time and day. The
calculateEndDateTime method used in line 93 aims to compute the end time from the
start time and the Length: of the event and returns the formatted time and day.

A part of the generated RDF graph is shown in Figure 6.12. As explained above, an instance
of the Vevent class is generated for each performance day of the event. The graph in the figure,
however, only shows the meta-data of the performance on 2004-06-10.

After the discussion of the meta-data generated for VIF event Web pages, we briefly describe
the meta-data generated for the program overview, ticket shop, and homepage of the VIF Web
application. The meta-data of the program overview Web pages provides an instance of the
Vevent class for each event, that is described with the event name, location, and the URL to
the Event Web page. The meta-data for the ticket shop receipt looks similar to the one for an
event page. It contains an instance of the Vevent class for all tickets bought. The homepage,
however, does not provide any information that can be represented using the iCalendar ontology
and therefore does not offer any meta-data.

The last two sections showed the semantic annotation of the Web pages of the VIF case
study. Usage scenarios of the RDF meta-data added are discussed in the future work section of
Chapter 9. In the following section we present the WEESA KB generated from the accumulated
meta-data from the annotated Web pages.

6.2 USING THE WEESA KNOWLEDGE BASE

The VIF case study implementation also provides the WEESA KB we introduced in Chapter 5
that offers the meta-data of the whole Semantic Web application for download and querying. In

Chapter 6: The Vienna International Festival (VIF) Case Study 77

� �
1 <?xml version="1.0" encoding="UTF-8"?>
2 <mapping>
3 <resources>
4 <resource id="event">
5 <method>
6 <name>at.ac.tuwien.infosys.weesa.wf.MappingLib.addPrefix</name>
7 <param const="http://www.festwochen.at/event#" type="java.lang.String"/>
8 <param xpath="/site/content/right_frame/dates/@id" var="date_id" type="java.lang.String" iter="true"/>
9 </method>

10 </resource>
11 <resource id="start_date" anonymous="true" xpath="/site/content/right_frame/dates[@id=’$$date_id$$’]/@id"/>
12 <resource id="end_date" anonymous="true" xpath="/site/content/right_frame/dates[@id=’$$date_id$$’]/@id"/>
13 </resources>
14 <triples>
15 <triple>
16 <subject ref="event"/>
17 <predicate const="http://www.w3.org/1999/02/22-rdf-syntax-ns#type"/>
18 <object const="http://www.w3.org/2002/12/cal/ical#Vevent" resource="true"/>
19 </triple>
20 <triple>
21 <subject ref="event"/>
22 <predicate const="http://www.w3.org/2002/12/cal/ical#summary"/>
23 <object xpath="/site/content/main/title/text()"/>
24 </triple>
25 <triple>
26 <subject ref="event"/>
27 <predicate const="http://www.w3.org/2002/12/cal/ical#desciption"/>
28 <object xpath="/site/content/main/description/text()"/>
29 </triple>
30 <triple>
31 <subject ref="event"/>
32 <predicate const="http://www.w3.org/2002/12/cal/ical#url"/>
33 <object>
34 <method>
35 <name>at.ac.tuwien.infosys.weesa.wf.MappingLib.addPrefix</name>
36 <param const="http://www.festwochen.at/Event.html?eventid=" type="java.lang.String"/>
37 <param xpath="/site/content/main/event/@id" type="java.lang.String"/>
38 </method>
39 </object>
40 </triple>
41 <triple>
42 <subject ref="event"/>
43 <predicate const="http://www.w3.org/2002/12/cal/ical#location"/>
44 <object xpath="/site/content/left_frame/location/text()"/>
45 </triple>
46 <triple>
47 <subject ref="event"/>
48 <predicate const="http://www.w3.org/2002/12/cal/ical#dtstart"/>
49 <object ref="start_date"/>
50 </triple>
51 <triple>
52 <subject ref="start_date"/>
53 <predicate const="http://www.w3.org/1999/02/22-rdf-syntax-ns#type"/>
54 <object const="http://www.w3.org/2002/12/cal/ical#Date-Time" resource="true"/>
55 </triple>
56 <triple>
57 <subject ref="start_date"/>
58 <predicate const="http://www.w3.org/1999/02/22-rdf-syntax-ns#value"/>
59 <object>
60 <method>
61 <name>at.ac.tuwien.infosys.weesa.wf.MappingLib.extractStartDate</name>
62 <param xpath="/site/content/right_frame/dates[@id=’$$date_id$$’]/time/text()" type="java.lang.String"/>
63 <param xpath="/site/content/right_frame/dates[@id=’$$date_id$$’]/date/text()" type="java.lang.String"/>
64 </method>
65 </object>
66 </triple>
67 <triple>
68 <subject ref="event"/>
69 <predicate const="http://www.w3.org/2002/12/cal/ical#dtend"/>
70 <object ref="end_date"/>
71 </triple>
72 <triple>
73 <subject ref="end_date"/>
74 <predicate const="http://www.w3.org/1999/02/22-rdf-syntax-ns#type"/>
75 <object const="http://www.w3.org/2002/12/cal/ical#Date-Time" resource="true"/>
76 </triple>� �

Continued in Figure 6.11.

Figure 6.10: WEESA mapping definition for a VIF event Web page using the iCalendar ontol-
ogy. Part 1/2

78 6.2 Using the WEESA Knowledge Base

Figure 6.10 continued:� �
77 <triple>
78 <subject ref="end_date"/>
79 <predicate const="http://www.w3.org/1999/02/22-rdf-syntax-ns#value"/>
80 <object>
81 <method>
82 <name>at.ac.tuwien.infosys.weesa.wf.MappingLib.extractEndDate</name>
83 <param xpath="/site/content/right_frame/dates[@id=’$$date_id$$’]/time/text()" type="java.lang.String"/>
84 <param xpath="/site/content/right_frame/dates[@id=’$$date_id$$’]/date/text()" type="java.lang.String"/>
85 </method>
86 </object>
87 </triple>
88 <triple>
89 <subject ref="end_date"/>
90 <predicate const="http://www.w3.org/1999/02/22-rdf-syntax-ns#value"/>
91 <object>
92 <method>
93 <name>at.ac.tuwien.infosys.weesa.wf.MappingLib.calculateEndDateTime</name>
94 <param xpath="/site/content/right_frame/dates[@id=’$$date_id$$’]/time/text()" type="java.lang.String"/>
95 <param xpath="/site/content/right_frame/dates[@id=’$$date_id$$’]/date/text()" type="java.lang.String"/>
96 <param xpath="/site/content/right_frame/value_pair[sub_title=’Length:’]/description/text()" type="java.lang.String"/>
97 </method>
98 </object>
99 </triple>

100 </triples>
101 </mapping>� �

Figure 6.11: WEESA mapping definition for a VIF event Web page using the iCalendar ontol-
ogy. Part 2/2

this section we discuss the WEESA KB for the case study that uses the self-defined VIF ontology,
introduced in Section 6.1.1. The writeDB and updateEvery attributes of the <mapping>
element at the beginning of the WEESA mapping definition control the accumulation and main-
tenance of the meta-data in the KB.

After initializing the WEESA KB, the RDF DB contains over 10,000 RDF statements. This
number is made up of the number of statements generated for the Web pages using the WEESA
mapping and the number of statements added for maintenance purpose via reification. As dis-
cussed in Section 5.2.3 RDF reification increases the number of RDF statements significantly.
The actual number of generated RDF statements for the Web pages is about 1,600 RDF state-
ments.

The number of actually accumulated RDF statements originates mainly from the the de-
scription of the event Web pages. Seven statements are generates to describe an event, and six
statements are added for each performance date of the event. The event overview page does not
add new statements to the WEESA KB, since the statements generated for overview pages are
also generated for the event description page. As an optimization measure we could therefore set
the writeDB="false" attribute without loosing data in the WEESA KB.

In the remainder of this section we show sample scenarios that illustrate the added value the
WEESA KB of a Semantic Web application offers to software agents. The scenarios are based
on the Web application using the VIF ontology introduced in Section 6.1.1.

SCENARIO 1: REQUESTING THE WEB PAGE OF AN EVENT

A business woman has scheduled a business trip to Vienna at the beginning of June. During her
stay in Vienna she is interested in visiting an opera. She queries a future Semantic Web search

Chapter 6: The Vienna International Festival (VIF) Case Study 79

Figure 6.12: RDF graph of the meta-data generated for and event page using the iCalendar
ontology.

engine for operas in Vienna at the beginning of June. Among the search hits, the opera “The
Pied Piper” raises her interest and she wants to learn more about the this opera from the event
Web page. Her software agent can then use the getURL method of the Query Interface of the
WEESA KB to request the URL of the Web page describing the opera event. The parameter
of the method call is the URI representing the selected event (in this example http://www.
festwochen.at/event#23).

SCENARIO 2: CHECKING IF TICKETS FOR AN EVENT ARE AVAILABLE

A user is enthusiastic about the VIF festival and instructs his software agent to download a
snapshot of the WEESA KB for local querying. While browsing the festival events he comes
across the opera “The Pied Piper” and wants to know if there are tickets available. His software
agent uses the getUpToDateObject method of the Query Interface of the WEESA KB to
get the link to the ticket shop for this event. The parameters in our example are the URI of the
event id (http://www.festwochen.at/event#23) and the predicate URI for the ticket
shop property (http://www.festwochen.at/ontology#ticketShopURL). If there
are tickets available, the return value of the method call is the link to the ticket shop. If no more
tickets are available, the query result is empty. After buying a ticket in the online ticket shop, he
instructs his software agent to add the performance date to his personal calendar.

80 6.3 Linking to an External RDF/XML Meta-Data Description

SCENARIO 3: SEARCHING FOR AN EVENT ON A GIVEN DAY

A business woman has a meeting in Vienna that ends at 6:00 pm and has no plans for the evening.
Since she is interested in cultural events she is looking for tickets of a festival event on the
2004-06-10 starting after 7:30 pm. She takes her software agent and specifies her query in a
user-friendly interface. The agent transforms the query into a SeRQL query [92] and sends the
request to the query method of the Query Interface of the WEESA KB. The method then
searches the WEESA KB and returns the requested information in RDF/XML format.

Figure 6.13 shows the SeRQL query [92] for the scenario described above. In the FROM part
of the query (lines 7-11) the RDF triples are specified that should be matched in the RDF DB.
Variables in the query are written in curly braces. In the WHERE part (lines 13-15) additional
conditions the variables have to match are defined. The CONSTRUCT part (lines 2-5) defines the
triples that should be generated for the query result. The query result contains an RDF graph for
each matching event like the one shown in Figure 6.14.

� �
1 CONSTRUCT
2 {event_id} vif:hasEventName {eventName},
3 {event_id} vif:ticketShopURL {ticketShopURL},
4 {event_id} vif:eventDate {date_id},
5 {date_id} vif:beginTime {beginTime}
6 FROM
7 {event_id} vif:eventDate {date_id},
8 {event_id} vif:hasEventName {eventName},
9 {event_id} vif:ticketShopURL {ticketShopURL},

10 {date_id} vif:beginDate {beginDate},
11 {date_id} vif:beginTime {beginTime}
12 WHERE
13 event_id = <http://www.festwochen.at/event#23> AND
14 beginDate = "2004-06-10" AND
15 beginTime >= "19:30:000"
16 USING NAMESPACE
17 vif = <http://www.festwochen.at/ontology#>� �

Figure 6.13: Sample SeRQL query to the WEESA KB of the VIF Semantic Web application.

