
Classifying Change Types for Qualifying Change Couplings

Beat Fluri and Harald C. Gall
s.e.a.l. – software evolution and architecture lab

Department of Informatics
University of Zurich, Switzerland
{fluri,gall}@ifi.unizh.ch

Abstract

Current change history analysis approaches rely on in-
formation provided by versioning systems such as CVS.
Therefore, changes are not related to particular source code
entities such as classes or methods but rather to text lines
added and/or removed. For analyzing whether some change
coupling between source code entities is significant or only
minor textual adjustments have been checked in, it is es-
sential to reflect the changes to the source code entities.
We have developed an approach for analyzing and classi-
fying change types based on code revisions. We can dif-
ferentiate between several types of changes on the method
or class level and assess their significance in terms of the
impact of the change types on other source code entities
and whether a change may be functionality-modifying or
functionality-preserving. We applied our change taxonomy
to a case study and found out that in many cases large num-
bers of lines added and/or deleted are not accompanied by
significant changes but small textual adaptations (such as
indentation, etc.). Furthermore, our approach allows us to
relate all change couplings to the significance of the iden-
tified change types. As a result, change couplings between
code entities can be qualified and less relevant couplings
can be filtered out.

1. Introduction

One effective way to overcome or avoid the negative ef-
fects of software aging is by placing change in the center
of the software development process. In particular, under-
standing the nature of fine-grained source code changes can
help comprehending software evolution.

Current change history analysis approaches rely on in-
formation provided by versioning systems such as CVS.
Versioning systems usually track changes for files on a text
basis and are unable to enrich changes with source code
structure information. That means, changes in CVS are

not explicitly associated with particular source code enti-
ties such as methods or classes without reconstructing the
change location as done by [28]. Moreover, changes may
be reported although no source code entity was modified.
For understanding source code changes, reconstructing the
changed method or class is insufficient, because changes on
a particular source code entity can modify its behavior and
further have different impacts on other entities. Such a clas-
sification of source code changes is desirable, bot not pos-
sible with a text diff approach. Existing works such as [19]
and [22] have shown that classifying source code changes
is needed to help increasing the change impact awareness.

In this paper, we present a taxonomy of source code
changes to be used for our further change analysis. We
define source code changes according to tree edit opera-
tions in the abstract syntax tree and classify each change
type with a significance level that expresses how strong a
change may impact other source code entities and whether
a change may be functionality-modifying or functionality-
preserving. This classification allows us to assess source
code entities enabling further software evolution analysis:
it can be used to qualify error-proneness of source code en-
tities, assess change couplings [18], or identify programmer
clean-up patterns [6].

In particular, we focus on the definition of change types
as well as the significance level classification and describe
the potential of our approach using ArgoUML as case
study. We implemented our approach as the Eclipse plugin
CHANGEDISTILLER, and show how the significance level
of changes relates to the lines added/removed information
provided by CVS. Additionally, we show how change cou-
plings can be better qualified with our classification.

The remainder of this paper is organized as follows. In
Section 2 we describe the concepts and the taxonomy of
source code changes. Section 3 defines a set of source code
changes and assigns a significance level to each of them.
The implementation of CHANGEDISTILLER is presented in
Section 4 and is used for a validation of our taxonomy in
Section 5. We discuss related work in Section 6 and finalize
with our conclusions in Section 7.

2. A Taxonomy of Source Code Changes

Our taxonomy of source code changes defines source
code change types with tree edit operations on the abstract
syntax tree. Further, it classifies these change types accord-
ing to a significance level schema. In this section we present
how the change types are defined and how they are classi-
fied. The definitions and corresponding significance level
of the chosen set of source code changes is presented in
Section 3.

2.1. Change Types

The taxonomy of source code changes given in this
paper focuses on object-oriented programming languages
(OOPLs)—in particular for Java. By adjusting the change
descriptions the taxonomy can also be used for other
OOPLs.

In most OOPLs the concept class defines the framework
for encapsulating functionality and state. In our taxonomy,
a class is divided into body- and declaration-parts: class
body and method body as well as class declaration, attribute
declaration, and method declaration. We are interested in
changes in both parts, e.g., the parameter type of the method
declaration has changed or the assignment was moved out-
side an if-statement.

Level of Granularity

Our taxonomy of source code changes is based on the ab-
stract syntax tree (AST). The smallest entities used are
statements; structure statements such as loop or control
structures are more coarse-grained than normal statements
and are treated separately.

We use the term source code entity representable for all
language constructs provided by an OOPL, such as single
and composed statements as well as method or class dec-
larations. In an AST these source code entities are either
sub-ASTs or leafs. For our taxonomy, ASTs consist of en-
tity nodes with labels and values. The label represents the
kind of source code entity, the value its textual represen-
tation depending on the kind of entity. For instance, the
method invocation statement is a leaf node. The label of the
corresponding entity node is ’method invocation’ and the
value is the method invocation as a string.

For the technical notation of entity nodes we use the ter-
minology of Chawathe et al. [2]. That means, for a node x,
l(x) denotes the label of x, v(x) denotes the value of x, and
p(x) denotes the parent of x, if x is not the root. Children of
an ordered entity tree node u are indexed, 〈v1, ..., vm〉, i.e.,
a sequence of nodes. We call vi the ith child of u.

We distinguish between ordered and unordered entity
trees. In most object-oriented languages such as Java or

C++, methods or attributes of a class, i.e., its children en-
tity trees, do not have a particular order. Statements inside
a method must have an order.

Basic Operations

Since ASTs are rooted trees and since source code changes
transform an AST, the basis for source code changes are el-
ementary tree edit operations. The detection of source code
changes falls into the tree edit distance problem.

