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Abstract. Code clones have long been recognized as bad smells in soft-
ware systems and are considered to cause maintenance problems during
evolution. It is broadly assumed that the more clones two files share,
the more often they have to be changed together. This relation between
clones and change couplings has been postulated but neither demon-
strated nor quantified yet. However, given such a relation it would sim-
plify the identification of restructuring candidates and reduce change
couplings. In this paper, we examine this relation and discuss if a cor-
relation between code clones and change couplings can be verified. For
that, we propose a framework to examine code clones and relate them
to change couplings taken from release history analysis. We validated
our framework with the open source project Mozilla and the results of
the validation show that although the relation is statistically unverifi-
able it derives a reasonable amount of cases where the relation exists.
Therefore, to discover clone candidates for restructuring we additionally
propose a set of metrics and a visualization technique. This allows one to
spot where a correlation between cloning and change coupling exists and,
as a result, which files should be restructured to ease further evolution.

1 Introduction

Code duplication is often cited as one of the major bad smells in software sys-
tems [1]. Systems containing a large proportion of duplicated code are considered
to be difficult to maintain. It is estimated that normal industrial source code con-
tains 5 – 20 % of duplicated fragments [2]. The financial impact of maintenance
is grave – the costs of changes carried out after delivery are estimated at 40 –
70 % of the total costs during a system’s lifetime [3].

As bad smells are indicators for maintainability problems, they lose their
significance if the system remains stable and is never changed after its initial
release. According to Lehman’s Laws of Software Evolution [4], software systems
which are actively used to solve problems in the real world are never completely
stable during their lifetime. Basically, a system has to evolve so that its users
remain satisfied. In this case the possible negative influence of code clones on
the maintainability comes into play. Code duplication increases the change effort
and reduces the understandability of the code drastically. Thus, code clones are
a major factor that have to be considered during the evolution of a system.
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A sign of maintainability problems during the evolution of a system are
change couplings. Gall et al. defined change couplings as files which are com-
mitted at the same time, by the same author, and with the same modification
description [5]. If such couplings occur only sporadically, they do not present
a major problem. If, on the other hand, files are frequently changed together
during the evolution of the software system, a refactoring or even reengineering
should be considered.

Based on the assumption that whenever a duplicated code fragment is changed
its variants also have to change [6], there seems to be a strong relation between
code clones and change couplings. In this paper, we investigate whether this
relation holds. We present a framework to determine the relation of code clones
and change couplings and introduce a visualization technique aiding developers
to choose which code clones to refactor. We further present a validation of our
framework with the large open source project Mozilla. The results of the vali-
dation show that although the relation is statistically unverifiable it derives a
reasonable amount of results where the relation exists. Furthermore, it shows
that based on the relation data our visualization technique can be used to iden-
tify the candidates for a refactoring.

The remainder of the paper is organized as follows: Section 2 presents related
work that has been done in the area of code clone detection and the impact of
these duplications to the evolution of software systems. In Section 3 we describe
our framework that has been applied to the case study. Section 4 presents a
validation of our framework and discusses its results. We conclude the paper in
Section 5 and indicate areas for future research.

2 Related Work

A large number of code clone detection techniques have been developed. Four
different general approaches can be discerned: detection based on lexical analysis
[7–9], on source code metrics [2], on an abstract syntax tree representations of
the system [10], or on isomorphic program dependence graphs [11]. Burd and
Bailey give a comparison between the different approaches in [12]. Most of these
approaches offer graphical user interfaces using dot plots to visualize the code
clones. We worked with the Gemini environment for CCFinder [13] and with
Duploc [14]. We found that the dot plot visualization technique was most useful
for smaller fragments of source code but did not scale well for large systems such
as Mozilla.

Casazza et al. describe the application of code clone detection tools on a
large scale multi-platform software system in [15]. They explore the cloning per-
centages across different platform–dependent modules of the Linux kernel. The
percentage of cloning that has been detected can be considered low. Compared
to their approach we focus on the effect of code clones on change couplings.

