
Fine-Grained Analysis of Change Couplings

Beat Fluri, Harald C. Gall, and Martin Pinzger
s.e.a.l. – software evolution and architecture lab

Department of Informatics
University of Zurich, Switzerland
{fluri,gall,pinzger}@ifi.unizh.ch

Abstract

In software evolution analysis, many approaches ana-
lyze release history data available through versioning sys-
tems. The recent investigations of CVS data have shown
that commonly committed files highlight their change cou-
plings. However, CVS stores modifications on the basis of
text but does not track structural changes, such as the in-
sertion, removing, or modification of methods or classes.
A detailed analysis whether change couplings are caused
by source code couplings or by other textual modifications,
such as updates in license terms, is not performed by cur-
rent approaches.

The focus of this paper is on adding structural change
information to existing release history data. We present an
approach that uses the structure compare services shipped
with the Eclipse IDE to obtain the corresponding fine-
grained changes between two subsequent versions of any
Java class. This information supports filtering those change
couplings which result from structural changes. So we can
distill the causes for change couplings along releases and
filter out those that are structurally relevant. The first val-
idation of our approach with a medium-sized open source
software system showed that a reasonable amount of change
couplings are not caused by source code changes.

1. Introduction

Version control systems such as CVS contain a huge
amount of historical information of a software system col-
lected during its evolution. Recent investigations of CVS
data, such as performed by Fischer et al. [3, 6] or Zimmer-
mann et al. [12] have shown that commonly committed files
highlight their change couplings. Change couplings present
important facts that are used to reason about the evolution
of software systems.

Current approaches rely on the following definition of
change coupling: Two files exhibit a change coupling if

they are commonly committed, i.e., at the same time, by the
same author, and with the same modification description.
Following these definition change couplings are computed
from the modification reports stored in CVS repository.

However, CVS tracks changes only on a text basis. De-
tailed information of which class, method, or field was
affected by a change is not stored. The effect is that
change couplings include also couplings that are due to
non-structural changes, such as changes in the license term.
Such non-structural change couplings have to be filtered be-
cause they indicate false couplings between files. For in-
stance, predicting source code changes is simpler with fil-
tered change couplings. In [11] Ying et al. present an ap-
proach to predict source code changes. For each change
coupling they calculate the source code couplings between
the corresponding files. Filtering non-structural change
couplings has the advantage, that only files which were
structurally changed must be further investigated for source
code couplings. It is not necessary to calculate source code
couplings of all change coupled files. Furthermore, the pos-
sibility to investigate only frequent change couplings be-
tween a set of files reduces also the amount of change cou-
plings to be investigated [6].

Frequent change couplings indicate a strong coupling
between the corresponding modules, sub-modules, or files
as well as possible shortcomings in the design of a soft-
ware system [5]. Filtering non-structural change couplings
reduces the amount of misleading change couplings and,
therefore, reduces the effort to investigate all change cou-
plings.

In this paper we focus on both issues and present an ap-
proach that facilitates the filtering of change couplings ac-
cording to structural changes and the frequency of change
couplings. For the computation of the structural changes
between subsequent releases of Java source files we use
the source comparison facilities of the Eclipse IDE. They
retrieve fine-grained change information, such as the in-
sertion, deletion, and modification of methods and classes
based on the abstract syntax tree. With the CVS interface



of Eclipse we have automated the structural change extrac-
tion of an Eclipse project. The change coupling information
stored in our release history database (RHDB) are used to
cluster transactions of change coupling groups. The struc-
tural change information is then used to filter those change
couplings which result due to structural changes. The first
validation of our approach showed that a reasonable amount
of change couplings are not caused by source code changes.

The remainder of this paper is organized as follows: Sec-
tion 2 gives a brief overview of related work in the area of
software evolution analysis and change extraction. In Sec-
tion 3 we describe the process of analyzing change coupling
groups. Section 4 presents a validation of our approach on
the compare plugin of Eclipse. We conclude the paper in
Section 5 and indicate areas for future research.