6.3 LINKING TO AN EXTERNAL RDF/XML META-DATA

DESCRIPTION

We also implemented the VIF case study as a Web application that uses the <link> element in
the <head> of the HTML page to associate HTML and RDF. This case study is based on the
implementation that embeds RDF in the HTML page discussed in the previous section. Since
the previous case study used the same naming convention to select the pipeline for servicing a
request as the one introduced in Section 4.2.3 we are able to to use the AddRDFLink transformer
to add the <link> to the HTML page. Therefore, this case study could be implemented by
simply reconfiguring the pipelines in the Cocoon sitemap.xmap configuration file. The XML

Chapter 6: The Vienna International Festival (VIF) Case Study 81

Figure 6.14: RDF graph of the Query result.

Schemas, the WEESA mapping definitions, the business logic, and the XSLT stylesheets remain
the same.

For the case study, we again need two types of pipelines: one for the HTML pages that also
includes the <link> to the external RDF description and one to generate the RDF/XML meta-
data description using the WEESA mapping. The structure of the pipeline for HTML pages is
shown in Figure 4.6. In this case study we use the serverpage generator that processes the
business logic, as described in the previous section. The XML Schema valid XML document is
then transformed by the XSLT transformer into the HTML page. The AddRDFLink transformer
adds the <link> to the RDF description into the HTML page and the serializer serializes the
HTML page for client consumption. The pipeline for the RDF/XML generation is the same as
the one defined for the previous case study.

As explained in Section 5.2.1 we extended only the WEESAReadDOMSession transformer
to write the generated meta-data to the WEESA KB. Therefore, this case study implementation
does not provide a KB for querying and download.

We also implemented this case study for both ontologies: the self defined VIF ontology and
the iCalendar ontology. Again, the change of the ontology used in the Web application required
only in the change of the WEESA mapping definition.

A discussion of the experiences gained in the case study and hints developers should follow
when designing WEESA Semantic Web applications can be found in the following chapter.

82 6.3 Linking to an External RDF/XML Meta-Data Description

CHAPTER 7

USING WEESA IN SEMANTIC WEB

APPLICATIONS

Looking at the proliferation of personal web pages on the net,
it looks like very soon everyone on earth will have 15 Megabytes of fame.

MG Siriam

In the previous chapter we showed the use of WEESA in the VIF Semantic Web application.
In this chapter we discuss the experiences gained and the lessons learned while implementing
the case study, we list the qualifications a developer should have to semantically annotate a Web
application, and give guidelines to develop a Semantic Web application using WEESA.

7.1 LESSONS LEARNED

In this section we summarize the experiences gained while implementing the VIF case study
realizations based on the different requirements described in the previous Chapter and give hints
to developers who use WEESA to develop Semantic Web applications.

To implement the case study we started developing a traditional Web application. We fol-
lowed the steps introduced in Chapter 3 and defined the XML Schemas for the Web pages as the
contract of the Web application. In the next step we authored the XML content documents that
are valid to the corresponding XML Schema. For the dynamic Web pages we wrote XSP pages
implementing the business logic that contains SQL DB queries and Java code for the online ticket
shop. The XSLT stylesheets finally define the graphical appearance of the Web page. After im-
plementing the pipelines for the HTML page generation shown in Figure 4.1, the traditional Web
application without semantic annotations was finished.

83

84 7.1 Lessons Learned

To add semantic annotations to the Web application developed so far, in order to realize
a Semantic Web application, we defined the ontology to be used and designed the WEESA
mapping definition for each Web page that should be annotated. In the next step, we modi-
fied the sitemap.xmap configuration file to add the WEESA enabled transformers into the
Cocoon pipelines. Depending on the association style between HTML and RDF we used the
WEESAReadDOMSession or the WEESA transformer. To set up the WEESA KB, we defined
the RDF DB filename, the port number of the XML-RPC service, the time intervals for the Snap-
shot and Update Daemon, and the snapshot directory in the KB configuration file and added the
error handling pipeline shown in Figure 5.11 into the sitemap.xmap file to handle “404 not
found” errors.

With these additional steps we turned the traditional Web application developed first into a
Semantic Web application. In the following we discuss our experiences and the lessons learned
while implementing the VIF case study.

ANNOTATION BY CONFIGURATION

The change from a traditional Web application to a WEESA Semantic Web application requires
basically two steps: the WEESA mappings have to be defined and the Cocoon pipelines have
to be modified. Both of these steps can be done by either writing new XML files (mapping
definition) or modifying existing ones (pipeline configuration). No Java programming is involved
in these steps.

In addition, the change between the two association styles of HTML and RDF, also could be
done by only modifying the pipeline configuration. The WEESA mapping definitions remains
the same.

CHANGE OF ONTOLOGIES

We implemented the VIF case study Semantic Web application for different ontologies. For the
change from one ontology to the other, only the WEESA mapping definition used had to be
changed. The rest of the implementation remained untouched and no additional programming
effort was needed.

JAVA MAPPING LIBRARY

In the two paragraphs above we argued, that no Java programming is involved to semantically
annotate a Cocoon Web application using WEESA. This is true regarding the Web application.
To handle the granularity problem in the WEESA mapping definition, Java methods are used.
WEESA provides a library of Java methods for common tasks. In some cases, however, the
developer has to implement a Java method for a user-specific task. This user specific method can
be added to the library for later reuse.

Chapter 7: Using WEESA in Semantic Web Applications 85

FREE-TEXT AND MIXED CONTENT

Since WEESA uses the structure of the XML document to identify the concepts that are mapped
to the ontologies, free-text and mixed content can not be annotated. Natural language understand-
ing would be needed to do so. However, in our experience this is not a problematic limitation
since the concepts that can be found in many ontologies available today can also be found in the
structure of an XML document.

DATABASE KEYS FOR RDF RESOURCE IDENTIFIER

The VIF case study further showed that database keys should be accessible in the XML docu-
ments to be able to generate unique resource identifiers for the RDF representation. The database
keys help to ensure that the same identifier is used for the same resource throughout the whole
Web application.

WELL FORMATTED DATA IN THE XML DOCUMENT

Since the RDF meta-data description of the Web pages is intended to be machine-processable
the literals used should store information in a well defined format. For example to represent time
and date information the XML Schema xsi:time respectively, xsi:date format should be
used. This requirement should also be kept in mind when defining the XML Schema as contract
for a Web page. The schema should force content editors to provide information split up into
logical units that are stored in a well defined format. For example, to specify the begin and end
time of an event, it is better to have a specific XML element for the begin and end time instead
of an arbitrary string such as "form 11:00 to 12:00". Using arbitrary strings results in
pattern matching, when defining the WEESA mapping.

FORMAT CONFLICT: HUMAN VERSUS MACHINE

In WEESA, the information stored in the XML document is used twice: to generate the HTML
page, and to generate the RDF meta-data description. The information on the HTML page is
intended for human consumption and should therefore be stored in human-friendly format. The
information in the RDF description is intended for machine processing and should therefore be
stored in a well defined format. These two intensions can lead to a conflict. For example, the
ontology uses the XML Schema xsi:dateTime format to represent the end time of an event
(e.g. "2005-05-24T12:00:000+01:00"). This is not the day and time format a user
would expect to find on an HTML Web page. A more human-friendly version should be used
e.g. "Tuesday, May 24 2005, 12:00 am".

Since the XSLT transformation cannot do the conversion from the xsi:dateTime format
to the human-friendly format, the information in the XML document has to be provided human-
friendly. As explained in the paragraph above, the human-friendly information should be still
stored in a well defined format. Then, Java methods can be used in the WEESA mapping defi-
nition to put together the string in the correct format for the RDF description. A solution for the

86 7.1 Lessons Learned

example above is, to store the end time split up into three parts: the day of the week in plain text
("Tuesday"), the date in xsi:date format ("2005-05-24"), and the time in xsi:time
format ("12:00").

The use of the split up elements further increases the flexibility to future changes of the Web
application. If the layout of the web page changes the XSLT stylesheet can be used to rearrange
the way the date is presented on the screen. In the case used the ontology changes later in the life
cycle of the Web application, the separated elements can be mapped to the concepts in the new
ontology without parsing a string to find the required information.

SEPARATION-OF-CONCERNS FOR PARALLEL DEVELOPMENT

WEESA has been designed to follow the concept of separation-of-concerns. This concept helps
to define strict roles in the development process of the Web application and enables parallel
development. Once the XML Schemas are defined as contract for each Web page, the content
editor, the graphic designer, the business logic programmer, and the developer responsible for
defining the WEESA mappings can work in parallel.

In the paragraphs above we gave hints, what kind of information should be provided in the
XML document and how the information should be formated. This hints must be taken into
account when defining the XML Schema as contract of a Web page. Therefore, the developer
that is responsible for defining the WEESA mappings, has to be involved in the definition of the
contracts of the Web application.

COCOON CACHING MECHANISM

The frequency the RDF meta-data description is generated by a WEESA enabled transformer
component, depends on the association style between HTML and RDF. When the HTML page
links to an external RDF description, the WEESA enabled transformer has to run on request
only. When the RDF description is embedded into the HTML page, the meta-data description
has to be generated for every page request. To keep the application scalable, the Cocoon caching
mechanism can be used. When the XML document that is read by the generator component has
not been changed since the last request, the subsequent requests are served by the Cocoon cache.
This way the WEESA enabled transformer and the XSLT transformation are not processed.

For dynamic Web pages, such as pages that are based on XSP documents, the Cocoon caching
mechanism cannot tell if the dynamic content has changed since the last request (e.g. if the
information in the DB has changed). Therefore the caching mechanism does not work for this
type of Web pages. To be still able to cache Web pages that are based on XSP, developers can
specify within the XSP page that the result of one processing of the XSP page can be cached a
given amount of time [17]. A request to a pipeline that is based on such an XSP document is only
processed once in the given time period. The other requests are served from the Cocoon cache.

Chapter 7: Using WEESA in Semantic Web Applications 87

REDUNDANCY IN THE WEESA KB

Many Web applications offer overview pages that provide a list of items which are linked to
a detailed item description. In this case, the RDF description of the overview page typically
provides only a subset of RDF statements that is available for all detailed item descriptions.
Writing the RDF statements of the overview page to the WEESA KB is therefore a redundant
step and the writeDB attribute in the WEESA mapping definition can be set to false for the
overview page.

7.2 REQUIRED SKILLS TO SPECIFY THE WEESA MAPPING

DEFINITION

WEESA, the technique to design and develop Semantic Web applications introduced in this the-
sis, follows strictly the concept of separation-of-concerns. Following this concept enables the
definition of roles in the development process and parallel development. The roles that can be
identified when using WEESA to develop a Semantic Web application are: the content editor,
the graphical designer, the programmer developing the business logic, and the developer respon-
sible for specifying the WEESA mapping definitions. Following the term knowledge engineer
defined in the expert system area, we call developer that defines the WEESA mappings WEESA
engineer.

In the design phase of the Semantic Web application, the WEESA engineer, as well as the
other involved parties, is responsible for the specification of the contract. Once the contract is
specified, the parties start working in parallel. The WEESA engineer has to define the used
ontology, define the WEESA mapping, and configure the WEESA knowledge base. Detailed
guidelines for developing WEESA Semantic Web applications can be found in the following
section. The skills a WEESA engineer needs to accomplish his tasks are listed below:

• Knowledge about the domain of the Web application. The engineer has to know the types
of Web pages, the intended content, and the involved data sources in the background, such
as databases.

• The WEESA engineer has to be familiar with Semantic Web technologies. The engineer
has to know the standard ontologies defined in the domain. If no suitable ontology is avail-
able, a new ontology has to be developed or an existing one has to be extended. Therefore
the WEESA engineer needs to know the ontology definition languages RDF Schema and
OWL, knowledge about modeling an ontology for a domain, and the use of ontology edi-
tors. The engineer further has to know the RDF data model and the RDF query language
SeRQL [92].