Recent studies have shown why and how programmers introduce code clones
into software systems [16] and how software development could benefit from the
inclusion of code clone detection tools into the development process [17]. The
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evolution of code clones has been investigated by Kim et al. in [18]. They provide
a classification for evolving code clones but not for their impact on the change
coupling behavior of the whole system. The main result of their paper is that
code duplications cannot be considered inherently bad and do not need to be
refactored in every case.

Work on the classification of code clones has recently been done by Kapser
and Godfrey [19]. They propose a tool to interpret and classify the results gath-
ered by code clone detection tools. Their case study also shows improvements
in the elimination of false positive candidates returned by most clone detection
tools.

The concept of the release history database (RHDB) was first described in
[20] and [21]. The database uses version and bug tracking data and contains
data obtained from the Mozilla open source project which uses CVS as version
control system and Bugzilla for the organization of bug reports. Further work
on logical and change couplings during the evolution of a software system was
presented in [22, 5].

We adopted the visualization technique using polymetric views developed by
Lanza and Ducasse [23] for the use with code clones and change couplings.

3 Framework

In this section we present our framework for analyzing the relation between code
clones and change couplings. The framework consists of six steps as shown in
Figure 1. The following subsections describe each step in detail.

Calculation
of Impact Metric

Relation
of Code Clones

and Change
Couplings

Visualization
and

Interpretation

Identification of
Suitable ClonesClone Detection

Extraction of
Change Coupling

Information

Fig. 1. Overview of the framework.

3.1 Clone Detection

A pre-selection of three code clone detection tools has been made yielding the
candidate tools Duploc [8], CloneDR [10], and CCFinder [9]. We selected the
clone detection tool according to several criteria which we considered impor-
tant for their applicability to the case study: language support for C and C++,
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maximal input size in lines of code, user interface, output format, recall, and
precision. Most of these criteria are not directly measurable or even depend on
the subjective perception of the user.

By means of these criteria we have chosen CCFinder as the clone detector
most appropriate for our needs. Its recall, user interface, and output format fit
best our needs to address our research goal. For an in-depth evaluation of the
three clone detection tools we refer to [24].

3.2 Identification of Suitable Clone Candidates

As the goal of this framework is to define the relation between duplicated code
and change couplings between files, the interesting clone pairs are those in which
the cloned code fragments appear in two or more files. Furthermore, clones whose
length varies or that appear or disappear during the examined period are con-
sidered more interesting than duplications that remain stable. This selection
criterion is based on the assumption that there is a significant relation between
code clones and change couplings.

Absolute numbers are inadequate when comparing different files because their
lengths vary. The same applies to the length of cloned code fragments. Therefore
our model of code clone classification relies on the clone coverage in every single
file. This ratio is for file A compared to B defined as

CloneCoverage(A,B) =
ClonedLines(A,B)

NCLOC(A)

where ClonedLines(A,B) is the number of lines in file A that are clones of lines
in file B. NCLOC(A) is the number of lines of source code in file A not counting
comments and blank lines. A cloned line is only counted once even if it is part
of more than one clone pair or is covered multiple times by overlapping clones.
When more than two files are compared, every pair of files out of this set has to
be compared separately.

Two files A and B can share more than one semantically distinct clone pair.
The types can be used to classify every instance of a clone pair. And in this
paper, CloneCoverage(X, Y ) is always calculated for all code clones shared by
X and Y .

To apply clone coverage to a set of evolving files, it is necessary to observe
the clone coverage values over several versions of the files. These comparisons
allow us the classification of each file pair sharing code clones into one of the
following five types depending on the development of its clone coverage.

– Type 0 (stable): The relative length of cloned fragments in question re-
mains the same between versions i and i + 1:

CloneCoverage(A,B)i = CloneCoverage(A,B)i+1 6= 0

– Type 1 (new): A clone is newly introduced in version i + 1:

CloneCoverage(A,B)i = 0 ∧ CloneCoverage(A,B)i+1 > 0



Relation of Code Clones and Change Couplings 5

– Type 2 (removed): A clone is removed between the versions i and i + 1:

CloneCoverage(A,B)i > 0 ∧ CloneCoverage(A,B)i+1 = 0

– Type 3 (increased): Clone with increasing significance, i.e., the clone cov-
erage in version i + 1 is larger than in version i:

CloneCoverage(A,B)i < CloneCoverage(A,B)i+1

and CloneCoverage(A,B)i > 0 ∧ CloneCoverage(A,B)i+1 > 0

– Type 4 (decreased): Clone with decreasing significance, i.e., the clone
coverage in version i + 1 is smaller than in version i:

CloneCoverage(A,B)i > CloneCoverage(A,B)i+1

and CloneCoverage(A,B)i > 0 ∧ CloneCoverage(A,B)i+1 > 0

Types 1 to 4 indicate changes in code clones during evolution. Among them,
those best suited for further investigation are clones of Type 1 and 2. We expect
that the change couplings between files containing cloned fragments of each other
show a relation between the changing code clones and their later couplings. If this
assumption holds, for example two files into which a Type 1 clone is introduced
after version i are expected to exhibit more change couplings in subsequent
versions. Type 0 clones are also of interest because according to the hypothesis,
change couplings caused by code clones are expected to be stable.

3.3 Extraction of Change Coupling Information

For this step of the framework we relied on our previous work on the release
history database (RHDB) described in [20]. The RHDB contains data obtained,
for example, from the Mozilla open source project. In particular, it stores data
about the modification reports obtained from versioning control systems (CVS)
repository of Mozilla and problem report data obtained from Mozilla’s Bugzilla
database.1 In our framework we can exploit the RHDB to retrieve the change
coupling data for the files that share code clones.

The number of change couplings between a pair of files (or similar entities
of source code) during a given interval is the same for each file of a change cou-
pled pair. The number of check–ins during the same time interval can, however,
vary giving us a distinct ratio for each file. The coupling coverage metric we
subsequently use is defined as

CouplingCoverage(A,B, I) =
ChangeCouplings(A,B, I)

Checkins(A, I)

where ChangeCouplings(A,B, I) is the number of times files A and file B are
checked in together during time interval I and Checkins(A, I) is the total num-
ber of times file A is checked in during I.
1 http://bugzilla.mozilla.org
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3.4 Relation of Code Clones with Change Couplings

A potential relation between code clones and change couplings is based on the
assumption that pairs of source files sharing code clones are changed together [6].
This assumption has been taken for granted but not yet been proven.

For the investigation of this assumption we use the code clone and change
coupling coverage values of each file pair and relate them. Results are represented
in a dot plot where each dot refers to a file pair sharing code clones. The position
of a dot is computed by drawing the code clone coverage value on the X-axis
and the change coupling coverage value on the Y-axis.

Based on the assumption stated before we expect a concentration of dots
along the diagonal meaning that low clone coverage leads to few change couplings
and high clone coverage leads to frequent change couplings. An example of such
a dot plot is depicted by Figure 3 in Section 4. And, as will be shown in the case
study, the expectation is not always fulfilled.

To enable an interpretation of resulting dot plots we use regression analysis
to quantify the relation between code clones and change couplings. In this paper
we consider linear and logarithmic regression analysis. Two premises must be
fulfilled for the regression to be significant. One is that a representative sample
of files containing code clones is available for the calculation. The second is that
this sample can be described with sufficient precision by a regression function,
meaning that the correlation coefficient is close to 1.

3.5 Definition of a Metric to Describe the Impact of Code Clones

The relation presented before is based on the relative values of code clone and
change coupling coverage. In addition the absolute length of a clone as well as
the total number of change couplings influence our impact metric. That means,
a longer fragment of duplicated code tends to have a larger influence than a
shorter sequence. Furthermore, a file that is changed more often has a bigger
potential of presenting a problem than a file that is never touched during the
evolution of a system.

Based on these assumptions we select the following input parameters for the
calculation of our impact metric:

– Clone coverage,
– Coupling coverage,
– Length of cloned fragments, and
– Absolute number of coupled check–ins.

Because of the difficulty to express the four parameters in one view a light–
weight approach is used applying Lanza’s polymetric views [23]. The key idea of
polymetric views is to map metric values to graphical attributes, such as shape,
size, and color of glyphs to activate the visual recognition capabilities of humans.