2. Related Work

In previous work Gall et al. [5] analyzed the history of
changes in software systems to detect the hidden depen-
dencies between modules. Fischer et al. [4] extended the
concept of logical coupling and defined a filtering mech-
anism and a data scheme for such an integration. The data
scheme is the initial version of the Release History Database
(RHDB) that we adapted for the ArchView approach. Fis-
cher et al. [3] analyzed the evolution relation to bug reports
to track the hidden dependencies between system features.
By instrumenting the code the authors showed how features
are scattered over the project tree and how features are log-
ically coupled over releases. An extension of this approach
with a number of specific visualization techniques is de-
scribed in [2]. This approach allows an engineer to uncover
hidden dependencies among different features over many
releases.

Based on CVS data Krajewski et al. [6] discovered logi-
cal (i.e., change) couplings: developers checking in and out
files within certain periods of time and the relationship of
these files discovered dependencies that are difficult to de-
tect by other means and pointed to several bad code smells
by means of visualizations using JGraph.

Zimmermann et al. presented a fine-grained analysis ap-
proach for CVS data that considered all kinds of entities
starting from the statement level [12, 13]. Their ROSE
tool identifies common changes between syntactical enti-
ties rather than files or modules using textual differencing
algorithms.

Most mechanisms of finding changes between two ex-
isting source code files use textual differencing algorithms.
The most popular differencing algorithm tool is certainly
the UNIX diff. It is based on a longest common sub-
sequence algorithm (LCS). Textual differencing algorithms
are limited to a line-level granularity. This implies several
limitation. First, the changed source code entity, such as

a method, is not determined. Second, if a source code en-
tity moves within the text file, but does not change syntacti-
cally, the textual differencing algorithm states for a change
anyway. These limitations can be addressed with compar-
ing abstract syntax trees (AST). This technique is primarily
used to improve merging [9]. Full AST differencing tech-
niques are too fine-grained for our filter approach, therefore
we use the light-weight AST differencing algorithm shipped
with Eclipse.

Today, the term configuration management system is
mostly reduced to CVS. But there are systems offering the
possibility of fine-grained change analysis. For instance,
Magnusson et al. developed a framework for fine-grained
version control. Instead of only controlling files, they also
put blocks, classes, procedures, and functions under ver-
sion control [7]. Thus using this framework, fine-grained
change information is available. Such systems are source
code management systems and therefore not directly usable
for fine-grained change analysis.

In [8] Maletic and Collard present an approach to an-
alyze source code differences. The approach is called
meta-differencing and uses an XML representation of the
source code, srcML. With that representation the authors
can embed meta-information such as hyperlinks into the
XML representation. They use textual differences to locate
the changed source code entities in the srcML document.
Our structure compare relies on the parsing capabilities of
Eclipse and gets rid of pure textual comparisons.

The UMLDiff approach presented by Xing and Strou-
lia detects structural modification on a class basis [10].
UMLDiff takes as input two UML class models represented
in XMI and calculates their changes. However, UMLDiff
does not track if the body of a method has changed, because
an UML class model does not contain implementation de-
tails.

3. Analyzing Change Couplings

The Eclipse IDE [1] provides several plugins to sup-
port software developers in their daily work. Among other
things, there are plugins to access CVS repositories and
compare source code files. We exploit these interfaces to
checkout the revisions of a file, perform structural compar-
isons between subsequent revisions, and store the extracted
information in a database for further analysis. In this sec-
tion, we describe this process in more detail.