• The WEESA engineer has to be familiar with XML technologies such as XML, XML
Schema, XML namespaces, and XPath. This knowledge is needed to define and interpret
the contracts and to specify the WEESA mapping.

88 7.3 Guidelines for developing WEESA Semantic Web Applications

• Of course, the WEESA engineer has to know WEESA. The engineer has to know the
WEESA approach, how to specify the WEESA mapping definition, the WEESA enabled
Cocoon transformers, and the architecture and configuration of the WEESA KB.

• To address the granularity problem of the mapping definition, the WEESA engineer needs
Java programming knowledge to extend the library of Java methods.

• For the Cocoon pipeline configuration, the WEESA engineer has to know the Web appli-
cation framework Cocoon. To increase the scalability of the Web application, the engineer
further needs to know the Cocoon caching mechanism.

Despite the list of required qualifications is long, a graduate student with Java, XML, and
Semantic Web experience should be able to develop a Semantic Web application with Cocoon
quite fast.

7.3 GUIDELINES FOR DEVELOPING WEESA SEMANTIC WEB

APPLICATIONS

In this section we present guidelines for developers that use WEESA to develop Semantic Web
applications. As explained in Chapter 3, WEESA can be integrated in XML-based Web engi-
neering methodologies to develop semantically annotated Web applications. Many Web engi-
neering methodologies such as MyXML [51, 53] or wView [20] exist that are based on XML
content documents. Therefore some of the steps listed below can vary depending on the Web
engineering methodology used.

In the guidelines listed below all steps are described following the same schema. The at-
tributes to describe the steps are: the name of the step, the description, hints the developers
should take into account, the involved parties into this step, whether the step is requested by
WEESA or the used Web engineering methodology, and references for further reading. To de-
scribe the involved parties we use the three parties that can be found in most Web engineering
methodologies: the content editor, the graphic designer, and the logic programmer. In addition
we have the WEESA engineer as party responsible for the semantic annotation. Some Web
engineering methodologies may also identify other parties.

To develop semantically annotated Web application with WEESA we recommend to follow
the steps listed below:

1. Requirements analysis and design of the Web application
Description: The requirement analysis of the Web application and the definition of the

structure of the Web application depends on the Web engineering methodology used.

Hints: n/a

Involved parties: Depending on the used Web engineering methodology.

Chapter 7: Using WEESA in Semantic Web Applications 89

Methodology: Web engineering methodology

References: n/a

2. Specification of the contract of the Web application.

Description: For each Web page the XML Schema is defined as contract for the Web
application. The XML document that is used to generate a Web page has to be valid
against the corresponding XML Schema.
The parties should also agree on a naming convention of the URLs. The path to
HTML pages should end with the suffix ".html" to RDF meta-data descriptions
with ".rdf".

Hints: For database driven Web applications, the database keys should be provided in the
XML document to be able to generate unique RDF resource identifier.
The datatype of XML Schema simple types should be restricted to a well defined
format.
Information items that describe concepts found on the Web page should be provided
in separate XML elements/attributes. These items are mapped to (present and future)
ontologies.
It is difficult to semantically annotate free-text and mixed content.

Involved parties: All partied involved in the Web engineering process.

Methodology: WEESA, Web engineering methodology

References: Section 3.2: role of contracts in XML-based Web engineering; Section 7.1:
hints that should be taken into account when defining the contract; Section 5.3 dis-
cussion of the naming convention.

Once all involved parties have agreed on the contract of the Web application, they can start
to develop in parallel. In the following descriptions we list only the steps that are WEESA spe-
cific. The other involved parties have to follow the steps proposed by the used Web engineering
methodology.

3. Definition of the used association type between HTML and RDF.

Description: The WEESA engineer has to decide which association style between HTML
and RDF should be used in the Semantic Web application. The RDF description can
be embedded into the HTML page or the HTML page can link to an external RDF
description.

Hints: n/a

Involved parties: WEESA engineer

Methodology: WEESA

References: Section 4.2.1: discussion of the association types between HTML and RDF.

90 7.3 Guidelines for developing WEESA Semantic Web Applications

4. Configuration of the Cocoon pipelines.

Description: The Cocoon pipelines have to be defined in the sitemap.xmap configu-
ration file. In a first step the pipelines are defined as for a traditional Web Application
by the parties defined in the Web engineering methodology. In the next step the
WEESA engineer adds the WEESA enabled transformers. Which WEESA enabled
transformer is used, depends on the association style selected in the previous step.

Hints: At the beginning of each pipeline is a pattern matcher that has to follow the naming
convention.
To inform the WEESA KB about Web pages that are no longer available we have to
add the weesa-not-found action into the pipeline responsible for handling “404
not found” errors.
The pipelines for downloading the WEESA KB snapshots have to be defined.

Involved parties: WEESA engineer, graphic designer, logic programmer

Methodology: WEESA, Web engineering methodology

References: Chapter 4 introduction of the WEESA enabled Cocoon transformers and the
pipeline structure they are used in; Section 5.3.5 use of the weesa-not-found
action; Section 5.3.7 information about the WEESA KB snapshots.

5. Definition of the ontologies used.

Description: The WEESA engineer has to decide which ontologies are used to semanti-
cally annotate the Web application. If no standard ontology exists for the domain, a
new ontology has to be designed or an existing one is extended.

Hints: For easy information exchange standard ontologies should be used whenever pos-
sible.

Involved parties: WEESA engineer

Methodology: WEESA

References: Ontology development [66]; ontology library [68]

6. Specification of the WEESA mapping definitions.

Description: For each Web page that should be semantically annotated the WEESA map-
ping definition has to be specified.

Hints: For pages that are not of public interest, the writeDB attribute has to be set to
false to prevent the meta-data to be written to the WEESA KB.
For pages with frequently changing content, the updateEvery attribute has to be
set to define the update interval the update daemon of the WEESA KB updates the
meta-data in the KB.

Involved parties: WEESA engineer

Methodology: WEESA

Chapter 7: Using WEESA in Semantic Web Applications 91

References: Section 3.3 introduction of the WEESA mapping; Section 6.1.1 and 6.1.2
discussion of the mapping definitions used in the VIF case study; Section 5.2.2
WEESA KB specific attributes in the WEESA mapping definition.

7. Configuration of the WEESA KB

Description: The WEESA KB configuration file has to be set up.

Hints: The time interval defined for the WEESA KB Update Daemon must be coordin-
ated with the update intervals specified in the WEESA mapping definitions. The time
interval for the Update Daemon must be less than the smallest number specified in
the updateEvery attribute of each mapping definition.

Involved parties: WEESA engineer

Methodology: WEESA

References: Section 5.3 explanation of the WEESA KB configuration file; Section 5.2.2
WEESA KB specific attributes in the WEESA mapping definition.

8. Testing the Semantic Web application
Description: Once all involved parties have finished their tasks, the Semantic Web appli-

cation is ready for testing. The steps to test the Web application are defined in the
used Web engineering methodology. In addition, the WEESA engineer has to check
the RDF descriptions of the annotated Web pages. Also, the meta-data written to the
WEESA KB has to be checked. This can be done by manually checking the content
of the RDF database or by issuing test queries to the Query Interface of the WEESA
KB.

Hints: n/a

Involved parties: Depending on the used Web engineering methodology, WEESA engi-
neer

Methodology: Web engineering methodology, WEESA

References: n/a

92 7.3 Guidelines for developing WEESA Semantic Web Applications

CHAPTER 8

RELATED RESEARCH AREAS

Reviewing has one advantage over suicide:
in suicide you take it out on yourself;

in reviewing you take it out on other people.

George Bernard Shaw

To our knowledge not much work has been done in developing methodologies to design
and implement Semantic Web applications. Work that inspired the development of WEESA,
however, can be found in the related research areas Web engineering and semantic annotation. In
this chapter we introduce the related work in these areas and discuss their influence on WEESA.

8.1 WEB ENGINEERING

Web engineering is a subdiscipline of software engineering that aims to provide methodologies
to design, develop, maintain, and evolve Web applications. Several methodologies have been
proposed in literature, such as OOHDM [88], OO-H [34], and WebML [14]. Most of the Web
engineering techniques are based on the concept of separation-of-concerns to define strict roles in
the development process. During the Web application development process the involved parties
produce a set of engineering artifacts that document the process and enables retracing the design
decisions. The output of the Web engineering process are Web applications that provide Web
pages in HTML format. Some of the methodologies further support Web pages in other formats
such as WML for mobile devices. These Web applications, however, lack semantic annotations
and are therefore not suited to engineer Semantic Web applications.

In this section we first discuss a Web engineering methodology that was designed to develop
semantically annotated Web applications, followed by a discussion of methodologies that use

93

94 8.1 Web Engineering

Semantic Web technologies in the artifacts during the design process, but do not provide semantic
meta-data in the engineered Web application. At the end of this section we introduce existing
Web engineering methodologies that can be extended by WEESA to engineer Semantic Web
applications.

8.1.1 SEMANTIC WEB ENGINEERING

To our knowledge beside WEESA only one approach exists that aims to engineer semantically
annotated Web applications. In [73,74] Plessers and De Troyer introduce an extension of the Web
Site Design Model (WSDM). WSDM is based on “object chunks”, which are elementary design
artifacts in engineering process. These object chunks are information items that are assigned to
components which in turn are used to build Web pages. Examples for object chunks are the title
of a CD, the name of an artist, or the play-time of a track.

To semantically annotate the Web application a mapping from the object chunks to the con-
cepts in one or more ontologies are defined during the design of the Web application. This
process is called conceptual annotation. The mapping is then used in the actual implementation
to annotate the Web pages.

The WSDM extension can be used to annotate static and dynamic Web pages. Dynamic
pages are build by object chunks that retrieve their content form a column in a relational database.
Defining the mapping from such a dynamic object chunk to a concept in an ontology can be seen
as adding semantics to the database column.

The proposed extension of WSDM mainly supported one-to-one mappings. Mismatches
in granularity are tackled with the help of intermediate ontologies which can only be used to
concatenate object chunks. The intermediate ontology has to be defined by hand. This seems to
be a rather complicated way to concatenate two strings. The WSDM extension does not allow
any further flexibility to address the granularity problem.

8.1.2 WEB ENGINEERING BASED ON SEMANTIC WEB TECHNOLOGY

ARTIFACTS

Many Web engineering methodologies have been proposed that use ontologies and RDF to
formalize the engineering artifacts. These Semantic Web technologies are used to conceptual
model the Web application for the given domain. The actual Web application, however, does not
contain any semantic annotations.

The Extensible Web Modeling Framework (XWMF) [54,55] aims to use a machine-process-
able format for the Web engineering artifacts to make the artifacts exchangeable between the
multitude of tools that are involved in the Web application life cycle. Therefore, XWMF defines
a set of RDF Schema ontologies to define the vocabulary (1) for the structure and the con-
tent of the Web application, (2) to support Web engineering tasks, and (3) to specify high-level
application-specific concepts for the design of a Web application. XWMF provides tools that

Chapter 8: Related Research Areas 95

take the RDF description of the Web application that is based on these vocabularies to automa-
tically generate the implementation of the Web application. The generated application does not
provide semantically annotated Web pages. The tools, however, implement a query system that
supports querying the meta-data but also the data of the Web application.

The Semantic Hypermedia Design Method (SHDM) [58, 89] heavily uses OWL ontologies
for domain and methodology specific issues. Ontologies are used for the conceptual model and
the navigational model of the application domain. The SHDM further defines method specific
ontologies for the abstract and concrete widget interface to model the user interface of the Web
application. At runtime a SHDM based Web application uses instances of the navigational model
and the requested view, that is obtained from the abstract interface definition, to build the actual
Web page in a template engine. The generated Web page, however, does not explicitly contain
any of the semantic available in the design artifacts of the Web engineering methodology.