According to [24] the elementary tree edit operations are
insert, delete, and substitute of a tree node. Insert and delete
operations are only allowed on leaf nodes. Substitution is a
form of replacement of a tree node v with another, existing
node w. In our taxonomy of source code changes, we use a
weaker kind of substitution. The statements (i.e., nodes) are
not replaced with other statements, but their values are up-
dated. Consider an if-statement with a certain condition. By
changing the condition of the if-statement, the value of the
entity node is updated with the new condition. The advan-
tage of this terminology is that the entity tree (entity node
and its subtrees) of the if-statement remains the same. The
update operation is applied on the value of an entity node.
That means, for instance, that changing the then-block of an
if-statement is not an update of the if-statement.

Move operations can be described as a combination of an
insert and a delete operations. In the context of source code
change we may give the move operation more importance,
e.g., changing the order of statements to gain performance.
We include the move operation in the elementary tree edit
operations.

Our current implementation of the source code change
classification is based on the change detection algorithm of
Chawathe et al. in [2]. The change types used for our clas-
sification are built upon the output of this algorithm. We use
a similar definition of the elementary tree edit operations as
Chawathe et al..

In our taxonomy we use the subscripts old and new to
describe the values of the subscripted variable before and
after the change.

• Insert: INS((l, v), y, k); new leaf node with label l and
value v as kth child of node y.

• Delete: DEL(x); delete node x from its parent p(x).

• Move: MOV(x, y, k); node x becomes the kth child of
y and is deleted from p(x) iff pold(x) 6= y.

• Update: UPD(x, val); update v(x) with val, i.e.,
val = vnew(x) and vold 6= vnew.

Each change type is defined in the following format:

X denotes the Y Z.

“X” is written in small caps and is the name of the de-
fined change type. “Y” is the name of the elementary tree
edit operation and “Z” the tree edit operation applying the
change.

2.2. Significance of Changes

Our classification of source code changes defines how
significant a certain change is. The significance level of
a change is defined as the impact of the change on other
source code entities, i.e., how likely is it that other source
code entities have to be changed, when a certain change is
applied. Additionally, whether a change is functionality-
preserving or functionality-modifying also influences the
significance level of a change. If a change modifies the
functionality of the enclosing entity, it is functionality-
modifying, otherwise functionality-preserving. For in-
stance, although a renaming strongly induces other changes,
it does not (or should not) change the functionality of a pro-
gram. Note, that functionality-modifying or -preserving re-
lates to a single change. By all means it is possible that
a set of functionality-modifying changes is functionality-
preserving for the corresponding program.

To classify the significance of a source code change, we
use the significance levels low, medium, high, and crucial.
Local changes, such as changes in a method body, are con-
sidered to have a low or medium significance level, whereas
changes on the interface of a class have a high or crucial
significance level. For instance, if a parameter name of a
method signature is changed, each access of this param-
eter inside the method body has to be changed. Indeed,
such a change induces many other changes and according
to its impact the significance level is high. However it
does not change the functionality of the method. Therefore,
we define the significance level of parameter renaming as
medium.

3. Source Code Changes

This section presents the chosen set of source code
change types. Each source code change is defined as a sin-
gle or a set of basic tree edit operations. In each defini-
tion the significance level of a change is motivated and de-
fined. We start with body-part changes from fine- to coarse-
grained entities and finish with declaration changes. A com-
prehensive overview of the change types and their classifi-
cation is given in Appendix A.

3.1. Body-Part Changes

Method Body Changes

Method body changes are changes on the entities control
structure, loop structure, and statement. Although program-

ming languages may have different loop structures, they are
all reducible to the simplest loop form (e.g., while) and are
not treated separately; similar for control structures, e.g.,
switch-case structure can be expressed as if-else structures.

For method-body changes we assume: 1) the parent of a
statement s, p(s), is either a statement or the method decla-
ration; and 2) statements are ordered children of their par-
ents, i.e., if statements 〈s1, ..., sm〉 are children of statement
t, then si is the ith child of t.

STATEMENT ORDERING CHANGE denotes the move oper-
ation MOV(s, p(s), k).

A statement ordering change may induce a change of the
postcondition of the method and impact calling methods.
However, changing the ordering of the statements may also
be applied according to other functionality-preserving cri-
teria, such as performance. We define the significance level
of the statement ordering change as low.

STATEMENT PARENT CHANGE denotes the move opera-
tion MOV(s, y, k), with pold(s) 6= pnew(s).

It is interesting to know, what the old and new parent of
the statement is. Moving a statement from an then-block
to a loop may have more effect than from the else-block to
the then-block. Since the parent of a statement and accord-
ingly the label of the parent l(p(s)) is known, we are able to
distinguish between different statement parent changes. As
changing the parent of a statement has more impact on the
postcondition of the method than a simple ordering change,
we define the significance level of a statement parent change
as medium.

STATEMENT INSERT denotes the insert operation
INS((l(s), v(s)), y, k).

STATEMENT DELETE denotes the delete operation
DEL(s).

STATEMENT UPDATE denotes the update operation
UPD(s, val).

With the label of the statement l(s) and the one of its
parent l(p(s)) we are able to describe the insert and delete
operation in more detail, e.g., a method invocation was in-
serted/deleted in/from a loop. This applies for updates as
well.

Inserting and deleting statements are mostly
functionality-modifying operations, whereas updating
statements may also be applied because of renaming of a
variable, parameter, or method. We define the significance
levels of insert and delete changes as medium and that of
update changes as low.