3.1. The Process of Analyzing Change Couplings

The information flow and process steps of our change
coupling analysis approach is depicted in Figure 1. The
first step is concerned with retrieving the modification re-
ports from the CVS repository and building the release his-



RHDB

CVS

Structural 
Compare

Java Source 
r1.3

Java Source 
r1.4

Release
History

Filter Change 
Couplings

Diffs between
r1.3 & r1.4

Calculating 
Change Coupling 

Clusters

Change Coupling
Clusters

Change Coupling
Groups

Structural
Change Couplings

Figure 1. Information flow and process steps

tory database (RHDB). The building process includes the
computation of the change coupling relationships between
source code files [4]. Based on this information the change
coupling clusters are calculated. On the upper chain, sub-
sequent revisions of source files are retrieved from the CVS
repository and structurally compared. Both, the structural
differences and the change coupling clusters are input to the
change coupling filter that outputs those change couplings
that stem from structural changes. The process steps are
described in more detail in the following sections.

3.2. Structure Compare between Java Files

When a changed file is committed, the CVS repository
stores a modification report and the number of added and/or
deleted lines in the two subsequent revisions of the file. This
information does not reveal much about the changes of the
source code in the file. It is possible to get finer-grained
modification information with the CVS diff. It prints out
which regions in the files were added, changed, or deleted.
Figure 2 shows an example where four lines were reduced
to two lines, thus the four lines were changed. But, using
solely this information for determining in which method the
changed lines resist is still not a trivial task.

1967,1970c1964,1965
< if (d != null && !d.fIsToken) {
< updateDiffBackground(oldDiff);
< updateDiffBackground(fCurrentDiff);
< }
---
> updateDiffBackground(oldDiff);
> updateDiffBackground(fCurrentDiff);

Figure 2. Extract of a CVS diff

A potential solution to this problem is to represent the
source code in a more organized way to facilitate compar-
ison. For that we distinguish between two techniques: 1)

abstract syntax tree (AST) comparison; 2) structure com-
parison. The first technique compares the ASTs of the two
versions of a source file and derives the differences on the
abstract syntax level. For instance, changed conditions in an
if-statement can be detected. Concerning the fine-grained
changes this is the desired approach but its implementation
is not trivial and to our knowledge has not been realized yet.

The second technique determines changes on the level of
source code entities, such as methods, fields, or classes. Al-
though it misses detailed changes, it is sufficient to answer
the question whether a Java source code entity has experi-
enced changes in two subsequent revisions. In particular,
we are interested in changes of source code entities such as
class, interface, method, constructor, field, and initializer.

The compare plugin of Eclipse1 distinguishes between
two kinds of comparisons: 1) differences between hier-
archically structured data, such as source code; 2) dif-
ferences between sequences of comparable entities, such
as text lines or tokens. For the structure comparison
of Java classes, Eclipse structures the corresponding Java
source files hierarchically into the entities import declara-
tion, class, interface, method, constructor, and field. It then
compares the files using these structures and displays the
result in a tree layout. In addition, for each structural dif-
ference the corresponding text differences are displayed.
Figure 3 shows the screenshot of the Java structure com-
pare with the previous example (Fig. 2). In the topmost
panel of Figure 3 we see the method that was changed,
setCurrentDiff(Diff,boolean). The text differ-
ences between the subsequent revisions of the method are
depicted in the middle panel. The newer revision of the
method is depicted on the left hand side.

Basically, we are interested in the structural change in-
formation of the topmost panel. Since Eclipse has well de-
fined and described APIs of its plugins, we are able to make
use of the comparison interfaces. In general, to compare
two entities the following two steps have to be performed:

1org.eclipse.compare



Figure 3. Structure and source code compare in Eclipse

1) the entities have to be converted into a format suitable
for the differencing algorithm, i.e., either into hierarchically
structured data or certain sequences of characters; 2) the
conversions are fed into the differencing algorithm to get
the differences. The compare plugin of Eclipse provides
implementations for the two algorithms: Differencer
for hierarchically structured data; RangeDifferencer
for sequences of comparable entities.

In case of structure comparison of two Java source
files, the Java Development Tools2 provides a class,
JavaStructureCreator, for structuring Java source
code into the entities: import declarations, classes, in-
terfaces, methods, constructors, and fields. Then, using
the class Differencer, the differences between the two
structures are calculated. These differences are stored in a
tree of DiffNode instances containing the kind of change,
i.e., changed (C), added (A) or deleted (D), as well as an
instance of JavaNode representing the compared source
code entity.

