
An Architecture for a Semantic Portal

Gerald Reif and Harald Gall

University Zurich, Department of Informatics, 8057 Zurich, Switzerland
{reif,gall}@ifi.unizh.ch,

WWW home page: http://seal.ifi.unizh.ch/

Abstract. Current Web applications provide their information and func-
tionalities to human users only. To make Web applications also accessi-
ble for machines, the Semantic Web proposes an extension of the current
Web, that describes the semantics of the content and the services ex-
plicitly with machine-processable meta-data. In this paper we introduce
an architecture of a Semantic Portal that provides a unique front-end
to the information and functionalities of individual Semantic Web appli-
cations. To realize the portal we use WEESA to semantically annotate
Web applications and provide the annotations in a knowledge base (KB)
for download and querying. Based on that, the Semantic Harvester col-
lects the KBs from individual Semantic Web applications to build the
global KB of the Semantic Portal. Finally, we use Semantic Web ser-
vices to make the portal a unique interface to the services of the Web
applications.

1 Introduction

Traditional Web applications serve two main purposes. First, to provide the
information presented on Web pages to the user and second as user interface
to a back-end software application such as a shopping application or a Web
mail client. In both cases humans are the ones who consume the information or
operate the application. Machines do not have access to the information and the
functionalities.

For this reason, the Semantic Web introduces an extension of the current
Web to make the content and the functionality accessible to machines. To make
the content machine-accessible, Web pages are semantically annotated with RDF
meta-data. To enable machines to access the functionality, Semantic Web Ser-
vices are used. Semantic Web Services enable the formal specification of services,
allowing their automated, goal-driven discovery and usage [5].

In this paper we sketch out an architecture of a Semantic Portal that provides
a common front-end to the information and functionality of individual Semantic
Web applications. As scenario to illustrate the Semantic Portal in this paper
we take the domain of cultural events. In the subsequent sections we introduce
step by step the parts of the architecture and highlight the added value gained
by the use of Semantic Web technologies. Parts of this architecture are already
implemented in the WEESA project, other parts are still future work.

In Section 2 we start with the semantic annotation of Web applications and in
Section 3 we propose to provide these annotations in a knowledge base (KB) for
download and querying. In Section 4 we introduce the Semantic Harvester which
is used to dowload the KBs from the individual Semantic Web applications in the
domain and to integrate the collected meta-data in the global KB of the Semantic
Portal. In Section 5 we use Semantic Web Services to enable the Semantic Portal
to access the functionality of the Web applications and Section 6 concludes the
paper.

2 Semantic Annotation of Web Pages

As a first step towards Semantic Web applications, the Web pages have to be
semantically annotated with RDF meta-data. This enables machines to have
access to the content of the pages. Several tools such as the SHOE Knowledge
Annotator [9], the CREAM OntoMat [8], and SMORE [10] have been proposed
to support the user when annotating existing Web pages. To manually annotate
Web pages is only feasible if the number of Web pages is small and the content
does not change frequently.

To annotate dynamic Web pages, that obtain their content from a background
logic such as a database, the annotation process should be integrated in the
engineering process of the Web application. During the engineering of a Web
application, information items can be identified more easily than in the generated
HTML Web pages. Once the information item is identified, it is mapped to a
concept defined in the ontology. For example, the result of a database query is
mapped to a property in the ontology, to indicate that a new RDF statement
has to be generated with the query result as value for the property.

In the WEESA project (WEb Engineering for Semantic web Applications) [18,
19] we developed a technique to integrate the semantic annotation task of an
XML based Web application into the engineering process. XML based Web appli-
cations use XML documents for the content and XSLT stylesheets to transform
the XML document into the HTML Web page. In WEESA we do not annotate
the HTML page, since it is hard to identify information items in the HTML
code that mainly describes the graphical appearance of the Web page. Instead,
we annotate the XML document whose semi-structured nature makes it easier
to identify information items. In WEESA the structure of the XML document
is used to identify XML elements/attributes which are mapped to concepts in
an ontology. The mapping definition is a manual process that has be done when
developing the Web application. The mapping is then taken to automatically
generate RDF meta-data from XML content documents.