Structure Statements. The statement changes discussed
above also apply to the structure statements loop L and con-

trol structure CS, but have further impact. Inserting, delet-
ing, or moving structure statements may change the over-
all nested depth δ(M) of a method M . We distinguish be-
tween increasing, iff δold(M) < δnew(M), insert and move
changes; and decreasing, iff δold(M) > δnew(M), delete
and move changes.

As the overall nested depth of a method is an indicator
for the complexity (sometimes also for the error-proneness)
of a method [16], we define the significance level of these
increasing and decreasing changes as high.

In our tree representation of source code entities,
we chose the condition expression, CE(·), of a struc-
ture statement as the value of the corresponding entity
node. We call the update operation of a structure state-
ment as loop/control structure condition expression change:
UPD(L, v(CEnew(L))) and UPD(CS, v(CEnew(CS))).

Changing the condition expression of a structure state-
ment is functionality-modifying and may also impact other
changes inside the method-body. We define the significance
level of this change as medium.

A control structure has an alternative path, a so called
else-part without a condition.1 Inserting or deleting an else-
part does not have any impact on the overall nested depth
of a method, but is functionality-modifying: else part insert
and else part delete with significance level medium.

Class Body Changes

We have already used and described changes on the body
of a class in [4]. Inserting and deleting of attributes and
methods fall into this category.

For attributes, we call these operations additional ob-
ject state and removed object state changes, because at-
tributes describe the state of an object unless it is not de-
clared as static. An additional object state change has
not any impact and is functionality-preserving. It has a
low significance level. A removing object state change is
functionality-modifying and all accesses on the attribute
have to be deleted, such a change has a crucial significance
level.

We call the basic changes of methods additional func-
tionality and removed functionality changes. Their signifi-
cance levels are defined analogously as the basic changes of
attributes: low and crucial.

Since in most object-oriented programming language the
entities in a class must not be ordered, move operations are
not considered.

3.2. Declaration-Part Changes

Each declaration part may have modifiers. Changes on
modifiers can be declared in general. We distinguish be-

1’else if’ is modeled as an else-part with a new control structure

tween access and final modifiers. Static modifiers are cur-
rently not considered.

Access Modifier Changes

Access modifiers describe how restricted the access is
to a class C, method M , or attribute A. We use
the terminology of Java for access modifiers: µA =
{private, κA, protected, public}, with κA as the default ac-
cess modifier, meaning that no access modifier is given.

Changes on access modifiers are defined once for all
declaration-parts, because they have the same meaning for
a class, method, and attribute.

INCREASING ACCESSIBILITY CHANGE , e.g., changing
a method from protected to public, denotes the insert op-
eration INS((l(µA), v(µA)), y, 1), where either v(µA) =
protected or v(µA) = public; the delete operation
DEL(µA) with v(µA) = private; or the update opera-
tion UPD(µA, val), where either vold(µA) = private and
val = protected ∨ val = public, or vold(µA) = protected
and val = public.

The increasing accessibility change is functionality-
modifying. Its impact on other changes is rather low, be-
cause accesses on an entity may remain unmodified. We
define the significance level of this change as medium.

DECREASING ACCESSIBILITY CHANGE , e.g., changing
an attribute from protected to private, denotes the insert op-
eration INS((l(µA), v(µA)), y, 1) with v(µA) = private;
the delete operation DEL(µA), where either v(µA) =
protected or v(µA) = public; or the update operation
UPD(µA, val), where either vold(µA) = public and val =
protected ∨ val = private, or vold(µA) = protected and
val = private.

Decreasing accessibility change has a deep impact on
other changes. In the worst case all accesses on an entity
have to be changed. The significance level of this change is
defined as crucial.

Final Modifier Changes

Besides access modifiers, a class, method, or attribute may
also be declared as final, µF = {final, κF } where κF de-
notes the empty final modifier, meaning that no final modi-
fier is given.

Possible final modifier changes are the basic operations
insert and delete. Update or move are not reasonable for
this modifier.

FINAL MODIFIER INSERT denotes the insert operation
INS((l(µF), v(µF)), y, 2) with y ∈ {C,M,A}.

FINAL MODIFIER DELETE denotes the delete operation
DEL(µF (x)) with x ∈ {C,M,A}.

As the meaning of the final modifier is different for a
class, a method, and an attribute, we give corresponding
names for these changes:

• Class. The final modifier of a class declares the class
as not derivable. We call the insert operation removing
class derivability and the delete operation adding class
derivability.

• Method. The final modifier of a method declares the
method as not overridable. We call the insert operation
removing method overridability and the delete opera-
tion adding method overridability.

• Attribute. The final modifier declares an attribute as
unmodifiable. We call the insert operation removing
attribute modifiability and the delete operation adding
attribute modifiability.

Inserting the final modifier to one of the three entities
is functionality-modifying and induces many changes, e.g.,
deleting all write accesses to an attribute. We define the
significance level of this change as crucial.

Conversely, deleting the final modifier has no impact on
other changes and is functionality-preserving. We define
the significance level for this change as low.

Attribute Declaration Changes

An attribute declaration A contains an access µA(A) and a
final modifier µF (A), a type T (A), and a name n(A). The
attribute initializer is not considered in this taxonomy.

ATTRIBUTE TYPE CHANGE denotes the update operation
UPD(T (A), v(Tnew(A))).

An attribute type change is functionality-modifying and
implies changes on all accesses of the attribute—even worse
when the attribute is public. We define the significance level
of this change as crucial.

ATTRIBUTE RENAMING denotes an update op-
eration of the name in an attribute declaration
UPD(n(A), v(nnew(A))).