In addition, we are interested in the number of added
and/or removed text lines of changed entities. For that,
the regions corresponding to the changed entities are com-
pared by using a line-by-line comparison. The compare
plugin provides a line sequence generator for text docu-
ments: DocLineComparator. Since the Java node of

2org.eclipse.jdt

the changed entity keeps track of its location in the source
file, we initialize the generator only with the entity region to
compare. Using the class RangeDifferencer, the dif-
ferences between the two regions are stored in an array of
RangeDifference instances.

Each identified structural difference is saved in our
RHDB with the information: complete file path including
the CVS module name, new revision number, change type,
number of added lines, number of removed lines, entity
type, and entity name.

Table 1 shows the stored information for the com-
pare example in Figure 2, and 3 respectively. With
the information in this example, we find out that the
method setCurrentDiff(Diff, boolean) in the
Java source file TextMergeViewer.java has changed
from revision 1.4 to 1.5 and two lines of code were deleted.

3.3. Automated Structural Change Extraction

CVS allows us to checkout any revision of a file in a
particular repository and CVS integration is well supported
in Eclipse. The CVS plugin of Eclipse3 provides various
interfaces to use common CVS commands. We make use
of this support to automate the structural change extraction
process.

3org.eclipse.team.cvs.core



File Rev changeType +LOC -LOC entityType entityName
TextMergeViewer.java 1.5 C 0 -2 method setCurrentDiff(Diff, boolean)

Table 1. Example of a structure change of TextMergeViewer.java between revisions 1.4 and 1.5

We developed an Eclipse plugin that performs the pro-
cess described in Section 3.2 for all subsequent revisions of
a Java source file. In particular it performs the following
process steps:

1. It parses the CVS log information of the file under in-
vestigation to get all revision numbers.

2. Starting at the revision 1.1, it checks-out every revision
and its subsequent revision of the file and performs a
structure comparison.

3. It stores the comparison results in the RHDB.

With our plugin we can select a single file or a whole
project on which the structure comparison is performed.

3.4. Change Coupling Groups

The RHDB approach [4] calculates the change couplings
between files in a CVS repository using the relation analy-
sis approach described in [6]. In short, change couplings are
traced back to common commits of modified files that refer
to a transaction. We define a change coupling group as the
set of files that were committed together. But, to what extent
the files were structurally changed, i.e., are structurally cou-
pled, is not clear. For instance, files which were committed
together according to a change in the license terms are not
structurally coupled, but contained in the same change cou-
pling group.

In the history of all transactions, a certain change cou-
pling group may occur more than once. With each occur-
rence of such a change coupling group the probability that
modifications to a file of a group propagates to the other
coupled files increases. Change coupling groups occurring
only once are most likely to be accidental transactions.

Therefore, we focus on the following aspects of change
coupling analysis: Which coupling groups recur often and
which of them were subject to structural changes.

3.5. Detecting Frequent Change Coupling Groups

A certain change coupling group may be committed fre-
quently in two different ways. Either it is always commit-
ted alone and not with other files/groups, or it is a subgroup
of another group. A change coupling group g is a change
coupling sub-group of h if g ⊆ h. The cardinality | · | of
a change coupling group is the number of contained files.

In our approach we consider the maximal change coupling
groups representing one commit (i.e., transaction).

After a commit in CVS a file gets a new revision num-
ber. Consequently, a change coupling group gets a set of
revision numbers. We define a revision vector as this set of
revision numbers. A revision vector also corresponds to a
transaction.

Let G be the set of all change coupling groups in the
RHDB and g ∈ G. Let g be the change coupling group un-
der investigation. The change coupling cluster P is the col-
lection of all revision vectors of the change coupling group
g in G. For the computation of the change coupling cluster,
we check for each change coupling group h ∈ G if g is a
change coupling sub-group of h. After that is verified, the
corresponding revision vector is added to the change cou-
pling cluster.