The Semantic Web HTML Generator (SWeHG) [65] follows the opposite goal as WEESA.
SWeHG is a tool for generating static HTML Web pages from RDF graphs. SWeHG specifies the
RDF to HTML transformation on two levels: On the HTML level, the layout of the Web pages
are described using templates; On the RDF level, logical Prolog rules are used to define queries to
nodes from the RDF graph. The selected nodes are then mapped to HTML tags in the templates.
The SWeHG implementation takes the HTML templates and generates XSLT stylesheets. To
generate a HTML Web page SWeHG extracts the page content from the RDF graph and stores it
an XML document. The HTML page is then generated using the XSLT stylesheet.

OntoWebber [47,48] proposes a system for managing data on the Web with formally encoded
semantics. It aims to enable the reusability of software components, the flexibility in personal-
ization, and the ease of maintainability of data intensive Web applications. OntoWebber uses a
domain ontology and a site modeling ontology as basis for the construction of site models as
views on the underlying data. Instances of these models are used to create a browsable Web ap-
plication. To personalize the Web application only the site model has to be modified. Although
OntoWebber models the domain in an ontology this model is not accessible in the generated Web
application.

8.1.3 WEESA COMPLIANT WEB ENGINEERING METHODOLOGIES

As discussed in Chapter 3 WEESA was designed as a technique that can be used to extend
existing XML-based Web engineering methodologies to engineer semantically annotated Web
applications. In Section 3.3 we introduces WEESA as mapping from XML Schema to ontolo-
gies. WEESA, however, can also be used in Web engineering methodologies that do not define
an XML Schema for their XML content documents. The XPath expressions for the WEESA
mapping definition can also be specified if we have a representative XML document at hand. In
this section we introduce Web engineering methodologies that use XML content documents as
basis for the Web pages and can therefor be extended by WEESA to engineer Semantic Web
applications.

The XGuide Web development method [51, 53] inspired the development of WEESA. The

96 8.2 Semantic Annotation

central idea of XGuide is to bring the well-established software engineering concepts of inter-
faces and contracts to the domain of Web engineering. The contracts state the requirements of the
Web pages and act as specification of the implementation of the Web application. They further
enable parallel development of all involved parties, as discussed in Section 3.2. XGuide uses
XML Schema to specify the contracts and XSLT stylesheets for the separation of the content and
the layout. Therefore WEESA integrates seamlessly into the XGuide Web development method.

wView [21] is a system for generating Web applications that is based on the declarative
specification of the hypermedia design. It supports the separation of the content, navigation, and
presentation concern. Each of these aspects in the design process is controlled by a separate
specification. Only the specification of the content structure, which is described using UML,
must be provided. If not specified, the default options for the navigation and the presentation
are used. wView uses a series of XSLT transformations to generate the Web application from
the specification. The prototype implementation of wVies generates a Cocoon Web application
where WEESA can be integrated as described in Chapter 4.

In [32] the authors propose a method to generate a Web application based on the conceptual
model of the application domain. The method used the EER/GRAL-approach [25] to represent
the conceptual model as a graph. Once the model is defined, an actual instance of the graph model
is created by populating the model with content. The Web page generation process generates
XML documents that are transformed into HTML via an XSLT transformation. These XML
documents can be used for the WEESA meta-data generation to semantically annotate the Web
pages.

The AMACONT approach [5,30] aims to engineer adaptive Web applications that can be ad-
justed to varying client devices and user preferences. AMACONT uses a component-based XML
document format that enables the aggregation an linkage of reusable document components. The
document components encapsulate adaptive content, behavior, and layout on different abstraction
levels. The approach uses a pipeline based component generator for dynamically transforming
adaptable component structures to different Web output formats. To generate the different out-
put formats XML/XSLT is used. To generate the output documents Cocoon pipelines are used.
Therefore, WEESA can be integrated in the methodology as outlined in Chapter 4.

8.2 SEMANTIC ANNOTATION

The Semantic Web is based on the assumption that the semantics of the documents available on
the Web is accessible by machines. Therefore, semantic annotation is one of the core challenges
for building the Semantic Web. Since the Web offers access to documents in various media
formats such as text, pictures, audio, and video the research community proposed a wide range
of tools that support the user during the annotation process. WEESA is designed to annotate
semistructured XML documents, therefore we focus the discussion on text annotation tools. In
this section we give an overview of semantic annotation tools and discuss their applicability to
engineer Semantic Web applications. We categorize the selected annotation techniques based on

Chapter 8: Related Research Areas 97

their underlying concept in the following categories: Manuel annotation, semantic interpretation
of XML structures, and mapping based techniques.

8.2.1 MANUAL ANNOTATION

Annotating documents by hand is a time consuming an error-borne task. To do so, the users have
to type the long and unhandy URIs as resource identifiers to formalize the intended statements
in RDF/XML syntax. This process is susceptible to typos an syntactic errors. To eliminate this
error sources manual annotation tools offer a graphical user interface to add semantic markup to
documents. Most tools use an ontology browser and drag & drop to associate a selected phrase
in the document with the selected concept from the ontology. Most manual annotation tools only
support the annotation of static documents.

The SHOE Knowledge Annotator [38, 94] is an early annotation tool that does not use the
W3C recommendations RDF, RDFS, or OWL but SHOE. SHOE (Simple HTML Ontology Ex-
tensions) [59] first published in 1997 is an early ontology and knowledge representation language
that can be seen as a predecessor of the current W3C recommendations. The SHOE Knowledge
Annotator provides a form based graphical user interface to markup existing Web pages using
SHOE ontologies. The annotator only supports the annotation of static Web pages. Annotating
dynamic documents leads to performing the same task over and over for a specific pattern of
documents.

SMORE [49] (Semantic Markup, Ontology and RDF Editor) of the mindswap project [63]
follows the same idea as the SHOE Knowledge Annotator, but supports RDF and OWL. SMORE
has an more advanced user interface that even allows to select regions of images for annotation.
It provides an embedded HTML editor, a Web and an ontology browser that allows users by
means of drag & drop to create instances of ontology concepts from marked phrases in the Web
page.

CREAM and its implementation, the OntoMat-Annotizer, provides an semantic annotation
and authoring framework [36]. CREAM supports several annotation methods such as manual
annotation, authoring of annotated documents, semiautomatic annotation, and the annotation of
dynamic pages. When annotating dynamic documents, the database is annotated instead of the
HTML page. In the dynamic annotation process predefined database queries are mapped to
ontology concepts. This mapping is then used to translate ontology queries, that are entered in a
separate query GUI, into database queries.

Manual annotation tools provide support when semantically annotating existing Web pages.
But still, the annotation process remains an additional task and has to be performed after the Web
page is finished. The annotation process is not integrated in the engineering process of the Web
application.

The manual annotation tools introduced above all uses phrases found on a Web page to in-
stantiate a concept defined in an ontology. This one-to-one mapping between HTML and on-
tologies, however leads to the granularity problem discussed in Section 3.1 and 3.3. For exam-
ple, the Web page displays a date in a human readable format such as "Tuesday, May 24

98 8.2 Semantic Annotation

2005, 12:00am" but the ontology defines the range of the date property to use the XML
Schema xsi:dateTime format. In the ontology instance the date should be formated to
"2005-05-24T12:00:000+01:00". Therefore, additional processing is needed to meet
the requirements of the ontology.

8.2.2 SEMANTIC INTERPRETATION OF XML STRUCTURES

Many Web engineering methodologies use XML/XSLT to separate the content from the layout
of the Web pages. To automatically annotate these Web pages with semantic markup machines
needs access to the semantics of the semistructured XML content. As discussed in Section 2.2.1,
there is no inherent meaning associated with the nesting of the XML elements. To overcome this
problem, several approaches have been proposed in literature to interpret XML unambiguously
as RDF statements.

In [56] Klein proposes a procedure to interpret ambiguous general XML documents as un-
ambiguous RDF statements with the help of an RDF Schema ontology. In this approach the
structure of the XML document and the RDF Schema are used to make the implicit meaning of
the XML document explicit and therefore accessible for machines. The base-line of the proce-
dure is that the ontology specifies which elements/attributes in the XML document are relevant
and what role in the ontology they have, i.e. whether the specify a class or a property. The
relationship between the ontology and the XML document is established through the use of the
same names for the XML element/attribute and the classes/properties in the ontology. The RDF
Schema ontology, which specifies the interpretation of the XML document, has to be defined
manually. It defines whether an XML label should be interpreted as class or property and how
the XML element – attribute relation and the child element relation should be interpreted. Klein’s
algorithm then take these rules to populate the subject, predicate, and object of the RDF triples
with data.

The round-tripping tool between XML and RDF [6] allows to directly interpret XML docu-
ments with an RDF Schema using the XML Schema as basis for describing how XML is mapped
into RDF and back. The modeling primitives of the XML Schema are therefore interpreted as the
class, property, and relationship definition of the ontology. For example, XML Schema simple
types are mapped onto a relation between a resource and literal. For each XML Schema com-
plex type a new resource is created that represents an instance of the class. Once the ontology is
generated out of the XML Schema using the interpretation rules defined for the round-tripping
approach, XML Schema valid XML documents can be transformed into an RDF graph, that uses
the vocabulary of the generated ontology. The round-tripping approach also supports the trans-
formation in the other direction, an RDF graph can be written as XML document by following
the same interpretation rules.

The approach proposed in “Lifting XML Schema to OWL” [29] is similar to the round-
tripping approach introduced above. It aims to lift XML Schemas to OWL ontologies and to
transform XML instance documents into RDF graphs. To do so, the approach defines a set of
interpretation and transformation rules.

Chapter 8: Related Research Areas 99

The approaches introduced in this section aims to make the semantics of XML documents
accessible to machines by interpreting the structure of the XML document. The content of the
XML elements/attributes is mapped to nodes in the RDF graph. Since non of the approaches do
allow any further processing of the mapped content, we face the granularity problem discussed
in Section 3.1 and 3.3.

The approaches above all use their own ontology to semantically interpret XML documents.
The ontology has either to be defined by hand or is generated form the XML Schema. In both
cases, however, the ontology is based on the structure of the XML document and the equivalent
names have to be used for the XML elements/attributes and the corresponding classes/properties
in the ontology. This leads to problems when the XML document should be interpreted according
to a standard ontology defined by a third party, as discussed in Section 3.3.

8.2.3 MAPPING BASED ANNOTATION

In this thesis we presented WEESA as mapping based approach to generate RDF meta-data
from XML content documents. Elements and attributes from the XML document are mapped
to concepts that are defined in an ontology. In this section we introduce other mapping based
approaches proposed in literature.

The Meaning Definition Language (MDL) [1,98] defines what an XML document may mean
in terms of an ontology, and defines how that meaning is encoded in the elements and attributes
of the XML document. Once the meaning of an XML document is defined in MDL, MDL-
based tools allow users and developers to interface the XML document at the level of its seman-
tics. Tools developed for MDL enable the automatic conversion of meaning-based requests into
structure-based requests, provide a Java API to the semantics to the XML content, and translate
XML documents from one XML Schema into another. The MDL translation tool takes the the
XML Schemas from the source and target XML format, the ontology used to define the meaning,
and the MDL for the source and target XML format and produces an XSLT stylesheet for the
transformation of XML documents from the source to the target format. Since for the RDF/XML
syntax no XML Schema can be defined the translation tool cannot be used to generate RDF
graphs.