As attribute renaming also implies changes on all ac-
cesses of the attribute, but is functionality-preserving, its
significance level is high.

Method Declaration Changes

Besides the access and final modifier, a method declaration
M contains an optional return type T (M), a name n(M),
and a parameter sequence P (M), 〈ρ1, .., ρm〉. A parameter
ρ ∈ P (M) has a type T (ρ) and a name n(ρ). The combi-
nation of the name and the parameter sequence is called the
method signature σ(M).

RETURN TYPE INSERT denotes the insert operation
INS((l(T (M)), v(T (M))),M, 3) with Told(M) = {}.

RETURN TYPE DELETE denotes the delete operation
DEL(T (M)).

RETURN TYPE UPDATE denotes the update operation
UPD(T (M), v(Tnew(M))).

All three changes of the return type are strongly impact-
ing source code changes, i.e., functionality-modifying and
in most cases all method invocations on the changed method
declaration have to be adjusted. We define the significance
level of this change as crucial.

METHOD RENAMING denotes the update operation
UPD(M, v(nnew(M))).

Method renaming is functionality-preserving, but all
method invocations on the changed method declaration
have to be adjusted. We define the significance level of this
change as high.

PARAMETER INSERT denotes two insert operations
〈INS((l(ρ), v(n(ρ))), P (M), k), INS((l(T (ρ)), v(T (ρ))),
ρ, 1)〉.

PARAMETER DELETE denotes the delete operation
DEL(ρ).

PARAMETER ORDERING CHANGE denotes the move oper-
ation MOV(ρ, P (M), k).

PARAMETER TYPE CHANGE denotes the update operation
UPD(T (ρ), v(Tnew(ρ))).

PARAMETER RENAMING denotes the update operation
UPD(ρ, v(nnew(ρ))).

All parameter changes, except for parameter renam-
ing, are functionality-modifying and induce changes on
method invocations. We define the significance leve of these
changes as crucial. Parameter renaming is functionality-
preserving and all accesses in the method body have to be
adjusted. We define its significance level as medium.

Class Declaration Changes

The class declaration C contains access µA(C) and final
modifiers µF (C), a name n(C), and class pC(C) and/or
interface parents pI(C).

CLASS RENAMING denotes the update operation
UPD(C, v(nnew(C))).

As with other renaming changes discussed so far, the
class renaming change is also functionality-preserving, but
may induces a lot of changes. We define the significance
level of this change as high.

The inheritance concept in object-oriented programming
languages is variably implemented. Some languages sup-
port multiple-inheritance, such C++ or Eiffel, other use in-
terfaces instead, such as Java.

PARENT CLASS INSERT denotes the insert operation
INS((l(T), v(T)), pC(C), k).

PARENT CLASS DELETE denotes the delete operation
DEL(T) with T ∈ pCold(C).

PARENT CLASS UPDATE denotes the update operation
UPD(T, v(Tnew)) with T ∈ pCold(C).

The parent interface changes are defined accordingly.
All of the defined parent class/interface changes are
functionality-modifying and normally induce many other
changes. We define their significance level as crucial.

Because an interface declaration is a special kind of a
class declaration, it is not treated separately.

3.3. Limitations of the Taxonomy

When a renaming of a method parameter happens and
the statements bound to this parameter are updated, the
change on this statement must not be classified as also
proposed by Neamtiu et al. in [17]. Such a statement
change is functionality-preserving and has no impact on
other changes. To improve the current situation, updated
statements can be represented in more detail, i.e., gener-
ating an entity tree of the statement, and calculate differ-
ences upon the entity trees. Additionally, slicing methods
and program dependence graphs [9] can be used to improve
the functionality-modifyability of a statement update.

In the current classification, changes on exception han-
dlings are not yet considered as well. An interesting discus-
sion on exception handling changes can be found in [1].

4. Current Implementation

We built the Eclipse2 plugin CHANGEDISTILLER that
implements the source code change extraction algorithm.
Our current implementation relies on the CVS capabilities
and the Java Development Tools (JDT)3 of Eclipse. The
extracted source code changes are stored in a Hibernate4

mapped database. The classification of the source code
changes uses the data from this database.

CHANGEDISTILLER is able to report what source code
changes occurred between two version of a particular Java
class using the change definitions of Section 3. That means,
in contrast to a textual diff, we have the possibility to state
clearly which source code entities have changed, of which

2http://www.eclipse.org
3http://www.eclipse.org/jdt
4http://www.hibernate.org

change type they are, and what level of significance they
have.

4.1. Source Code Change Extraction

We have implemented the algorithm of Chawathe et al.
to extract the basic tree edit operations. As CHANGEDIS-
TILLER is an Eclipse plugin, the AST of a Java class is
available through the JDT API. An AST generated by JDT
is not a regular tree, i.e., the tree structures of AST nodes
are not always realized in the same way. Since the change
detection algorithm expects labeled, valued tree nodes, the
plugin construct an intermediate AST suitable for the algo-
rithm. Leafs in such an intermediate AST are statements
valued with their string representation.

CHANGEDISTILLER makes use of the CVS plugin
shipped with Eclipse to check-out subsequent revisions of
a Java source file. Changes of subsequent revision are ex-
tracted using the compare plugin of Eclipse giving the set of
changed body- and declaration-parts. These parts are trans-
formed into intermediate ASTs and fed into our implemen-
tation of the change detection algorithm. Starting the algo-
rithm with two intermediate AST T1 and T2, it produces a
so called edit script, meaning a set of basic tree edit opera-
tions transforming T1 into T2. The changes are stored in the
database and are input for our classification.