This algorithm is in O(|G|2). Reducing G by exact
matches, i.e., if g = h remove h from G, does not reduce
the complexity O(|G|2) in general. Anyway, we have to
remove exact occurrences after a pass, because otherwise a
change coupling cluster may occur more than once.

We distinguish the occurrences of a particular change
coupling group in a change coupling cluster by their revi-
sion vectors and represent a change coupling cluster as a
matrix. For instance, the files A, B, and C build a change
coupling group g = {A,B, C}. Assume, they were com-
mitted together three times. Their revision numbers were
for A: 1.3, 1.5, and 1.9; for B: 1.2, 1.7, and 1.8; for C: 1.6,
1.10, and 1.12. The corresponding change coupling cluster
is the following matrix:

A
B
C

 1.3 1.5 1.9
1.2 1.7 1.8
1.6 1.10 1.12


︸ ︷︷ ︸

revision vectors r1, r2, r3

To summarize, a change coupling group consists of a set
of files which were committed together more than once in
the history of a software system. A change coupling cluster
consists of a change coupling group with multiple revision
vectors. We store a change coupling cluster in a matrix in
which the revision vectors are its columns.

3.6. Attaching Structural Changes to Change Cou-
pling Groups

According to the stored information of each change cou-
pling cluster, we are able to get the structural change for
each commit in a change coupling cluster P . Assume:



P =
A
B
C

 1.3 1.5 1.9
1.2 1.7 1.8
1.6 1.10 1.12


• T is the set of all transactions in the change coupling

cluster P . ti ∈ T is one particular transaction.

• R is the set of all revision vectors in the change cou-
pling cluster P . ri ∈ R is the revision vector of ti:

R =

 1.3 1.5 1.9
1.2 1.7 1.8
1.6 1.10 1.12

 i = 2 : r2 =

 1.5
1.7
1.10


• g ∈ G is the coupling group represented by the change

coupling cluster P : g = {A,B, C}

• fj ∈ g is a file in the change coupling group. Then,
ri,j is the revision number of the file fj after the trans-
action ti:

i = 2, j = 3 : f3 = C, r2,3 = 1.10

• SC is the set of all structural changes which has the
corresponding layout as Table 1.

F Rev chT + - eT eN
A 1.3 A 0 0 method foo(byte)
A 1.5 C 3 0 method foo(byte)
A 1.5 C 1 -4 constr. A(int)
B 1.2 D 0 0 field bar
B 1.2 C 5 -2 method add(C)
B 1.8 A 0 0 field bar
C 1.6 C 0 0 method dispose()
C 1.10 C 1 0 constr. C()
C 1.12 C 0 0 field frame

Abbreviations: F = File, chT = changeType, +/- = +/-
LOC, eT = entityType, eN = entityName, constr. =
constructor.

In this example, not every file was structurally changed
in all transactions. As we show in Section 4, this issue
is quite common.

• Si,j = {sk ∈ SC, k = 1, ..., |SC| | fj = fk, ri,j =
Revk}. That is the set of all structural changes of the
file fj from revision ri,j−1 to revision ri,j :

i = 2, j = 1 : f1 = A, r2,1 = 1.5 ⇒

S2,1 = {sk ∈ SC, k = 1, ..., 9|fk = A,Revk = 1.5} :

F Rev chT + - eT eN
A 1.5 C 3 0 method foo(byte)
A 1.5 C 1 -4 constr. A(int)

Then, the set of all structural changes for one commit ti
is

Σ(ti) = {j ∈ {1, ..., |g|} | Si,j}

For instance: Σ(t2):
F Rev chT + - eT eN
A 1.5 C 3 0 method foo(byte)
A 1.5 C 1 -4 constr. A(int)
C 1.10 C 1 0 constr. C()

