
 

 
 

 
 

 
Automatic Verification of Small Molecule Structure 

with One Dimensional Proton Nuclear Magnetic 
Resonance Spectrum  

 
 
 

DOCTORAL THESIS 
 

FOR THE DEGREE OF A  
DOCTOR OF INFORMATICS 

 
AT THE FACULTY OF ECONOMICS,  
BUSINESS ADMINISTRATION AND 

INFORMATION TECHNOLOGY 
OF THE 

UNIVERSITY OF ZURICH 
 

 
by  

JIWEN LI 
 

from  
V.R. China 

 
Accepted on the recommendation of  

PROF. DR. A. BERNSTEIN 
PROF. DR. K. BALDRIDGE 

 
 

2010  



 

 
 

 
The Faculty of Economics, Business Administration and Information 
Technology of the University of Zurich herewith permits the publication of the 
aforementioned dissertation without expressing any opinion on the views 
contained therein. 
 
Zurich, April 14. 2010 
 
 
 
The Vice Dean of the Academic Program in Informatics: Prof. Dr. H. C. Gall 
 
 



 

iii 
 

 

Contents 
 

Acknowledgements .................................................................................................................................... viii 

Abstract ........................................................................................................................................................ ix 

List of Figures ................................................................................................................................................ x 

List of Tables ............................................................................................................................................... xii 

Part I .............................................................................................................................................................. 1 

Introduction, Background and the Proposal ................................................................................................. 1 

Chapter 1 Motivation ................................................................................................................................ 3 

1.1 Quantification ................................................................................................................................. 4 

1.2 Compound Structure Verification ................................................................................................... 5 

1.3 Applying NMR in Compound Library Management QC/QA ............................................................ 6 

1.3.1 1H NMR versus 13C NMR ......................................................................................................... 6 

1.3.2 1D 1H NMR versus 2D 1H NMR ............................................................................................... 6 

1.3.3 Applying 1D 1H NMR for Structure Verification and Quantification ....................................... 8 

1.3.4 Automating 1D 1H NMR Molecule Structure Verification ....................................................... 9 

1.3.5 Expert Systems and their Applications .................................................................................. 10 

1.3.6 Using Artificial Intelligence for Molecule Structure NMR Verification .................................. 11 

1.4 Structure of the Thesis .................................................................................................................. 12 

Chapter 2 Background ............................................................................................................................. 13 

2.1 Human Structure Verification Procedure with 1D 1H NMR Spectrum ......................................... 13 

2.1.1 1H 1D NMR Spectroscopy, NMR Sample and NMR Solvent .................................................. 13 

2.1.2 Basic NMR/Chemical Concepts used in Molecule Structure 1D 1H NMR Verification. ......... 14 

2.1.2.1 Chemical shift .................................................................................................................. 14 

2.1.2.2 Integration ...................................................................................................................... 16 

2.1.2.3 J-coupling ........................................................................................................................ 17 

2.1.2.4 Coupling Constant and Connectivity ............................................................................... 19 

2.1.2.5 Second-order Coupling ................................................................................................... 20 

2.1.2.6 Magnetic Inequivalence .................................................................................................. 21 

2.1.3 Human Process of Molecular Structure 1D 1H NMR Verification- an Example ..................... 22 



iv  ∙  Contents 
 

 
 

2.1.3.1 Identifying Peak Clusters ................................................................................................. 23 

2.1.3.2 Identifying Solvent .......................................................................................................... 24 

2.1.3.3 Computing Proton Numbers of Peak Clusters ................................................................ 26 

2.1.3.4 Verifying Consistency between the Molecular Structure and the Peak Clusters with 

Proton Number ........................................................................................................................... 29 

2.1.3.5 Further Verifying the Consistency between Peak Clusters and Function Groups by 

Coupling Analysis ........................................................................................................................ 32 

2.1.4 Summary of the Human Logic for 1D 1H NMR Molecular Structure Verification ................. 36 

2.2 Current Automatic NMR Spectrum Molecule Structure Consistency Analysis System ................ 39 

2.2.1 General System Architecture ................................................................................................. 41 

2.2.1.1 Molecular Interpreter ..................................................................................................... 41 

2.2.1.1.a  Identifying Chemical Equivalent Functional Groups ............................................... 42 

2.2.1.1.b Predicting Chemical Shift ......................................................................................... 42 

2.2.1.1.c Predicting Number of Couplings and Coupling Constant ......................................... 43 

2.2.1.1.d Count Total Number of Protons within a Molecule ................................................. 44 

2.2.1.2 NMR Spectrum Interpreter ............................................................................................. 44 

2.2.1.2.a Automatically Identifying Peaks in Spectrum .......................................................... 44 

2.2.1.2.b Grouping Symmetric Peaks into Peak Clusters ........................................................ 45 

2.2.1.2.c Estimating Multiplicities and Coupling Constants for Each Peak Cluster ................. 45 

2.2.1.3 Consistency Analyzer ...................................................................................................... 45 

2.2.2 Difference between Human Structure Verification Logic and Techniques used in the 

Structure Verification System ......................................................................................................... 47 

2.2.2.1 Differences in Molecular Interpretation ......................................................................... 47 

2.2.2.2 Differences in NMR Spectrum Interpreter ...................................................................... 48 

2.2.2.3 Differences in Consistency Analysis ................................................................................ 50 

2.3 NMR Structure Verification Technique beyond 1D 1H NMR Spectra ........................................... 51 

2.4 Conclusion ..................................................................................................................................... 51 

Chapter 3 The Proposal ........................................................................................................................... 52 

3.1 Implementation Plans ................................................................................................................... 52 

3.2 Possible Challenges ....................................................................................................................... 53 

Part II ........................................................................................................................................................... 55 

Automatic 1D 1H NMR Molecule Structure Verification Software Architecture, Methods and 

Evaluation ................................................................................................................................................... 55 

Chapter 4 Automatic 1D 1H NMR Molecule Structure Verification Architecture and Methods ............ 57 



Contents  ∙  v 
 

 
 

4.1 System Architecture ...................................................................................................................... 57 

4.2 Molecular Interpreter ................................................................................................................... 59 

4.3 NMR Spectrum Interpreter ........................................................................................................... 62 

4.3.1 Peak Hypothesis Generator (Deconvolution Method + Derivative Method) ........................ 64 

4.3.2 Peak Cluster Hypothesis Generation ..................................................................................... 65 

4.3.3 Experimental Multiplet Hypothesis Interpreter .................................................................... 66 

4.4 Consistency Analyzer - Searching Consistent Peak Cluster List .................................................... 66 

4.4.1 Solvent Detection ................................................................................................................... 70 

4.4.1.1 DMSO detection .............................................................................................................. 70 

4.4.1.2 H2O Detection ................................................................................................................. 72 

4.4.2 Determine Integration Proton Ratio (Integration per Proton) .............................................. 75 

4.4.3 Matching of Experimental Peak Cluster Hypotheses and Structural Multiplet 

Distributions .................................................................................................................................... 78 

4.4.3.1 Searching Module Architecture ...................................................................................... 80 

4.4.4 Quantification Module ........................................................................................................... 84 

4.4.5 Creating a Structure Verification Report ............................................................................... 85 

Chapter 5 A Probabilistic Explanation of the System Architecture ......................................................... 86 

5.1 Probabilistic Model of the Search Module ................................................................................... 86 

5.2 Searching Heuristics ...................................................................................................................... 87 

5.3 Estimating Probability with Chemical and NMR Knowledge ........................................................ 89 

5.3.1 Computing 𝜽𝒙𝒊,𝒄𝒔

𝒚𝒋  ..................................................................................................................... 91 

5.3.2 Computing 𝜽𝒙𝒊,𝒑𝒏

𝒚𝒋  .................................................................................................................... 92 

5.3.3 Computing 𝜽𝒙𝒊,𝑴

𝒚𝒋  ..................................................................................................................... 92 

5.3.4 Computing Coupling Constant Measure 𝜽𝒙𝒊,𝑱

𝒚𝒋  ........................................................................ 93 

5.3.5 Computing Coupling Connectivity Measure 𝜽𝒙𝒊,𝒄𝒐𝒏

𝒚𝒋,𝒙,𝒚
 ............................................................... 94 

5.3.6 Spectrum Fitting Score 𝜽𝒙𝒊,𝒔𝒇 and 𝜽𝒙𝒊,𝒔𝒇
′  ................................................................................ 95 

5.3.7 Reliability Score 𝜽𝒙𝒊,𝒓𝒆𝒍𝒊 .......................................................................................................... 96 

5.3.8 Solvent likelihood 𝜽𝒙𝒊,𝒔𝒐 ......................................................................................................... 97 

Chapter 6 Experiments .......................................................................................................................... 100 

6.1 Experimental Setup ..................................................................................................................... 100 

6.1.1 Evaluation Criteria ................................................................................................................ 101 

6.1.2 Evaluation Data .................................................................................................................... 102 

6.1.2.1 Real Compounds and Their Spectra .............................................................................. 102 



vi  ∙  Contents 
 

 
 

6.1.2.2 Simulated Spectra and Theoretical Multiplet Distribution Lists ................................... 109 

6.1.3 Experimental Design to Compute 𝐹𝑁 ′ , 𝐹𝑃′  and 𝐶𝑅′  .......................................................... 113 

6.1.3.1 An approach to Compute 𝐹𝑁 ′  ...................................................................................... 113 

6.1.3.2 An approach to compute 𝐹𝑃′  ....................................................................................... 113 

6.1.3.3 An approach to compute 𝐶𝑅′  ....................................................................................... 113 

6.2 Experimental Results ................................................................................................................... 114 

6.2.1 Experimental Results of Estimating False Negative Rate(FN) .............................................. 114 

6.2.1.1 Experimental Result on Real Compound Dataset ......................................................... 114 

6.2.1.2 Experimental Results of Simulated Dataset (Easy Setup) ............................................. 115 

6.2.1.3 Experimental Results of Simulated Dataset (Difficult Setup) ....................................... 115 

6.2.2 Experimental Results of Estimating False Positive Rate(FP) ................................................ 116 

6.2.2.1 Experimental Results of Real Compound Dataset ........................................................ 116 

6.2.2.2 Experimental Results of Simulated Dataset (Easy Setup) ............................................. 116 

6.2.2.3 Experimental Results of Simulated Dataset (Difficult Setup) ....................................... 117 

6.2.3 Experimental Results of Estimating Consistent Rate (CR) ................................................... 117 

6.3 Discussion of the Experimental Results ...................................................................................... 121 

6.3.1 Decision Accuracy ................................................................................................................ 121 

6.3.2 Time Complexity .................................................................................................................. 122 

6.3.3 Assignment Quality, Consistency between the System and Spectroscopists ...................... 124 

Part III ........................................................................................................................................................ 131 

Contribution, Limitation, Future Work and Conclusion ............................................................................ 131 

Chapter 7 Contribution ......................................................................................................................... 133 

7.1 Impact for NMR and Pharmaceutical Industries ......................................................................... 133 

7.1.1 Impact on the NMR industry ................................................................................................ 133 

7.1.2 Impact on the Pharmaceutical Industry ............................................................................... 134 

7.2 Contribution to Computer Science ............................................................................................. 135 

7.2.1 Human Logic Based Optimization – a Demonstration ......................................................... 135 

7.2.2 Human Logic Based Optimization versus Classical Optimization ........................................ 138 

7.2.2.1 Representation of Problem as Graph Search ................................................................ 138 

7.2.2.2 Difference between Human Logic Based Optimization and Best First Search ............. 140 

7.2.2.3 Difference between Stochastic Optimization and Human Logic Based Optimization .. 142 

7.2.3 Summary of Human Logic Based Optimization .................................................................... 144 

Chapter 8 Limitation ............................................................................................................................. 146 



Contents  ∙  vii 
 

 
 

8.1 Limitation in Technology ............................................................................................................. 146 

8.1.1 Problems of Isomere, Conformere, and Hetero Coupling ................................................... 146 

8.1.2 Keeping Improving Assignment Accuracy ............................................................................ 147 

8.1.3 Adding 2D 1H NMR and 1D C13 NMR Interpretation .......................................................... 147 

8.1.4 Combining the Structure Verification of NMR Spectrum with Mass Spectrum .................. 147 

8.2 Limitation of the Experiment ...................................................................................................... 148 

8.2.1 Limited Representativeness of Simulated Dataset .............................................................. 148 

8.2.2 Limited Representativeness of Real Compound Dataset .................................................... 148 

8.3 Limitation in Industrialization ..................................................................................................... 149 

8.3.1 NMR Automation Hardware ................................................................................................ 149 

8.3.2 Link to Compound Library Management Automation ......................................................... 149 

Chapter 9 Future Work ......................................................................................................................... 151 

9.1 Future Work in NMR/Pharmaceutical Industry .......................................................................... 151 

9.2 Future Work in Applied Computer Science................................................................................. 152 

Chapter 10 Conclusion .......................................................................................................................... 153 

Part IV ........................................................................................................................................................ 156 

Appendix ................................................................................................................................................... 156 

A. Glossary ............................................................................................................................................ 157 

B. References ........................................................................................................................................ 161 

C. List of Detailed Assignments of 81 Spectrum-Structure Pairs .......................................................... 167 

D. Curriculum Vitae ............................................................................................................................... 258 

 



 

viii 
 

 

Acknowledgements 
 

I would like to gratefully acknowledge the enthusiastic supervision of Prof. Abraham Bernstein of my 

dissertation.  Avi, I sincerely thank you for giving me the opportunity to address an important 

problem in practice and write the dissertation about it. Despite my lengthy wander in research, you 

insisted on guiding me into the right direction and helping me to build confidence in my research 

with great patience. This makes me appreciate the “real” meaning of research and finding an 

appropriate balance between theory and practice. I also thank you for giving me a wide angle of 

views to look at the research. Only with your help, I can “jump” into the “general” science to look at 

computer science, and convert myself into an interdisciplinary researcher. In addition, thank you for 

giving me enough time to read research books since this helped me to build a strong basis to support 

the research. I would also like to thank Prof. Kim Baldridge and Prof. Burkhard Stiller for agreeing to 

be members of my Ph.D. committee. Kim, I especially thank you for many discussions on my thesis, 

and all the knowledge you gave to me in both computer science and organic chemistry. 

Furthermore, I would like to thank Dr. Isabelle Guyon in helping me to understand how to research 

the problem from the machine learning perspective. I thank Prof. Wang Yuandi to help me build a 

laid architecture of the modern mathematics, and having conceptive understanding of the 

architecture. I cherish the year I have spent with above two persons in Zurich, and their help is 

extremely valuable in my “growing-up” in research. I’d also like to thank Prof. Konstantin Pervushin, 

Dr. James Masse, Dr. Till Kuehn, Dr. Sandra Loss, Dr. Bjoern Heitmann, Dr. Michael Fey, Dr. Jochen 

Klages for four years cooperation in the project which my thesis is based upon. All of you have 

research experiences from different academic backgrounds, and these often helped me to consider 

the problem from an angle beyond what I can learn from a computer science department. I thank all 

of you to give me the deep knowledge in organic chemistry and nuclear magnetic resonance. 

I am grateful to all my friends from the Informatics Department, the University of Zurich, for being 

the “family” during the many years I stayed there and for their continued support thereafter.  Jonas 

Luell, I especially thank you for all advises you gave to me at both the research level and the 

personal level. It is always full of fun to have a conversation with you, and thank you for your care 

and attention. 

 

Finally, I am forever indebted to my parents and my wife for their understanding, endless patience 

and encouragement when it was most required.  

 

 



  

ix 
 

Abstract 
 

Small molecule structure one dimensional (1D) proton (1H) Nuclear Magnetic Resonance (NMR) 

verification has become a vital procedure for drug design and discovery.  However, the inefficient 

throughput of human verification procedure has limited its application only to an arbitral instrument 

for molecular structural identification. Considering NMR’s unimpeachable advantages in molecular 

structural identification tasks (compared to other techniques), to popularize NMR technology into 

routine molecular structural verification procedures (especially in compound library management of 

the pharmaceutical industry), will dramatically increase the efficiency of drug discovery procedures. 

As a result, some automatic NMR structure verification software approaches were developed, 

described in the literature and are commercially available.  Unfortunately, all of them are limited in 

principal (e.g. they heavily depend on the chemical shift prediction) and are shown not to be 

working in practice.  

Driven by the strong motivation from the industry, we propose a new approach as an alternative to 

approach the problem. Specifically, we propose to utilize approaches from artificial intelligence (AI) 

to mimic the spectroscopist’s NMR molecular structure verification procedure. Guided by this 

strategy, a human-logic based optimization (i.e. heuristic search) approach is designed to mimic the 

spectroscopist’s decision process. The approach is based on a probabilistic model that is used to 

unify the human logic based optimization approach under maximum likelihood framework. 

Furthermore, a new automatic 1D 1H NMR molecular structural verification system is designed and 

implemented based on the optimization approach proposed earlier.  

In order to convince vast NMR spectroscopists and molecular structural identification participators, 

comprehensive experiments are used to evaluate the system’s decision accuracy and consistency to 

the spectroscopists. The results of the experiments demonstrate that the system has very high 

performance in terms of both accuracy and consistency with the spectroscopists on the test datasets 

we used1. This result validates both the correctness of our approach and the feasibility of building 

industrialized software based on our system to be used in practical industrial structural verification 

environments. As a result, commercial software based on our system is under development by a 

major NMR manufacture, and is going to be released to the pharmaceutical industry.  

Finally, the thesis also discusses similarities and differences between the human logic based 

optimization and other typically used optimization approaches, and especially focuses on their 

applicability. Through these discussions, we hope that the human logic based optimization could be 

used as a reference by other practical computer science participants to solve other automation 

problems from different domains. 

                                                           
1 To be convenient for the evaluation of vast molecular structural identification practitioners, detail structural 
verification reports of 81 compounds generated by the system are cataloged in the thesis’ appendix. 
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Introduction, Background and the Proposal 
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Chapter 1 Motivation 
 

In medicine, biotechnology and pharmacology, drug discovery is the process by which drugs are 

discovered and/ or designed. In the past, most drugs have been discovered either by identifying the 

active ingredient from traditional remedies or by serendipitous discovery. In contrast to this, modern 

drug discovery processes focus on understanding how disease and infection are controlled at the 

molecular and physiological level, and targeting specific macromolecules (proteins or nucleic acids in 

most cases) based on this knowledge. This change is due to the scientific conclusion that the 

effectiveness of the drug in the human body is mediated by specific interactions of the drug 

molecule with biological macromolecules. As a result, in the modern era of pharmacology, pure 

chemicals, instead of crude extracts, become standard drugs. And drug discovery becomes the 

process to identify organic molecules2 that could effectively interact with specific macromolecules in 

the human body.  

The process of finding a new molecule against a chosen target (macromolecule) for a particular 

disease usually involves high-throughput screening (HTS) (Bailing, et al., 2004) (Burbaum, et al., 1997) 

(Hann, et al., 2004), wherein large libraries of molecules are tested for their ability to modify the 

target. For example, if the target is a novel G protein-coupled receptor (GPCR), molecules will be 

screened for their ability to inhibit or stimulate that receptor. If the target is a protein kinase, the 

molecules will be tested for their ability to inhibit that kinase. Another important function of HTS is 

to show how molecules are selective for the chosen target, but not for other related 

macromolecules. This cross-screening is also important since the more unrelated targets a molecule 

hits, the more likely that off-target toxicity will occur with that molecule once it reaches the clinic. A 

drug discovery process normally requires several iterative HTSs, in which it hopes that the properties 

of the new compound will be found and (or) improved. Once a compound has been found with 

sufficient target potency and selectivity, it will be proposed for drug development.  