In our visualization, the four metrics listed above can be displayed in a Carte-
sian coordinate system enriched with additional use of color and the diameter
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Fig. 2. Description of the metrics used in the visualization.

of circles in the chart. The mapping of metric values to graphical attributes is
depicted Figure 2.

The size of a circle is defined in proportion to the length of the clones. The
maximum diameter is fixed and corresponds to the length of the longest clone.
All other diameters are calculated proportionally to the length of the rest of the
clones:

Diameter(A) = MaxDiameter · ClonedLines(A,B)
max(ClonedLines(X, Y ))

where MaxDiameter is a constant describing the maximal diameter of a circle
and max(ClonedLines(X, Y )) is the maximum length of cloned fragments to be
visualized.

The fill color of a circle is defined in a way that the highest number of cou-
plings is displayed as red. The intermediate colors are determined by variations
of the RGB value proportional to the relative number of couplings so that a
gradual transition to blue is achieved, which corresponds to zero couplings. The
R and B–values are calculated by

R =
ChangeCouplings(C,D, I)

max(ChangeCouplings(X, Y, I))
· 255, and B = 255 − R

where R is the RGB–value for red and B the RGB–value for blue of the color
of the circle in the chart. C and D are the specific files under consideration.
max(ChangeCouplings(X, Y, I)) represents the maximal number of change cou-
plings between any two files X and Y during interval I.

Unlike a numerical approach, this visualization is not dependent on a signif-
icant regression. The user is able to see possible problems and to react by closer
inspection of the affected files.
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4 Framework Validation

For the validation of our framework we applied the tools and methods to the
open source project Mozilla2. The following sections report on our experiences
and present the results of the experiments and the insights gained.

4.1 Clone Detection

For the detection of code clones we selected the CCFinder tool. In our framework
these output files form the basic input to calculate the correlations between code
clones and change couplings.

The input data for our clone detection comprised the seven source code re-
leases of Mozilla: 0.92, 0.97, 1.0, 1.3a, 1.4, 1.6, and 1.7. The release period be-
tween these releases is about 6 months. For each release we selected the “.c”
and “.cpp” files that contain most parts of the implementation. We also skipped
the header (“.h”) files because these files mostly contain only declarations and
no implementation of functionality. The following description of the case study
is based on the input data of Release 1.7 comprising 5,882 files with 2,980,000
lines of code (LOC).

For the configuration of the CCFinder tool we performed a number of test
runs and came up with two possible configurations for the minimal length of
code clones which are 30 and 70 tokens. 70 tokens were used when processing
large amounts of data, such as all files of one release, to allow us to visualize the
code clones. Otherwise, for our analysis of the relation between code clones and
change coupling we used 30 tokens. Using 30 tokens results in code clones with
a minimal length of 2.9–3.9 lines of C or C++ source code. Figure 3 shows the
dot plot of detected code clones in source files of Mozilla Release 1.7 generated
with the Gemini tool [13].

In total the CCFinder tool detected 661,861 code clones in the source files
of Release 1.7. In the dot plot files are arranged on a directory-basis allowing
us to identify inter- and intra-module clones. Code clones within modules are
indicated by the clusters positioned around the diagonal line. For instance, the
cluster in the lower right corner shows the code clones within the “GFX and
Widget–Mac” module. The other clusters in the dot plot indicate inter-module
code clones.

4.2 Identification of Suitable Clone Candidates

Not all code clone candidates that are detected by CCFinder can be used for
the purpose of this case study. One problem are false positives or clones only
consisting of sequences of #include–statements, declarations of variables, or
switch–statements. For the relation between code clones and change couplings
Types 1 to 4 are of interest because they changed during the evolution.

2 http://www.mozilla.org/
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Fig. 3. Dot plot of code clones in Mozilla Release 1.7 (70 tokens).

We selected a representative sample of 31 files to examine the types of clone
containing file pairs occurring in the case study. These files form 21 file pairs
of which almost none are of a single type of file pair within the examined in-
terval. Type 0 file pairs occur in 13, Type 1 and 2 in 2, Type 3 in 11, and
Type 4 in 12 pairs. Noteworthy, example pairs for Type 0 and 4 file pairs are
{nsMathMLmoverFrame.cpp, nsMathMLmunderoverFrame.cpp}, and {os2/ns-
FilePicker.cpp, windows/nsFilePicker.cpp} respectively.