3.7. Browsing Structural Changes of Change Cou-
pling Clusters

We developed a change coupling cluster browser to get
a quick overview of the change coupling groups, change
coupling clusters, and their structural changes. Figure 4
shows a screenshot of our plugin. It is divided into four
tables. The table on the left hand side contains the change
coupling groups represented by GroupID. For each change
coupling group the number of files is given in the column
# Files. The last column labeled Occurrences states how
often the change coupling group was committed. Clicking
on a change coupling group, the contained files are listed in
the top-middle table and the corresponding revision vectors
of the change coupling cluster are shown in the top-right
table. Clicking on a revision vector the structural changes
of the files at the given revisions are listed in the bottom
table. Referring to our example, it lists the changes of
the methods in the file ContentMergeViewer.java,
StructureDiffViewer.java, and DiffTree-
Viewer.java.

3.8. Filtering Change Coupling Groups

In this paper we focus on filtering false-positives in
change coupling groups, i.e., files which were com-
mitted according to non-structural changes. These are
changes in license terms and whitespaces between meth-
ods. Changes in the comment of a method, e.g., Javadoc, or
adding whitespace within a method are treated as structural
changes. Structure comparison in Eclipse treats changes
equally. We use this to filter out revision vectors of change
coupling clusters where the corresponding files were not
structurally changed.

In particular, we filter two kinds of non-structural
changes: first, revision vectors where none of the corre-
sponding files were changed, i.e., Σ(ti) = ∅. Second, revi-
sion vectors in which at least one of the corresponding files
were not changed, i.e.,:

∃j : ∀i, k : ri,j 6= Revk j = 1, ..., |g|, k = 1, ..., |SC|



Figure 4. Screenshot of the Change Coupling Cluster Browser

4. Case Study

For the validation of our change coupling analysis ap-
proach we conducted a case study with the compare plugin
of Eclipse, org.eclipse.compare. In particular, we
were interested in analyzing the impact of non-structural
changes on the amount of change couplings.

The compare plugin consists of seven packages. They
provide interfaces to organize data for the differencing al-
gorithm and predefined content viewer to display the dif-
ferencing results. Three of the packages have the in-
fix internal. They contain already implemented data
creators used within Eclipse. For instance the class
DocLineComparatorwhich we use to structure the Java
source files into text lines, belongs to one of the internal
packages.

For the analysis we used the CVS data available on April
18th, 2005. The compare plugin project started on May 2nd,
2001. Table 2 gives an overview of the source size of the
plugin at the checkout day.

Metric #
# Packages 7
# Files 117
# Classes 120
# Interfaces 27
# Methods 1022
# Fields 465
# LOC 25914

Table 2. Size-metrics of the compare plugin

4.1. Change Coupling Clusters

We started with the population of the release history
database. Table 3 summarizes a few numbers from the
RHDB: The plugin contains 322 files; in its history 160
Java files were in the repository. 117 of them were alive
at the checkout day. Although the largest five groups con-
tain 53, 36, 28, 18, and 16 files, the average cardinality of
the change coupling groups is only 5, i.e., 5 files were com-
mitted together on average.

Description #
MRs imported into the RHDB 3086
MRs concerning Java files 1852
Change coupling groups 384
Average # files per groups 5
Change coupling clusters 116
Revision vectors 805
Average # revision vectors in clusters 6

Table 3. Summary of the change coupling
cluster extraction

4.2. Structure Compare

We performed a structural change extraction of all Java
source files of the compare plugin. In total, 4826 struc-
tural changes were found, but interestingly 7 out of the 117
files did not structurally change over the four years. Table 4



shows the distribution of the structural changes into the en-
tities used by structure generator of Eclipse. We extracted
addition and deletion of inner classes, because their changes
are tracked with the changes of their body. Obviously,
the most changes are performed in methods. But, we ob-
served that import declaration changed almost as frequently
as fields. Adding import declarations to a Java source file is
mostly an impact of another change in the source code, e.g.,
when a new class is used the first time. Deleting import dec-
larations must not be performed immediately when classes
are no longer used. Therefore, we performed the analysis
with and without changes of import declarations.