HTS’s in the drug discovery use compound libraries, wherein a large collection of organic compounds 

are stored, and each compound also has associated information such as the molecular structure, 

purity, quantity, and other physiochemical characteristics of the compound stored in the database. 

Chemical compounds are usually designed by organic chemists and computational chemists and 

synthesized by organic chemists and medicinal chemists. Because of the expense and the effort 

involved in chemical synthesis, the compounds must be correctly stored for later use to prevent 

early degradation. In a typical chemical library, each chemical has a particular shelf life and storage 

requirement, and there is a timetable by which library compounds are to be disposed of and 

replaced on a regular basis. Since quantity of all possible organic compounds is large and increases 

exponentially with the size of the molecule, the inventory of a compound library could easily reach 

up into millions of compounds, which makes the management of even a modest-sized compound 

library a full-time endeavor. To relief the quantity of the routine workload, robots have been used to 

automate the compound storage (Chan, et al., 2002). 

                                                           
2 Note, in the scope of the thesis, without special explanation, the term “molecule” means small molecule. 
Here a small molecule is a low molecular weight organic compound which is by definition not a polymer. 
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Compound library is the test object of HTS’s. Therefore, the output of HTS’s relies on the quality of 

the compound library. To guarantee the effectiveness of HTS’s, a quality control (QC) and quality 

assurance (QA) system is established in chemical library management, where library entities need to 

be determined and rechecked on their analytical characterization in a regular basis during their 

shelf-life. Typical jobs involved in identifying analyte characterizations include the compound’s 

molecular structure verification, quantification, purity determination, etc.  

 

1.1 Quantification 

 

In the scope of this thesis, quantification is defined as the procedure to determine the molar 

concentration of the main chemicals in a liquid sample, whereupon the solvent (e.g. Deuterated 

Dimethyl Sulfoxide (DMSO)3) and impurities that are connected to the solvent (e.g. water (H2O) in 

DMSO) are not considered as main chemicals.  

Chemical concentration is indispensable information for HTS. During HTS, the decision whether one 

of the compounds is further investigated as a potential drug candidate for a specific disease or not is 

based on a binding experiment of the substance to a certain target. However, the accuracy of the 

binding constant provided by these studies strongly depends on the accuracy of the molar 

concentration of the compound, which can change drastically over time due to degradation or 

fallout of the solution (Popa-Burke, et al., 2004). Thus, the concentration of these chemicals in the 

library needs to be determined and revalidated on a regular basis to prevent false positive hits.     

The traditional approach to quantify a compound is to weigh the dry compound on the scale. This 

approach is inaccurate and sensitive to the amount of impurity in the sample. To relief the problem, 

two instrumental analysis techniques have begun to be used to address the issue of quantitative 

analysis- chemiluminescent nitrogen detector (CLND) (Corens, et al., 2004) and evaporative light-

scatteringdetector (ELSD) (Fang, et al., 2000).  

The principle of CLND is based on measuring nitrogen content of a sample. With the knowledge of 

the number of nitrogen atoms in a molecule of analyte, one can determine the sample quantity. 

Literature has shown that this approach is very promising for the quantitative analysis of 

combinatorial compound libraries (Taylor, et al., 2002) (Sepetov, et al., 1999). However, it requires 

that compounds contain nitrogen and does not allow the use of any nitrogen-containing solvent 

during analysis. 

ELSD, as another instrumental analysis technique, creates an aerosol from a sample, and then 

determines the sample concentration by measuring the amount of diffused light on the aerosol. 

Note, the relationship between the amount of diffused light and the amount of analyte can be 

precisely described by the mathematical formula. However, chemical practice has shown the 

approach is not very accurate in quantification. 

                                                           
3 DMSO – a solvent often used to store organic compounds of compound libraries in the liquid phase. 
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 As a result, organic chemists still keep looking for better sample quantification approaches for 

compound library management.  

  

 

1.2 Compound Structure Verification 

 

In the scope of this thesis, compound structure verification is defined as the process to check if a 

given molecule structure is consistent with the spectroscopically measured structural information. 

Specifically, mainly two spectrometric techniques are used for compound structure verification: 

Mass spectroscopy, and Nuclear Magnetic Resonance (NMR) spectroscopy, with some additional 

confirmation of the structure provided by IR spectroscopy and X-Ray crystallography (Pretsch, et al., 

2009). 

Mass spectroscopy is based on the measurement of a fundamental characteristic of the compound: 

mass-to-charge ratio of the molecule, after ionization of the molecule. These mass-charge-ratio 

patterns can give chemists hints to “guess” the potential structure of given compounds. Despite the 

inability of mass/charge patterns to discriminate the subtle difference of the molecule structure, this 

technique has been identified as the method of choice for the high-throughput structure 

confirmation of compounds in compound library management (Sepetov, et al., 1999). There are a 

few reasons for this choice. For example, the method does not depend on the presence of 

chromophores4 or any functional group in a molecule. High sensitivity is another advantage of mass 

spectrometry: as little as femto-molars of a compound can be easily measured. In addition, mass 

spectrometry is a fast method, with the measurement time approximately several seconds, and it 

can be easily automated. Unfortunately, mass spectrometry cannot be used to determine the 

concentration of the compound, since mass experiment begins with ionization of the analyte, and 

compounds with the same concentration in the analyte may have different abilities to be ionized, 

and thus give substantially different response in mass spectra (Sepetov, et al., 1999). 

Compared to mass spectrometry, NMR spectrometry is the most informative method for 

characterization of organic compounds.  It yields peaks in nuclear magnetic resonance spectrum 

with individual hydrogen and carbon atoms in the molecular structure, which allows detailed 

reconstruction of the molecule’s architecture. However, NMR is a relatively insensitive and slow 

method, it requires homogenous samples, and consumes expensive deuterated solvents. As a result, 

NMR has been limited to be used mainly for the structural identification of “interesting” compounds 

found during HSTs, and has not been used in routine quality control (QC) and quality assurance (QA) 

of compound library management.  

 

 

 

                                                           
4 A chromophore is part (or moiety) of a molecule responsible for its color. 
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1.3 Applying NMR in Compound Library Management QC/QA 

 

In this subsection, we first briefly introduce the major NMR experiments which are used to identify 

structures of molecules, and analyze their applicability to compound library management. We 

conclude that the bottleneck of applying NMR to compound library management lies on automating 

the spectroscopist’s 1D 1H NMR spectra interpretations. Next, we demonstrate several examples of 

how modern artificial intelligence (AI) technologies are used to automate domain expert’s decision 

making procedures in various application fields. Referring to these successful stories, finally we 

propose to utilize AI technologies to mimic the NMR spectroscopist’s spectra interpretation process 

in order to automate this human procedure. 

     

1.3.1 1H NMR versus 13C NMR 
 

 

As we introduced in 1.2, in principal, NMR techniques supply chemists with more detailed 

information about compound structure, which make it a potential technology to improve current 

compound library management QC/QA. Specifically, there are two types of NMR techniques mainly 

involved in compound structure verification: 1H NMR and 13C NMR.  

1H NMR (also called Proton NMR or Hydrogen NMR) is the application of NMR spectroscopy with 

respect to hydrogen-1 nuclei within the molecules of a substance, in order to determine the 

structure of its molecule.  

Comparably, 13C NMR (also called Carbon-13 NMR) is the application of NMR spectroscopy with 

respect to carbon. It is analogous to 1H NMR and allows the identification of carbon atoms in an 

organic molecule to determine molecule structure.  

However, 13C NMR detects only the 13C isotope of carbon, whose natural abundance is only about 

1.1% (exiguous), while the main carbon isotope, 12C is not detectable by NMR. This makes 1H NMR 

a lot more sensitive compared to 13C NMR, where 1H’s nature abundance is more than 99.9% 

(abundant). As a result, 1H NMR becomes the main approach for compound structure elucidation, 

while 13C NMR is used as an accessorial approach to supplement 1H NMR. 

 

 

 1.3.2 1D 1H NMR versus 2D 1H NMR 
 

Multiple types of 1H NMR experiments could be generated by NMR spectroscopy, where two types 

of experiments are generally used in small molecule structure verification. They are one dimensional 

1H NMR (1H 1D NMR) experiments and two dimensional 1H NMR (1H 2D NMR) experiments. Note, 
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both inventions of 1D and 2D experiments were acknowledged by Nobel prizes.  Fig 15 shows the 

anatomy of the 1D NMR experiment and an example of how a resulting 1D NMR spectrum looks like. 

1D NMR experiment consists of two sections: preparation and detection. During preparation, by 

giving a radio frequency pulse (for example 90 degree pulse), the spin systems of the molecule is set 

to a defined state. Then during detection, the resulting nuclear magnetic resonance, named free 

induction decay (FID), is recorded during time interval t1. After that, the FID signal is Fourier 

transformed to yield the 1D NMR spectrum.    

 

 

 

In contrast, a 2D NMR experiment can be understood as a series of 1D NMR experiments. Each 

experiment consists of a sequence of radio frequency pulses with delay periods between them. It is 

the timing, pulse frequencies, and intensities of these pulses that distinguish different 2D NMR 

experiments from each other. During the decays, the nuclear spins are allowed to freely rotate for a 

determined length of time known as the evolution time. The frequencies of the nuclei are detected 

after the final pulse. By incrementing the evolution time in successive experiments, a two-

dimensional data set is generated from a series of one-dimensional experiments. An example of a 2D 

NMR experiment is the homo-nuclear correlation spectroscopy (COSY) sequence, which consists of a 

pulse (p1) followed by an evolution time (t1) followed by a second pulse (p2) followed by a 

measurement time (t2). Then, a 2 dimensional Fourier transform is performed along dimensions of 

t1 and t2 to generate the 2D NMR spectrum. The anatomy of COSY 2D NMR experiment and a 

sample spectrum are shown in Fig 26.  

2D NMR spectra can provide additional information about the structure of a molecule, which 1D 

NMR spectra cannot supply, and these are especially useful in determining the structure of a 

molecule that are too complicated to be interpreted with 1D NMR experiments alone. For example, 

cross peaks – points that are symmetric along the diagonal from the bottom left to the upper right of 

the 2D spectrum in Fig 2 give us additional information about which peaks (that represent different 

nucleus ) in 1D NMR are coupled (interacted). Note, the principal of 2-dimensional (high-dimensional) 

NMR experiments concerns complex physical procedures, which are beyond the scope of this thesis. 

Therefore, we refer the interested readers to a NMR textbook for example (Keeler, 2005). 

                                                           
5 Images in Fig 1 are sourced from PPS2 projects for the determination of protein structure by NMR 
spectroscopy from Birkbeck, University of London. The original images are located at 
http://www.cryst.bbk.ac.uk/PPS2/projects/schirra/html/1dnmr.htm.  
6 Images in Fig 2 are sourced from PPS2 projects for the determination of protein structure by NMR 
spectroscopy from Birkbeck, University of London. The original images are located at 
http://www.cryst.bbk.ac.uk/PPS2/projects/schirra/html/2dnmr.htm. 

Fig 1 Anatomy of 1D NMR Experiment, and Sample 1D NMR Spectrum 

Figure 1 

http://www.cryst.bbk.ac.uk/PPS2/projects/schirra/html/1dnmr.htm
http://www.cryst.bbk.ac.uk/PPS2/projects/schirra/html/2dnmr.htm
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In practice, 2D NMR experiments are composed of a set of 1D type NMR experiments, which makes 

it often 2 orders slower than 1D NMR experiments. As we have explained in 1.2, even 1D NMR 

experiments are shown slower compared with mass experiments in molecule structure verification 

tasks, the dramatically large time consumption of 2D experiments makes them incompetent for 

routine QC/QA of compound library management.  

As a result, improving the sensitivity and acquisition speed of 1D 1H NMR becomes the only 

possibility of pushing the NMR application into compound library management QC/QA.  

 

1.3.3 Applying 1D 1H NMR for Structure Verification and Quantification 
 

Powered by the requirement of better QC/QA of compound library management, new NMR probes 

(Macnaughtan, et al., 2003) (Wang, et al., 2004) and automation techniques (e.g. automatic sample 

changers or flow-injection systems) keep emerging in the NMR engineering field to improve the 

sensitivity and spectrum acquisition speed of 1D 1H NMR. With these new breakthroughs in NMR 

spectroscopy (especially in probe technology), for example, one can acquire quantitative 1D 1H NMR 

spectra of 5Mikroliter (µl) of a 10millmolar (mM) solution in non-deuterated DMSO within two 

minutes with commercial NMR spectrometer (e.g. from Bruker Biospin AG7). These technical 

breakthroughs make a 1H 1D NMR experiment only two orders of magnitudes slower compared to 

the mass experiment. In addition, in the practical compound library management environment, mass 

spectrometry is linked with liquid chromatography (HPLC), and utilizes HPLC as the pre-device to 

separate and quantify compounds. This preprocess of HPLC is often slow, which makes the total 

acquisition time of 1D 1H NMR spectrum shorter than the corresponding time consumption of HPLC-

MS, (which often takes 8 minutes). Thus, it becomes possible to shift part of the structure 

verification tasks in compound library management QC/QA from mass spectroscopy to more 

accurate 1H 1D NMR spectroscopy, assuming that 1D 1H NMR spectrum interpretation is not a time 

consuming task.  

                                                           
7 Bruker is one of leading NMR manufactures. 

Fig 2 Anatomy of 2D NMR Experiment, and Sample 2D NMR Spectrum 
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Another advantage of the 1D 1H NMR technique is that it could be used to determine the 

concentration of the analyte, while mass technology has to be combined with HPLC for measuring 

concentration. This technique provides an alternative method for determining the molar 

concentration of compounds in solution without prior knowledge of their molecular weight, which 

makes it particularly useful when sub-milligram quantities of compound are to be analyzed and 

applicable to compound library management (Pierens, et al., 2008). Specifically, the NMR approach 

of quantification consists of two parts:  

(1) Identifying a signal (which is possibly featuring a fine structure) of the main substance in the 

1D 1H NMR spectrum, determining the number of 1H nuclei that generate this signal, and 

measuring the signal area underneath this signal.  

(2) This signal is quantitatively compared to a reference signal for which the number of 1H 

nuclei, the area underneath the signal, and the molar concentration is known resulting in the 

wanted molar concentration of the main substance.  

1D 1H NMR quantification is a lot more accurate than other methods we discussed in 1.1. Using a 

good signal to noise spectrum with correct phasing and baseline correction, it has been shown that 

1D 1H NMR quantification can have accuracy of less than 5% relative deviation from the real 

concentration (Pinciroli, et al., 2001). In addition, the principle that it uses 1H nuclei signal for 

concentration determination makes it universal for all kinds of organic compounds. However, 

quantification with 1D 1H NMR relies on molecule structure NMR verification. It has a risk that a 

signal from the NMR spectrum which belongs to impurities instead of main substance is used to 

compute the concentration. To guarantee the accuracy of quantification, a complete molecule 

structure NMR structure verification process has to be carried out to select the correct NMR signal 

(which is generated from the main substance). In other words, quantification with 1D 1H NMR is in 

fact a byproduct of the molecule structure 1D 1H NMR spectrum verification.  Therefore, in the 

scope of the thesis, we focus on the explanation of the structure verification process itself. 

 

1.3.4 Automating 1D 1H NMR Molecule Structure Verification 
 

Technical breakthrough in NMR hardware (especially in probe technology) has shifted the bottleneck 

of extending 1D 1H NMR application from NMR spectrum acquisitions to interpretation of 1D 1H 

NMR spectra.  The 1D 1H NMR spectrum interpretation is an empirical procedure and consumes 

human effort (Detail see 2.1). Surveys on NMR spectroscopists show that a top structure NMR 

verification expert has maximal capacity of interpreting only 100 1D 1H NMR spectra per day, and 

with this interpretation speed, he/she gets quickly exhausted. This natural slowness of NMR 

spectrum interpretation creates a new bottleneck, and continues to keep NMR out of routine QA/ 

QC of compound library management, where a scale of million compounds needs to be identified 

towards their molecular structures.  

Driven by the motivation of popularizing NMR in molecular structure verification tasks, during the 

past 20 years, several approaches are proposed in academic world and/or implemented as 

commercial software to automate 1D 1H NMR spectrum interpretation. The majority of these 

approaches focuses on 1D 1H NMR spectrum prediction, followed by comparison of the predicted 

spectrum and measured spectrum (Castiglione, et al., 1998) (Griffiths, 2000) (Griffiths, 2001) 
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(Griffiths, et al., 2002) (Griffiths, et al., 2004) (Griffiths, 2005) (Griffiths, et al., 2005) (Jansma, et al., 

2005) (Golotvin, et al., 2006). Unfortunately, these approaches and the corresponding software have 

been shown unreliable for structural verification tasks in the practical application environment. As a 

result, they have not been applied to compound library management (for detailed explanation see 

2.2). Recently, relatively new approaches are proposed to improve the previous systems by 

supplementing 1D 1H NMR structural verification with 2D 1H NMR structural verification, in which 

additional information about peak correlations is supplied (Golotvin, et al., 2007) (Schröder, et al., 

2000). However, structure verification accuracies of these new approaches are not convincing, 

either. In addition, the strategy of turning to 2D 1H NMR technology dramatically increases the 

acquisition time of the NMR system (see 1.3.2), and this in turn diminishes the advantage of NMR to 

HPLC-MS in time expense of acquisition. As a result, the pharmaceutical industry still relies on 

human 1D 1H NMR spectrum verification approaches as their major resort for molecule structure 

NMR identification/ verification process. Due to the low throughput of the human interpretation 

procedure for QC/QA in compound library management, they still rely on mass spectrum based 

analysis technology. 

 

 

 1.3.5 Expert Systems and their Applications  
 

 

Artificial intelligence (AI) is the branch of computer science which aims to create intelligent machine. 

After half a century’s development, unfortunately, AI research is still far away from its original goal – 

to build a general intelligent system. However, the technologies created in AI research have been 

adopted in a wide range of fields (e.g. medical diagnosis, stock trading, robot control, scientific 

discovery, etc), and are often used as elements of larger information systems (Kurzweil, 2006) 

(Committee on Innovations in Computing and Communications: Lessons from History, 1999). In the 

field of AI, a sub-domain named expert system is particularly oriented toward the application 

domain.  Specifically, an expert system is a computer application that solves complicated problems 

that would otherwise require extensive human expertise. To do so, it mimics the human reasoning 

process of applying the domain knowledge to solve the specific problem in the domain, for which 

the process itself would normally require human intelligence.  

Many expert systems have been developed to solve problems in multiple domains. For example, in 

the financial domain, an expert system named Mavent Expert System (Steinmann, et al., 1991) has 

been built for the Federal National Mortgage Association (FNMA) to assist with mortgage 

application. Specifically, a set of mortgage application rules are captured from loan officers, and it is 

used to (1) judge whether all conditions for granting a particular type of loan to a given client have 

been satisfied, (2) calculate the required term of repayment according to the borrower’s, (3) and 

evaluate means and the security to be obtained from the client. It has been proven that the system 

can produce results which are correct in 80-90% of all cases, and due to this accuracy it supplies a 

significant amount of assistance to the bank branch. In addition, the explanation facilities of the 

system of how it reaches its decisions are built in a way to make the decision process visible so it can 

be confirmed by the loan officers.  
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Another successful application domain of expert system is medical diagnosis. In medical diagnosis, it 

is difficult for physicians to transfer their knowledge into distinct rules. Instead, they apply the rules 

with a certain amount of uncertainty.  To adapt to the characteristics of the diagnostic process as 

carried out by the physician, the expert systems in medical diagnosis often adopt probabilistic 

reasoning techniques such as Bayesian network (Pearl, 2000), and Bayesian logic (Berger, 1993) to 

deal with the uncertainty embedded in medical diagnosis. For example, DXplain (Barnett, et al., 

1987) (2009) is a Clinical Decision Support System (CDSS) (Berner, 1998) designed by the Laboratory 

of Computer Science at the Massachusettes General Hospital that assists clinicians by generating 

stratified diagnoses based on user input of patient signs and symptoms, laboratory results, and other 

clinical findings. Evidential support for each differential diagnosis is presented along with 

recommended follow-up that may be conducted by the clinician to arrive at a more definitive 

diagnosis. DXplain generates ranked diagnoses associated with the symptoms using a modified form 

of Bayesian logic. Specifically, each clinical finding entered into DXplain is assessed by determining 

the importance of the finding and how strongly the finding supports a given diagnosis for each 

disease in the knowledge base. Using this criterion, DXplain generates ranked differential diagnoses 

with the most likely diseases yielding the highest rank. Using stored information regarding each 

disease’s prevalence and significance, the system differentiates between common and rare diseases. 