Update operations on nodes are detected using the Lev-
enshtein similarity measure for strings [14].

4.2. Classification

The changes stored in the database are used to clas-
sify the changes between two subsequent revision of a Java
source file.

In some cases update changes must be reconstructed, be-
cause a sufficient similarity between two strings is not al-
ways guaranteed, e.g., needed to detect type changes or re-
naming. Consider an attribute type change from “Object”
to “Figure.” The two strings do not share any character.
Therefore, the implemented algorithm reports a type insert
and delete change. Since the changed entity is an attribute
and since an attribute has by declaration always an unam-
biguous type, the two operations can be combined to an up-
date operation. Other reconstructions, such as increasing or
decreasing accessibility changes, are done similarly.

4.3. Limitations

The implemented algorithm detects all but two changes.
First, we do not yet consider class renaming, because we
concentrate on Java source files which normally contain one
class, except for inner classes. Second, decreasing state-
ment changes detection requires a second parsing of the

method body to decide whether the deleted/moved structure
statement is responsible for the overall method depth. This
will be implemented for the next release of our tool.

Chawathe et al. assume that two input trees to compare
are mostly similar. This heuristic is suitable for source code
changes, because subsequent versions of classes seldom ex-
hibit big differences. That means that the edit script may
not always be minimal. We are currently investigating how
strong the impact of large source changes on the edit script
is and how the algorithm can be improved to keep the edit
script minimal.

We also plan to provide benchmarks to validate the exe-
cution efficiency as well as the accuracy of the implemented
algorithm.

5. Case Study

We pursued a case study to demonstrate how the change
significance analysis can help in understanding the evolu-
tion of source code. The intention of the case study is rather
to highlight the applicability of our taxonomy of source
code changes than its complete validation. In particular we
address the following two questions:

• To what extent are lines added/removed taken from the
CVS log indicators for the significance of the applied
changes?

• Do the significance levels of change coupled files be-
have similarly?

Since the current implementation of CHANGEDIS-
TILLER works with CVS and Java, we chose the Java
project ArgoUML,5 an open source UML modelling tool
consisting of about 1,400 Java classes.

To answer the above questions, we take a group of
classes having a high number of revisions as well as a high
change coupling. The four classes FigClass with 201 revi-
sions, FigComment with 65 revisions, FigInterface with 149
revisions, and FigPackage with 136 revisions in package
org.argouml.uml.diagram.static structure.ui were 19 times
commonly committed. We use these classes in the remain-
der of the case study.

5.1. Lines Added/Removed as Significance Indica-
tor

The change information provided by CVS are a textual
diff (cvs diff) between two subsequent revisions fn−1

and fn of a file f , and accordingly the overall lines added
and removed, e.g., lines: +15 -6. For instance, this
change information was used to compute code ownership

5http://argouml.tigris.org/

in [6]. The number of lines added or removed may be
an indicator for the significance of the changes between
two subsequent revisions, meaning that the more lines were
added, and removed respectively, the more was changed in
the source code. One of the drawbacks of this hypothesis is
the high rating of text structure changes, such as indentation
changes or the rearrangement of methods and attributes. To
investigate this hypothesis, we discuss Figures 1 and 2.

0

100

200

300

400

500

600

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88

Revision 1.x

#
 L

in
e

s
0

30

60

90

120

150

180

S
ig

n
ifi

c
a

n
c
e

;
#

 C
h

a
n

g
e

s

Lines Added Lines Removed # Classified Changes Total Significance

Figure 1. Change significance history of Fig-
Package

The class (file) FigPackage has 88 (1.1–1.88) revisions.
In Figure 1 for each revision (x-axis) the number of clas-
sified changes, the total significance, and lines added/re-
moved are plotted. The total significance denotes the sum of
all significance levels in this and the following figures. The
scale on the left hand side corresponds to lines added/re-
moved; the one on the right hand side to the number of
classified changes and the total significance. Examining the
trend of the total significance, three major changes stand
out: revisions 1.8, 1.45, and 1.49. We see, that the absolute
sum of lines added and removed can be an indicator for the
significance. This observation is definitely false for the re-
visions 1.8, 1.16, 1.22, and 1.43. Particularly for revision
1.16, where the total significance is vanishing small com-
pared to the number of lines added and removed. The diff
between the revisions 1.15 and 1.16 shows that many text
indentation changes were applied, explaining the huge gap
between the total significance and the lines added/removed.

For the change history of the class FigPackage, we con-
clude that the number of lines added and removed do not
indicate the significance of the changes.

In Figure 2 the change history of class FigComment with
65 revisions (1.1–1.65) is depicted. The diagram in Figure
2 has the same structure as Figure 1. The change history
of FigComment has an interesting development towards the
end of the observed revision period. The total significance

0

50

100

150

200

250

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65

Revision 1.x

#
 L

in
e
s

0

50

100

150

200

250

300

S
ig

n
ifi

c
a
n
c
e
;
#
 C

h
a
n
g
e
s

Lines Added Lines Removed # Classified Changes Total Significance

Figure 2. Change significance history of Fig-
Comment

from revision 1.49 to 1.60 are increasing (with interrupts).
The trend of the absolute sum of lines added and removed
has a similar developing in this revision period—at least af-
ter 1.49. For this small period we observe, that a relation
between the total significance and lines added/removed oc-
curs again. On the other hand, we can also find the situa-
tion where no relation at all appears. Noteworthy are revi-
sion 1.8 and the shift in directions between 1.12 and 1.13
(decreasing lines added/removed; increasing total signifi-
cance).