At the design level of the Web application only the structure of the XML
document is known and no XML document instances are available. Therefore
we use the structure information from the XML Schema to define the mapping
to the ontology. Figure 1 shows the definition of the WEESA mapping at the
design level of the Web application and how this mapping is used at instance
level to automatically generate RDF meta-data and the HTML page from XML

Instance Level

Design Level

Semantic Web page

XML Schema

XML document

RDF description

OntologyWEESA
mapping
definition

HTML Web page

generate
 via
WEESA

generate
via XSLT

valid
uses concepts

associate

Fig. 1. Definition of the WEESA mapping at the design level and RDF meta-data
generation at the instance level.

documents. Finally, the HTML page and its RDF meta-data description have
to be associated (e.g. the HTML page links to its RDF description) [16]. To
allow developers to easily take advantage of WEESA, we integrated the WEESA
meta-data generator in the Apache Cocoon Web development framework [4]. A
detailed description of WEESA can be found in [18, 19].

Once the Web pages are semantically annotated, the content can be further
processed by other applications without loosing its semantics. For example, we
developed a Semantic Clipboard [15] that can be used to copy and paste the RDF
annotations of Web pages to desktop applications. In contrast to the clipboards
of current operating systems, the Semantic Clipboard preserves the meaning of
the data. For example, a Web application for cultural events offers an online
ticket store. When a user buys a ticket and wants to enter the event into his
calendar, he has to manually create the new calendar entry. With the Semantic
Clipboard the user can directly copy and paste the ticket receipt Web page to
the calendar and the entry is generated automatically.

3 Meta-Data Model of the Web Application

Looking at the meta-data of a single Web page, however, gives only a limited
view on the available meta-data. For querying and reasoning purposes it is better
to have the meta-data model of the whole Web application as knowledge base
(KB) at hand. The same strategy is followed in search engines on the Web. A
query is answered with the help of an indexed cache and not by starting to
extract information from pages on the Web.

Ontobroker [7], SEAL [11], and SHOE [9] use a KB to enable reasoning and
database-like queries. CREAMS’s OntoMat [8] uses the knowledge base to assist
the semantic annotation from documents. All the systems mentioned above use a

Web crawler to build their KB. The Web crawler periodically collects information
from semantically annotated Web pages and adds the meta-data to the KB.

Using a crawler enables that the Web application and the application using
the KB are loosely coupled and can be distributed over the Internet. This loose
coupling, however, makes it difficult to track the deletion or update of a Web
page. The KB can therefore become inconsistent with the actual information
available on the Web server.

To overcome this inconsistency problem we suggest to generate the KB on
the server side and to offer the KB as a Web Service for querying. In the WEESA
project we extended the WEESA meta-data generator to not only generate the
RDF graph, but write the generated meta-data to the KB [18]. The accumulated
meta-data in the KB is then offered as service for SPARQL queries [17]. In
addition a snapshot of the KB is be offered in compressed format for download
by clients. In this case the KB of a Web application can be downloaded as a single
stream rather than requiring separate requests for every single Web page. This
follows the idea proposed by the Harvester search engine architecture [1] where
the index of Web applications is created locally at server side and is then offered
to brokers for download. The download of the KB, however, leads again to the
inconsistency problem discussed above. But still, if the downloaded KB and the
query service to the KB offered by the Semantic Web application are used in
symbiosis, the application can benefit from it. Static information that does not
change frequently can be retrieved from the local copy of the KB without online
access to the Web application. Dynamic information that changes frequently can
be retrieved from the query service on demand.

This loose coupling between the Web application and the KB, however, leads
to problems when maintaining the meta-data model and keeping it up-to-date.
In the following we discuss these problems and our solution in detail. Figure 2
shows the components that are responsible to keep the KB up-to-date.

Populating the KB: With the proposed procedure the KB is incrementally
filled. Each time a Web page is requested its meta-data is written to the KB.
This means, we initially start with an empty KB. To generate the KB of the
whole Web application, each available Web page has to be requested. We
use the Cocoon command line interface for this purpose. A built-in Cocoon
crawler follows every internal link, requests the Web page, and therefore
causes the meta-data generation. This is used to initially fill the KB.

Page Deletion Handling: When a Web page has been deleted, the corre-
sponding RDF statements have to be removed from the KB. Therefore, the
KB management has to be informed, when a requested Web page cannot be
found. In this case the Web server sends a 404 “not found” page back to the
client. In the Cocoon configuration we can catch the “not found” event and
inform the KB management about the URL of the page that was not found.
The KB management can then cause the deletion of all RDF statements that
originated from this Web page. To do so, the KB management has to be able
to identify the RDF statements that were generated for a given URL. This

Knowledge Base

KB Management

Web
Browser

Web Application

RDF
Database

404 Handling

Update Daemon

Snapshot Daemon

Query ServiceCompressed KB
snapshot

XSLT
Transforamtion

XML Documen

Annotated Web page

HTML RDF

Software Agent

WEESA
Meta-Data
Generator

Fig. 2. Accumulating the meta-data of all Web pages in the KB of the Web application.

means we have to store the origin information of each RDF statement in the
KB. This is done using RDF named graphs [3].