Analysis of accuracy has shown promise in DXplain. In a preliminary trial investigation of 46 

benchmark cases with a variety of diseases and clinical manifestations, the ranked differential 

diagnoses generated by DXplain were shown to be in alignment with a panel of five board-certified 

physicians (Feldman, et al., 1991). In another study investigating how well decision support systems 

work at responding to a bioterrorism event, an evaluation of 103 consecutive internal medicine 

cases showed that Dxplain correctly identified the diagnosis in 73% of cases, with the correct 

diagnosis averaging at a rank of 10.7 (Bravata, et al., 2004). As a result, usage of DXplain as a tool for 

medical consultation has been common to some institutions since it fills a gap, particularly for 

medical students in clinical rotations, which are not adequately covered by textbook literature 

(London, 1998). The large knowledge base of the system combined with its ability to formulate 

diagnostic hypotheses have made it a popular education tool for US-based medical schools, and by 

2005 DXplain was supporting more than 33,189 total users (Barnett, 2004). 

 

1.3.6 Using Artificial Intelligence for Molecule Structure NMR Verification 
 

 

Previous successes of Expert Systems in various application domains and their substantial backbone 

– mimicking human logic – propose a new strategy to approach the problem of automating the 

molecule structure 1D 1H NMR verification procedure. In addition, the fact that human molecule 

structure NMR verification processes have been proven to be the only reliable structure verification 

process reinforces the motivation. As a result, in this thesis we explore and discuss how to utilize 

technologies developed in the artificial intelligence domain (especially in expert system domain) to 

build an automatic molecule structure 1D 1H NMR verification system. 

 



12  ∙  Automatic Verification of Small Molecule Structure with One Dimensional Proton Nuclear Magnetic Resonance 

Spectrum 
 

 
 

1.4 Structure of the Thesis 

 

With the motivation declared above,  

in Chapter 2, we explain the human molecule structure NMR spectrum verification process in detail 

and introduce current available automatic molecule structure NMR spectrum verification 

technologies and systems. 

In Chapter 3, we propose our view of how to solve the problem, and explain our goal.  

In Chapter 4, we explain in detail about our system design.  

In Chapter 5, we give a probabilistic explanation of the system design, and further explain the 

computational details of the system. 

In Chapter 6, we describe our evaluation approach and experiment result.  

In Chapter 7, we conclude the contribution of our work to the pharmaceutical industry, and further 

discuss the contribution of our new optimization principal to applied computer science research.  

In Chapter 8, we analyze the limitation of our current system.  

In Chapter 9, we propose the directions to further improve the current system.  

And Chapter 10, we give the conclusion.        
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Chapter 2 Background 
 

In this chapter, we first provide some background knowledge about 1D 1H NMR spectra, and explain 

the human interpretations of 1D 1H NMR spectra with an example in section 2.1. Consecutively, we 

focus on introducing current automatic NMR spectra analysis technologies in section 2.2. 

  

2.1 Human Structure Verification Procedure with 1D 1H NMR 
Spectrum 

In this subsection, first we give a short explanation of NMR spectroscopy, NMR samples and NMR 

solvent. After that, we introduce the background knowledge to NMR that spectroscopists use to 

interpret 1D 1H NMR spectra. Consecutively, we utilize an example to demonstrate the human 

structure verification procedure.  Finally, we summarize this human process with a flowchart. 

 

2.1.1 1H 1D NMR Spectroscopy, NMR Sample and NMR Solvent 

1D 1H NMR spectroscopy is an instrumentation to apply nuclear magnetic resonance technology 
with respect to the isotope 1H of hydrogen (hydrogen-1 or proton) nuclei within the molecules of a 
substance, in order to determine the structures of its molecules.  Typical analytes of 1D 1H NMR 
spectroscopy are organic compounds, in which the isotope 1H of hydrogen (hydrogen-1) universally 
exists (this is due to the high nature abundance (> 99.9%) of the isotope 1H). Ubiquity of natural 
hydrogen in organic compounds guarantees that 1D 1H NMR technology is universally applicable for 
structural determination tasks of vast chemicals stored in compound libraries. 

1D 1H NMR spectra are recorded in solution samples, and obviously solvent protons must not be 
allowed to interfere with the NMR signals from the target compound. Therefore, solvents without 
hydrogen, such as carbon tetrachloride or trifluoroacetic acid are often used. More commonly, 
deuterated (deuterium = 2H, often symbolized as D) solvents are especially popular to be used in 
NMR experiments. For example, deuterated dimethyl sulfoxide (DMSO), which has structure 
(CD3)2SO, forms the most widely used solvent in NMR experiments. 

To avoid straying away from the point, we leave the readers who are interested in the principal of 
NMR to NMR textbooks for example (Keeler, 2005). Instead we give readers a simplistic cognition of 
NMR by 
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showing pictures of a modern NMR spectrometer, an NMR sample, and 2 dimensional structure of 
DMSO in Fig 38.  

               

 

 

2.1.2 Basic NMR/Chemical Concepts used in Molecule Structure 1D 1H NMR 

Verification. 
 

Several information in the 1D 1H NMR spectrum is used to characterize the structure of an organic 

compound. They are chemical shift (in the range +12 to -4ppm), integration curve, J-coupling, 

coupling constant, connectivity, second order coupling, magnetic inequivalence, etc9.  

 

2.1.2.1 Chemical shift 

 

Under an external magnetic field, depending on the local chemical environment, different protons in 

a molecule resonate at slightly different frequencies. Since both this frequency shift and the 

fundamental resonant frequency are directly proportional to the strength of the magnetic field, the 

shift is converted into a field-independent dimensionless value known as the chemical shift. The 

chemical shift is reported as a relative measure from some reference resonance frequency (e.g. the 

hydrogen-1 of tetramethylsilane (TMS) is commonly used as a reference). This difference between 

the frequency of the signal and the frequency of the reference is divided by frequency of the 

reference signal to give the chemical shift. The frequency shifts are extremely small in comparison to 

the fundamental NMR frequency. A typical frequency shift might be 100 Hz, compared to a 

fundamental NMR frequency of 400 MHz, so the chemical shift is generally expressed in parts per 

million (ppm) (Keeler, 2005). 

                                                           
8 The image of the NMR spectrometer is sourced from the official website of Bruker Cooperation at 
http://www.bruker-biospin.com/avanceiii.html. The image of the NMR sample is sourced from 
http://www.absoluteastronomy.com/topics/NMR_spectroscopy. 
9 Some more subtle information in 1D 1H NMR spectra could help in identifying molecular structures. However, 
the usage of this information is often diversified among NMR spectroscopists. This makes it difficult to model 
these usages in cyberspace. Therefore we skip the introduction of this information in the thesis.    

Fig 3 A NMR spectrometer, a NMR sample and Structure of DMSO 

http://www.bruker-biospin.com/avanceiii.html
http://www.absoluteastronomy.com/topics/NMR_spectroscopy
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Through understanding different chemical environments, the chemical shift can be used to obtain 
some structural information about the molecule in a sample. Specific to the structural verification 
task, different chemical environments in the molecule are usually organized as chemically equivalent 
functional groups10, while the protons in the same functional group have the same chemical shift. 
And different functional groups often produce NMR signals at different chemical shift ranges. This 
physical phenomenon supplies NMR spectroscopists with important evidence to assign protons in a 
molecule to its spectrum. For example, for the 1D 1H NMR spectrum of ethanol (CH3CH2OH), one 
would expect three specific signals at three specific chemical shift ranges: one for the CH3 group, 
one for the CH2 group and one for the OH group. A typical CH3 group has a shift range around 0.8-
2ppm, a CH2 attached to an OH has a shift range around 3.5-4.5ppm, and an OH has a wide shift 
range around 4-10ppm depending on the solvent used (see Fig 4). For assigning protons of a 
molecule to the spectrum, spectroscopists normally use a chemical shift table to identify chemical 
shift ranges of typical chemically functional groups. Table 111 gives an example of such tables.  

                                                           
10 In the scope of the thesis, without special annotation, the term “chemically equivalent functional 

group” is shortened as “functional group”. 

11 The image of Table 1 is sourced from the NMR tutorial of the NMR lab webpage of the Institution of 
Chemistry in Hebrew University at http://chem.ch.huji.ac.il/nmr/techniques/1d/row1/h.html.     

Table 1 Typical Chemical Shift Ranges for Various Functional Groups 

http://chem.ch.huji.ac.il/nmr/techniques/1d/row1/h.html
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2.1.2.2 Integration 

Beside the chemical shift, sizes of NMR signals are indicators of the chemical structure too. In fact, 
the size of the NMR signal represents the quantity of protons belonging to a certain functional group. 
In other words, sizes of NMR signals are proportional to the number of protons in the functional 
groups. For example, in the proton spectrum of ethanol (CH3CH2OH), the signals from CH3 group 
would be three times as large as the signals from OH group since CH3 has 3 protons and OH only has 
one. Similarly, the signals of the CH2 group would be twice the size of the signals from OH but only 
2/3 of the size of the signals from the CH3. To simplify human interpretation, modern NMR analysis 
software allows analysis of the size of NMR signals to understand how many protons give rise to a 
given signal. This is known as integration – a mathematical process which calculates the area under a 
curve. Note, though calculation of integration is done automatically, identification of individual NMR 
signals from the spectrum is left for human interpretation. Another note is that analysts determine 
the size of an NMR signal by integrating the signal instead of measuring its height in amplitude. This 
is due to that the signal’s size depends both on its height and its width, and therefore can only be 
accurately measured by integrating the whole signal. 

Fig 4 1D 1H NMR spectrum and Molecule Structure of Ethanol 

CH3 triplet 

CH2 quartet 
OH 
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2.1.2.3 J-coupling    

J-coupling arises from the interaction of different functional groups (i.e. chemically equivalent 
protons of the molecule) through the chemical bonds of a molecule and results in the splitting of 
NMR signals. This supplies the most useful information for structure determination in a 1D 1H NMR 
spectrum. The splitting patterns can be complex or simple and, likewise, can be straightforwardly 
interpretable or deceptive. Nonetheless, these splitting patterns provide detailed insight into the 
connectivity of protons in a molecule. 

Specifically, coupling to a functional group containing n protons splits the NMR signal into a (n+1)-
peak component with intensity ratios following the nth row of Pascal’s triangle (see Fig 5). The 
component is named a multiplet. For example, a proton coupling to 2 identical protons will produce 
a Triplet, coupling to 3 identical protons will produce a Quartet, coupling to 4 identical protons will 
produce a Pentet, etc  (see Fig 612  for typical multiplet patterns). 

 

   n                                     

   0   singlet(s)                          1 

    1   doublet(d)                        1   1 

    2   triplet(t)                      1   2   1 

    3   quartet(q)                   1   3   3   1 

    4   pentet                     1   4   6   4   1 

   5   sextet                   1   5  10  10   5   1 

   6   septet                 1   6  15  20  15   6   1 

   7   octet                1   7  21  35  35   21  7   1 

    8   nonet              1   8  28  56  70  56   28   8  1 

 

 

 

 

 

 
 
Coupling to additional functional groups will lead to further splitting of the muliplet, e.g. coupling to 
two different CH groups with significantly different coupling constants will lead to a doublet of 
doublets (dd), coupling to two different functional groups, in which one contains a proton and the 
other contains two protons, will lead to a triplet of doublets (td), coupling to two different functional 

                                                           
12 The image in Fig 6 is sourced from Wikipedia at http://en.wikipedia.org/wiki/Proton_NMR. 

Fig 5 Pascal Triangle 

Fig 6 First Order Multiplet Pattern (a) 

http://en.wikipedia.org/wiki/Proton_NMR
http://en.wikipedia.org/wiki/File:J-Coupling-simple-multiplets.gif
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groups, one contains 2 protons and the other contains 3 protons, will lead to a quarter of triplets (qt), 
etc (see Fig 713 for the multiplet patterns).   
 

 

  

 

Further rules for identifying J-coupling of a molecule include that couplings between protons in the 

same functional group have no effects on NMR spectra, couplings between protons that are distant 

(usually more than 3 chemical bonds apart in molecules) are usually too small to cause observable 

splitting, long-range couplings over more than three chemical bonds can often be observed in cyclic 

and aromatic compounds, leading to more complex splitting patterns, etc. For more rules about J-

couplings, we refer interested readers to (Keeler, 2005). 

To give an example, in the NMR spectrum for ethanol described in Fig 4, the CH3 group is split into a 

triplet with an intensity ratio of 1:2:1 by the two protons in neighboring CH2 group. Similarly, the 

CH2 is split into a quartet with an intensity ratio of 1:3:3:1 by the three protons in CH3 group. In 

addition, the two CH2 protons are also neighbored to the proton in OH group, and are split again 

into a doublet to form a doublet of quartets (bq) (see Fig 8 for the multiplet patterns in the NMR 

spectrum of ethanol). Note: it often happens that intermolecular exchange of the acidic hydroxyl 

proton (e.g. protons in OH) results in a loss of this coupling information.  

 

 

 
 

 

 

 

 

                                                           
13 The image in Fig 8 is sourced from Wikipedia at http://en.wikipedia.org/wiki/Proton_NMR. 

Fig 7 First Order Multiplet Pattern (b) 

http://en.wikipedia.org/wiki/Proton_NMR
http://en.wikipedia.org/wiki/File:J-Coupling-complex-multiplets.gif
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2.1.2.4 Coupling Constant and Connectivity 

 

         
 
 
 
 

Structure J(Hz) 

 
6-8 

 
11-18 

 

6-15 

 

4-10 

 

6-10 

 

8-11 

 

a,a: 8 - 14 
a,e: 0 - 7 
e,e: 0 - 5 

 

cis: 6 - 12 
trans: 4 - 8 

 

5-7 

 

 

The distance between peaks in a multiplet is termed coupling constant, identified as J. The 

magnitude level of the coupling constant is determined by structures of two functional groups, 

which interact to produce the J-coupling, and can be predicted (see (Keeler, 2005) for detail). Table 

214 lists the expected coupling constant ranges for some given structural conformations. Note: 

                                                           
14Table 2 is sourced from the NMR tutorial of Department of Chemistry in Central Connecticut State University 
at http://www.chemistry.ccsu.edu/glagovich/teaching/316/nmr/coupling.html.  

CH3 CH2 

Fig 8 Coupling Constant and Connectivity of Ethanol 

Table 2 Coupling Constant Ranges for Various Functional Groups in Common Use 

http://www.chemistry.ccsu.edu/glagovich/teaching/316/nmr/coupling.html
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coupling constants are measured in Hz. This is calculated in the following way: take the distance (in 

ppm) between two adjacent split peaks in a multiplet, then convert the distance in ppm to Hz by 

multiplying the distance (in ppm) with the external magnetic field intensity (in MHz). For example, 

both the multiplet of CH3 group and the multiplet of CH2 group in the NMR spectrum of ethanol are 

measured to have the coupling constant of 7.09Hz (see Fig 8). In addition, multiplets of protons that 

split each other will always have the same coupling constant, e.g. the coupling constant of the CH3 

multiplet and one of the coupling constants of CH2 multiplet in Ethanol are equivalent. This is useful 

information in determining which multiplets are related to each other in terms of adjacency. In the 

example of Ethanol, CH3 group and CH2 group is determined to be adjacent to each other in the 

structure by utilizing the equivalency of their coupling constants in the NMR spectrum. Formally this 

rule about the equivalent coupling constants is named connectivity. 

 

 

2.1.2.5 Second-order Coupling 

The description of J-coupling assumes that the coupling constant is small in comparison to the 
difference in NMR frequencies between different functional groups. If the shift separation decreases 
(or the coupling strength increases), the multiplet intensity patterns are distorted, and become more 
complex and less easily analyzed (especially if more than two functional groups are involved). 
Intensification of some peaks in a multiplet is achieved at the expense of the remainder, which 
sometimes almost disappear in the background noise, although the integrated area under the peaks 
remains constant. In most high-field NMR, however, the distortions are usually modest and the 
characteristic distortions (roof-top effect) can in fact help to identify related peaks. For example, the 
1D 1H NMR spectrum in Fig 915 illustrates an example of second order couplings among three 
multiplets. The peak intensities across multiplets A and B are different, that is, the peak on the right 
side of the multiplet is higher in intensity than the peak on the left side. The purple arrow illustrates 
a tilt towards the right side for both multiplets. Multiplet C shows an opposite tilt, i.e. to the left side. 
Multiplets that tilt to form a roof are most likely related protons, and thus are in proximity of each 
other. Therefore, one can say that multiplets A and B are coupled to multiplet C.  

 

 

                                                           
1515 The image in Fig 9 is sourced from the official website of Advanced Chemistry Development (ACD) Labs at 
http://acdlabs.typepad.com/photos/uncategorized/2008/03/24/strongcoupling_nmr.gif. 

Fig 9 Roof Top Effect 

http://acdlabs.typepad.com/photos/uncategorized/2008/03/24/strongcoupling_nmr.gif
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Second-order effects decrease as the frequency difference between multiplets increases, so that 
high-field (high-frequency) NMR spectra display less distortion than lower frequency spectra. Low 
field spectra at 300 MHz are more prone to distortion than spectra from high field machines, 
typically operating at frequencies at 500 MHz or above. 

 

2.1.2.6 Magnetic Inequivalence 

More subtle effects can occur if chemically equivalent protons (i.e. protons related by geometric 
symmetry or belonging to the same functional group) have different coupling relationships to 
external protons. Protons that are chemically equivalent but are not indistinguishable (based on 
their coupling relationships) are termed magnetically inequivalent. For example, in Fig 10 the 4 
protons of 1,2-dichlorobenzene are divided into two chemically equivalent pairs by symmetry (while 
one group is marked as blue and the other group is marked as red,) and this should produce two 
triplets in the spectrum. However, magnetic inequivalence causes an individual member of one of 
the pairs having different couplings to the protons of the other pair, which cause an additional 
splitting of their signals and so as to produce more complex patterns (see Fig 10). Magnetic 
inequivalence often leads to highly complex spectra which cannot be analyzed effectively by human 
spectroscopists. Such effects are more common in 1D 1H NMR spectra of aromatic and other non-
flexible molecules, while conformational averaging about C-C bonds in flexible molecules tends to 
equalize the couplings between protons on adjacent carbons, which reduce problems with magnetic 
inequivalence (see (Keeler, 2005) for more information). 