We made the same observation for the other two classes
FigClass and FigInterface. We therefore conclude that lines
added and removed are insufficient indicators for the signif-
icance of changes.

5.2. Significance of Change Couplings

Change coupled files were committed together, i.e., build
a transaction, and build a change coupling group [4]. Our
release history database (RHDB) approach [3], calculates
the change coupling groups with the data provided by CVS
logs. Change coupling groups are weighted with the num-
ber of transaction in which they occur. To what extent they
were changed—or whether they were changed at all—is not
considered in this calculation.

Investigating change couplings can help detecting hot
spots in the design of a software system [5]. Filtering un-
interesting change coupling groups, as we have presented
in [4], reduces the number of change couplings to investi-
gate. In this case study we additionally investigate if change
coupled files have similar total significances, meaning if
they were similarly changed. With the rating of change cou-
pling groups according to the total significance, we are able
to further reduce this set—change coupled files having a

high total significance may imply a stronger relationship;
either dependencies or similar code structure (e.g., code
clones).

The four Java classes FigClass, FigComment, FigInter-
face, and FigPackage, are a change coupling group with the
weight 19, i.e., they were 19 times committed together. For
each transaction we show in Figure 3 the total significance
of each file. The x-axis gives the transactions of the group
with the corresponding revision numbers for each file. For
instance, the second common commit concerns the revision
(after the commit) 1.49 of FigClass, 1.5 of FigComment,
1.35 of FigInterface, and 1.16 of FigPackage.

The shape of the curves of FigClass and FigInterface are
similar. Particularly the total significance values between
the eighth and twelfth transaction relate more than the val-
ues of FigComment and FigInterface. Taking the total sig-
nificance for the change coupling, only the common change
behavior of FigClass and FigInterface is further investigated
for similar functionality which has to be adopted together.

In 10 out of 19 transactions only small changes occurred,
such that the actual change coupling reduces to 9 (instead of
19). These results show that the total significance of change
coupled files do not behave similarly. We therefore con-
clude that computing the change coupling based on trans-
actions is insufficient. The presented approach emphasizes
actually change coupled source code entities.

6. Related Work

Syntactic differencing. Yang describes an algorithm
based on a dynamic programming implementation of the
largest common subtree problem [27]. The output of the al-
gorithm are sets of matching and modified abstract syntax
tree nodes, but it is not reported what operations transform
the first into the second tree. In [15], Maletic and Collard
present a language independent approach to detect syntac-
tic differences between source files using an intermediate
representation of the source code in XML. The output pro-
vided by GNU diff is mapped to the XML representation
to locate changed entities. Our approach does not use tex-
tual differences and is able to detect move changes. Ragha-
van et al. implemented Dex [20] a tool to extract changes
between C source files. They use change information pro-
vided by patch files, to locate the changed parts in a source
files. These parts are fed into their tree differencing algo-
rithm reporting edit operations. Dex can be used with our
taxonomy to classify source code changes in C programs.
Recently, Xing and Stroulia presented their UMLDiff tool
in [26]. UMLDiff tracks changes on the interface (logical
design) of classes. In contrast to our work, they are able
to track entity moves among different classes. However,
their approach focuses on the interface level, whereas our
approach additionally considers changes inside the method

0

50

100

150

200

250

300

1.38
1.2

1.31
1.13

1.49
1.5

1.35
1.16

1.56
1.10
1.39
1.17

1.65
1.11
1.41
1.22

1.66
1.12
1.42
1.23

1.67
1.13
1.43
1.29

1.68
1.15
1.45
1.30

1.71
1.18
1.46
1.32

1.73
1.20
1.48
1.33

1.87
1.24
1.58
1.42

1.98
1.28
1.66
1.47

1.126
1.35
1.84
1.55

1.153
1.45

1.104
1.71

1.154
1.46

1.105
1.72

1.164
1.51
1.113
1.77

1.169
1.53
1.115
1.79

1.170
1.54
1.116
1.80

1.192
1.61

1.131
1.86

1.198
1.65

1.135
1.87

Revision

S
ig

n
ifi

c
a
n
c
e
 o

f
C

h
a
n
g
e
s

FigClass FigComment FigInterface FigPackage

FigClass
FigComment
FigInterface
FigPackage

Figure 3. Change significance of each file in the change coupling group per transaction

body. A similar work was done by Tu and Godfrey [23].
They used their BEAGLE tool to detect structural evolution
of software systems. With origin analysis BEAGLE detects
old functions as the “origin” of new ones based on software
metrics and code clone detection. Origin analysis was also
used to detect merging and splitting [7] and method renam-
ing [13].

We implemented the change detection algorithm for hier-
archically structured data presented by Chawathe et al. [2].
In addition, we used the signature change description pro-
vided by Kim et al. [12] to guide the corresponding defi-
nitions in this paper. In contrast to our work, they neither
give the corresponding source code change, nor classify the
signature changes.

In [8] Hassan and Holt propose evolutionary code extrac-
tors. They discuss the need of such tools as well as guide
how to choose the source code extraction granularity.

Semantic differencing. The algorithm presented by Jack-
son and Ladd reports semantic changes in procedural pro-
grams [10]. They analyse the input-output behavior of two
procedures to detect changed behavior. Apiwattanapong et
al. [1] use enhanced control-flow graphs to model semantic
behavior of methods of object-oriented programs. Identify-
ing modified and unmodified methods is based on graph iso-
morphism. Their discussion of the impact of path changes
caused by exception handling can be used to extend our
classification.