Content Change Handling: When an editor changes the content of a Web
page, he typically browses to the page and check for the correct presentation
of the changes. In this case, the RDF meta-data is generated and an update
in the KB is issued. The update first removes all RDF statements from the
KB that originated from the Web page with the given URL and adds the
newly generated meta-data.
However, if the content of the background database of the Web application
is changed and the dynamic Web page that is based on the database is not
queried, no update to the KB is issued and the KB becomes inconsistent
with the content of the Web application. To avoid this, we add the last
modification time and the update interval to the RDF statements for each
Web page. This enables the Update Daemon in the KB management to
periodically check for outdated RDF statements and to issue an update with
the data from the Web application.
An attribute in the WEESA mapping definition is used to define the update
interval. The update interval informs the Update Daemon about the fre-
quency the RDF statements that originated from this mapping definitions
have to be updated. For static pages the update attribute can be omitted.
In this case, the update daemon does not check for updates for this kind of
Web page.

Filtered Meta-model building: It is not necessary to add the meta-model of
each Web page to the KB of the Web application. For example, the meta-
data of the personal shopping cart page should not be added. But adding
meta-data to such a page is still useful. Therefore an attribute is added to
the WEESA mapping definition to instruct the WEESA meta-data generator
not to write the meta-data to the KB for these types of pages.

Providing access to up-to-date information: When a snapshot of the KB
is downloaded by a client and queried locally, the local copy of the KB
and the actual data of the Web application may become inconsistent. For
some types of information this is not a problem since it is rather static
and does not change often. The composer and the name of an opera are
examples of information that does not change often. However, other types
of information such as the number of available seats of a performance might
change frequently and it may be necessary to have access to latest data from
the Web application. Therefore we use RDF named graphs to store the URL
to the RDF graph of the Web page. This way the client is able to request
the actual RDF graph on demand.

To keep the Semantic Web application scalable, the Cocoon caching mech-
anism is used. When the XML document, the Web page is based on, has not
been changed since the last request, the subsequent requests are served by the
Cocoon cache. This way the WEESA meta-data generator is not processed and
no update is issued to the KB.

4 Using the Semantic Harvester to build the KB for a
Semantic Portal

In the previous section we argued that providing the meta-data descriptions of
all Web pages in a KB enables database-like queries against the Semantic Web
application. We further provide software agents the possibility to download a
snapshot of the KB for local processing. In this section we introduce the Semantic
Harvester that is used to build the global KB of a Semantic Portal.

The goal of the Semantic Portal is to offer a unique front-end to individual
Web applications in a specific domain, for example cultural events. The portal
integrates information from several Web applications and presents this informa-
tion in a unique style on its Web pages. The portal further enables the user to
issue database-like queries not only to a single Web application but to all Web
applications that contribute to the portal.

To contribute to the Semantic Portal, Semantic Web applications have to
fulfill two requirements. First, they have to be from the same domain and use the
same ontologies to annotate their Web pages or ontologies that can be mapped
to the ontologies used by the portal [6]. Second, the Web application has to offer
its meta-data in a KB for querying and download, as introduced in the previous
section.

To build the KB of the Semantic Portal we use the Semantic Harvester. The
Semantic Harvester is based on the idea of the Harvester search engine archi-
tecture [1]. Semantic Web applications that want to contribute to the Semantic
Portal register at the Semantic Harvester. The Harvester then downloads peri-
odically the compressed snapshot of the KB of each registered Web application
and integrates the meta-data into the global KB of the Semantic Portal. If a Web
application uses an ontology for their semantic annotation that is different to the

Web
Browser

Semantic Portal

Global KB

Web
Application

Semantic Web
Application 1

KB

Query
Service

Web
Application

Semantic Web
Application 4

KB

Query
Service

Web
Application

Semantic Web
Application 2

KB

Query
Service

Web
Application

Semantic Web
Application 3

KB

Query
Service

Web
Application

Semantic
Harvester

1

2
3

Fig. 3. Architecture of of the Semantic Portal infrastructure.

one used by the portal, ontology mediation is used to integrate the meta-data
into the global KB [2, 13]. Figure 3 shows the Semantic Harvester that generates
the global KB of the Semantic Portal.