                  

 

 

 

Fig 10 Molecule Structure and Magnetic Inequivalent Multiplet Pattern in the 1D 

1H NMR spectrum of 1,2-dichlorobenzene 
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2.1.3 Human Process of Molecular Structure 1D 1H NMR Verification- an 

Example 
 

In 2.1.2 we briefly introduce the NMR knowledge that spectroscopists utilize for 1D 1H NMR 

structure verification. To make it easier to understand the human logic behind their structure 

verification procedure, in this section, we use a real compound and its 1D 1H NMR spectrum as an 

example to describe the spectroscopist’s interpretation process. Specifically, we use +-

Pseudoephedrin as our example. See Fig 11 for its 2D molecule structure and 1D 1H NMR spectrum. 

 

 

 

 

 

Generally speaking, human structure verification processes is cursory and empirical. Different 

spectroscopists may adopt slightly different approaches to check consistency between the molecular 

structure and the 1D 1H NMR spectrum.  However, the core methodology of the NMR structure 

verification among different spectroscopists is the same. We can roughly divide the process into 5 

steps: (a) Identification of peak clusters from the spectrum. (b) Identification of solvents from the 

peak clusters. (c) Computing proton numbers for the peak clusters. (d) Verification of consistency 

Fig 11 Molecule Structure and 1D 1H NMR Spectrum of +-Pseudoephedrin 
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between the molecular structure and the peak clusters with proton number. (e) Further checking for 

consistency between the molecular structure and the peak clusters by coupling analysis. In the 

following, we explain each step in detail with our example. 

  

2.1.3.1 Identifying Peak Clusters 

 

Spectroscopists use the following approach to identify peak clusters: 

Starting from left to right (high field to low field) of the spectrum: 

1. Selection of a point on the x-axis which has an amplitude around the spectrum baseline, and 

using this point as the left boundary of a new peak cluster.  

2. Starting from the point we move continually to the right, so that the region covers as many 

peaks as possible.   

3. Stopping when the movement touches another point on the x-axis which has an amplitude 

around the spectrum baseline. This new point is used as the right boundary of the peak 

cluster. As a result, a new peak cluster is identified. 

Repeating this process until all peak clusters are identified. 

Specifically, in our example 8 peak clusters are identified from the spectrum of +-Pseudoephedrin 

with the above approach. We list their peak patterns in Fig 12.  

   

 

 

 
Fig 12 Peak Clusters Identified from 1D 1H NMR Spectrum of +-Pseudoephedrin 

Peak Cluster 5 Peak Cluster 6 Peak Cluster 7 Peak Cluster 8 

Peak Cluster 1 Peak Cluster 3 Peak Cluster 2 Peak Cluster 4 
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2.1.3.2 Identifying Solvent 

 

As we explained in 2.1.1, several solvents could be used in 1H NMR experiments, wherein different 

solvents have different chemical /physical characteristics. Correspondingly, there are different 

multiplet patterns appearing in 1D 1H NMR spectra, which require different pattern recognition 

techniques. Considering the similarity of techniques among different solvent pattern identifications, 

and to simplify the problem setup, we decide to limit the solvent detection problem to the 

identification of one popular solvent used in 1D 1H NMR experiments under practical industrial 

environment. Through the survey among the customer of our industrial partner – a NMR 

manufacture, we understand that DMSO is the most widely used solvent for 1D 1H NMR 

experiments in practice. Therefore, we limit the problem of solvent identification to the problem of 

identifying DMSO in the scope of the thesis. 

DMSO is the compound to use deuterium to replace hydrogen in dimethyl sulfoxide. Since 

deuterium does not produce a signal in 1D 1H NMR experiment, principally DMSO would not 

produce signals in 1D 1H NMR spectra, and therefore would not interfere with the signals generated 

from the target compound. However, in practice deuteration is never complete (“100%”). Therefore 

the signals from the residual protons of DMSO are still observable in the 1D 1H NMR spectra. To 

further clarify above explanations, we list the deuteration degree of DMSO, which are commonly 

commercially available in Table 316. 

 

Degree of deuteration % 99 99.5 99.8 99.95 

Remaining concentration of 
protons [mol/l] 

0.1-0.06 0.05-0.03 0.02-0.01 0.006-0.003 

Advisable concentration of 
substance [mol/l] 

0.1 0.05 0.02 0.005 

      

 

Another practical issue of DMSO (or any other solvents) is that it is never absolutely dry. There are 
always some amounts of H2O existent in the DMSO samples. The protons of H2O produce a NMR 
signal as well in the 1D 1H NMR spectra. As a result, identifying a DMSO signal in the 1D 1H NMR 
spectra is defined as identifying NMR signals of both the residual protons of DMSO and the protons 
of H2O in the DMSO sample. 

The signal of the residual protons of DMSO is easily identified in the 1D 1H NMR spectra. It often 
shows up at the fixed chemical shift location - around 2.5ppm. And it often appears as a fixed 
multiplet pattern – a Pentet or a Doublet of Triplet. The size of the signal depends on the deuterated 
degree of the DMSO sample. For a highly deuterated DMSO, the signal could be dramatically small 
so that the observable multiplet pattern could be degenerated to a Triplet. This is due to the 

                                                           
16 Table 3 is sourced from the NMR tutorial from Department of Chemistry and Biochemistry in New Mexico 
State University at http://www.chemistry.nmsu.edu/Instrumentation/NMR_Solv.html.  

Table 3 Deuteration Degree of DMSO 

http://www.chemistry.nmsu.edu/Instrumentation/NMR_Solv.html
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absence of enough residual protons in DMSO so that the signal is too small to be visible (especially at 
the edges of the multiplet pattern). 

Comparatively, the signal of H2O in DMSO is relatively difficult to be identified.  This is due to the 
diversity of the H2O signal in both its chemical shift location and multiplet shape pattern. Despite 
these complexities, human spectroscopists could still reliably identify a H2O signal relying on some 
primitive empirical rules.  Some common rules are17:  

(1) The signal of H2O could appear in a large chemical shift range between 3.0ppm and 4.9ppm.  
(2) The signal of H2O often shows as a broad shape.  
(3) The signal of H2O often shows as a single peak without splitting. But it could also show 

occasionally as 2 or more peaks. When more than a single peak are generated from H2O, all 
these peaks are overlapped together and are not well separated. In addition, these peaks 
are asymmetric in both peak amplitudes and peak positions.   

(4) The signal of H2O is not accompanied with satellite peaks. 

To utilize above rules for solvent detection in our example, we return back to Fig 12 to scan all peak 
clusters we have identified from the spectrum. It is crystal-clear that Peak Cluster 5 is the signal from 
residual protons of DMSO. This is because Peak Cluster 5 is the only peak cluster which uniquely 
contains a Pentet and is located at 2.5ppm. However, from the picture it clearly shows that there is 
another multiplet, possibly from the target compound, which is overlapped with the residual proton 
signal of DMSO. This overlapping of different NMR signals increases the complexity of DMSO 
identification. Despite this distortion, there are still enough evidences for spectroscopists to 
discriminate DMSO signals from others. This owes to the stability of residual proton signal of DMSO 
as we mentioned before.  

The identification of a H2O signal is tricky, since there is no fixed shape pattern for the H2O signal, 
and its chemical shift could be in a wide range. Based on the rough rules described above, 
spectroscopists would “guess” that Peak Cluster 4 is a good candidate for a H2O signal. First, Peak 
Cluster 4 has chemical shift 3.33pm, which is a likely chemical shift position for H2O signal (note, 
though H2O signal’s chemical shift range is 3.0-4.9ppm, spectroscopists’ subjective probabilistic 
density distribution over the H2O chemical shift range is non-uniform. Their subjective probability 
density of H2O signal to be shown in 3.33ppm is higher than that of other positions in the H2O 
signal’s chemical shift range). Second, Peak Cluster 4 appears as a single wide peak, which gives 
another evidence to show its aptness of the signal from H2O. There is another peak cluster- Peak 
Cluster 2 in the H2O signal’s chemical shift range. However, Peak Cluster 2 has two well-separated 
peaks to form a nice doublet, which violates the third rule mentioned above, and makes it unlike to 
be a signal of H2O. With this further evidence, spectroscopists confirm that Peak Cluster 4 is the 
signal from H2O. With both DMO and H2O signals uniquely identified, the task of identification of 
solvent signals in the 1D 1H NMR spectrum of +-Pseudoephedrin is finished. For clarity we show the 
identified patters in Fig 13. 

Note, although the signals of both H2O and residual protons in DMSO are uniquely identified in our 
example, generally it is not the case, especially in the task of the H2O signal identification. In case 
there are more than one peak clusters “suitable” to be the signal from the solvent, spectroscopists 
often adopt a hypotheses-driven problem solving strategy to loop through all possible solvent 
candidates. Specifically, they would assume the most “likely” peak cluster as the signal from solvent, 
and jump to the next step of structure verification. If it is proven in a later step that the assumption 

                                                           
17 Note, there are additional rules which can be used to identify H2O signals from NMR spectra. However, their 
usage is not unified among NMR spectroscopists, and is relied on the experience of the spectroscopists. 
Therefore, we skip their introduction in the thesis.   
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is wrong, spectroscopists would return back and choose the second most “likely” peak cluster as the 
solvent signal. The process would be repeated many times until the correct solvent signal is 
identified or spectroscopists decide to give up. 

 

 

 

 

 

 
  

 

2.1.3.3 Computing Proton Numbers of Peak Clusters 

 

To compute the proton number of the peak cluster (excluding peak cluster representing the signals 

from solvent), spectroscopists first integrate peak clusters. In digital NMR spectra, this is done by 

adding amplitudes of all signal points, which all belong to a peak cluster.  Note, the spectrum 

integration functionality is supported by all commercial NMR acquisition and application software.    

As we explained in 2.1.2.2, spectroscopists do integrations for peak clusters in order to match them 

in proton numbers with the functional groups extracted from the molecular structure. To do so, first 

spectroscopists need to normalize the integrations of peak clusters to the unit of proton numbers so 

that they become comparable to the proton numbers acquired from molecular functional groups. To 

do the normalization in a succinct way, spectroscopists recur to the information from the molecular 

structure to seek a peak cluster, which could be uniquely assigned to a functional group from the 

molecule, as the normalization reference. Here, it requires spectroscopists to identify all functional 

groups from the given molecular structure and compute the proton numbers under the functional 

Fig 13 H2O and DMSO Patterns in 1D 1H NMR Spectrum of +-Pseudoephedrin  

H2O 

DMSO 

Signal from Compound 
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group. Identification of functional groups from molecular structure is a straightforward task for an 

organic chemist. However, the explanation of how this is done requires knowledge in organic 

chemistry, which is beyond the scope of this thesis, therefore we leave interested readers to 

classical organic chemistry textbooks e.g. (Solomons, et al., 2003) for a detailed explanation. With a 

chemical functional group identified, then the proton number of the functional group could be 

computed by counting the number of protons in the functional group.  For clarity, we illustrate the 

identified functional groups and their proton numbers of +-Pseudoephedrin – our example in Fig 14.  

 

 

 

 

 

 

 

After all functional groups are identified, in the next stage spectroscopists seek a peak cluster which 

can uniquely match to one of the functional groups. This task requires utilizing the knowledge in 

chemical shift match, as well as coupling analysis. Specifically, in the example of +-Psedoephdrin, 

spectroscopists would judge that CH3 group and Peak Cluster 8 are uniquely matched to each other. 

The reason of this assignment is that CH3 group has a typical chemical shift range of 0.8-2ppm, 

where only Peak Cluster 7 and Peak Cluster 8 can match. Further analysis shows that Peak Cluster 7 

is a wide single peak, which is unlikely to be the signal from CH3 group. This is due to spectrscopists’ 

experience that CH3 group usually produces sharp (narrow) peaks. This supplies the first evidence 

why Peak Cluster 8 and CH3 group are uniquely matched. In addition, the CH group which is three 

bounds away from CH3 group would cause the splitting of signal of CH3 group to a doublet, which is 

matched to the multiplet pattern of Peak Cluster 8. This supplies the second evidence about the 

unique matching between Peak Cluster 8 and CH3 group.  With both evidences in hand, 

spectroscopists can confirm this unique matching – CH3 group and Peak Cluster 8.  

Fig 14 Identify Functional Group and Proton Numbers from +-Pseudoephedrin 

N-CH3 Group: 3 Protons 

Aromatic System: 5 Protons 

N-CH Group: 1 Proton 

OH Group: 1 Proton 

NH Group: 1 Proton 

O-CH Group: 1 Proton 

CH3 Group:  3 Protons 
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Next, the previously selected uniquely matched peak cluster-functional group pair is used to 

compute the normalization factor. This is done by dividing the integration of the peak cluster by the 

proton number of the functional group. Note, the unit of the normalization factor is integration per 

proton. With the normalization factor computed, the proton number of each peak cluster can be 

computed by dividing its integration by the normalization factor. As the result, all peak clusters are 

assigned an estimated proton number. Returning to our example, referring to the above mentioned 

methodology, the normalization factor is computed by dividing the integration of Peak Cluster 8 by 3 

proton number of CH3 group. This is followed by dividing the integration of each peak cluster by the 

normalization factor to get the proton number of the peak cluster. Note, all commercially available 

NMR acquisition software support the normalization of integrations of peak clusters to proton 

numbers, but require human intervention to select the reference pair (between a peak cluster and a 

functional group). In Fig 15 we show the calculated proton numbers for 7 peak clusters extracted 

from the NMR spectrum of +-Pseudoephedrine with the Topspin software, a NMR application 

software from Bruker Biospin AG. In addition, the signal in Peak Cluster 5 is the overlap of the signal 

from a functional group and the signal from DMSO residual protons, which makes its integration and 

therefore its computed proton numbers unreliable. Therefore, spectroscopists choose not to 

compute its integration and proton number, and to further use them for structure verification. 

 

     

                                          

  

 

 

 Fig 15 Proton Numbers of Peak Clusters of +-Pseudoephedrin  

Peak Cluster 1 Peak Cluster 2 Peak Cluster 3 Peak Cluster 5 

Peak Cluster 6 Peak Cluster 7 Peak Cluster 8 
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From the above analysis, we know that the correctness of computed proton numbers of peak 

clusters relies on the successful discovery of a unique matching pair between a peak cluster and a 

functional group. However, this unique matching does not generally exist, which is unfortunately not 

shown in our example.  If this happens (the unique matching is not existent), spectroscopists adopt 

their hypothesis-driven problem solving strategy to iteratively compute the normalization factor by 

sequentially selecting the most “likely” peak cluster and functional group pairs. Specifically, 

spectroscopists would choose the most possible pair to compute the normalization factor, and this is 

followed by computing proton numbers for peak clusters. Obviously, the resulting computed proton 

numbers are possibly wrong. However, spectroscopists assume that the computed proton numbers 

are correct, and insist to go to the next step to further verify the consistency between the spectrum 

and the molecular structure with the computed proton numbers. With the correctness of the 

computed proton number unwarranted, contradiction could happen during this next step. As a 

result, if it happened, it would motivate spectroscopists to return back to re-compute the 

normalization factor with the next most likely pair. Spectroscopists often go through this iteration 

many times until there is no contradiction found in the next step, while reasonable assignments 

between peak clusters and functional groups are implemented, or after enough iterations without 

finding an uncontradictable explanation they decide to give up. Here, “give up” means that 

spectroscopists can not deduce the consistency between the molecule structure and the NMR 

spectrum, but they can also not deduce the inconsistency between the molecule structure and the 

NMR spectrum. Therefore, they arrive at the conclusion that they don’t know whether the molecule 

structure is consistent with the NMR spectrum or not. 

  

 

2.1.3.4 Verifying Consistency between the Molecular Structure and the Peak Clusters with 

Proton Number 

 

With the proton number assigned to each peak cluster, spectroscopists are ready to verify the 

consistency between the spectrum and the structure with them. However, the spectroscopists’ 

approach for verification with proton number is rough and cursory. Nevertheless, it’s being proved 

to be reliable in practice.  

Generally speaking, we can divide structure verification with proton number into two steps. In the 

first step, spectroscopists verify the consistency between the structure and the spectrum by 

comparing the total proton numbers counted from the spectrum to that from the structure.  In the 

second step, they start detail verification by assigning peak clusters to functional groups with proton 

numbers and chemical shifts. To make it easier to be understand, we keep using our example to 

illustrate how these two steps work starting from next paragraph.   

In the first step, we need to compare the total proton number in the spectrum to that in the 

structure. Clearly, by straightly counting on the structure, we summarize that there are 15 protons in 

+-Pseudoephedrin. On the other side, we add proton numbers of peak clusters, excluding Peak 

Cluster 4 (since it is the signal purely generated from the solvent), altogether to get 17 protons (see 

Fig 15). By comparing the total proton numbers – 15 vs. 17, it seems that the total proton numbers 

are inconsistent. However, through further investigation, we realize that Peak Cluster 5 is the 
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overlap between the signal of DMSO residual protons and a signal from the molecule, which makes 

using the integration of whole Peak Cluster 5 to compute the proton number overestimate the real 

proton number from the molecule. By temporarily ignoring the 3 protons counted from Peak Cluster 

5, we get a total of 14 protons from the spectrum. Since there are 15 protons from the molecular 

structure, we can deduce that only one proton is probably produced by the molecule in Peak Cluster 

5. With this perspective, we find a consistent explanation for the total proton numbers. To further 

confirm our perspective, we split Peak Cluster 5 into two parts, where signals in the left part are 

mainly from the molecule and signals in the right part are mainly from DMSO residual protons (see 

Fig 13). By integrating the two parts separately, we see that the integration of the left part is roughly 

one third of the integration of Peak Cluster 5. This new finding further confirms our assumption that 

the signal from the molecule in Peak Cluster 5 contains one proton. With this new evidence, 

spectroscopists are confirmed that the spectrum and the structure are consistent in total proton 

numbers, and both spectrum and structure contain 15 protons.   

In the second step, we need to build assignments among peak clusters and functional groups with 

their proton numbers and chemical shifts. The reasonable assignments would supply strong 

evidence to prove the consistency between the molecule and the spectrum, and to prevent possible 

false-positive alarm. Note, we are going to explain false positive rate (the second type of error) in 

detail in Chapter 6. Here, we only emphasize the conclusion: The principle is universally true in any 

decision problems that more evidences are shown, less risk to produce false positive cases. 

Therefore it is necessary and important to do the detail assignments between peak clusters and 

functional groups. 