In “Mapping XML Fragments to Community Web Ontologies” [3] an approach is presented
that aims to provide an unique query interface to XML documents that are based on different
document type definitions (DTD). This unique query interface is based on a common domain on-
tology. The approach uses the DTD and XPath to establish a mapping between XML fragments
and ontology concepts. When a user formulates a query, the mapping is used to reformulate the
query to the DTD of the corresponding XML document. This way the heterogeneity of the XML
formats are hidden from the end-users. The mapping, however, is not used to generate an RDF
description from the XML documents.

Both mapping based annotation techniques introduced in this section directly map the content
of XML elements or attributes to concepts in the ontology. Since no further processing of the
content can be specified we encounter the granularity problem, discussed in Section 3.1 and 3.3.

100 8.2 Semantic Annotation

CHAPTER 9

CONCLUSION AND FUTURE WORK

As an adolescent I aspired to lasting fame,
I craved factual certainty,

and I thirsted for a meaningful vision of human life -
so I became a scientist.

This is like becoming an archbishop so you can meet girls.

M. Cartmill

9.1 CONCLUSION

In the current WWW, Web applications provide their Web pages in HTML format only. This
HTML pages are intended to be displayed by a Web browser. The content of the Web pages
is expressed in natural language, weakly structured with HTML tags, and its semantics is not
accessible to machines. To enable information sharing and reuse across application, enterprise,
and community boundaries, however, computers need access to the semantics of the content. To
overcome this limitation, Tim Berners-Lee proposed the Semantic Web as an extension of the
current Web, in which the information is given a well defined meaning. The meaning of the
information on a Web page is formalized using semantic meta-data that is based on concepts
defined in ontologies. Therefore, the existence of semantically annotated Web pages is crucial to
bring the Semantic Web into being.

The Web engineering community proposed several methodologies to design, develop, main-
tain, and evolve Web applications. Following this methodologies, the outcome of the Web deve-
lopment process are Web applications that provide Web pages in HTML format that lack seman-
tic annotations.

101

102 9.1 Conclusion

Researchers in the semantic annotation field developed tools to augment documents with se-
mantic markup, describing the meaning of the document. These tools are based on different
techniques such as manual annotation, semantic interpretation of XML structures, and mapping
based techniques. The annotation process, however, remains an additional task and is not inte-
grated in the engineering process of the Web application as proposed by the Web engineering
community.

In this thesis we introduced WEESA (WEb Engineering for Semantic web Applications)
that aims to integrate semantic annotation into the engineering process of the Web application
by reusing existing Web engineering artifacts. At the design level, WEESA defines a mapping
from elements and attributes defined in an XML Schema to concepts that are defined in one or
more ontologies. At the instances level, the WEESA mapping is used in the Web application
to automatically generate RDF meta-data from XML content documents. Therefore, the same
XML documents are used as source for the HTML page and the RDF meta-data representation.
WEESA does not define a new Web engineering methodology, but can be used to extend existing
XML-based Web engineering methodologies to develop Semantic Web applications.

To support developers when implementing Semantic Web applications we integrated the
WEESA meta-data generator into the Apache Cocoon Web application development framework.
Different approaches have been proposed to associate the HTML Web page with its RDF meta-
data description. To support these different association styles, we integrated WEESA into two
new Cocoon transformer components. The WEESAReadDOMSession transformer can be used
to embed the generated RDF meta-data into the HTML page. The WEESA transformer can be
used to generate a stand-alone RDF description that is linked by the corresponding HTML Web
page. To add this link, we developed the AddRDFLink transformer.

Since WEESA follows the principle of separation-of-concerns and the flexible component
architecture of Cocoon no additional programming is needed for developing a Semantic Web
application compared to the development of a traditional Web application. To semantically an-
notate the Cocoon Web application only two new steps are needed: (1) The WEESA mapping
from the XML Schema to the ontology has to be defined. (2) Depending on the association
style between HTML and RDF, the developer has to modify the Cocoon pipeline and add the
corresponding WEESA enabled transformer component.

So for we have discussed WEESA as technique to semantically annotate single Web pages.
For reasoning and querying purpose, however, it is better to have the full meta-data model of
the Web application. Therefore we proposed the accumulation of the meta-data form individual
Web pages to build the meta-data model of the whole Web application. This meta-data model
is then offered for querying as the knowledge base (KB) of the Web application. In addition a
snapshot of the WEESA KB is taken and offered for download by software agents. Opposite to
Web crawlers proposed in literature, the WEESA approach generates the KB at server side. This
has the advantage, that the KB management component can take the responsibility to keep the
KB consistent with the content of the Web application.

After the introduction of the WEESA mapping and the WEESA KB we presented the evalu-
ation of the suggested techniques in the Vienna International Festival (VIF) industry case study.
We implemented the case study based on different ontologies and for different associations styles

Chapter 9: Conclusion and Future Work 103

between HTML and RDF. We further discussed the configuration of the WEESA KB and showed
sample scenarios how software agents can benefit from the existence of the KB.

The description of the VIF case study followed a discussion of the lessons learned when im-
plementing the WEESA Semantic Web application. We analyzed that a Cocoon Web application
can be semantically annotated by specifying the WEESA definitions and adding the WEESA en-
abled Cocoon transformers to the Cocoon pipeline. No additional programming afford is needed
to do so. Also, a change of the used ontologies requires only in the adaptation of the WEESA
mapping definitions. Based on the lessons learned we discussed the qualifications a developer
should have to use WEESA to semantically annotate Cocoon Web applications and presented
the steps in the development process.

In the last chapter we presented work in the related research areas Web engineering and
semantic annotation.

9.2 FUTURE WORK

In this thesis we presented WEESA, an approach to engineer semantically annotated Web appli-
cations. These Web applications also provide their accumulated meta-data in a knowledge base
(KB) for download and querying. Now that we are able to engineer Semantic Web applications
that make the semantics of the content accessible to machines, applications and tools are needed
that take advantage of the existence of this meta-data. In literature, such applications are referred
to as software agents. In this section we present examples, how the users can benefit from the
existence of such software agents.

Figure 9.1 shows examples of the use of semantic meta-data at client and sever side. The top
left of the figure shows the Semantic Web application with its WEESA KB as introduced in this
thesis. At server side, we suggest to harvest the KB of individual Semantic Web applications to
build the global KB of a Semantic Web Search Engine. At client side, we show how a Semantic
Clipboard can help the user to reuse the information on a Web page in desktop applications.
These applications are only two examples to sketch the potential power of the future Semantic
Web.

9.2.1 SEMANTIC SEARCH ENGINE

Based on the idea that Semantic Web applications offer their KB for download we suggest the
Semantic Harvester architecture. Web applications that provide their KB for download can reg-
ister at the WEESA Semantic Harvester. The Harvester then collects periodically the KBs from
the registered applications and integrates them in its global KB. This is shown at the bottom left
of Figure 9.1.

The suggested architecture follows the idea proposed by the Harvester search engine archi-
tecture [10] where the index of Web applications is created locally at server side and is then
offered to brokers for download. With this architecture, in contrast to Web crawlers, the KB of

104 9.2 Future Work

Desktop
Application

Semantic
Clipboard

Web
Browser

Desktop

KB ManagementKnowledge

Base

WEESA Cocoon
Web Application

Knowledge

Base

Server Client

Search

WEESA Semantic Engine
Semantic Search

Interface

Harvester

WEESA Semantic Web Application

Figure 9.1: Overview of the architecture of the SWEET project.

a Web application can be downloaded as a single stream rather than requiring separate requests
for every single Web page.

The global KB built by the Harvester infrastructure is then used in a Semantic Search Engine.
Many research initiatives focus on semantic querying [40,95,103]. Offering the user an interface
where the user directly has to enter queries in an RDF query language such as SPARQL [75],
SeRQL [92], RDQL [80], and RQL [50] requires to much background knowledge of an arbitrary
Web user. Therefore, we suggest a wizard like interface for the search engine which uses the
knowledge about the domain given in the ontology and the knowledge stored in the global KB to
help a user to refine his search query.

9.2.2 SEMANTIC CLIPBOARD

Currently, data can be transfered between desktop applications from different vendors via copy
and paste as (rich) text only. The semantics of the data is lost. To overcome this shortcoming we
suggest to realize a Semantic Clipboard that uses Semantic Web technologies to allow data to be

Chapter 9: Conclusion and Future Work 105

shared across application boundaries preserving its semantic.

For example, in our VIF case study form Chapter 6 a user ordered a ticket for an event in
the online ticket shop and gets the receipt of the tickets bought. After the user got this final
confirmation, the user typically enters the dates into the personal calendar. Currently this has to
be done manually. Since in our case study the receipt Web page is semantically annotated with
all event details, the user can take advantage of the Semantic Clipboard and copy and paste the
Web page to the calendar application. The calendar application has access to the semantics of
the Web page via its meta-data description and can add the dates of the events to the personal
schedule.

Copy and paste the same meta-data to different applications can have different reactions as a
consequence. For example, a user copies the e-banking posting data to the clipboard. Depending
on the target application pasting the data has a different semantics. Pasting the data to a calendar
application issues that a calendar entry is added for each booking line; pasting the data to a spread
sheet means that the data is formatted in a table; pasting the data into MS Money the bookings
are performed on the corresponding account.

Different applications might use different ontologies for overlapping domains. Therefore,
ontology mediation is needed to map between the two ontologies. The current WEESA proto-
type maps XML structures to concepts in ontologies. Based on this experience we plan to extend
WEESA to map between ontologies and use the WEESA ontology mediator in the Semantic
Clipboard.

106 9.2 Future Work

APPENDIX A

XML SCHEMA FOR WEESA MAPPING

DEFINITION

XML Schema for the WEESA mapping definition that was introduced in Chapter 3.

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xs:element name="mapping">

<xs:annotation>
<xs:documentation>WEESA Mapping</xs:documentation>

</xs:annotation>
<xs:complexType>
<xs:sequence>

<xs:element name="resources" minOccurs="0">
<xs:annotation>
<xs:documentation>Container for resources</xs:documentation>

</xs:annotation>
<xs:complexType>
<xs:sequence>

<xs:element name="resource" type="ResourceType" maxOccurs="unbounded">
<xs:annotation>

<xs:documentation>Resource definition</xs:documentation>
</xs:annotation>

</xs:element>
</xs:sequence>

</xs:complexType>
</xs:element>
<xs:element name="triples">
<xs:annotation>
<xs:documentation>Container for triples</xs:documentation>

</xs:annotation>
<xs:complexType>
<xs:sequence>

<xs:element name="triple" type="TripleType" maxOccurs="unbounded">
<xs:annotation>

<xs:documentation>Statement triple</xs:documentation>
</xs:annotation>

</xs:element>
</xs:sequence>

</xs:complexType>
</xs:element>

</xs:sequence>

107

108 Appendix

<xs:attribute name="writeDB" type="xs:boolean"/>
<xs:attribute name="updateEvery" type="xs:integer"/>

</xs:complexType>
</xs:element>
<xs:complexType name="TripleType">

<xs:annotation>
<xs:documentation>Triple Type</xs:documentation>

</xs:annotation>
<xs:sequence>
<xs:element name="subject" type="SubjectType">

<xs:annotation>
<xs:documentation>Subject</xs:documentation>

</xs:annotation>
</xs:element>
<xs:element name="predicate" type="PredicateType">

<xs:annotation>
<xs:documentation>Predicate</xs:documentation>

</xs:annotation>
</xs:element>
<xs:element name="object" type="ObjectType">

<xs:annotation>
<xs:documentation>Object</xs:documentation>

</xs:annotation>
</xs:element>

</xs:sequence>
</xs:complexType>
<xs:complexType name="ResourceMethod">

<xs:annotation>
<xs:documentation>Resource Method Type</xs:documentation>

</xs:annotation>
<xs:sequence>
<xs:element name="name" type="xs:string">

<xs:annotation>
<xs:documentation>Resource method name</xs:documentation>

</xs:annotation>
</xs:element>
<xs:element name="param" type="ResourceParam" minOccurs="0" maxOccurs="unbounded">