Change analysis and classification. Xing and Strou-
lia [25] use their UMLDiff to classify interface changes.
For each class version they assign a volatility level, e.g.,
“intense evolution” or “rapidly developing,” according to
the number of changes occurred. In contrast to their work,

we classify individual changes. Śliwerski et al. clas-
sify changes according to whether they induced a fix [22],
i.e., changes that lead to problems. Their Eclipse plugin
Hatari [21] extracts and visualizes such changes. With
our classification, we may detect frequent fix-inducing
change types. Small changes are also investigated by Pu-
rushothaman et al. in [19]. In a large case study, they found
that there is less than a four percent probability that a one-
line change will introduce a fault. This result implies that
the significance level of a one line change is low, as reflected
in our classification.

A taxonomy of approaches to analyse source code repos-
itories for understanding software evolution is given by
Kagdi et al. in [11].

7. Conclusions and Future Work

Current change history analysis approaches rely on in-
formation provided by versioning systems such as CVS that
hardly provide any data other than lines added and/or re-
moved. Beyond that, change types and their significance in
terms of change impact are required to effectively qualify
source code changes over several releases.

We presented a taxonomy of source code changes to be
used for change coupling analysis. Source code changes are
defined according to tree edit operations in the AST to clas-
sify the change types with a significance level that expresses
how strong a change may impact other source code enti-
ties and whether a change may be functionality-modifying
or functionality-preserving. This classification allows one
to assess error-proneness of source code entities, qualify
change couplings, or identify programming patterns.

The selected examples from the ArgoUML case study
revealed that high numbers of lines added/removed do not

correspond with high significance of changes. Furthermore,
our results qualify change couplings such that originally
high couplings can be better assessed and in many cases the
intensity of the change couplings observed from pure CVS
analysis can be dramatically reduced.

Future work will concentrate on fine-tuning our Eclipse
plugin CHANGEDISTILLER and investigate the change be-
havior of large software systems.

Acknowledgment This work was partially supported by
the Swiss National Science Foundation (SNF) and the
Hasler Stiftung Switzerland. We thank the anonymous re-
viewers for their extremely careful reading of the paper,
which clarified several issues and improved the presenta-
tion. We thank Martin Pinzger for his valuable feedbacks.

References

[1] T. Apiwattanapong, A. Orso, and M. J. Harrold. A dif-
ferencing algorithm for object-oriented programs. In Proc.
19th Int’l Conf. Automated Software Eng., pages 2–13, Nov.
2004.

[2] S. S. Chawathe, A. Rajaraman, H. Garcia-Molina, and
J. Widom. Change detection in hierarchically structured in-
formation. In Proc. ACM SIGMOD Int’l Conf. Management
of Data, pages 493–504, June 1996.

[3] M. Fischer, M. Pinzger, and H. Gall. Populating a release
history database from version control and bug tracking sys-
tems. In Proc. 19th Int’l Conf. Software Maintenance, pages
23–32, Sept. 2003.

[4] B. Fluri, H. C. Gall, and M. Pinzger. Fine-grained analysis
of change couplings. In Proc. 5th Int’l Workshop Source
Code Analysis and Manipulation, pages 66–74, Sept. 2005.

[5] H. Gall, M. Jazayeri, and J. Krajewski. Cvs release history
data for detecting logical couplings. In Proc. 6th Int’l Work-
shop Principles of Software Evolution, pages 13–23, Sept.
2003.

[6] T. Gı̂rba, A. Kuhn, M. Seeberger, and S. Ducasse. How de-
velopers drive software evolution. In Proc. 8th Int’l Work-
shop Principles of Software Evolution, pages 113–122, Sept.
2005.

[7] M. W. Godfrey and L. Zou. Using origin analysis to detect
merging and splitting of source code entities. IEEE Trans.
Software Eng., 31(2):166–181, Feb. 2005.

[8] A. E. Hassan and R. C. Holt. Studying the evolution of soft-
ware systems using evolutionary code extractors. In Proc.
7th Int’l Workshop Principles of Software Evolution, pages
76–81, Sept. 2004.

[9] S. B. Horwitz, T. Reps, and D. Binkley. Interprocedural slic-
ing using dependence graphs. ACM Trans. Programming
Languages and Systems, 12(1):35–46, Jan. 1990.

[10] D. Jackson and D. A. Ladd. Semantic diff: A tool for sum-
marizing the effects of modifications. In Proc. Int’l Conf.
Software Maintenance, pages 243–252, Sept. 1994.

[11] H. Kagdi, M. L. Collard, and J. I. Maletic. Towards a tax-
onomy of approaches for mining of source code reposito-
ries. In Proc. Int’l Workshop Mining Software Repositories,
pages 1–5, May 2005.

[12] S. Kim, J. E. James Whitehead, and J. Bevan. Analysis of
signature change patterns. In Proc. Int’l Workshop Mining
Software Repositories, pages 1–5, May 2005.

[13] S. Kim, K. Pan, and J. E. James Whitehead. When functions
change their names: Automatic detection of origin relation-
ships. In Proc. 12th Working Conf. Reverse Eng., pages 143–
152, Nov. 2005.

[14] V. I. Levenshtein. Binary codes capable of correcting dele-
tions, insertions and reversals. Soviet Physics Doklady,
10:707–710, 1966.

[15] J. I. Maletic and M. L. Collard. Supporting source code dif-
ference analysis. In Proc. 20th Int’l Conf. Software Mainte-
nance, pages 210–219, Sept. 2004.

[16] T. J. McCabe. A complexity measure. IEEE Trans. Software
Eng., 2(4):308–320, Dec. 1976.