To clarify the human approach to do assignments, we still utilize our example to illustrate the 

methodology. Specifically, first we know that there is an aromatic system which contains 5 protons 

in +-Pseudoephedrin (see Fig 14 and Fig 17). By checking the 1H NMR chemical shift (see Table 1), 

we understand that the aromatic system typically has a chemical shift range of 6.5-9ppm. With this 

clue, we scan for peak clusters in the chemical shift range of 6.5-9ppm, and check if they contain 5 

protons. From Fig 15, we see that only Peak Cluster 1 is in the range, and it happens to contain 5 

protons. Therefore, we confirm our first assignment: Peak Cluster1 versus the aromatic system, and 

they are consistent on both proton numbers and chemical shifts. Similarly, the CH group has a typical 

chemical shift range of 3-6.5ppm. By checking the peak cluster list, there are Peak Cluster 2 and Peak 

Cluster 3 in the range, and both of them contain one proton, which makes them consistent to 2 CH 

groups on both proton numbers and chemical shifts. This seems to give enough evidence of 

assigning Peak Cluster 2, Peak Cluster 3 to 2 CH groups. However, an empirical rule could be applied 

here to deny the assignment. Specifically, Peak Cluster 2 is a wide single peak, which makes it 

impossible to be a signal from one of two CH groups in +-Pseudoephedrin. This is because the signal 

of CH group appears as sharp peaks instead of broad peaks. This rule will “kick out” the qualification 

of Peak Cluster 2 to be a candidate for matching CH groups. Another rule could also be applied to 

deny Peak Cluster 2 for matching CH groups, which relies on coupling analysis. From the structure of 

+-Pseudoephedrin, both CH groups are coupled to other protons, which cause the peaks from the CH 

groups splitting and producing a more complex multiplet pattern than a singleton (see 2.1.3.5 for 

detail coupling analysis). As a result, only Peak Cluster 3 has possible signals from the CH groups. This 

seems to cause inconsistency, since there is only one proton in Peak Cluster 3, but 2 CH groups, 

which contain 2 protons. However, by carefully examining the peak cluster list again, we find that 
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the multiplet in Peak Cluster 5 has a chemical shift of around 2.8ppm, which is close to the CH group 

chemical shift range and has a complex multiplicity. With continually accumulated NMR experience, 

we know that chemical shift ranges of functional groups recorded in the shift table are not 

absolutely accurate, and could slightly shift depending on practical NMR experimental conditions e.g. 

solvent types, measuring temperature, PH value, etc. Therefore, we flexibly adapt the chemical shift 

range of the CH group to 2.8-6.5ppm so that we can assign the multiplet in Peak Cluster 5 to CH 

groups as well. As we show in the previous paragraph, the multiplet in Peak Cluster 5 contains one 

proton, and it could be the signal from one of the CH group. Thus, totally we have two protons in 

Peak Cluster 3 and Peak Cluster 5, which is consistent with the 2 protons from 2 CH groups. Though 

there are still no clear one-to-one mappings between Peak Cluster 3, 5 and two CH groups, it already 

gives us much more evidence in our structural verification task. Keeping the same strategy, we 

further do the assignments on CH3 (methyl) groups. There are two CH3 groups from +-

Pseudoephedrin, which totally count 6 protons. The CH3 group often has chemical shift range of 0.8- 

3ppm. Again, from Fig 15, we find that Peak Cluster 6, 7 and 8 is in the range, where only Peak 

Cluster 6 and Peak Cluster 8 contain 3 protons. Obviously, they are signals from CH3 groups. In this 

way, we also create assignments between Peak Cluster 6, 8 and two CH3 groups, and they are 

consistent in proton numbers and chemical shifts.  

To summarize the assignments we built so far, all peak clusters are assigned to some functional 

groups except two. They are Peak Cluster 2 and 6. On the other side, there is an OH group and a NH 

group which are not being assigned yet. With our NMR knowledge, we know that both OH and NH 

group could exchange proton with the solvent, and therefore we expect that the signal s of them 

could disappear from the 1D 1H NMR spectrum, or their signal sizes could shrink so that they are 

disproportional to the proton numbers of their functional groups. Keeping these variables in mind, 

we would not check consistency of the proton numbers between peak clusters and OH and NH 

groups precisely. Instead we only check if the proton numbers of the peak cluster are equal or 

smaller to the proton numbers of NH group or OH group for consistency. In our example, both Peak 

Cluster 2 and Peak Cluster 6 contain 1 proton, which is equal or smaller than the proton number 

from OH and NH group, and therefore consistent with OH and NH group in proton numbers. Since 

the signals of both OH and NH groups could be shown in a very wide chemical shift range, Peak 

Cluster 2 and 6 are consistent with the OH and NH groups in chemical shift either. Therefore, we 

assign Peak Cluster 2 and 5 to OH group and NH group. So far, we have built a complete assignment 

between peak clusters and functional groups. With this the second step of proton number 

verification on +-Pseudoephedrin is completed, and the conclusion is consistent between the 

spectrum and the structure of +-Pseudoephedrin. 

To supplement the above mentioned analysis, we introduce several (crude) rules for NH and OH 

group identification so that we can precisely determine one to one assignments between Peak 

Cluster2, 6 and NH, OH groups. First, signals of both NH and OH group could appear in wide chemical 

shift ranges, and in fact their chemical shift ranges are overlapped by those of CH, CH2, CH3 and 

Aromatic System functional group. Second, signals of NH or OH groups often show up as wide single 

peaks. Third, the signal of NH group often appears in relatively high field ppm position compared to 

that of OH group. To apply these rules in our structure verification task on +-Pseudoephedrin, both 

patterns of the Peak Cluster 2 and 6 are compatible to the characteristics represented in the first 

and second rules. This supplies us with more evidence to confirm our previous assignments. 

Furthermore, the third rule gives us “magical baton” to precisely pinpoint two one-to-one 
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assignments between the two peak clusters and the two function groups. That is: Peak Cluster 2 is 

matched to NH group, and Peak Cluster 6 is matched to OH group. 

To summarize the result, utilizing the two-step proton number verification process, we roughly build 

assignments between peak clusters and functional groups, and reach the conclusion that the 

spectrum and structure of +-Pseudoephedrin are consistent on proton number. To clarify the result, 

we illuminate the assignments we built so far in Fig 16. 

 

  

 

 

 

 

 

 

 

 2.1.3.5 Further Verifying the Consistency between Peak Clusters and Function Groups by 

Coupling Analysis 

 

Through consistency analysis with proton numbers in 2.1.3.4, specoscopists could often build rough 

(non-one-to-one) assignments between peak clusters and functional groups.  For example, in our 

structural verification procedure of +-Pseudoephedrin in 2.1.3.4, it is doubtless that Peak Cluster 1 is 

uniquely mapped to the aromatic system, Peak Cluster 2 is uniquely mapped to the NH group, Peak 

Cluster 7 is uniquely mapped to the OH group. In addition, we have already identified that Peak 

Fig 16 Assignments between Peak Clusters and Functional Groups with Proton 

Number on +-Pseudoephedrin  

Aromatic System, 5 

protons 
NH Group, 1 proton CH Group, 1 proton 

H2O 

DMSO 
CH3 Group, 3 

protons OH Group, 1 proton 
CH3 Group, 3 

protons 
CH Group, 1 proton 
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Cluster 8 is uniquely mapped to the CH3 group, and the pair was used as the reference to compute 

the normalization factor in 2.1.3.3. With this additional information, we could directly deduce that 

another peak cluster – Peak Cluster 6, which is assigned to CH3 group, is uniquely mapped to the 

other CH3 group. For clarity, we name the second CH3 group as N-CH3 group (to indicate that it is 

neighbored to the NH group).  

The assignments with proton numbers and chemical shifts are often rough, and not exactly one-to-

one.  In our example, from 2.1.3.4 we assign Peak Cluster 3 and the multiplet in Peak Cluster 5 to the 

two CH groups of +-Pseudoephedrin. But, we don’t know which peak cluster is assigned to which CH 

group. To solve the uncertainty there, we rely on coupling analysis. Ultimately, coupling analysis 

could supply additional information which we could use to further check previous unique 

assignments we did in 2.1.3.4. By passing through this additional coupling analysis, spectroscopists 

accumulate more evidence to support their previous decision, and this will further reduce false 

positive rate. Though there are only two CH groups which are not uniquely assigned in our example, 

the number of non-one-to-one assigned peak cluster-functional group pairs could be dramatically 

bigger for structural verifications of other molecules. This situation would particularly happen where 

the molecular structures are complex. If it happens, spectroscopists turn to mainly rely on coupling 

analysis to determine delicate assignments between peak clusters and functional groups. To keep it 

easy to understand, we still utilize the example to illustrate how J-coupling, coupling constant and 

connectivity are used to do the assignments, with details starting from the next paragraph.         

In the first step, we start the coupling analysis from the aromatic system. In the aromatic system of 

+-Pseudoephedrin, there are 5 protons, which are marked as H1, H2, H3, H4 and H5 (see Fig 17 (a)). 

By geometrical symmetry, we know that H1 and H5 are chemically equivalent, and H2 and H4 are 

chemically equivalent. By relying on the knowledge we explained in 2.1.2, we realize that in aromatic 

systems chemically equivalent protons are magnetically inequivalent. This gives us a hint that the 

multiplet (NMR signals) generated from H1, H5 and the multiplet generated from H2, H4 could 

overlap together to produce a complex signal pattern, which is uninterpretable on its multiplicity. 

Another proton H3, which is three chemical bounds away from H2 and H4, is strongly coupled to H2 

and H4, and could produce a Doublet of Doublet (dd). However, in the environment of aromatic 

system, H3 is also weakly coupled to H1 and H5, and this causes further splitting of the signal of H3. 

Adding these effects together, we predict that the signal of H3 also shows a complex peak pattern. 

At the spectrum side, we observe that Peak Cluster 1 has a complex pattern. In addition, Peak 

Cluster 1 can be further divided into two sub-clusters (see Fig 17 (b)). The left cluster roughly 

contains 4 protons, and the right cluster contains one proton. Both sub-clusters appear as complex 

patterns. Through the above deduction, we could conclude that signals from H1, H2, H4 and H5 are 

all overlapping and produce a complex pattern, which is matched with the left peak cluster in Peak 

Cluster1. The signal from H3 produces complex peak patterns as well, which happen to match the 

right peak cluster (see Fig 17).                       
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With the assignments on the aromatic system clear, consecutively we apply the coupling analysis on 

other functional groups. For readability, we redraw Fig 14 in Fig 18. First, we look at O-CH group. By 

examining the molecular structure (in Fig 18), we know that the only proton which is 3 bound away 

from the proton in O-CH group is the proton of N-CH group, and any other protons are equal or 

more than 4 bound away from O-CH group. With our NMR knowledge, we know that only the proton 

in the N-CH group causes the splitting of the signal of O-CH, and as the result the signal of the O-CH 

group is shown as a Doublet. Clearly, Peak Cluster 3 now becomes the unique match to the O-CH 

group.  

 

 

 

 

To complete the analysis, we next look at the N-CH group. The proton in the N-CH group is three 

bound away from both the proton in O-CH group and three protons in CH3 group, and this causes 

R 

H1 

H2 

H3 

H4 

H5 

Fig 17 Protons in Aromatic Ring and Their Complex Peak Cluster Patterns   

H1,H2,H4,H5 

H3 

Fig 18 Identify Functional Group and Proton Numbers from Pseudoephedrin 

N-CH3 Group: 3 Protons 

Aromatic System: 5 Protons 

N-CH Group: 1 Proton 

OH Group: 1 Proton 

NH Group: 1 Proton 

O-CH Group: 1 Proton 

CH3 Group:  3 Protons 

(a)   
(b)   



Background  ∙   35 
 

 
 

the signal of the N-CH splits to a Doublet of Quartet. This is exactly matched to the pattern of the 

multiplet in Peak Cluster 5, since that signal seems to be a Doublet of Quartet with the most right 

peak overlapping with the signals from DMSO in the spectrum. This evidence helps us to establish a 

unique map between the multiplet in Peak Cluster 5 and the N-CH group. In addition, it also confirms 

our previous assumption in 2.1.3.2 that the multiplet in Peak Cluster 5 only contains one proton.   

To further confirm the assignments between two CH3 groups and Peak Cluster 6 and 8, we analyze 

the multiplicity of CH3 groups. For the N-CH3 group, only the proton in the NH group is three bound 

away from protons in the N-CH3 group. Due to the fact that the proton in the NH group could 

exchange with the protons in the solvent, it could not possibly cause the splitting of the signal of the 

N-CH3 group. As a result, the signal of the NH-CH3 could either split to a Doublet or be a Singleton, 

which is consistent with the multiplet pattern of Peak Cluster 6, which is a Singleton. This confirms 

our previous assignment during proton number verification in 2.1.3.4. Similarly, the protons of the 

CH3 group are only three bound away from the proton of the CH group. Thus, the CH group causes 

the signal of the CH3 group to split into a Doublet, which perfectly matches the multiplet pattern of 

Peak Cluster 8. This evidence further confirms the correctness of previous assignments about the 

CH3 groups in 2.1.3.4.  

To summarize the above analysis, with coupling analysis, we have created one to one assignments 

between peak clusters and functional groups. For clarity, we list peak clusters and their assigned 

functional groups in Fig 19.           

 

 

 

 
Fig 19 One-to-one assignments between peak clusters and functional groups of  +-Pseudoephedrin  

H3, 1 proton 

NH Group, 1 proton O-CH Group, 

1 proton 
H2O 

DMSO 
N-CH3 Group, 

3 protons OH Group, 1 proton 

CH3 Group, 

3 protons 

CH Group, 1 proton 

H1,H2,H4,H5, 

4 protons 
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Furthermore, connectivity could be used to give additional evidences about the correctness of the 

current assignments. In the example, the CH group couples with both the O-CH group and the CH3 

group. Correspondingly there are two coupling constants for the Doublet of Quartet in Peak Cluster 

5, which is assigned to the CH group. They are experimentally measured as 6.53Hz and 7.58Hz. 

Correspondingly, the Doublet in Peak Cluster 8, which is assigned to the CH3, has the experimentally 

measured coupling constant of 6.53Hz, which equal to one coupling constant of the Doublet of 

Quartet in Peak Cluster 5.  The Doublet in Peak Cluster 3 which is assigned to the O-CH group, has 

the coupling constant of 7.58Hz, which is equal to another coupling constant of the Doublet of 

Quartet. These additional evidence on coupling constants and connectivity give us more confidence 

about the correctness of our one- to-one assignments between peak clusters and functional groups.      

Now we reach our ending point of our 1D 1H NMR spectrum structural verification task on +-

Pseudoephedrin. To summarize our findings, we confirm that we have not found any inconsistency 

between the given spectrum and the molecular structure of +-Pseudoephedrin. Instead we find a 

reasonable explanation about all functional groups in the structure with peak clusters extracted 

from the spectrum. In addition, there are no extra peak clusters which cannot be explained either as 

the signals of the functional group or as the signals from the solvent. Therefore, we derive our 

conclusion from the given 1D 1H NMR spectrum being consistent with the molecular structure of +-

Pseudoephedrin. The structural verification investigation is closed. 

 

 

2.1.4 Summary of the Human Logic for 1D 1H NMR Molecular Structure 

Verification         
 

In 2.1.3, we used an example to illustrate the human procedure for 1D 1H NMR spectrum molecular 

structure verification. Unfortunately, a large part of the human structure verification logic is still not 

represented in our example. It is partially due to the limited representativeness of our example, and 

essentially reveals the nature of the flexibility of the human decision logic. Specifically, in the 

structure verification procedures, there are multiple points where spectroscopists need to make a 

choice with incomplete knowledge, which could finally lead to the wrong decision. It is amazing that 

spectroscopists can often avoid the wrong decision by showing the flexibility to return to previous 

decision points and choose the alternative choice to the goal. This flexibility is shown, for example, in 

the solvent detection at 2.1.3.2, where we explained that the signal of H2O in DMSO is highly 

dynamic and could show as diversified shape patterns. We also explained there that it is likely to 

happen that spectroscopists pick up the wrong peak cluster as the signal of H2O, and later find that 

the initial choice of the signal of H2O was wrong, and return to reassigning the signal of H2O. The 

same flexibility is also demonstrated in 2.1.3.3 where spectroscopists adopt the hypothesis-driven 

problem solving strategy to select the peak cluster to compute the normalization factor, and later 

when a contradiction is found, return to reselect the peak cluster to compute the normalization 

factor again. The same situation also happens in assignments between peak clusters and functional 

groups.  Since the signal of a typical function group could show in a range of chemical shift positions, 

it often happens that several experimental peak clusters appearing in a chemical shift range, which 
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are shared by several functional groups. In this situation, it is hard to do assignments between the 

peak clusters and the functional groups with chemical shifts. To solve the ambiguity here, 

spectroscopists still rely on the same hypothesis-driven problem-solving strategy to iteratively 

assume some assignments as the premise, evaluate all other assignments under the assumption, 

find contradiction, return back to reassume some other assignments as a new premise. Through 

enough iteration, spectroscopists can often find the correct assignments. Straying from the point, we 

believe this hypothesis-driven problem solving strategy, which spectroscopists adopt in structure 

verification tasks, is the common logic (intelligence) what human beings universally use to solve 

problems. The strategy spectroscopists use to seek the consistent explanation in our problem is 

essentially no different to what people use to explore a maze. It is this same strategy (intelligence) 

which is very well researched in the Artificial Intelligence domain, and as the result is presented as a 

group of heuristic searching/ optimization algorithms, whose applicability to our problem we will 

discuss in later chapters. In order to give readers a complete picture about the human structure 

verification procedure, we summarize it in a flowchart and show it in Fig 20. 
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Fig 20 Human Logic for 1D 1H NMR Structure Verification  
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2.2 Current Automatic NMR Spectrum Molecule Structure 
Consistency Analysis System 

Though the concept of automatic NMR spectrum molecular structure verification is a new topic to 

NMR community, the efforts to automate the NMR spectrum analysis have a long history. For 

example, Hamper et al. (Hamper, et al., 1999) demonstrate a qualitative manual inspection 

approach, in which a set of NMR spectra are performed using stacked plots for each plate row (A–H) 

in a 96-well plate, and paying attention to the presence of peaks expected in the desired products. 

Although the results were shown to be very consistent with that of HPLC conversion data, the 

amount of labor involved significantly hindered the analysis of a large amount of NMR data. A similar 

approach to aid the interpretation of the NMR spectra from 96-well plates involves a pseudo-2D 

map, in which spectra are glued by row or columns (Keifer, et al., 2000). Such a graphical 

presentation of the data is capable of highlighting violations in the expected systematic patterns of 

NMR signals, but it still requires a lot of attention from spectroscopists and the accuracy of the 

approach is hard to be quantified either. 

Another track of automation relies on the spectrum pattern recognition of R-groups18 that have been 

introduced during the reaction for structure validation. For example, unsupervised neural networks 

have been used to cluster NMR spectra which contain common patterns of R-group, and outliers 

within such cluster are used to identify inconsistency (Kalelkar, et al., 2002). This approach has been 

validated for selecting NMR spectra that do not fit the pattern common to a given substituent. 

However, the structure is not necessarily incorrect, and it remains a challenge for spectroscopists to 

identify why these spectra are not consistent with the expected pattern. In addition, the technique 

does not appear to be reliable when significant contributions to the spectral signals, derived from 

impurities having similar R-patterns (e.g. starting materials or by-products), are present.  

Another method based on R-group recognition, named Autodrop, considers that the structure is a 

combination of R-groups. Correspondingly, 2D HSQC NMR spectrum of the structure is measured 

and treated as a sum of the spectral patterns from the individual R-groups. The proposed structure is 

confirmed if the spectral patterns of all R-groups are present in the spectrum (Schröder, et al., 2000). 

While this method may offer a good visual aid to the interpretation of results, it is restricted to 2D 

NMR spectral data, which, as we discussed in 1.3.2, has a lower throughput than 1D 1H NMR spectra. 

Another source of error comes from the assumption that the spectral patterns are stable. This can 

sometimes become misleading because magnetically active nuclei in the vicinity of the reaction site 

may cause changes in the spectral patterns.  

The approaches based on R-group recognition are limited in principal since they require the 

knowledge of reaction, which is often unavailable. A better strategy would start directly from 

molecular structures and their NMR spectra. For example (Griffiths, 2000) directly verifies the 

consistency between the structure and spectrum pairs by comparing predicted and experimental 

chemical shifts. Specifically the method identifies both a list of experimental multiplets from the 

                                                           
18 R-group: in a chemical structural formula, a generic substituent can be written as R. This is a generic 
placeholder which may replace any portion of the formula as the author finds convenient. Here a substituent 
means an atom or group of atoms substituted in place of a hydrogen atom on the parent chain of a 
hydrocarbon in organic chemistry and biochemistry. 
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spectrum and extracts their chemical shifts, and a list of multiplet from the molecular structure and 

predicts their chemical shifts19. Then it creates a mismatch matrix of predicted and experimental 

chemical shifts, and this is followed by manipulating the matrix to minimize the sum of the diagonal. 