<xs:annotation>
<xs:documentation>Resource method parameter</xs:documentation>

</xs:annotation>
</xs:element>

</xs:sequence>
</xs:complexType>
<xs:complexType name="TripleMethod">

<xs:annotation>
<xs:documentation>Triple Method Type</xs:documentation>

</xs:annotation>
<xs:sequence>
<xs:element name="name" type="xs:string">

<xs:annotation>
<xs:documentation>Tripple method name</xs:documentation>

</xs:annotation>
</xs:element>
<xs:element name="param" type="TripleParam" minOccurs="0" maxOccurs="unbounded">

<xs:annotation>
<xs:documentation>Tripple method parameter</xs:documentation>

</xs:annotation>
</xs:element>

</xs:sequence>
</xs:complexType>
<xs:complexType name="POType" abstract="true">

<xs:annotation>
<xs:documentation>Abstract Type for Predicate and Object</xs:documentation>

</xs:annotation>
<xs:sequence>

Appendix 109

<xs:element name="method" type="TripleMethod" minOccurs="0">
<xs:annotation>
<xs:documentation>Object Method</xs:documentation>

</xs:annotation>
</xs:element>

</xs:sequence>
<xs:attribute name="xpath" type="xs:string" use="optional">
<xs:annotation>

<xs:documentation>XPath expression</xs:documentation>
</xs:annotation>

</xs:attribute>
<xs:attribute name="const" type="xs:string" use="optional">
<xs:annotation>

<xs:documentation>String constant</xs:documentation>
</xs:annotation>

</xs:attribute>
<xs:attribute name="ref" type="xs:string" use="optional">
<xs:annotation>

<xs:documentation>Predicate reference</xs:documentation>
</xs:annotation>

</xs:attribute>
<xs:attribute name="resource" type="xs:boolean" use="optional">
<xs:annotation>

<xs:documentation>Is predicate a resource?</xs:documentation>
</xs:annotation>

</xs:attribute>
</xs:complexType>
<xs:complexType name="PredicateType">

<xs:annotation>
<xs:documentation>Predicate Type</xs:documentation>

</xs:annotation>
<xs:complexContent>
<xs:extension base="POType"/>

</xs:complexContent>
</xs:complexType>
<xs:complexType name="ObjectType">

<xs:annotation>
<xs:documentation>Object Type</xs:documentation>

</xs:annotation>
<xs:complexContent>
<xs:extension base="POType"/>

</xs:complexContent>
</xs:complexType>
<xs:complexType name="ResourceType">

<xs:annotation>
<xs:documentation>Resource Type</xs:documentation>

</xs:annotation>
<xs:sequence>
<xs:element name="method" type="ResourceMethod" minOccurs="0">

<xs:annotation>
<xs:documentation>Resource Method</xs:documentation>

</xs:annotation>
</xs:element>

</xs:sequence>
<xs:attribute name="xpath" type="xs:string" use="optional">
<xs:annotation>

<xs:documentation>XPath expression</xs:documentation>
</xs:annotation>

</xs:attribute>
<xs:attribute name="const" type="xs:string" use="optional">
<xs:annotation>

<xs:documentation>String constant</xs:documentation>
</xs:annotation>

</xs:attribute>
<xs:attribute name="id" type="xs:string" use="required">

110 Appendix

<xs:annotation>
<xs:documentation>Resource ID</xs:documentation>

</xs:annotation>
</xs:attribute>
<xs:attribute name="var" type="xs:string" use="optional">
<xs:annotation>

<xs:documentation>Resource variable name</xs:documentation>
</xs:annotation>

</xs:attribute>
<xs:attribute name="anonymous" type="xs:boolean" use="optional">
<xs:annotation>

<xs:documentation>Is anonymous resource?</xs:documentation>
</xs:annotation>

</xs:attribute>
</xs:complexType>
<xs:complexType name="AbstractParam" abstract="true">

<xs:annotation>
<xs:documentation>Abstract Parameter Type</xs:documentation>

</xs:annotation>
<xs:attribute name="const" type="xs:string" use="optional">
<xs:annotation>

<xs:documentation>String constant</xs:documentation>
</xs:annotation>

</xs:attribute>
<xs:attribute name="type" type="xs:string" use="required">
<xs:annotation>

<xs:documentation>Java data type</xs:documentation>
</xs:annotation>

</xs:attribute>
<xs:attribute name="xpath" type="xs:string" use="optional">
<xs:annotation>

<xs:documentation>XPath expression</xs:documentation>
</xs:annotation>

</xs:attribute>
</xs:complexType>
<xs:complexType name="ResourceParam">

<xs:annotation>
<xs:documentation>Resource Parameter Type</xs:documentation>

</xs:annotation>
<xs:complexContent>
<xs:extension base="AbstractParam">

<xs:attribute name="var" type="xs:string" use="optional">
<xs:annotation>
<xs:documentation>Variable name</xs:documentation>

</xs:annotation>
</xs:attribute>

</xs:extension>
</xs:complexContent>

</xs:complexType>
<xs:complexType name="TripleParam">

<xs:annotation>
<xs:documentation>Triple Parameter Type</xs:documentation>

</xs:annotation>
<xs:complexContent>
<xs:extension base="AbstractParam">

<xs:attribute name="iter" type="xs:boolean" use="optional">
<xs:annotation>
<xs:documentation>Should be iterated through all XPath results?
Only one parameter must have this attribute set to true.</xs:documentation>

</xs:annotation>
</xs:attribute>
<xs:attribute name="xresultAsVector" type="xs:boolean" use="optional">
<xs:annotation>
<xs:documentation>Is result a vector?</xs:documentation>

</xs:annotation>

Appendix 111

</xs:attribute>
</xs:extension>

</xs:complexContent>
</xs:complexType>
<xs:complexType name="SubjectType">

<xs:annotation>
<xs:documentation>Subject Type</xs:documentation>

</xs:annotation>
<xs:attribute name="ref" type="xs:string" use="required">
<xs:annotation>

<xs:documentation>Subject reference</xs:documentation>
</xs:annotation>

</xs:attribute>
</xs:complexType>

</xs:schema>

112 Appendix

APPENDIX B

MYTUNES SAMPLE ONTOLOGY

Ontology for the MyTunes example introduced in Chapter 3.

<?xml version="1.0"?>
<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:owl="http://www.w3.org/2002/07/owl#"
xmlns="http://example.com/MyTunes#"

xml:base="http://example.com/MyTunes">
<owl:Ontology rdf:about="">

<rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string">
Sample ontology for the illustrative example.

</rdfs:comment>
</owl:Ontology>
<owl:Class rdf:ID="Artist"/>
<owl:Class rdf:ID="Album"/>
<owl:Class rdf:ID="Track"/>
<owl:Class rdf:ID="Event"/>
<owl:ObjectProperty rdf:ID="hasAlbum">

<rdfs:range rdf:resource="#Album"/>
<rdfs:domain rdf:resource="#Artist"/>

</owl:ObjectProperty>
<owl:ObjectProperty rdf:ID="hasTrack">

<rdfs:range rdf:resource="#Track"/>
<rdfs:domain rdf:resource="#Album"/>

</owl:ObjectProperty>
<owl:DatatypeProperty rdf:ID="hasLocation">

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
<rdfs:domain rdf:resource="#Event"/>

</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="year">

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
<rdfs:domain rdf:resource="#Album"/>

</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="hasTitle">

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
<rdfs:domain rdf:resource="#Album"/>

</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="beginTime">

<rdfs:domain rdf:resource="#Event"/>
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

</owl:DatatypeProperty>

113

114 Appendix

<owl:DatatypeProperty rdf:ID="trackNumber">
<rdfs:domain rdf:resource="#Track"/>
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="endTime">

<rdfs:domain rdf:resource="#Event"/>
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="hasArtistName">

<rdfs:domain rdf:resource="#Artist"/>
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="totalTime">

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
<rdfs:domain rdf:resource="#Album"/>

</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="trackTitle">

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
<rdfs:domain rdf:resource="#Track"/>

</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="hasEventName">

<rdfs:domain rdf:resource="#Event"/>
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="playTime">

<rdfs:domain rdf:resource="#Track"/>
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

</owl:DatatypeProperty>
</rdf:RDF>

APPENDIX C

WEESA KB MANAGEMENT ONTOLOGY

WEESA KB ontology in OWL syntax to maintain the WEESA KB in the RDF DB. The use of
the properties is discussed in Section 5.2.3.

<?xml version="1.0"?>
<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns="http://www.infosys.tuwien.ac.at/weesa/kb#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:owl="http://www.w3.org/2002/07/owl#"

xml:base="http://www.infosys.tuwien.ac.at/weesa/kb">
<owl:Ontology rdf:about="">

<rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
>Ontology to maintain the WEESA KB.</rdfs:comment>

</owl:Ontology>
<owl:ObjectProperty rdf:ID="description"/>
<owl:DatatypeProperty rdf:ID="updateEvery">

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#nonNegativeInteger"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="validUntil">

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#unsignedLong"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="lastUpdate">

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#dateTime"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="url">

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#anyURI"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="rdf">

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#anyURI"/>
</owl:DatatypeProperty>

</rdf:RDF>

115

116 Appendix

APPENDIX D

VIF ONTOLOGY

VIF ontology used in the case study discussed in Chapter 6.

<?xml version="1.0"?>
<rdf:RDF

xmlns="http://www.festwochen.at/ontology#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:owl="http://www.w3.org/2002/07/owl#"

xml:base="http://www.festwochen.at/ontology">
<owl:Ontology rdf:about="">

<owl:versionInfo rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
>1.0</owl:versionInfo>
<rdfs:label>Wiener Festwoche Ontology</rdfs:label>

</owl:Ontology>
<owl:Class rdf:ID="PerformingArts">

<rdfs:label xml:lang="en">Performing Arts</rdfs:label>
<rdfs:subClassOf>
<owl:Class rdf:ID="Event"/>

</rdfs:subClassOf>
</owl:Class>
<owl:Class rdf:ID="February1934">

<rdfs:subClassOf>
<owl:Class rdf:about="#Event"/>

</rdfs:subClassOf>
<rdfs:label xml:lang="en">February 1934</rdfs:label>

</owl:Class>
<owl:Class rdf:ID="Exhibition">

<rdfs:subClassOf>
<owl:Class rdf:about="#Event"/>

</rdfs:subClassOf>
<rdfs:label xml:lang="en">Exhibition</rdfs:label>

</owl:Class>
<owl:Class rdf:ID="Ticket"/>
<owl:Class rdf:ID="Festival">

<rdfs:label xml:lang="en">Festival</rdfs:label>
</owl:Class>
<owl:Class rdf:about="#Event">

<rdfs:label xml:lang="en">Event</rdfs:label>
</owl:Class>
<owl:Class rdf:ID="EventDate"/>
<owl:Class rdf:ID="Zeit_zone">

<rdfs:subClassOf rdf:resource="#Event"/>

117

118 Appendix

<rdfs:label xml:lang="en">zeit_zone</rdfs:label>
</owl:Class>
<owl:Class rdf:ID="Music">

<rdfs:label xml:lang="en">Music</rdfs:label>
<rdfs:subClassOf rdf:resource="#Event"/>

</owl:Class>
<owl:Class rdf:ID="Forumfestwochenff">

<rdfs:label xml:lang="en">forumfestwochen ff</rdfs:label>
<rdfs:subClassOf rdf:resource="#Event"/>