The Web front-end of the Semantic Portal uses the global KB, that was cre-
ated by the Semantic Harvester, to generate its Web pages in a unique look and
feel. The user does not recognize that the presented information originates from
different sources. The user interaction with the portal is indicated by arrow 1 in
Figure 3. This way the portal can provide database-like queries over distributed
individual Web applications. For example, our cultural portal is able to offer a
search interface for an event in a given city on a given date over all involved Web
application.

Depending on the domain, some information is rather static whereas other
information changes frequently. Since the programmer of the Semantic Portal
knows the domain and the ontologies that are used to model the domain, he
knows which information is static or dynamic. Static information can be di-
rectly taken from the global KB. Dynamic information, for example if tickets
are available for a given event, changes frequently and is therefore retrieved
directly from the Semantic Web application via the Query Service (shown by
arrow 2 in Figure 3). When a user in the next step wants to know the source
of the information, the portal uses the origin information in the KB that was
added using RDF named graphs, to redirect the user to the Web application
that provides the according Web page. This interaction is shown by arrow 3 in
Figure 3. The user now can, for example, buy tickets for the selected event.

Web
Browser

Semantic Portal

Global KB

Web
Application

Semantic
Harvester

1

2

Semantic Web
Application 1

KB

Query
Service

Web
Application

Semantic
Web Service

3

Semantic Web
Application 2

KB

Query
Service

Web
Application

Semantic
Web Service

Semantic Web
Application 3

KB

Query
Service

Web
Application

Semantic
Web Service

Semantic Web
Application 4

KB

Query
Service

Web
Application

Semantic
Web Service

Fig. 4. Architecture of the Semantic Portal using Semantic Web Services.

5 Semantic Web Service

In the Semantic Web application we sketched out so far, only the information is
accessible for machines. The services the Web application offers, for example the
online ticket store, can still only be used by human users. The Semantic Portal,
introduced in the previous section, does not have access to the service. To make
the service machine accessible the service has to be described as a Semantic Web
Service. The semantic markup of Web Services provides a declarative, computer-
processable API for selecting and executing a service [12].

To make the services of the Web applications accessible by the Semantic
Portal, we propose to add the semantic service description to the compressed
snapshot of the KB. This way the Semantic Harvester downloads the service
description of all contributing Semantic Web applications and the Semantic por-
tal has access to the services descriptions without consulting a service discovery
service first.

Several languages have been proposed to the W3C to specify a Semantic Web
Service: the OWL Web Ontology Language for Services (OWL-S) [14], the Web
Service Modeling Ontology (WSMO) [22], the Semantic Web Services Framework
(SWSF) [20], and the Web Service Semantics - WSDL-S [21]. Since we have not
yet started to implement the Semantic Web Service part we have no yet decided
which language we are going to use.

Once the functionality of the Web application is described with semantic
markup as a Semantic Web Service, the Semantic Portal can directly offer the
services on the portal sites without redirecting the task to the Web application.

The Semantic Portal can therefore offer a unique interface to the functionality
of the contributing Semantic Web application. This is shown with arrow 3 in
Figure 4. Taking our cultural portal example, the portal can offer a common user
interface to the online ticket shops of all involved Semantic Web applications. It
becomes transparent for the user which Web application he is using.

6 Conclusion

In this paper we introduced the architecture for a Semantic Portal which provides
a common interface to the content and services of the Web applications in a given
domain. We discussed step by step the requirements to the Web applications
to offer their functionality via the portal site. The Web applications have to
provide semantically annotated Web pages that use the same ontologies for their
annotations or ontologies that can be mapped to the ontologies used by the portal
and and offer their annotations in a KB for querying and download. In addition,
the functionality of the Web application is described with Semantic markup as
a Semantic Web Service. This way the Semantic Portal can provide database-
like queries and a common interface to the services of individual Semantic Web
applications.

References

1. C. M. Bowman, P. B. Danzig, D. R. Hardy, U. Manber, and M. F. Schwartz. The
harvest information discovery and access system. In 2nd International World Wide
Web Conference, Chicago, Illinois, USA, October 1994.