The resulting sum of the diagonal measures the mismatch among predicted and experimental 

chemical shifts, and as a consistent result it should not exceed a predefined threshold. Though the 

approach only relies on the information of the chemical shift, in the paper (Griffiths, 2000) it has 

been shown to produce very good result in the given test set. This approach gives us a good starting 

point since it only requires the NMR spectrum and molecular structure as its input, which is closer to 

the approach spectroscopists are familiar with. However, it only supplies a mismatch value, but does 

not supply information regarding which predicted resonance is paired with which experimental 

signal. This limitation denies spectroscopists the great value that is contained in an assignment 

produced during structure verification. The assignments, as we explained in 2.1.3, would allow 

spectroscopists to directly compare the properties of predicted and experimental signals and as the 

arbitral to further control the accuracy of the automatically generated structural verification 

conclusions. In addition, the approach completely relies on chemical shift information for structure 

verification. But, as we see in 2.1.3, information of chemical shifts alone is not able to discriminate 

functional groups which appear in close chemical shift positions. Therefore, the accuracy of the 

approach heavily relies on the accuracy of the pinpoint prediction of the chemical shift positions of 

the protons in the given molecule. As we will discuss later in 2.2, accurate prediction of chemical 

shift positions of protons are difficult tasks since the chemical shift position of the given proton is 

not only determined by the proton’s local environment, but is also being influenced by many other 

external factors e.g. experimental conditions, etc. This denies the applicability of the approach in 

practical 1D 1H NMR structure verification tasks. 

To address the problem and improve the accuracy of the approach, (Golotvin, et al., 2006) proposes 

to further introduce proton number and multiplicity into the structure validation. Specifically, a 

mismatch function is created to linearly combine the dissimilarities between experimental multiplets 

and predicted multiplets along chemical shift, proton number and multiplicity, and then a similar 

mismatch matrix is built among predicted and experimental multiplets, where the computed 

dissimilarity values between experimental multiplets and predicted multiplets are recorded (ibid.). 

To seek the minimal sum of the diagonal values in the matrix, a Mont Carlo based optimization 

approach (Press, et al., 1992) is adopted to assist the primitive searching approach used in the 

previous strategy (Griffiths, 2000). With the introduction of multiplicity (J-coupling) into the system, 

the accurate assignments between predicted and experimental signals become possible. This is an 

important improvement, which makes it possible to directly compare the performance of the 

automated process to that of spectroscopists. In fact, the approach (Golotvin, et al., 2006) has been 

commercialized as a product, and has been proven to be the best automatic structure verification 

system developed so far. Therefore, in this chapter we focus on introducing the technology and the 

software architecture of this system, and discuss its advantages and disadvantages in detail. 

Specifically, in section 2.2.1, we explain its system architecture and methodologies, and in section 

2.3, we discuss its advantages and disadvantages.   

                                                           
19 Note, the methodologies of both identifying experimental multiplets and predicting chemical shifts from the 
spectrum are introduced later in 2.2.1. 
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2.2.1 General System Architecture 
 

The automatic 1D 1H NMR spectrum molecular structure verification system contains three 

components (see Fig 21):   

(1) Molecular Interpreter:  a module to automatically calculate a list of predicted multiplets 

from the 2D molecular structure. 

(2)  NMR Spectrum Interpreter: a module to automatically interpret a list of experimental 

multiplets from the 1D 1H NMR spectrum.  

(3) Consistency Analyzer: a module to analyze the consistency between the predicted multiplet 

list and the experimental multiplet list. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

2.2.1.1 Molecular Interpreter 

 

Molecular Interpreter is a module to calculate/predict multiplets from the two dimensional 

molecular structure. Calculating/predicting multiplets is a procedure to identify all chemically 

equivalent functional groups from the molecule, and extract NMR properties such as chemical shift, 

J-coupling, coupling constants, connectivity, proton numbers for each chemically equivalent 

functional group. 

Molecular Interpreter NMR Spectrum Interpreter 

Consistency Analyzer  

2 D Molecular Structure 1D 1H NMR spectrum 

Predicted Multiplet List Experimental Multiplet List  

Consistency Conclusion: Yes, No 

Fig 21 Structure of NMR Structure Verification System  
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2.2.1.1.a  Identifying Chemical Equivalent Functional Groups 

 

Chemical equivalent protons are defined as protons which are geometrically symmetric to each 

other in the 2D molecular structure. For example, in Ethanol (see Fig 22), we see that H1, H2 and H3 

in the CH3 group are symmetric, and therefore are chemically equivalent. H4 and H5 in the CH2 are 

chemically equivalent, and H6 in the OH is an individual proton which is not chemically equivalent to 

other protons.  

 

 

 

 

 

 

 

Chemically equivalent protons can be automatically identified by building a graph upon the 2D 

molecular structure (see Fig 22.) and traveling the graph. Here each atom represents a vertex in the 

graph, and each edge represents a chemical bound between two atoms.  Specifically, traveling starts 

from every proton node, and identification of equivalent protons is done by comparing traces of 

expansion trees starting from each proton node. 

2.2.1.1.b Predicting Chemical Shift 

 

Dominating approaches for proton chemical shift prediction include database approaches (Williams, 

2000) (KnowItAll Informatics, 2009) (Chemical Concepts, 1998) (ACD, 1996 - 2009), additivity rules 

approaches (Williams, 2000) (Schaller, et al., 1995) (Schaller, et al., 1994) (Schaller, et al., 1996) 

(Pretsch, et al., 1991) (Fürst, et al., 1990) (Pretsch, et al., 2004) (Fürst, et al., 1990) (Steinbeck, et al., 

2003), and quantum chemical approaches (ABRAHAM, 1999).   

Database approaches utilize the availability of large NMR spectral databases containing chemical 
structure with assigned chemical shifts to predict the chemical shifts of target molecular structure. In 
such databases, the surrounding environments of atoms in a molecular structure are encoded as 

H2 

H1 

H3 

H4 

H5 

H6 C C O 

Fig 22 Chemical Equivalent Protons in Ethanol 

CH3 CH2 

OH 
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‘spherical’ codes, e.g. HOSE (Hierarchical Organization of Spherical Environments) codes (Bremser, 
1978), and NMR spectral signals e.g. chemical shift, coupling constants are assigned to the 
corresponding atoms. During the prediction, the algorithm searches for matches between the 
‘spherical’ codes for each atom in the target molecule and the ‘spherical’ codes in the database to 
fetch the suitable shift for prediction. Note, the ‘spherical’ code based database approach could be 
applied to the prediction of coupling constants, as well. 
   
With these approaches, prediction accuracy can reach the level of less than +/-0.3ppm on average 
(Golotvin, et al., 2006) (Williams, 2000). However, the prediction accuracy is sensitive to the 
structural diversity and therefore is proportional to the size of the molecular structure database. 
Collecting a large and reliable molecular structure database along with the corresponding NMR 
spectra is an expensive and time consuming task. In addition, chemical shifts of protons are easily 
fluctuating depending on measurement condition. Despite above disadvantages, the approaches are 
commercialized into several NMR shift prediction software packages, which include Sadtler’s Know-
It-All package (KnowItAll Informatics, 2009), Chemical Concepts’ SpecInfo (Chemical Concepts, 1998), 
and Advanced Chemistry Developments (ACD Labs)’s ACD/NMR Predictors for 1H, 13C, 15N, 19F and 
31P nuclei (ACD, 1996 - 2009). 
   
Alternatively, a set of chemical shift prediction rules, which are summarized based on empirical rules 
(so called additivity rules), are used to result in a less elaborate and therefore cheaper but cruder 
chemical shift prediction (Schaller, et al., 1995) (Schaller, et al., 1994) (Schaller, et al., 1996) (Pretsch, 
et al., 1991) (Fürst, et al., 1990) (Pretsch, et al., 2004) (Fürst, et al., 1990) (Steinbeck, et al., 2003). 
Briefly, first a number of substructures with applicable additivity rules are automatically identified. 
The rest of the molecule is treated as substituents associated with each of the substructures. Next it 
assigns a rough chemical shift to each proton in the substructure, and then relies on the protons’ 
local structure properties e.g. connected bond types, bond angles, etc. to adjust chemical shift 
prediction for the proton.  Estimates have been given by (Schaller, et al., 1996) that the NMR shift 
locations can be predicted up to within 0.3 ppm accuracy. However, for structures where no or few 
additivity rules are available, the technique suffers (Williams, 2000). Nonetheless, the commercial 
implementation of this approach is available in packages such as CambridgeSoft’s ChemDraw Ultra 
(CambridgeSoft, 2009)and Upstream Solutions’ SpecTool (Heller, 1994). 
  
Beyond the above mentioned empirical approaches, quantum chemical theory can be used to 

theoretically calculate proton chemical shifts based on electronic and steric interactions. A report in 

(ABRAHAM, 1999) shows high prediction accuracies (typically +/-0.1 ppm) with this approach. To 

reach this accuracy, a precise three-dimensional molecular structure is needed, which again has to 

be determined by multi dimensional NMR or X-ray crystallography. It is also possible to calculate the 

molecule’s three-dimensional structure theoretically. However, since accurate quantum mechanical 

geometry optimization routines only yield gas phase structures, substantial differences to the 

solution structure observed by NMR spectroscopy are common. This makes the approach inferior to 

database approaches. 

 

2.2.1.1.c Predicting Number of Couplings and Coupling Constant 

A set of empirical rules can be used to automatically predict the existence of couplings between 

protons. In practice, this approach often yields a reliable number of couplings and thus results in a 

multiplicity prediction with the exception of long range couplings (Karplus, 1963) (Karplus, 1960) 

(Barfield, et al., 1969). To obtain an accurate prediction of long range couplings and to precisely 
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estimate coupling constants, an accurate three dimensional structure of the molecule is needed. As 

mentioned above, the theoretical calculation of the three dimensional molecular structure is not 

reliable enough, so that neither the long range coupling prediction, nor the coupling constant 

prediction of it is reliable.        

 

2.2.1.1.d Count Total Number of Protons within a Molecule 

This simple task is easily reached by adopting a graph traveling algorithm (Sedgewick, 2001). 

To summarize, reliable approaches exist for the prediction of the number of couplings and counting 

the number of protons,. For chemical shift and coupling constant prediction, current approaches still 

cannot reach the prediction accuracy and reliability required by a fully automated molecular 

structure verification system. 

  

2.2.1.2 NMR Spectrum Interpreter 

 

NMR spectrum interpretation is split into three subtasks (Griffiths, 2000) (Golotvin, et al., 2002) 

(Hoye, et al., 2002): 

(1) Automatically identify peaks in spectrum.  

(2) Group symmetric peaks into peak clusters. 

(3) Estimate multiplicities and coupling constants for each peak cluster. 

 

2.2.1.2.a Automatically Identifying Peaks in Spectrum  

 

The automatic identification of peaks in a spectrum is a fundamental problem widely spreading over 

different domains e.g. electronics, communication, spectrum interpretation, etc. Dominant 

technologies used in peak picking include derivative-based approaches, and deconvolution-based 

approaches. However, both techniques suffer severe drawbacks. Derivative-based approaches are 

notorious for introducing noise peaks in noisy spectra. On the other hand, deconvolution-based 

approaches tend to create artifact peaks. Here, noise peaks denote tiny local minima, local maxima, 

and inflexion points in the spectrum resulting from the NMR system noise. Artifact peaks denote 

pseudo local minima, local maxima, and inflexion points created during the deconvolution 

procedure. In the field of NMR spectroscopy, some NMR specific knowledge is used, e.g. Lorenzian 

or Gaussian peak shapes have been introduced into the deconvolution-based peak picking 

approaches to reduce peak picking errors. However, peaks in experimental NMR spectra are often 

different from the theoretical assumption (e.g. Gaussian/ Lorenz shape assumption), which limits 

their efficacy to increase peak picking accuracy. As a result, NMR peak picking programs still rely on 

the immemorial approaches e.g. setting high noise threshold or reducing the number of peak fitting 

iterations to reduce noisy peaks and artifact peaks. However, these approaches are well known of 

missing real peaks. This limits their applicability in structure verification tasks.  
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2.2.1.2.b Grouping Symmetric Peaks into Peak Clusters 

Griffiths (Griffiths, 2000) proposes an approach, which is used as a standard technique in current 

structure verification software packages e.g. (Griffiths, et al., 2002) (Golotvin, et al., 2006). First, the 

NMR peak list is split into zones depending on the distances between individual peaks. Then, in each 

zone, peaks are grouped into a set of disjoint peak clusters with peaks’ positional symmetry. The 

problem of this approach is that it only builds the most likely peak clusters within a given zone 

instead of building all possible peak clusters, and this may cause missing multiplet interpretations 

(see Fig 24 on page 59 for an example). 

 

2.2.1.2.c Estimating Multiplicities and Coupling Constants for Each Peak Cluster 

The current technique to estimate the multiplicity and coupling constant is fairly reliable in non-

overlapped spectra.  (Golotvin, et al., 2002) and (Hoye, et al., 2002) report that a complex 

multiplicity up to seven coupling constants could be determined automatically (with a given, error-

free peak list). In principal, the task of deducing the multiplicity and the coupling constants from a 

peak cluster can be considered as a reverse process of generating a conventional splitting tree from 

a single peak through first order multiplet analysis. This makes it easy to implement it with typical 

divide and conquer algorithms (Sedgewick, 1997). 

 

2.2.1.3 Consistency Analyzer  

 

 

The matching problem is generally solved with the following framework: 

(i) Build a matching matrix, with one dimension representing the experimental multiplet, and 

another dimension representing the calculated multiplet.  

(ii) For each pair of experimental and calculated multiplets, compute the similarity between 

them, and store the similarity value into the matching matrix.  

(iii) Search for a matched list (of experimental and calculated multiplet pairs) in the matching 

matrix to maximize a given criterion.  

 

The published 1H structure verification approaches ( (Griffiths, et al., 2002), (Golotvin, et al., 2006)) 

use the framework described above to match the experimental and calculated multiplets, they 

mainly differ in the similarity measurements they apply.  

E.g., (Griffiths, et al., 2002) use a chemical shift rule – 

if  ((|experimental chemical shift – calculated chemical shift|) < Chemical Shift Error Tolerance)  

then similarity = 1  

else  similarity = 0  

and then a multiplicity rule – 
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if (experimental multiplicity = calculated multiplicity) then similarity = 1  

else similarity = 0;    

to assign a similarity value to each experimental and computed multiplet pair.   

Iterative permutations are repeated through either matrix columns or matrix rows to find the 

maximum number of non-zero diagonal elements. As a result, these max diagonal non-zero 

elements give a matching list between experimental and calculated multiplets. The ratio of the non-

zero diagonal element and the asymptote maximum non-zero diagonal element are used as 

structure verification score. 

In contrast,  (Golotvin, et al., 2006) use chemical shift, multiplicity, and proton number (normalized 

integration) to measure the similarity. Instead of using a 0/1 decision boundary, they use a penalty 

function to assign the chemical shift similarity score. Additionally, they also consider the consistency 

between the normalized integration of the experimental multiplet and the proton number of the 

calculated multiplet. Here, the normalized integration is determined as the ratio of the multiplets’ 

integration and the normalization factor, which is computed by dividing total integration outside the 

“dark region”20 (ACD, 2005) by total proton numbers in the molecular structure. Finally, the similarity 

value between an experimental multiplet and a calculated multiplet is defined as: 

 

𝑺 =  𝑾_𝒔𝒉𝒊𝒇𝒕  ×  𝑺_𝒔𝒉𝒊𝒇𝒕 +  𝑾_𝒑𝒓𝒐𝒕𝒐𝒏_𝒏𝒖𝒎 ×  𝑺_𝒑𝒓𝒐𝒕𝒐𝒏_𝒏𝒖𝒎 +  𝑾_𝒎𝒖𝒍𝒕 ×  𝑺_𝒎𝒖𝒍𝒕  (1) 

 

Where S_shift, S_proton_num, and S_mult denote the similarity between the experimental and the 

calculated multiplets’ chemical shift, proton number and multiplicity, while W_shift, W_proton_num 

and W_mult denote the weighting factors which are used to control the relative importance of the 

three NMR properties: chemical shift, proton number and multiplicity, and which are designed to be 

manually changeable by spectroscopists. With formula (1), the best possible matching list is 

searched by maximizing  with matrix permutations, which is followed by a Mont Carlo 

optimization. (Note, the exact format of the penalty function and the approach of optimization are 

unpublished.)  

Both approaches heavily rely on accurate chemical shift predictions. Furthermore, simple coupling 

scalars are used for number of coupling matching, but more detailed analysis such as coupling 

connectivity and coupling constants matching are still missing during coupling analysis. This is both 

due to the unreliable experimental coupling constants estimation and the computational complexity 

of checking the connectivity. In addition, using a normalized integration to approximately check the 

consistency of the proton count is an approach sensitive to the noise in the spectrum, e.g. 

depending on the accuracy of selecting a “dark region”, etc. 

          

                                                           
20 dark region: any extraneous peaks from an 1D 1H NMR Spectrum, which do not overlap significantly with 
signal peaks of the Molecule, 
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2.2.2 Difference between Human Structure Verification Logic and Techniques 

used in the Structure Verification System 
 

 

Above, we introduced the system architecture and the techniques used in current automatic 

molecular structure NMR verification systems. Such systems are commercialized and have been 

supplied to the pharmaceutical industry. However, market research from the NMR manufacturer 

shows that the systems are not being used to replace human spectroscopists for structure 

verification tasks in compound library management. Instead it is used as an assistant tool to aid 

spectroscopists in structural verification tasks. Unfortunately, this utilization of the system has 

deviated from the original goal – to build a fully automatic structure verification system to replace 

human spectroscopists in compound library management. The underuse of the system is explained 

by the practical participants as its inability to supply the decision accuracy comparable to human 

spectroscopists. We believe that the inferiority of the system originates from its difference to human 

spectroscopists’ logic to solve the problem. Therefore, in this section, we start to analyze the 

difference between the techniques used in the system and the human logic adopted in NMR 

structure verification tasks. 

        

2.2.2.1 Differences in Molecular Interpretation 

 

Both the system and human spectroscopists attempt to build a predicted/calculated multiplet list 

from the given 2D molecular structure. As we explained in 2.2.1.1, the system builds a multiplet for a 

functional group by predicting its pinpoint chemical shift position, predicting its number of coupling, 

and counting the proton numbers of the functional group. As we have commented multiple times in 

2.2.1, the system pursues the absolute chemical shift prediction, which is significantly different from 

the approach of spectroscopists. As we explained, chemical shift prediction in proton NMR is a 

difficult task, and this is due to the fact that the experimental chemical shift position of the proton is 

sensitive to the experimental environment (e.g. measurement temperature, solvent, PH value, etc). 

To avoid this problem, spectroscopists turn to give a chemical shift interval to a functional group, in 

which it insures that the signal of the functional group will appear in the given interval. Obviously, 

defining an interval to cover the signal is a much easier task compared to the task of predicting the 

location of the signal. Therefore, the human approach produce the less error-prone 

predicted/calculated multiplet list compared to the system.   

Besides chemical shift, the system also predicts the number of coupling for each predicted multiplet.  

This additional information helps to describe the shape of the predicted multiplet. However, the 

description of the shape of the multiplet by the system is approximate and incomplete. 