</owl:Class>
<owl:Class rdf:ID="Concert">

<rdfs:label xml:lang="en">Concert</rdfs:label>
<rdfs:subClassOf rdf:resource="#Event"/>

</owl:Class>
<owl:ObjectProperty rdf:ID="boughtTicket">

<rdfs:range rdf:resource="#Ticket"/>
<rdfs:domain rdf:resource="#Event"/>

</owl:ObjectProperty>
<owl:ObjectProperty rdf:ID="eventDate">

<rdfs:range rdf:resource="#EventDate"/>
<rdfs:domain rdf:resource="#Event"/>

</owl:ObjectProperty>
<owl:ObjectProperty rdf:ID="hasEvent">

<rdfs:domain rdf:resource="#Festival"/>
<rdfs:range rdf:resource="#Event"/>

</owl:ObjectProperty>
<owl:DatatypeProperty rdf:ID="hasLocation">

<rdfs:domain rdf:resource="#Event"/>
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="endTime">

<rdfs:domain rdf:resource="#EventDate"/>
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#time"/>

</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="directedBy">

<rdfs:domain rdf:resource="#Event"/>
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="hasDescription">

<rdfs:domain rdf:resource="#Event"/>
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="quantity">

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
<rdfs:domain rdf:resource="#Ticket"/>

</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="beginTime">

<rdfs:domain rdf:resource="#EventDate"/>
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#time"/>

</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="ticketShopURL">

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
<rdfs:domain rdf:resource="#Event"/>

</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="beginDate">

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#date"/>
<rdfs:domain rdf:resource="#EventDate"/>

</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="hasFestivalName">

<rdfs:domain rdf:resource="#Festival"/>
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="hasEventName">

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
<rdfs:domain rdf:resource="#Event"/>

Appendix 119

</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="endDate">

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#date"/>
<rdfs:domain rdf:resource="#EventDate"/>

</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="hasLocationName">

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="language">

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
<rdfs:domain rdf:resource="#Event"/>

</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="hasPrice">

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
<rdfs:domain rdf:resource="#Ticket"/>

</owl:DatatypeProperty>
</rdf:RDF>

120 Appendix

BIBLIOGRAPHY

[1] Kal Ahmed, Danny Ayers, Mark Birbeck, Jay Cousins, David Dodds, Josh Lubell,
Miloslav Nic, Daniel Rivers-Moore, Andrew Watt, Robert Worden, and Ann Wrightson.
Professional XML Meta Data. Wrox Press, 2001.

[2] Sofia Alexaki, Vassilis Christophides, Gregory Karvounarakis, Dimitris Plexousakis, and
Karsten Tolle. The ICS-FORTH RDFSuite: Managing voluminous RDF description bases.
In 2nd International Workshop on the Semantic Web (SemWeb’01) at the 10th Interna-
tional World Wide Web Conference, pages 1–13, Hongkong, May 2001.

[3] Bernd Amann, Irini Fundulaki, Michel Scholl, Catriel Beeri, and Anne-Marie Vercoustre.
Mapping XML fragments to community web ontologies. In Proceedings 4th International
Workshop on the Web and Databases, 2001.

[4] Grigoris Antoniou and Frank van Harmelen. A Semantic Web Primer. The MIT Press,
Cambridge, Massachusetts; London, England, 2004.

[5] Peter Barna, Geert-Jan Houben, Flavius Frasincar, and Richard Vdovjak. Semantical
description of models for web design. In Workshop on Application Design, Development
and Implementation Issues in the Semantic Web at the 13th International World Wide
Web Conference, New York, USA, May 2004. CEUR Workshop Proceedings. http:
//CEUR-WS.org/Vol-105/.

[6] Steve Battle. Poster: Round-tripping between XML and RDF. In International Semantic
Web Conference (ISWC), Hiroshima, Japan, November 2004. Springer-Verlag.

[7] Tim Berners-Lee. A roadmap to the Semantic Web. W3C homepage, September 1998.
http://www.w3.org/DesignIssues/Semantic.html.

[8] Tim Berners-Lee, R. Fielding, and L. Masinter. RFC 2396 - uniform resource identifiers
(URI). IETF RFC, August 1998. http://www.ietf.org/rfc/rfc2396.txt.

[9] Tim Berners-Lee, James Hendler, and Ora Lassila. The Semantic Web. Scientific America,
284(5):34–43, 2001.

121

122 Bibliography

[10] C. Mic Bowman, Peter B. Danzig, Darren R. Hardy, Udi Manber, and Michael F.
Schwartz. The harvest information discovery and access system. In 2nd International
World Wide Web Conference, Chicago, Illinois, USA, October 1994.

[11] Dan Brickley and Ramanathan V. Guha eds. RDF Vocabulary Description Language 1.0:
RDF Schema. W3C Recommendation, 10 February 2004. http://www.w3.org/TR/
2004/REC-rdf-concepts-20040210/.

[12] Jeen Broekstra, Arjohn Kampman, and Frank van Harmelen. Sesame: A generic archi-
tecture for storing and querying RDF and RDF Schema. In Proceedings of the First Inter-
national Semantic Web Conference on The Semantic Web (ISWC), pages 54–68. Springer-
Verlag, 2002.

[13] Jeremy J. Carroll, Christian Bizer, Pat Hayes, and Patrick Stickler. Named graphs, prove-
nance and trust. In Proceedings of the 14th International Conference on World Wide Web,
pages 613–622, Chiba, Japan, 2005. ACM Press.

[14] Stefano Ceri, Piero Fraternali, and Aldo Bongio. Web Modeling Language (WebML): a
modeling language for design ing Web sites. In Proceedings of the 9th World Wide Web
Conference, Amsterdam, N etherlands, volume 33 of Computer Networks, pages 137–157.
Elsevier Science B.V, May 2000.

[15] James Clark and Steve DeRose. XML Path Language (XPath) Version 1.0. W3C Recom-
mendation, 16 November 1999. http://www.w3.org/TR/xpath.

[16] The Apache Cocoon project homepage, Last visited February 2005. http://cocoon.
apache.org/.

[17] XSP caching with cocoon head, Last Visited May 2005.
http://wiki.apache.org/cocoon/XSPCachingWithCocoonHEAD.

[18] Dan Connolly, Frank van Harmelen, Ian Horrocks, Deborah L. McGuinness, Peter F.
Patel-Schneider, and Lynn Andrea Stein. DAML+OIL (March 2001) Reference De-
scription. W3C Note, 18 December 2001. http://www.w3.org/TR/daml+
oil-reference.

[19] DAML-ONT initial release, October 2000. http://www.daml.org/2000/10/
daml-ont.html.

[20] Andrea R. de Andrade, Ethan V. Munson, and Maria da G. C. Pimentel. Engineering web
applications with xml and xslt. In Proceedings of the WebMedia & LA-Web 2004 Joint
Conference 10th Brazilian Symposium on Multimedia and the Web 2nd Latin American
Web Congress, pages 86–93, Washington, DC, USA, 2004. IEEE Computer Society.

[21] Andrea R. de Andrade, Ethan V. Munson, and Mariada G. Pimentel. A document-based
approach to the generation of web applications. In Proceedings of the 2004 ACM sympo-
sium on Document engineering, pages 45–47, New York, NY, USA, 2004. ACM Press.

Bibliography 123

[22] Mike Dean and Guus Schreiber eds. OWL Web Ontology Language Reference. W3C
Recommendation, 10 February 2004. http://www.w3.org/TR/owl-ref/.

[23] W3C Document Object Model (DOM) homepage, Last visited March 2005. http://
w3.org/DOM.

[24] Dublin core metadata initiative homepage, Last visited April 2005. http://www.
dublincore.org/.

[25] Jürgen Ebert, Andreas Winter, Peter Dahm, Angelika Franzke, and Roger Süttenbach.
Graph based modeling and implementation with EER/GRAL. In Proceedings of the
15th International Conference on Conceptual Modelling (ER’96), Berlin, Germany, 1996.
Springer-Veralg.

[26] Dave Beckett ed. RDF/XML Syntax Specification (Revised). W3C Recommendation, 10
February 2004. http://www.w3.org/TR/rdf-syntax-grammar/.

[27] Jeff Heflin ed. OWL Web Ontology Language Use Cases and Requirements. W3C Rec-
ommendation, 10 February 2004. http://www.w3.org/TR/webont-req/.

[28] Dieter Fensel, Juergen Angele, Stefan Decker, Michael Erdmann, Hans-Peter Schnurr,
Steffen Staab, Rudi Studer, and Andreas Witt. On2broker: Semantic-based access to
information sources at the www. In Workshop on Intelligent Information Integration at the
International Joint Conference on Artificial Intelligence, Stockholm, Schweden, August
1999.

[29] Matthias Ferdiand, Christian Zirpins, and David Trastour. Lifting xml schema to owl.
In 4th International Conference on Web Engineering, pages 354–358, Munich, Germany,
July 2004.

[30] Zoltán Fiala, Michael Hinz, Geert-Jan Houben, and Flavius Fransincar. Design and im-
plementation of component-based adaptive web presentations. In Proceedings of the
(SAC’04), Nicosia, Cypres, March 2004. ACM.

[31] Martin Gaedke and Guntram Graef. Development and evolution of web-applications using
the webcomposition process model. In International Workshop on Web Engineering at the
9th International WorldWide Web Conference, Amsterdam, the Netherlands, May 2000.

[32] Torsten Gipp and Jürgen Ebert. Conceptual modeling and web site generation using graph
technology. Technical report, Universität Koblenz-Landau, Institut für Informatik, 2001.

[33] GlueX, Last visited April 2005. http://www.javarealm.com/projects.

[34] Jaime Gomez, Christina Cachero, and Oscar Pastor. Conceptual Modeling of Device-
Independent Web Applications. IEEE Multimedia, 8(2):26–39, April-June 2001.

[35] The gzip homepage, Last visited March 2005. http://www.gzip.org/.

124 Bibliography

[36] Siegfried Handschuh and Steffen Staab. Annotation of the shallow and the deep web. In
Siegfried Handschuh and Steffen Staab, editors, Annotation for the Semantic Web, vol-
ume 96 of Frontiers in Artificial Intelligence and Applications, pages 25–45. IOS Press,
Amsterdam, 2003.

[37] Jens Hartmann and York Sure. An infrastructure for scalable, reliable semantic portals.
IEEE Intelligent Systems, 19(3):58–65, May 2004.

[38] Jeff Heflin and James Hendler. Searching the web with SHOE. In Artificial Intelligence
for Web Search. Papers from the AAAI Workshop, pages 35–40, Menlo Park, CA, 2000.
AAAI Press.

[39] Jeff Heflin, James Hendler, and Sean Luke. Shoe: A blueprint for the semantic web.
In Dieter Fensel, James Hendler, Henry Liebermann, and Wolfgang Wahlster, editors,
Spinning the Semantic Web, pages 29–63. The MIT Press, 2003.

[40] Ian Horrocks and Sergio Tessaris. Querying the semantic web: A formal approach. In
Proceedings of the 1st International Semantic Web Conference, Sardinia, Italy, 9-12 June
2002. Springer-Verlag.

[41] HTML 4.01: Definition of the script element, Last visited March 2005. http://www.
w3.org/TR/html401/interact/scripts#edef-SCRIPT.

[42] Eero Hyvönen, editor. Semantic Web Kick-Off in Finland - Vision, Technologies, Research,
and Applications. HIIT Publications, Helsinki, Finland, 2002.

[43] Renato Iannella. Representing vCard objects in RDF/XML. W3C Note 22 February 2001,
2001. http://www.w3.org/TR/vcard-rdf.