Since in this case study most of the clone pairs occur in various types of file
pairs, we did not consider the selection of special clone candidates. Therefore,
we input all detected clones to the relation analysis.

4.3 Extraction of Change Coupling Information

For the extraction of the change coupling information we considered all files of
Mozilla Release 1.7 that share at least one code clone. With this set of files we
accessed our release history database (RHDB) and retrieved the change coupling
information.

There is one major difference between the examination of code clones and
that of change couplings that we have to consider: code clones involve the ex-
ploration of files at a given point in time – the date of each release of Mozilla –
while the latter must be investigated over a certain time interval (i.e., between
two or more Mozilla releases).

Summarized we retrieved 139,523 change coupling records from the RHDB
for all seven Mozilla releases (up to Mozilla 1.7).
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4.4 Relation of Clone Data and Change Couplings

For relating the detected code clones with extracted change couplings we com-
puted per file pair the code clone coverage and the change coupling coverage
(see Section 3). The two coverage values then were plotted against each other
yielding to the dot plot shown in Figure 4.
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Fig. 4. Relation between code clones and change couplings in Mozilla 1.7.

The concentration of values where the clone coverage ratio is below 0.2 in-
dicates that the relation between clone and coupling coverage is pretty much
random and difficult to interpret.

To prove the relation between code clones and change couplings we applied
two types of (straightforward) regression analysis: linear and logarithmic re-
gression analysis; using other functions are subject of future work. Because of
the huge amount of data we started the regression analysis with three random
samples of 65,536 file pairs sharing code clones. In each case, the R2 value was
better for linear than for logarithmic regression over the same sample. A linear
regression resulted in the best fitting function with the highest coefficient of
determination of 0.702:

CouplingCoverage(A,B, I) = 1.038 · CloneCoverage(A,B) + 0.097

The resulting equation explains 70.2 % of the scattering visible in the chart. The
other attempts at regression analysis yielded lower R2 values.
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Similar regression analyses were computed for the 30,433 instances of data
where the clone coverage exceeded the threshold of 0.2. A linear regression with
a low R2 value of 0.2088 resulted in the equation

CouplingCoverage(A,B, I) = 0.512 · CloneCoverage(A,B) + 0.4781

which is not a close fit compared to the results obtained by a sample of all input
values.

The findings of our analysis indicate a certain relation between cloned frag-
ments of source code and change couplings during evolution of the software. This
connection was expected from previous work starting with [1]. Usually the larger
the clone coverage between two files is, the more often these files are coupled.
However, based on our regression analyses it is neither possible to conclude that
code duplications are reflected in high change coupling coverage values nor is the
opposite true. From the results of this case study it is impossible to definitely
exclude the possibility that there is in fact no statistically relevant correlation
between code duplications and change couplings.

Change couplings can have causes other than code clones. Files fulfilling
similar roles in the system often are changed together even though they might not
contain many duplicated code fragments. Despite these exceptions, the general
tendency for files with a high clone coverage value is to be coupled more often
than files with a lower percentage of duplications.

An examination of clone and coupling coverage can be used to identify groups
of files that would benefit from a determined refactoring effort. In Mozilla, we
identified several such candidates. An example is the file nsMathMLmsubFrame.cpp
of the MathML module which is coupled with files nsMathMLmsubsupFrame.cpp
and nsMathMLmsupFrame.cpp in the same folder every single time it is changed
between Releases 0.92 and 1.7.

Using our relation analysis it is not possible to distinguish harmless from
dangerous code duplications simply by looking at the results of a code clone
detection run on only one release of a software system. It is, however, safe to say
that the larger the clone coverage is, the higher is the probability of it becoming
“dangerous” during evolution. To express this degree of “danger” we applied our
visualization technique presented in Section 3.

4.5 Visualizing the Impact of Code Clones

Because of the difficulties of establishing a sound mathematical correlation be-
tween code duplications and change couplings we applied the polymetric views
visualization technique described in Section 3. This provided us with more in-
sights into the relation and in particular pointed out file pairs with a strong
relation being the candidates for a refactoring.