Comparatively, spectroscopists produce two additional NMR properties to refine the description of 

the multipet shape. Specifically, spectroscopists give a coupling constant interval for each predicted 

coupling. (Note, analogy to human strategy of processing chemical shift, spectroscopists prefer 

producing coupling constant intervals instead of directly predicting coupling constant.) In addition, 

spectroscopists also build a connectivity network upon the predicted multiplet list to describe 

coupling correlations among predicted multiplets. By supplying this additional information, human 
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spectroscopists produce finer multiplet shapes of predicted/calculated multiplet list compared to 

the system. Note, spectroscopists could even supply more information e.g. magnetic equivalency, 

high-order multiplet distortion, etc about the predicted multiplet shape if necessary. 

To summarize the above mentioned differences, through introducing chemical shift interval and 

coupling constant interval, spectroscopists essentially define a predicted multiplet hypotheses space 

to cover all possible variance in shape and position of the multiplet, which could be generated from 

a given functional group. On the contrary, the system attempts to predict the exact position of the 

multiplet despite its possible variance, and ignore the multiplet shape to a large extent. This 

approach oversimplifies the problem in nature, and could produce the predicted multiplet which is 

significantly deviated from the experimentally observable multiplet, and finally deteriorates the 

performance of consistency analysis at a later stage. 

               

2.2.2.2 Differences in NMR Spectrum Interpreter 

 

 

The approach that the system adopts to interpret the spectrum is significantly different from that of 

human spectroscopists. As we explained in 2.2.1.2, the system attempts to extract an experimental 

multiplet list from the 1D 1H NMR spectrum. Briefly, this is achieved by automatic peak picking, 

followed by grouping peaks into first order multiplets through position and amplitude symmetry 

analysis (first order multiplet analysis) (Prost, et al., 2006). Comparatively, spectroscopists attempt 

to build a peak cluster list instead of an experimental multiplet list (see 2.1.3.1 for detail). In 

spectroscopists’ logic, a peak cluster is a unit of NMR signals whose integration could be reliably 

estimated. It is not necessary that a peak cluster is mapped to a first-order multiplet. In fact, it could 

happen that a peak cluster maps to multiple first-order multiplets which happen to overlap 

altogether. It could also happen that a peak cluster represents a high (second)-order multiplet, or 

NMR signals from protons which are chemically equivalent but magnetically inequivalent. As we 

introduced in 2.1, both high (second)-order multiplets or magnetic inequivalency often appear as 

complex signal patterns, while first-order multiplet analysis makes no sense in principal. Similarly, 

first order multiplets generated from similar functional groups often overlap together in the 

spectrum, which creates complex signal patterns as well.  These complex signal patterns are not 

experimentally following the Pascal triangle rules anymore, which make first order analysis 

impossible (see Fig 23 for an example). Therefore, the approach to build peak clusters gives 

spectroscopists flexibility to avoid applying the first-order multiplet analysis upon complex signal 

patterns. Instead only peak clusters, which show clear first-order multiplet patterns, are assigned 

multiplicities. Whereupon complex signal patterns, only integration are recorded for later 

consistency analysis, and the multiplicity of the patterns are ignored. Therefore, the peak cluster has 

to provide a reliable integration. On the contrary, the system insists applying the first-order multiplet 

analysis everywhere on the spectrum no matter if it is possible or reasonable to do that. As the 

result, it often happens that the system creates nonsensical first-order multiplets on the complex 

signal patterns e.g. signals in the aromatic region of the spectrum. These noise/ artificial multiplets 

produce misleading interpretation, and will deteriorate the consistency analysis at the later stage.   
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In addition, for a peak cluster, which appears as the simple signal pattern (clear first-order multiplet 

pattern), it often happens that multiple first-order multiplet interpretations exist. For example in Fig 

24, the signal shows a clear 4-peak pattern. With the first-order multiplet analysis, we could 

reasonably assign it as a Doublet of Doublet. Spectroscopists agree that the pattern is most likely to 

be a Doublet of Doublet. But they also give other (possibly unlikely) interpretations e.g. the pattern 

represents two independent Doublets or even four independent Singletons. With the above strategy, 

spectroscopists essentially build the experimental multiplet hypotheses space, which covers all 

possible first-order multiplet interpretations of the given peak cluster, and leave the precise 

identification of the given peak cluster’s multiplicity to the consistency analysis stage, where the 

information of the predicted multiplets is supplied. Comparatively, for the pattern in Fig 24, the 

system only produces one interpretation – a Doublet of Doublet, while ignoring other 

interpretations.  We could understand this strategy as the system attempts to only produce the most 

“likely” multiplet interpretation. In other words, there is the possibility that the multiplet 

interpretation of the system is wrong. This would finally deteriorate the consistency analysis in later 

stage.  

 

 

 

     

                                                          

Doublet of Doublet or Doublet + Doublet? 

Fig 24 Example of missing experimental multiplet interpretations 

Fig 23 (a) High order multiplet and (b) overlap of first order multiplets 
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2.2.2.3 Differences in Consistency Analysis 

 

 

With more abundant and more reliable NMR information extracted from both the structure and the 

spectrum, spectroscopists exhibit more cognitive consistency analysis procedure, compared to the 

system. Specifically, spectroscopists start consistency analysis by comparing the peak cluster list and 

the predicted multiplet list, while comparatively the system does consistency analysis by matching 

the experimental multiplet lists and the predicted multiplet list. As we explained in 2.2.2.2, matching 

between peak clusters and predicted multiplets gives spectroscopists flexibility to deal with complex 

signal patterns, which are normally produced by first-order multiplet overlapping, high-order 

multiplet, magnetic inequivalency, etc. For a peak pattern which contains complex signal patterns, it 

is only compared with predicted multiplets by chemical shift and proton numbers, while the 

comparison upon multiplicity is ignored. For other peak clusters which only contain simple signal 

patterns, complete comparisons are conducted which include chemical shift matching, proton 

number matching and complete coupling analysis. On the contrary, the system intentionally matches 

each experimental multiplet to the predicted multiplet despite its authenticity. As a result, both 

mendacious experimental multiplets and imprecise experimental multiplets could conduce wrong 

assignments between an experimental multiplet and a predicted multplet, and therewith lead to the 

wrong consistent analysis conclusion. 

Moreover, for the comparison of multiplicity between a peak cluster with the simple signal pattern 

and a predicted multiplet, spectroscopists utilize more NMR information, compared with what the 

system applies. First, relying on the experimental multiplet hypotheses space built upon the peak 

cluster, spectroscopists have a chance to compare multiple multiplet interpretations of the peak 

cluster to the predicted multiplet. On the contrast, there is only one multiplicity comparison 

between an experimental multiplet and a predicted multiplet in the system. Obviously, with the 

wrong given experimental multiplet interpretation, an error-prone comparison conclusion could be 

produced, which will finally deteriorate the consistency analysis. Second, with a more precise 

multiplet shape pattern prediction in 2.2.2.1, during multiplicity comparison between a peak cluster 

and a predicted multiplet, spectroscopists match the consistency upon coupling constants in 

addition to the matching upon number of couplings. This additional comparison dimension 

extremely increases the accuracy of spectroscopists’ multiplicity matching decision. Comparatively, 

the system only utilizes the number of coupling to match the multiplicity consistency between the 

experimental multiplet and the predicted multiplet, which make it uncompetitive to that of 

spectroscopists. Third, to further increase the accuracy of the assignments between peak clusters 

with simple signal patterns and predicted multiplets, spectroscopists utilize the connectivity network 

defined among the predicted multiplets to validate the correctness of the assignments (see 2.1.3.5), 

which the system never touches upon.                          

In addition, spectroscopists deduce a consistent conclusion by confirming that all individual 

comparisons along chemical shift, proton number and coupling analysis between the peak cluster list 

and the predicted multiplet list are consistent. A single inconsistency along any of these comparison 

dimensions causes the inconsistent conclusion. We could abstractly understand this strategy as 

setting an equal weight among different comparison dimensions. The benefit of this strategy is that 
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it helps spectroscopists to maintain a low false positive rate, which finally guarantee the accuracy of 

the conclusion. Comparatively, the system utilizes the linear function to synthetically consider the 

three comparison dimension – chemical shift, proton number and number of coupling altogether 

(see 2.2.1.3). By intentionally introducing weighting factors for different comparison dimensions, the 

system attempts to gain the flexibility of farther relying on certain comparison dimensions than 

others. In fact, the system is often set to give majority weights to the chemical shift comparison so 

as to the comparison results along proton numbers and multiplicity becomes negligible to the final 

consistent conclusion (Golotvin, et al., 2006). Therefore, it could happen that even if inconsistency is 

found in the proton number comparison or in the multiplicity comparison, the system still produces 

a consistent conclusion. This will dramatically increase the false positive rate, and finally deteriorates 

the accuracy of the system.      

 

 

2.3 NMR Structure Verification Technique beyond 1D 1H NMR 
Spectra  

 

Other spectra such as 2D 1H NMR spectra and 1D 13C NMR spectra have been used to provide 

additional information for molecular structure verification tasks (Griffiths, et al., 2005) (Golotvin, et 

al., 2007). However, time expenses of acquiring these types of spectra are dramatically higher than 

that of 1D 1H NMR spectra, which makes them impractical for large batch structural verification 

tasks in practical compound library management. Additionally, the costly NMR instrument time 

intrinsically makes the whole process more expensive. Therefore, to avoid the deviation from our 

main topic, we leave the interested readers to (Griffiths, et al., 2005) and (Golotvin, et al., 2007). 

     

 

2.4 Conclusion  

The molecular structure1D 1H NMR verification system currently available in the academic and 

industrial world is still not robust enough to be used without human supervision in practice. Human 

interaction and supervision is still necessary, and so far these tools are only used to assistant human 

spectroscopists, while the human expert still has to interpret each spectrum individually. Today, the 

traditional NMR spectroscopist based human interpretation is still the core methodology for 

structural verification tasks.  
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Chapter 3 The Proposal 
 

In 2.2, we introduced the system architecture and the technologies used in the automatic 1D 1H 

NMR molecular structural verification system, and compared the difference between it and that 

adopted by human spectroscopists. As a conclusion, the comparison shows the superiority of the 

human logic over the techniques applied in the system. This superiority of the human logic gives us 

new hints how to approach structure verification systems. As we introduced in 1.3.5, artificial 

intelligence, as a branch in computer science, has researched the human problem solving logic for 

more than half a century. And it is backed by multiple successful deployments of expert systems, 

which are built by mimicking human experts in the domain and having successfully demonstrated 

that human labor can be replaced in the domain. These previous success stories encourage us to 

propose utilizing the methodologies developed in modern artificial intelligence to mimic 

spectroscopists’ structure verification procedure. With this strategy, we hope the new system based 

on mimicking spectroscopists can address the problems of the current structure verification system, 

and reach the consistency analysis accuracy comparable to that of human spectroscopists. As the 

ultimate goal, the system should be qualified to completely replace the human spectroscopists for 

molecular structure verification tasks in compound library management.  

Through wide and deep negotiation with spectroscopists and compound library management 

practitioners from both NMR manufactures and pharmaceutical companies, a suitable goal has been 

set to guarantee that the system is accurate and reliable enough to be used to replace human 

experts in the practical compound library management environments. Specifically,  

a.  The new system is required to produce consistency decisions which are correct in above 

90% cases (see 6.1). 

b. The system should produce less than 5% false positive alarm rate (see 6.1). 

c. The system should be able to select a NMR signal (a multiplet in most cases) of main 

substance from 1D 1H NMR spectrum to be used for quantification. 

d. The consistency decision of the system has to be expatiated by a human understandable 

consistency analysis report, which is supposed to explain how the system reaches its 

decisions. The reports will be used by NMR spectroscopists to confirm the correctness of the 

structure verification conclusion generated by the system.  The practical participants 

emphasize that this human intervention should act as the arbitral approach to further 

control the structure verification quality.  

  

3.1 Implementation Plans 
 

With the goal defined above, the system architecture needs to be modified to include both newly 

designed mechanisms and to delete old mechanisms which are out of date. As we discussed in 2.2.2, 

the 
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major advantages of the human structure verification process versus the structure verification 

system is that : 

 

(1)  Human spectroscopists build hypotheses space from both 2D molecular structure and 1D 1H   

NMR spectrum to cover all possible NMR property interpretations,  

(2)  Human spectroscopists find a reasonable matching (explanation) by efficiently searching 

through both hypotheses spaces. 

  

To mimic these human logics, a list of new mechanisms needs to be implemented.  Specifically, 

 

a. A new mechanism is needed to be designed, implemented and embedded into the 

Molecular Interpreter to generate the predicted multiplet hypotheses space for each 

chemically equivalent functional group from the input 2D molecular structure. 

b. A new mechanism is needed to be designed, implemented and embedded into the Spectrum 

Interpreter to automatically identify the NMR peaks from the spectrum.   

c. A new mechanism is needed to be designed, implemented and embedded into the Spectrum 

Interpreter to automatically identify the NMR signals from solvent.   

d. A new mechanism is needed to be designed, implemented and embedded into the Spectrum 

Interpreter to generate the peak cluster hypotheses from the spectrum. In addition, a sub-

routine is needed to be designed and implemented to build an experimental first-order 

multiplet hypothesis space for each peak cluster to represent all possible interpretation. 

Correspondingly, the original first-order multiplet analysis mechanism in the system is 

abandoned. 

e. A new human-mimicking optimization mechanism is needed to be designed, implemented 

and added into the Consistency Analyzer to efficiently search a reasonable explanation 

between the peak cluster hypotheses and the predicted multiplet hypotheses. 

Correspondingly, the original matrix-manipulation based searching routine and Monte Carlo 

based optimization is replaced (see 6.2.3 for discussion on Monte Carlo optimization). 

   

3.2 Possible Challenges 

With the requirements to design human-mimicking mechanism mentioned in 3.1, we expect new 

technique challenges will emerge.  Specifically, to list some, we expect  

a. To insure not missing experimental multiplet interpretations and cover all possible 

experimental multiplet hypotheses for a peak cluster, the peak picking routine is required to 

pick up all possible peaks from the given 1D 1H NMR spectrum. This requirement is high and 

obviously beyond the ability of the current peak picking routines, since it is well known that 

current peak picking techniques miss peaks or produce artifact peaks. To meet the 

requirement, new peak picking approach is need to be designed and implemented. 
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b. Assuming all peaks are successfully picked from the spectrum, a second technical challenge 

comes from the requirement to group the peaks into all possible multiplet interpretations. 

Note, in the current system, the first-order multiplet analyzer only need to extract the most 

likely experimental multiplets from peaks. There are no requirements upon interpretation 

completeness over the current routine. 

c. Similar to b, assuming we have the peak list, how to generate all possible peak cluster 

hypotheses, which could be given reliable integration estimation, is also a challenging 

subject.  

d. NMR signals of H2O in 1D 1H NMR spectra could change drastically in both shape and 

position. To design a routine to catch this flexibility is another challenge.    

e. With the introduction of hypotheses space both from the structure and the spectrum, the 

search space for a solution is dramatically (geometrically) increased. This could bring in new 

computational challenge, which makes previous simple heuristic searching based 

optimization routines computationally infeasible. Additional comparisons introduced (e.g. 

connectivity analysis) generate new requirements for searching methodology. 

Spectroscopists can find the consistency explanation quickly in most cases despite facing the 

same searching space. We attribute this to the complex and flexible heuristic nature of the 

human logic. Therefore, building an efficient consistency analyzer relies on successfully 

designing an optimization routine to mimic this human logic. This forms the most difficult 

challenge in this thesis. 

 

In summary the thesis context represented so far consists of an introduction of the motivation, 

background information, and our proposal of building a new automatic molecular structure 1D 1H 

NMR spectrum verification system. In the following chapter 4, we are going to explain our approach 

in detail. Specifically, we provide a detailed design of our system architecture, which we use to 

mimic the human spectroscopists’ structure verification process. Especially, we focus on introducing 

technology that we use to solve challenges we mentioned in 3.2. In addition, in chapter 5, we 

attempt to utilize the mathematic language to strictly describe our human-mimicking optimization 

routine, and to unify it under the maximal likelihood framework. In chapter 6, we will explain the 

experimental setup, and present our evaluation results in detail.   
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Chapter 4 Automatic 1D 1H NMR Molecule Structure 

Verification Architecture and Methods 
 

To build a fully automatic 1D 1H NMR structure verification system to achieve the performance 

comparable to that of human spectroscopists, we need to: 

 

(1) predict all possible multiplets concerning their distribution in multiplet position and multiplet 

shape, which could be produced  from the molecular structure. Formally, we name the set of 

predicted multiplets the theoretical multiplet distribution list;  

(2) build all possible peak clusters from the spectrum, and formally name the set of all possible 

peak clusters as the peak cluster hypothesis space, in which each peak cluster is further assigned 

an experimental multiplet hypotheses space;  

(3) search for an explanatory peak cluster list from the peak cluster hypothesis space, which could 

reasonably match all theoretical multiplet distributions. To avoid the inefficient brute-force 

searching, which has exponential computational complexity, a new heuristic searching approach 

is designed, which mimics the spectroscopist’s interpretation procedure, to find a consistent 

interpretation in an efficient manner.  

 

Through above three steps, a list of peak cluster hypotheses are selected from the peak cluster 

hypotheses space, which has a one-to-one or one-to-multi mapping to the theoretical multiplet 

distribution list. 

  

 

4.1 System Architecture 

The system contains of five modules:  

 

(1) a molecular interpreter  to generate a theoretical multiplet distribution list,  

(2)  a NMR spectrum interpreter to generate an experimental peak cluster hypotheses space,  

(3)  a consistency analyzer - a searching routine to find an explanatory peak cluster list,  

(4)  a quantification module,   

(5) and a structure verification report generator. 



58 ∙   Automatic Verification of Small Molecule Structure with One Dimensional Proton Nuclear Magnetic Resonance 

Spectrum 
 

 
 

 

Fig 25  System Flow Chart 
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Module (5): Structure Verification Report Generator 
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The data processing flow chart of the system is shown in Fig 25. From top to bottom, first, the 2D 

molecular structure is fed into Module (1) to compute a list of theoretical multiplet distributions. 

Specifically, it includes identifying functional groups from the molecule, predicting their chemical 

shifts and their fluctuant ranges, predicting their multiplicities, predicting their coupling constants 

and their fluctuant ranges, predicting their average signal line widths, predicting the existence of 

their satellite peaks, etc.  Abreast with the molecule interpretation, an experimental 1D 1H NMR 

spectrum is fed into Module (2) to build an experimental peak cluster hypotheses space. The 

experimental peak cluster hypotheses space contains all possible independent peak clusters 

interpretable from the spectrum. In addition, the experimental multiplet hypotheses space is built 

for each peak cluster hypothesis to describe all possible experimental first-order multiplets 

interpretable from the peak cluster hypothesis. Then, the experimental peak cluster hypotheses 

space, the theoretical multiplet distribution list and the input NMR spectrum are fed into Module (3) 

to find an experimental peak cluster hypotheses list, which is consistent with the theoretical 

multiplet distribution list. As the output of Module (3), the peak cluster hypotheses list is produced, 

and is fed both into Module (4) and Module (5). Finally, the Module (4) selects a peak cluster 

hypothesis from the peak cluster hypotheses list for quantification, and Module (5) uses the peak 

cluster hypotheses list to create a structure verification report.  

  

4.2 Molecular Interpreter 

The Molecular Interpreter contains two modules: (1) a module to identify the theoretical multiplets 

(chemically equivalent functional groups), (2) a module to assign the distributions through the 

theoretical multiplets by estimating the theoretical multiplet’s chemical shift and its fluctuant range, 

the theoretical multiplet’s multiplicity, the theoretical multiplet’s coupling constants and their 

fluctuant ranges, the theoretical multiplet’s average signal line width, and the existence of the 

theoretical multiplet’s satellites.      