Entity #
Total 4826
Method 3094
Field 853
Import declaration 547
Constructor 298
Inner classes (A/D) 18
Initializer 16

Table 4. Distribution of the structural changes

4.3. Filtering Change Couplings

To analyze which change couplings are not caused by
source code changes, change coupling clusters are filtered
in two different ways: 1) revision vectors in which none of
the corresponding files were structurally changed; 2) revi-
sion vectors in which at least one of the corresponding files
was not structurally changed. Table 5 and 6 list the results
of our approach: 1) 255 out of 805 revision vectors show no
structural changes; 2) 416 out of 805 revision vectors show
at least one commit of a file without any structural change.
This is 31.7%, and 51.7% respectively, of all revision vec-
tors.

If the import declarations are omitted, the values are ac-
tually bigger: 1) 262 (32.5%); 2) 438 (54.4%). According
to the first filtering, 6 change coupling clusters disappear;
the second filtering drops 41 coupling clusters. That are
5%, and 35.3% respectively of all change coupling clus-
ters. Omitting the import declaration changes affects only
the first filtering: 42 (36.2%).

4.4. Discussion

The result of the case study is that more than half of all
transactions were not caused by structural changes. A pos-
sible explanation may be that files are bound to an author,
thus strong code ownership is used. The author works all
day on his/her files and performs a commit at the end of a

working day. Then it is obvious that files that are not struc-
turally coupled are committed together. On the other hand,
it may also be possible that the handling of the software li-
censing of Eclipse changed all the time, and the findings in
this case study are unique. In the latter case, a non-Eclipse
case study will provide more and in-depth insights.

Effective filtering of change couplings with such impact
on the number of change coupling groups will support soft-
ware evolution analysis in various fields. For instance, the
number of false-positives in predicting source changes can
be reduced with our approach.

5. Conclusions and Future Work

Versioning systems provide lots of data about a source
code base and its modifications, but their major drawback
is that the kind and the scope of changes have to be ana-
lyzed by an engineer since only lines added and/or deleted
are reported textually. Software evolution analyses based
on such release history data, therefore, remain on the level
of added and deleted lines of code, but do not effectively re-
port on the structure of changes such as classes or methods
and their respective changes. Our recent investigations of
CVS data have shown that commonly committed files high-
light important change couplings. But detailed information
whether change couplings are caused by source code cou-
plings or by other textual modifications, such as updates in
license terms, are missed by current approaches.

In this paper, we presented an approach that uses the
structural compare services shipped with the Eclipse IDE
to obtain the fine-grained changes between subsequent ver-
sions of Java classes. This information enables to iden-
tify those change couplings which result due to structural
changes. So we can distill the causes for change couplings
along releases and filter out those that are structurally irrel-
evant. Our approach has been realized as an Eclipse plug-in
and has been validated on a medium-sized open source soft-
ware system. Results so far show that a significant amount
of change couplings are not caused by structural source
code changes.

The results of this work allows us to perform fine-grained
investigation of change couplings and a more detailed com-
bination of release history and source code data for software
evolution analysis. We are able to refine our change cou-
pling analysis and its tooling. Furthermore, since Eclipse
is not limited to Java we have to generalize our plugin to
support other programming languages, such as C/C++.

To validate the results of the case study presented in
this paper, we plan to perform further case studies (be-
cause the frequent non-structural changes could be project
specific). Future work will concentrate on detecting pat-
terns in sequences of structural change. We plan to inves-
tigate if patterns which led to complex source code can be



Description # %
# Revision vectors (transactions) 805 100%
# Revision vectors without any structural change 255 31.7%
# Revision vectors with at least one non-structural change 416 51.7%
# Omitted change coupling clusters in the first case 6 5%
# Omitted change coupling clusters in the second case 41 35.3%

Table 5. Filtering change couplings with import declarations

Description # %
# Revision vectors (transactions) 805 100%
# Revision vectors without any structural change 262 32.5%
# Revision vectors with at least one non-structural change 438 54.4%
# Omitted change coupling clusters in the first case 6 5%
# Omitted change coupling clusters in the second case 42 36.2%

Table 6. Filtering change couplings without import declarations

predicted within other change sequences. For that, finer-
grained source code changes extraction must be performed.
Another perspective is to investigate the impact of our ap-
proach on predicting change propagation.