Figure 5 and Figure 6 depict the polymetric views created for the two modules
MathML and JPEG of Mozilla Releases 0.9.2 and 1.7.

The MathML module consists of 26 C++ files between which 470 distinct
pairs of files share duplicated code. Figure 5 depicts the situation for MathML.
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Fig. 5. Visualization of Mozilla module MathML of Releases 0.9.2 (a) and 1.7 (b).

Both, the left and the right chart point out the 5 files E, F , G, H, and I in
the upper right corner. They are frequently coupled with other files and share
large fragments of duplicated code as indicated by the size of the circles. Files
containing relatively few clones and with low code clone and change coupling
coverage are drawn on the left side of the chart. By comparing the charts of
both releases we distinguish the different types of (clone containing) file pairs
(see Section 3.2).

For instance, the total length of clones as well as the clone coverage in L
significantly decreased from Release 0.9.2 to 1.7 indicating a reengineering effort.
According to our classification this is a good example for a Type 4 file pair.
Further Type 4 file pairs are B, E, J , and K. In contrast, F represents a good
example of a Type 3 file pair as indicated by an increasing clone coverage value.
A similar trend can be seen for the file pairs represented by A, C, D, G, H, and
I.

The situation for Mozilla’s JPEG module is different as depicted by Figure 6.
The 52 C files of this module form 230 distinct file pairs sharing code clones. In
both charts most of the circles are equally red (dark) because every file of the
module was coupled exactly once during the observed time periods. In this case,
the selection of candidates for a refactoring relies on the length of code clones
and the clone coverage alone. The glyphs in both graphs show a large number of
Type 0 file pairs, for example B and C. Furthermore, there are few other types
of file pairs, such as A, showing a relatively stable module JPEG.

Summarized, based on the metric values of file pairs sharing clones our poly-
metric views allowed us to spot the degree of “danger” of code clones. The most
“dangerous” code clones were highlighted pointing us to the candidates in which
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Fig. 6. Visualization of Mozilla module JPEG of Releases 0.9.2 (a) and 1.7 (b).

code clones resulted in high change couplings, e.g., H and G in Figure 5. They
are first-class candidates to refactor.

5 Conclusions and Future Work

It is broadly assumed that the more clones two files share, the more often they
have to be changed together. We address this problem of qualifying change cou-
plings via code clone analysis.

In this paper, we discussed the relation of code clones and change couplings
taken from release history data to examine whether a correlation exists between
the two. For that, we proposed a framework to examine code clones and relate
them to change couplings. The individual steps include clone detection and clas-
sification of clones into clone types, extraction of change couplings for the files in
which the clones exist, calculating the relation between clones and change cou-
plings, and computing and visualizing a relation metric to identify restructuring
candidates.

We validated our framework with the open source project Mozilla and the
results of the validation show that although the relation is statistically indeter-
minable it derives a reasonable number of cases where such a relation exists.

Our framework is not limited to the Mozilla case study; it is essentially
independent of the type of system or of the programming language in which
the system is written. The metrics defined are relatively simple yet effective to
compute and require access to the system’s source code and to a release history
database containing release, modification, and bug report data.
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We use polymetric views as a visualization technique to detect problematic
code clones. This allows one to spot where a correlation between cloning and
change coupling exists and, as a result, which files should be restructured to ease
further evolution. If such a framework is integrated into a software engineering
environment, it could potentially offer a useful guidance in the decision which
clones are to be refactored. This is subject of our current work.

A result of this paper is that at least in the Mozilla case study, the correlation
between code clones and change couplings is too complex to be expressed easily.
For a significant distinction between clones that are irrelevant to the evolution
of a system and clones that are harmful, more information is needed than what
can be obtained automatically. Despite sophisticated tools that are available,
the judgement of the software engineer is still needed.

As future work we plan to further improve the examination and visualization
of the relation between code duplications and change couplings to distill all those
parts of a system in which clones are the cause for change couplings. We will
further integrate this kind of analysis with our other evolution analysis tools to
enable a more comprehensive picture by combining change dependencies, bugs,
and code clones.
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