2. A. E. Campbell and S. C. Shapiro. Ontolic mediation: An overview. In Proceedings
of the IJCAI95 Workshop on the Basic Ontological Issues in Knowledge Sharing,
Montreal, Canada, 1995.

3. J. J. Carroll, C. Bizer, P. Hayes, and P. Stickler. Named graphs, provenance and
trust. In Proceedings of the 14th International Conference on World Wide Web,
pages 613–622, Chiba, Japan, 2005. ACM Press.

4. The Apache Cocoon project homepage, Last visited February 2005. http:

//cocoon.apache.org/.
5. J. de Bruijn, D. Fensel, U. Keller, and R. Lara. Using the web service modeling

ontology to enable semantic e-business. Communications of the ACM, 48(12):43–
47, 2005.

6. M. Ehrig, J. Euzenat, E. Franconi, P. Hitzler, M. Krötzsch, L. Serafini, G. Stamou,
Y. Sure, and S. Tessaris. D2.2.1 v2 specification of a common framework for
characterizing alignment. Technical report, Knowledge Web, 2005.

7. D. Fensel, J. Angele, S. Decker, M. Erdmann, H.-P. Schnurr, S. Staab, R. Studer,
and A. Witt. On2broker: Semantic-based access to information sources at the
www. In Workshop on Intelligent Information Integration at the International
Joint Conference on Artificial Intelligence, Stockholm, Schweden, August 1999.

8. S. Handschuh and S. Staab. Annotation of the shallow and the deep web. In
S. Handschuh and S. Staab, editors, Annotation for the Semantic Web, volume 96
of Frontiers in Artificial Intelligence and Applications, pages 25–45. IOS Press,
Amsterdam, 2003.

9. J. Heflin, J. Hendler, and S. Luke. Shoe: A blueprint for the semantic web. In
D. Fensel, J. Hendler, H. Liebermann, and W. Wahlster, editors, Spinning the
Semantic Web, pages 29–63. The MIT Press, 2003.

10. A. Kalyanpur, J. Hendler, B. Parsia, and J. Golbeck. SMORE - semantic markup,
ontology, and RDF editor. Technical report, University of Maryland, 2003. http:
//www.mindswap.org/papers/SMORE.pdf.

11. A. Maedche, S. Staab, N. Stojanovic, R. Studer, and Y. Sure. SEmantic portAL:
The SEAL approach. In D. Fensel, J. Hendler, H. Liebermann, and W. Wahlster,
editors, Spinning the Semantic Web, pages 317–359. The MIT Press, 2003.

12. S. A. McIlraith, T. C. Son, and H. Zeng. Semantic web services. IEEE Intelligent
Systems, pages 46–53, March/April 2001.

13. N. F. Noy and M. A. Musen. Evaluating ontology-mapping tools: Requirements and
experience. In Proceedings of OntoWeb-SIG3 Workshop at the 13th International
Conference on Knowledge Engineering and Knowledge Management, Siguenza,
Spain, 2002.

14. OWL web ontology language for services (OWL-S). Submission request to W3C,
Last visited March 2006. http://www.w3.org/Submission/2004/07/.

15. R. Paizoni. Semantic clipboard. Master’s thesis, Vienna University of Technology,
2005.

16. S. B. Palmer. RDF in HTML: Approaches, June 2002. http://infomesh.net/

2002/rdfinhtml/index.html.
17. E. Prud’hommeaux and A. S. eds. SPARQL query language for RDF. W3C

Working Draft, 19 April 2005. http://www.w3.org/TR/rdf-sparql-query/.
18. G. Reif. WEESA - Web Engineering for Semantic Web Applications. PhD the-

sis, TU Vienna, 2005. http://seal.ifi.unizh.ch/fileadmin/User Filemount/

Publications/reif-phdthesis05.pdf.
19. G. Reif, H. Gall, and M. Jazayeri. WEESA - Web Engineering for Semanitc

Web Applications. In Proceedings of the 14th International World Wide Web
Conference, pages 722–729, Chiba, Japan, May 2005.

20. Semantic web services framework (SWSF). Submission request to W3C, Last
visited March 2006. http://www.w3.org/Submission/2005/07/.

21. Web service semantics - WSDL-S. Submission request to W3C, Last visited March
2006. http://www.w3.org/Submission/2005/10/.

22. Web service modeling ontology (WSMO). Submission request to W3C, Last visited
March 2006. http://www.w3.org/Submission/2005/06/.