[17] I. Neamtiu, J. S. Foster, and M. Hicks. Understanding source
code evolution using abstract syntax tree matching. In Proc.
Int’l Workshop Mining Software Repositories, pages 1–5,
May 2005.

[18] M. Pinzger, H. Gall, M. Fischer, and M. Lanza. Visualiz-
ing multiple evolution metrics. In Proc. ACM Symposium
Software Visualization, pages 67–75, May, 2005.

[19] R. Purushothaman and D. E. Perry. Toward understanding
the rhetoric of small source code changes. IEEE Trans. Soft-
ware Eng., 31(6):511–526, June 2005.

[20] S. Raghavan, R. Rohana, D. Leon, A. Podgurski, and V. Au-
gustine. Dex: A semantic-graph differencing tool for study-
ing changes in large code base. In Proc. 20th Int’l Conf.
Software Maintenance, pages 188–197, Sept. 2004.

[21] J. Śliwerski, T. Zimmermann, and A. Zeller. Hatari: Raising
risk awareness. In Proc. 10th European Software Eng. Conf.
and 13th ACM SIGSOFT Symposium Foundations Software
Eng., pages 107–110, Sept. 2005.

[22] J. Śliwerski, T. Zimmermann, and A. Zeller. When do
changes induce fixes? In Proc. Int’l Workshop Mining Soft-
ware Repositories, pages 24–28, May 2005.

[23] Q. Tu and M. W. Godfrey. An integrated approach for study-
ing architectural evolution. In Proc. 10th Int’l Workshop
Program Comprehension, pages 127–136, June 2002.

[24] G. Valiente. Algorithms on Trees and Graphs. Springer,
Berlin, Germany, 2002.

[25] Z. Xing and E. Stroulia. Analyzing the evolutionary his-
tory of the logical design of object-oriented software. IEEE
Trans. Software Eng., 31(10):850–868, Oct. 2005.

[26] Z. Xing and E. Stroulia. Umldiff: An algorithm for object-
oriented design differencing. In Proc. 20th Int’l Conf. Auto-
mated Software Eng., pages 54–65, Nov. 2005.

[27] W. Yang. Identifying syntactic differences between two
programs. Journal Software–Practice and Experience,
21(7):739–755, July 1991.

[28] T. Zimmermann, P. Weissgerber, S. Diehl, and A. Zeller.
Mining version histories to guide software changes. IEEE
Trans. Software Eng., 31(6):429–445, June 2005.

A. Overview of Change Type Classification

Change Type Operation Significance Level

Body-Part
Additional Functionality* 〈 INS((l(M), n(M)), C, k), low

INS((l(P (M)), {}),M, 4) 〉
Additional Object State* 〈 INS((l(A), n(A)), C, k) + low

INS((l(T (A)), v(T (A))), A, 1) 〉
Condition Expression Change UPD(L, v(CEnew(L))); medium

UPD(CS, v(CEnew(CS)))
Decreasing Statement Delete DEL(s), δold(M) > δnew(M) high
Decreasing Statement Parent Change MOV(s, y, k), pold(s) 6= pnew(s), high

δold(M) > δnew(M)
Else-Part Insert INS((l(EP), {}), CS, 1) medium
Else-Part Delete DEL(EP) medium
Increasing Statement Insert INS((l(s), v(s)), y, k), δold(M) < δnew(M) high
Increasing Statement Parent Change MOV(s, y, k), pold(s) 6= pnew(s), high

δold(M) < δnew(M)
Removed Functionality DEL(M) crucial
Removed Object State DEL(A) crucial
Statement Delete DEL(s) medium
Statement Insert INS((l(s), v(s)), y, k) medium
Statement Ordering Change MOV(s, p(s), k) low
Statement Parent Change MOV(s, y, k), pold(s) 6= pnew(s) medium
Statement Update* UPD(s, val) low

Declaration-Part
Class Renaming* UPD(C, v(nnew(C))) high
Decreasing Accessibility Change1 INS((l(µA), v(µA)), y, 1); DEL(µA); crucial

UPD(µA, val)
Attribute Type Change UPD(T (A), v(Tnew(A))) crucial
Attribute Renaming* UPD(n(A), v(nnew(A))) high
Final Modifier Insert INS((l(µF), v(µF)), y, 2), y ∈ {C,M,A} crucial
Final Modifier Delete DEL(µF (x)), x ∈ {C,M,A} low
Increasing Accessibility Change1 INS((l(µA), v(µA)), y, 1); DEL(µA); medium

UPD(µA, val)
Method Renaming* UPD(M, v(nnew(M))) high
Parameter Delete DEL(ρ) crucial
Parameter Insert 〈 INS((l(ρ), v(n(ρ))), P (M), k), crucial

INS((l(T (ρ)), v(T (ρ))), ρ, 1) 〉 crucial
Parameter Ordering Change MOV(ρ, P (M), k) crucial
Parameter Type Change UPD(T (ρ), v(Tnew(ρ))) crucial
Parameter Renaming* UPD(ρ, v(nnew(ρ))) medium
Parent Class Delete DEL(T), T ∈ pCold(C) crucial
Parent Class Insert INS((l(T), v(T)), pC(C), k) crucial
Parent Class Update UPD(T, v(Tnew)), T ∈ pCold(C) crucial
Return Type Delete DEL(T (M)) crucial
Return Type Insert INS((l(T (M)), v(T (M))),M, 3), crucial

Told(M) = {}
Return Type Update UPD(T (M), v(Tnew(M))) crucial

*Functionality-Preserving, all others -Modifying
1possible values for v(µA), val, and vold(µA) see Section 3.2