Acknowledgements This work was partially supported
by the Swiss National Science Foundation (SNF) and the
Hasler Stiftung Switzerland.

References

[1] Eclipse. http://www.eclipse.org.
[2] M. Fischer and H. Gall. Visualizing feature evolution of

large-scale software based on problem and modification re-
port data. Journal of Software Maintenance and Evolution:
Research and Practice, 16(6):385–403, November/Decem-
ber 2004.

[3] M. Fischer, M. Pinzger, and H. Gall. Analyzing and relating
bug report data for feature tracking. In Proceedings of the
10th Working Conference on Reverse Engineering (WCRE),
pages 90–99, Victoria, British Columbia, Canada, Novem-
ber 2003. IEEE Computer Society.

[4] M. Fischer, M. Pinzger, and H. Gall. Populating a release
history database from version control and bug tracking sys-
tems. In Proceedings of the 19th International Conference
on Software Maintenance (ICSM), pages 23–32, Amster-
dam, The Netherlands, September 2003. IEEE Computer
Society.

[5] H. Gall, K. Hayek, and M. Jazayeri. Detection of logi-
cal coupling based on product release history. In Proceed-
ings of the International Conference on Software Mainte-
nance (ICSM), pages 190 – 198, Bethesda, Maryland, USA,
November 1998. IEEE Computer Society.

[6] H. Gall, M. Jazayeri, and J. Krajewski. Cvs release history
data for detecting logical couplings. In Proceedings of the
6th International Workshop on Principles of Software Engi-
neering (IWPSE), pages 13–23, Helsinki, Finland, Septem-
ber 2003. IEEE Computer Society.

[7] B. Magnusson, U. Asklund, and S. Minör. Fine-grained re-
vision control for collaborative software development. In
Proceedings of the ACM SIGSOFT symposium on Founda-
tions of Software Engineering, pages 33–41, Los Angeles,
CA, USA, 1993. ACM Press.

[8] J. I. Maletic and M. L. Collard. Supporting source code dif-
ference analysis. In Proceedings of the 20th IEEE Interna-
tional Conference on Software Maintenance (ICSM), pages
210 – 219, Chicago, Illinois, USA, September 2004. IEEE
Computer Society.

[9] T. Mens. A state-of-the-art survey on software merging.
IEEE Transactions on Software Engineering, 28(5):449–
462, May 2002.

[10] Z. Xing and E. Stoulia. Understanding class evolution in
object-oriented software. In Proceedings of the 12th In-
ternational Workshop on Program Comprehension (IWPC),
pages 34–43, Bari, Italy, June 2004. IEEE Computer Soci-
ety.

[11] A. T. Ying, G. C. Murphy, R. Ng, and M. C. Chu-Carroll.
Predicting source code changes by mining change history.
IEEE Transaction on Software Engineering, 30(9):574–586,
September 2004.

[12] T. Zimmermann, S. Diehl, and A. Zeller. How history justi-
fies system architecture (or not). In Proceedings of the 6th
International Workshop on Principles of Software Evolution
(IWPSE), pages 73–83, Helsinki, Finland, September 2003.
IEEE Computer Society.

[13] T. Zimmermann, P. Weissgerber, S. Diehl, and A. Zeller.
Mining version histories to guide software changes. In Pro-
ceedings of the 26th International Conference on Software
Engineering (ICSE), pages 563–572, Edingburgh, Scotland,
UK, May 2004. IEEE Computer Society.