[44] Apple ical homepage, Last visited March 2005. http://www.apple.com/ical/.

[45] iCalendar OWL ontology definition, April 7 2004. http://www.w3.org/2002/12/
cal/ical.

[46] Jena - a semantic web framework for java, Last visited April 2005. http://jena.
sourceforge.net/.

[47] Yuhui Jin, Stefan Decker, and Gio Wiederhold. Ontowebber: Model-driven ontology-
based web site management. In Semantic Web Working Symposium (SWWS), Stanford,
California, USA, August 2001.

[48] Yuhui Jin, Sichun Xu, Stefan Decker, and Gio Wiederhold. Managing web sites with
ontowebber. In Proceedings of the 8th International Conference on Extending Database
Technology, pages 766–768, London, UK, 2002. Springer-Verlag.

[49] Aditya Kalyanpur, James Hendler, Bijan Parsia, and Jennifer Golbeck. SMORE - seman-
tic markup, ontology, and RDF editor. Technical report, University of Maryland, 2003.
http://www.mindswap.org/papers/SMORE.pdf.

Bibliography 125

[50] Gregory Karvounarakis, Sofia Alexaki, Vassilis Christophides, Dimitris Plexousakis, and
Michel Scholl. RQL: a declarative query language for RDF. In Proceedings of the 11th
International World Wide Web Conference, pages 592–603. ACM Press, 2002.

[51] Clemens Kerer. XGuide - Concurrent Web Development with Contracts. PhD thesis, TU
Vienna, 2003.

[52] Clemens Kerer and Engin Kirda. Web engineering, software engineering and web appli-
cation development. In 3rd Workshop on Web Engineering at the 9th World Wide Web
Conference, pages 135 – 147, Amsterdam, the Netherlands, May 2000. Springer-Verlag.

[53] Clemens Kerer and Engin Kirda. XGuide - concurrent web engineering with contracts.
In Proceedings of the 4th International Web Engineering Conference (ICWE 2004), pages
88–92, Munich, Germany, 2004. Springer-Verlag.

[54] Reinhold Klapsing. Semantics in web enginieering: Applying the resource description
framework. IEEE Multimedia, 8(2):62–68, April-June 2001.

[55] Reinhold Klapsing and Gustaf Neumann. Applying the resource description framework
to web engineering. In Proceeding of the 1st International Conference on Electronic
Commerce and Web Technologies: EC-Web 2000, Lecture Notes in Computer Science.
Springer-Verlag, 2000.

[56] Michael Klein. Using RDF Schema to interpret XML documents meaningfully. In
Siegfried Handschuh and Steffen Staab, editors, Annotation for the Semantic Web, vol-
ume 96 of Frontiers in Artificial Intelligence and Applications, pages 79–89. IOS Press,
Amsterdam, 2003.

[57] Graham Klyne and Jeremy J. Carroll eds. Resource Description Framework (RDF):
Concepts and Abstract Syntax. W3C Recommendation, 10 February 2004. http:
//www.w3.org/TR/2004/REC-rdf-schema-20040210/.

[58] Fernanda Lima and Daniel Schwabe. Application modelling for the semantic web. In
Proceedings of the 3th International Conference on Web Engineering (ICWE 2003), pages
417–426, Oviedo, Sapin, July 2003. Springer-Verlag.

[59] Sean Luke and Jeff Heffin. Shoe 1.0 proposed specification, 1997. http://www.cs.
umd.edu/projects/plus/SHOE/sepec.hmtl.

[60] Alexander Maedche, Steffen Staab, Nenad Stojanovic, Rudi Studer, and York Sure. SE-
mantic portAL: The SEAL approach. In Dieter Fensel, James Hendler, Henry Lieber-
mann, and Wolfgang Wahlster, editors, Spinning the Semantic Web, pages 317–359. The
MIT Press, 2003.

[61] Frank Manola and Eric Miller. RDF primer. W3C Recommendation, 10 February 2004.
http://www.w3.org/TR/rdf-primer.

126 Bibliography

[62] Deborah L. McGuinness and Frank van Harmelen eds. OWL Web Ontology Language
Overview. W3C Recommendation, 10 February 2004. http://www.w3.org/TR/
webont-features/.

[63] Mindswap project homepage, Last visited April 2005. http://www.mindswap.
org/.

[64] mindswap: Why do we call this the first site on the Semantic Web?, Last visited April
2005. http://www.mindswap.org/first.shtml.

[65] Eero Myvönen, Markus Holi, and Kin Viljanen. Designing an creating a web site based
on RDF content. In Workshop on Application Design, Development and Implementa-
tion Issues in the Semantic Web at the 13th International World Wide Web Conference,
New York, USA, May 2004. CEUR Workshop Proceedings. http://CEUR-WS.org/
Vol-105/.

[66] Natalya F. Noy and Deborah L. McGuinness. ontology development 101:
a guide to creating your first ontology. Stanford University, Last visited
May 2005. http://protege.stanford.edu/publications/ontology
development/ontology101.pdf.

[67] OIL at the on-to-knowledge homepage, 2000. http://www.ontoknowledge.org/
oil/.

[68] Protege ontologies library, Last visited May 2005. http://protege.cim3.net/
cgi-bin/wiki.pl?ProtegeOntologiesLibrary.

[69] Web-ontology (webont) working group. W3C Recommendation, 10 February 2004.
http://www.w3.org/2001/sw/WebOnt/.

[70] PageKit web application framework, Last visited April 2005. http://pagekit.org.

[71] Sean B. Palmer. RDF in HTML: Approaches, June 2002. http://infomesh.net/
2002/rdfinhtml/index.html.

[72] Peter F. Patel-Schneider, Patrick Hayes, and Ian Horrocks eds. OWL Web Ontology
Language Semantics and Abstract Syntax. W3C Recommendation, 10 February 2004.
http://www.w3.org/TR/owl-semantics/.

[73] Peter Plessers and Olga De Troyer. Annotation for the semantic web during website deve-
lopment. In 4th International Conference on Web Engineering, pages 349–353, Munich,
Germany, July 2004.

[74] Peter Plessers and Olga De Troyer. Web design for the semantic web. In Workshop
on Application Design, Development and Implementation Issues in the Semantic Web at
the 13th International World Wide Web Conference, New York, USA, May 2004. CEUR
Workshop Proceedings. http://CEUR-WS.org/Vol-105/.

Bibliography 127

[75] Eric Prud’hommeaux and Andy Seaborne eds. Sparql query language for RDF. W3C
Working Draft, 19 April 2005. http://www.w3.org/TR/rdf-sparql-query/.

[76] Dave Raggett, Arnaud Le Hors, and Ian Jacobs. HTML 4.01 specification. W3C recom-
mendation, 24 December 1999. http://www.w3.org/TR/html4/.

[77] RDF calendar workspace, Last visited March 2005. http://www.w3.org/2002/
12/cal/.

[78] W3C: Frequently Asked Questions about RDF: How do I put some RDF into my HTML
pages?, September 2004. http://www.w3.org/RDF/FAQ/#How.

[79] W3C: RDF issue tracking: Issue faq-html-compliance: The suggested way of in-
cluding RDF meta data in HTML is not compliant with HTML 4.01 or XHTML,
January 2004. http://www.w3.org/2000/03/rdf-tracking/\symbol{35}
faq-html-compliance.

[80] RDQL - RDF data query language, Last visited March 2005. http://www.hpl.hp.
com/semweb/rdql.htm.

[81] Gerald Reif, Harald Gall, and Mehdi Jazayeri. Towards semantic web engineering:
WEESA - Mapping XML Schema to ontologies. In Workshop on Application Design,
Development and Implementation Issues in the Semantic Web at the 13th International
World Wide Web Conference, New York, USA, May 2004. CEUR Workshop Proceedings.
http://CEUR-WS.org/Vol-105/.

[82] Gerald Reif, Harald Gall, and Mehdi Jazayeri. Using WEESA - to Semantically Annotate
Cocoon Web Applications. Technical Report TUV-1841-2005-31, Distributed Systems
Group, Vienna University of Technology, 2005. http://www.infosys.tuwien.
ac.at/weesa/TUV-1841-2005-51.pdf.

[83] Gerald Reif, Harald Gall, and Mehdi Jazayeri. WEESA - Web Engineering for Semanitc
Web Applications. In Proceedings of the 14th International World Wide Web Conference,
pages 722–729, Chiba, Japan, May 2005.

[84] RFC 2445: Internet calendaring and scheduling core object specification (icalendar). IETF
RFC, November 1998. http://www.ietf.org/rfc/rfc2445.txt.

[85] RFC 3870: Application/rdf+xml media type registration. IETF RFC, September 2004.
http://www.ietf.org/rfc/rfc3870.txt.

[86] The web robots pages. http://www.robotstxt.org/wc/robots.html.

[87] SAX, simple API for XML homepage, Last visited March 2005. http://www.
saxproject.org/.

128 Bibliography

[88] Daniel Schwabe, Gustavo Rossi, and Simone D. J. Barbosa. Systematic hypermedia ap-
plication design with oohdm. In HYPERTEXT ’96: Proceedings of the the seventh ACM
conference on Hypertext, pages 116–128, New York, NY, USA, 1996. ACM Press.

[89] Daniel Schwabe, Guilherme Szundy, and Fernanda Lima Sabrina de Moura. Design
and implementation of semantic web applications. In Workshop on Application Design,
Development and Implementation Issues in the Semantic Web at the 13th International
World Wide Web Conference, New York, USA, May 2004. CEUR Workshop Proceedings.
http://CEUR-WS.org/Vol-105/.

[90] World Wide Web Consortium (W3C) Semantic Web activity homepage. http://w3c.
org/sw.

[91] Seminar: Semantic web kick-off in finland - vision, technologies, research, and appli-
cations, November 2001. http://www.cs.helsinki.fi/u/eahyvone/stes/
semanticweb/kick-off/proceedings.html.

[92] The SeRQL query language, rev. 1.1. User Guide for Sesame, Release 1.1.1, Last visited
March 2005. http://www.openrdf.org/doc/users/ch06.html.

[93] Sesame RDF database homepage at openRDF.org, Last visited March 2005. http://
www.openrdf.org/.

[94] The SHOE knowledge annotator, Last visited April 2005. http://www.cs.umd.
deu/projects/plus/SHOE/nowledgeAnnotator.html.

[95] Michael Sintek and Stefan Decker. Triple - a query, inference, and transformation lan-
guage for the semantic web. In Proceedings of the First International Semantic Web
Conference on The Semantic Web, Sardinia, Italy, 9-12 June 2002. Springer-Verlag.

[96] The mozilla sunbird project, Last visited March 2005. http://www.mozilla.org/
projects/calendar/sunbird.html.

[97] World Wide Web Consortium (W3C) homepage. http://w3c.org.

[98] Robert Worden. Meaning Definition Language (MDL), Version 2.06, July 2002. http:
//www.charteris.com/XMLToolkit/Downloads/MDL206.pdf.

[99] XHTML 1.0 the extensible hypertext markup language (second edition). W3C recom-
mendation, 1 August 2002. http://www.w3.org/TR/xhtml1/.

[100] Apache XML-RPC project homepage, Last visited March 2005. http://ws.apache.
org/xmlrpc/.

[101] XML-RPC home page, Last visited March 2005. http://www.xmlrpc.com/.

[102] XML server pages, Last visited April 2005. http://cocoon.apache.org/2.1/
userdocs/xsp/.

Bibliography 129

[103] Lei Zhang, Yong Yu, Jian Zhou, ChenXi Lin, and Yin Yang. An enhanced model for
searching in semantic portals. In Proceedings of the 14th international conference on
World Wide Web, pages 453–462, Chiba, Japan, 2005. ACM Press.