There are three major differences between our Molecular Interpreter and the previous molecular 

structure interpretation routines, which makes our approach consistent with that of human 

spectroscopists (See 2.2.1.1 and 2.2.2.1). Specifically, they are: 

 

a. In addition to the prediction of the chemical shift of the theoretical multiplet, a chemical 

shift range is also estimated for the theoretical multiplet. In addition to the prediction of the 

coupling constants of the theoretical multiplet, a coupling constant range is also estimated 

for each coupling constant of the theoretical multiplet. Known from 2.2.1.1 and 2.2.2.1, the 

accurate chemical shift prediction in proton NMR is difficult. Therefore, the spectroscopist 

only relies on loose chemical shift ranges for structure verification tasks. This implies that 

the prediction of the accurate chemical shift is unnecessary. As a result, in our system a 

loose chemical shift range is estimated for each theoretical multiplet in addition to the 

prediction of its chemical shift, to relief the requirement on chemical shift prediction 

accuracy. The estimation of chemical shift ranges is easily acquired by programming the 

chemical shift tables given in the NMR/ organic chemistry text books (Keeler, 2005) 

(Solomons, et al., 2003). Similarly, the accurate prediction of the coupling constant requires 
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the precise 3D structure of the molecule (See 2.2.1.1). To solve the problem, both the 

coupling constant and its coupling constant fluctuant range are estimated instead. This is 

achieved by querying the coupling constant chart (e.g. Karplus correlation chart) in the 

NMR/organic chemistry text books (Solomons, et al., 2003) (Keeler, 2005). With a chemical 

shift range and coupling constant ranges assigned, the theoretical multiplet is formally 

termed by its theoretical multiplet distribution. 

b. Beyond the NMR knowledge used in current structure verification system, additional NMR 

knowledge is calculated and assigned to the theoretical multiplet distribution. Specifically, 

the peak’s line width and the satellite properties are estimated for each theoretical multiplet 

distribution. The value of the line width mainly depends on the protons’ local structure 

properties e.g. connected bond types, bond angles, etc, which can be looked up in the 

organic chemistry book (Solomons, et al., 2003). Satellite peaks are observed in 1D 1H NMR 

spectra if a proton is directly bonded to a nuclear spin ½ particles e.g. 13C, 15N, etc. The 

amplitudes and the positions of satellite peaks depend on the abundance and type of the 

involved nuclear spin ½ particles. Details on the subject can be found in NMR text book e.g. 

(Keeler, 2005).   

c. The proton’s geometric symmetry in the 2D structure of the molecule is used to identify 

theoretical multiplet distribution (chemically equivalent functional groups).  In contrast, in 

current structure verification systems, chemically equivalent proton groups are identified by 

grouping the protons with the same predicted chemical shift together. This requires using 

the database approach to predict chemical shifts (see 2.2.1.1 for detail). To be consistent 

with human approach, in our system, we identify the functional group by checking protons’ 

geometric symmetry. Specifically, the 2D structure’s geometric symmetry is converted to a 

graph searching problem (Sedgewick, 2001), where the molecular 2D structure is 

represented by a graph. This is followed by building a search tree starting from each proton. 

Then the geometric symmetry is identified by seeking the searching trees which contain the 

same tree structure.    

 

The data processing flow chart of Molecular Interpreter Module is shown in Fig 26. From top to 

bottom, first the 2D structure of the molecule is fed into Module (1) to group the chemically 

equivalent protons (theoretical multiplets). Next, both the theoretical multiplet list and the input 

molecule’s 2D structure are fed into Module (2) to estimate the theoretical multiplet’s NMR 

properties such as chemical shift and fluctuant range, number of couplings (multiplicity), coupling 

constant and its fluctuant range, line width, satellite peaks in parallel. As an output, a list of 

theoretical multiplet distributions is built. 



Automatic 1D 1H NMR Molecule Structure Verification Architecture and Methods   ∙   61 
 

 
 

 

Many commercial programs have been developed to extract NMR knowledge from 2D molecular 

structures.  To simplify the problem, our industry partner, who cooperates with us on the project, 

supplies us a commercial program named Perch (PERCH, 2005) to help our work. As we explained 

above, Perch, similar to other programs, supplies most NMR information we need e.g. chemical shift 

value, coupling constant value, etc, except the estimation of chemical shift ranges and coupling 

constant ranges. Therefore, our industry partner implements a program to supplement the 

functionality of Perch by reading in the predicted chemical shift values and coupling constant values 

M o l e c u l e  S t r u c t u r e 

(1) Identifying chemical equivalent protons groups  

Functional groups list 

Estimating Chemical Shift and 

Fluctuant Range  

Estimating Number of Coupling, 

Coupling Constants and Ranges 

… 

Theor et ica l  M ul t i p l et 

D i s t r i b u t i o n  L i s t 

(2) 

Fig 26 Molecular Interpreter Module Flow Chart 

Module (1): grouping the chemically equivalent protons (theoretical multiplets) 

Module (2): estimating the theoretical multiplet’s NMR properties 
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and extending them to ranges by defining sufficiently large intervals to be assured to cover the NMR 

signals acquired in experiments.  The evaluation result shows that this practical shortcut works well 

in practice (see 6.2). 

 

4.3 NMR Spectrum Interpreter 

NMR Spectrum Interpreter contains four modules (see Fig 27): (1) a peak hypotheses generator, (2) a 

module to group peaks into all possible well-separated peak clusters, (3) a module to further group 

peaks in a peak cluster into all possible symmetric sub-peak-clusters with peak positional symmetry, 

and (4) a module to interpret a symmetric sub-peak-cluster into all possible first order multiplets by 

Pascal triangle analysis. The entirety of all these peak clusters produced in (2) is denoted as peak 

cluster hypotheses space. The entirety of all first-order multiplets for a peak cluster hypothesis is 

denoted as the experimental multiplet hypothesis space of the peak cluster hypothesis. 

The data processing flow chart of NMR Spectrum Interpreter is shown in Fig 27.  

From top to bottom, first, the input 1D 1H NMR spectrum is fed into Module (1) to detect all 

possible peak hypotheses, and to assign a confidence score to each possible peak hypothesis. Next, 

the peak hypotheses are fed into Module (2) to build all possible well-separated peak cluster 

hypotheses. After that, peak cluster hypotheses are in turn fed into Module (3) to build all possible 

symmetric sub-peak-clusters of the peak cluster with positional symmetry. After that, the list of all 

symmetric sub-peak-clusters is fed into Module (4) one by one to cut them into all possible first-

order multiplets. Correspondingly, their multiplicities and coupling constants are estimated through 

the first order multiplet analysis.  As a result, both the experimental peak cluster hypotheses space, 

and the experimental first-order multiplet hypothesis spaces of each peak cluster hypothesis are 

built.        
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4.3.1 Peak Hypothesis Generator (Deconvolution Method + Derivative 

Method) 
 

A new peak picking approach is designed to avoid missing peaks. As mentioned in 2.2.1, the current 

peak picking routines suffer from a tradeoff between missing peaks and introducing noise and 

artifact peaks. To avoid missing real peaks, the traditional derivative-based and deconvolution-based 

peak picking techniques are combined to detect all possible peak positions from the input 1D 1H 

NMR spectrum. Here, the deconvolution approach means the techniques to continually fit and 

subtract peaks from the spectrum using predefined peak shape. Note, in proton NMR domain, the 

predefined peak shape often chooses to have Guassian shape, Lorenze shape, or mixture of both. 

The derivative approach means the techniques to identify peaks by calculating local 

maximums/minimums in the first derivative and second derivative transforms of the spectrum. 

Specifically, the deconvolution routine is used two times. In the first deconvolution iteration, the 

prominent peak shapes are extracted from the spectrum, and the residual spectrum is used to 

automatically determine the spectrum baseline. In the second deconvolution iteration, the 

prominent peaks, which are significantly bigger than the baseline, are captured by the spectrum. 

After that, the derivation routine is used to capture the small indistinctive peaks near prominent 

peaks. However, this approach introduces vast noise peaks and artifact peaks. This introduces 

unnecessary computational complexity in the later structure verification process. Note, to distinct 

real peaks from the picked peaks, we uniformly name picked peaks as peak hypotheses. To reduce 

the disturbance of the noise and artifact peaks, a human-mimicking mechanism is designed to rank 

the peak hypotheses. Specifically, a confidence score is assigned to a peak hypothesis based on the 

peak hypothesis’s NMR properties e.g. the peak hypothesis’s amplitude, baseline level, overlap level, 

line width, symmetry, etc. With this approach, “the high confidence peak hypothesis first” principle 

could be used to evaluate peak hypotheses efficiently in the later stage. To give readers a clearer 

picture, we present peak picking flow chart in Fig 28.  
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4.3.2 Peak Cluster Hypothesis Generation  
 

The approach to compute peak cluster hypotheses space is to mimic the spectroscopists’ approach 

described in 2.1.3. Specifically, the approach is represented as below: 

Starting from left to right (high field to low field) of the spectrum: 

(1) Select a point on the x-axis which has an amplitude around the spectrum baseline, and 

use this point as the left boundary of a new basis peak cluster.  

(2) Start from the point to continually move right to cover as many peaks as possible.   
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B a s e l i n e 
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Rank Peak Hypotheses with Peak 

Hypotheses’ NMR Properties  
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Fig 28 Peak Pick Routine Flow Chart 
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(3)  Stop when the movement touches another point on the x-axis which has an amplitude 

around the spectrum baseline. This new point is used as the right boundary of the basis 

peak cluster. As a result, a new basis peak cluster is identified. 

(4) Repeat (1)-(3) until all basis peak clusters are identified. 

(5) Enumerate all subsets of the set of basis peak clusters to construct the peak cluster 

hypotheses space, wherein each subset defines a new peak cluster hypothesis.  

 

 

4.3.3 Experimental Multiplet Hypothesis Interpreter 
 

Peaks in a given peak cluster hypothesis are grouped into all possible positional-symmetric peak 

groups. This is followed by the first order multiplet (Pascal Triangle) interpretation on each of these 

peak groups. During the first-order multiplet analysis, all possible multiplet interpretations are 

extracted from the given peak group. (Note, this is directly implementable by applying the divide and 

conquer strategy (Sedgewick, 1997), and this is due to the recursive nature of the first-order 

multiplet analysis (Golotvin, et al., 2002)). Formally, we call the ensemble of all possible multiplet 

interpretations extractable from a peak cluster hypothesis the experimental multiplet hypotheses 

space of the peak cluster hypothesis. Note, although the same criterion of the positional symmetry is 

utilized to group peak clusters for later first-order multiplet analysis in the previously designed 

automatic structure verification systems, only the most “likely” positional-symmetric peak cluster 

were generated. In contrast, in our system, all possible positional-symmetric peak groups are 

attempted to be extracted from the spectrum. Therefore, the number of all possible positional-

symmetric peak groups is normally two or even more orders bigger than that of the most “likely” 

symmetric peak clusters generated by the previous structure verification system.  This introduces 

additional computational complexity to the consistency analysis module later. Also, the attempt to 

extract all possible multiplet interpretations from the positional-symmetric peak group further 

expands the search space, and therefore increases the difficulty. To address this problem, another 

spectroscopist-mimic mechanism is introduced to rank both the peak cluster hypotheses space and 

the experimental multiplet hypotheses space so that the human-mimicking heuristic search could be 

based on to increase the search efficiency (see 4.4 for detail). Specifically, both the peak cluster 

hypotheses and the multiplet hypotheses are further scored by their signal intensity (e.g. integration 

of the peak cluster hypothesis, total peak amplitudes in the multiplet hypothesis), signal complexity 

(e.g. clearness of first order multiplet patterns in the peak cluster hypothesis, number of peaks in the 

multiplet hypothesis), signal symmetry (e.g. symmetry upon peaks’ amplitude in both the peak 

cluster hypothesis and the multiplet hypothesis). 

.    

4.4 Consistency Analyzer - Searching Consistent Peak Cluster List 

With both peak cluster hypotheses space and theoretical multiplet distribution lists built, another 

module is implemented to identify a reasonable match between them. Specifically, a peak cluster list 

needs to be selected from the peak cluster hypotheses space, which can reasonably explain the 
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theoretical multiplet distribution list with their chemical shift, multiplicity, proton number, and 

connectivity. Following spectroscopists’ structural verification logic, two sub-tasks need to be done 

before the searching can start. They are: (1) to identify peak cluster hypotheses which are the signal 

of the solvent, and (2) to compute the integration proton ratio (the normalization factor). The signals 

of the solvent are not produced from the molecule, and therefore should be deleted from the peak 

cluster hypotheses space to avoid disturbing the matching procedure. The integration proton ratio is 

used to estimate the proton numbers of peak cluster hypotheses, which will be further applied in 

the matching procedure. Actually, they act as one of the most important information in the 

matching process (see 2.1.3.2 and 2.1.3.3 for detail). Then, with peak clusters representing the signal 

of solvent excluded and the proton numbers of the peak cluster hypotheses computed, the peak 

cluster hypotheses with their associated chemical shifts, their proton numbers, and their associated 

multiplet hypotheses spaces are fed into the searching routine to match them with theoretical 

multiplet distributions. 

Both solvent detection and proton number computation techniques are empirical and hence 

inaccurate. It is often impossible to uniquely identify the solvent signals, and to uniquely identify the 

integration proton ratios (see 4.4.1 and 4.4.2 for discussion). Therefore, a list of all possible solvent 

signals and their lists of all possible integration proton ratios are computed instead. In fact, the 

calculation of the list of possible integration proton ratios depends on the identification of the 

solvent signals. Different choices of the solvent signals will induce the different possible integration 

ratio list. Reversely, the computation of the integration ratio list in turn helps to identify the 

correctness of the solvent signals (see 4.4.2 later). Specifically, to compute an integration proton 

ratio list, the solvent signals from the solvent candidate list are sequentially fed into the integration 

proton ratio computing routine, in which reasonable integration proton ratios are computed and 

stored together with the solvent signal. In case of no reasonable integration proton ratio 

computable from the solvent candidate list, it gives a hint to the system that the solvent signal is 

wrongly identified, and therefore should be deleted from the solvent candidate list. In this way, by 

going through all solvent signal candidates, all reasonable solvent signals and their corresponding 

integration proton ratio lists are recorded for further use. In the worst case, after going through all 

possible solvent signal candidates, there is still no reasonable integration proton ratio. Then the 

system gathers enough evidence to show the inconsistency between the peak cluster hypotheses 

space and the theoretical multiplet distribution list, and therefore calls the verification report 

generation module to produce an inconsistent conclusion.  

When a reasonable solvent signal and the corresponding integration proton ratio list exist, the 

integration proton ratio in the list is sequentially fed into the searching module together with the 

solvent signal.  Together with the peak cluster hypotheses space and the theoretical multiplet 

distribution list, they are used to search for a consistent peak cluster list. While the solution is found, 

the system concludes that the structure verification result is consistent, and the system will call the 

reporting module to produce a consistency report. In case a consistent peak cluster list cannot be 

found, it gives the system another hint that either solvent signal or integration proton number ratio 

could be wrongly calculated, and therefore another restored solvent signal and/or integration 

proton ratio are selected and fed into the searching module. As the result, the new iteration starts. If 

after iterating all these solvent signal candidates and integration proton ratio candidates, the system 

still cannot find a consistent peak cluster list, an inconsistent conclusion is produced. In case that 

iterating through all possible solvent signal candidates and integration proton ratio candidates takes 
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too much time, the system stops in the middle and produces a conclusion as “give-up”. Note, we 

explain the solvent detection technology in detail in 4.4.1, and the approach to compute integration 

proton ratio in 4.4.2. The detailed explanation of searching process itself is in 4.4.3. To illustrate the 

relationship among solvent detection, integration proton ratio computation and searching modules, 

and to describe the back tracking mechanisms, we show the flow chart of Searching Consistent Peak 

Cluster List Module in Fig 29. 
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4.4.1 Solvent Detection 
 

In this section we introduce the technology to identify solvent signals from the spectrum. Several 

solvents could be used in 1H NMR experiment. As we have explained in 2.1.1, we focus on the 

techniques to detect NMR signals from the proton residual of DMSO and H2O in DMSO in the thesis. 

   

4.4.1.1 DMSO detection 

 

Several empirical rules are used by spectroscopists to identify signals from DMSO. They are:  

 

(1) The DMSO signal is likely to appear at chemical shift position 2.5ppm.  

(2) The DMSO signal often shows the multiplicity of a pentet or a doublet of triplet.  

(3)  The DMSO signal often has the proton numbers that are not proportional to the proton 

numbers of the NMR signals from the molecule.  

 

These rules are imprecise and ambiguous, and therefore difficult to be used to precisely identify the 

solvent signal. To faithfully reflect the implied uncertainty of these rules, the system utilizes them to 

calculate a DMSO likelihood score for each peak cluster hypothesis in the peak cluster hypotheses 

space. This is followed by selecting a subset of the peak cluster hypotheses space as the solvent 

signal candidate list, in which every peak cluster hypothesis has a high DMSO likelihood score.  With 

this strategy, the system reduces the risk of making wrong DMSO signal identification by relaxing the 

DMSO identification problem to the problem of the identification of a set of likely DMSO signals. 

This in turn makes it easy to embed the DMSO signal identification routine into the human 

mimicking hypothesis-driven problem solving framework, where the matching between peak 

clusters and theoretical multiplet distributions supplies additional information to further 

discriminate the DMSO signals in the DMSO candidate list (see Fig 29).   

Specifically, three measurement scores are used to estimate the DMSO likelihood score, which are 

corresponding to three rules defined above. They are the chemical shift measurement score, the 

multiplicity measurement score and the proton number measurement score. The DMSO likelihood 

score is defined as the multiplication of the three factors. Formally, we show it in formula (2).  

 

𝑫𝑴𝑺𝑶 𝒍𝒊𝒌𝒆𝒍𝒊𝒉𝒐𝒐𝒅 𝒔𝒄𝒐𝒓𝒆 =

 𝑪𝒉𝒆𝒎𝒊𝒄𝒂𝒍 𝑺𝒉𝒊𝒇𝒕 𝑴𝒆𝒂𝒔𝒖𝒓𝒆𝒎𝒆𝒏𝒕 𝑺𝒄𝒐𝒓𝒆 × 𝑴𝒖𝒍𝒕𝒊𝒑𝒍𝒊𝒄𝒊𝒕𝒚 𝑴𝒆𝒂𝒔𝒖𝒓𝒆𝒎𝒆𝒏𝒕 𝑺𝒄𝒐𝒓𝒆 ×

𝑷𝒓𝒐𝒕𝒐𝒏 𝑵𝒖𝒎𝒃𝒆𝒓 𝑴𝒆𝒂𝒔𝒖𝒓𝒆𝒎𝒆𝒏𝒕 𝑺𝒄𝒐𝒓𝒆          (2) 

To compute the chemical shift measurement score, the experimental chemical shift of the peak 

cluster hypothesis is measured and compared with the expected DMSO chemical shift (2.5ppm). 

Specifically, a DMSO chemical shift interval of 2.0-3.0ppm, which covers 2.5ppm position, is defined 

and used as the reference to evaluate the experimental chemical shifts of the peak cluster 

hypothesis. Precisely, a human mimicking rule is implemented to give the score. It is:  
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If (Chemical Shift  ∈ 2.25-2.75ppm), then Chemical Shift Measurement Score =  1, 

Else If ((Chemical Shift  ∈ 2.0-2.25ppm) || (Chemical Shift  ∈ 2.75-3.0ppm)), 

         then Chemical Shift Measurement Score =  0.5, 

Else Chemical Shift Measurement Score =  0. 

A similar technique is used to compute the multiplicity measurement score. A list of possible 

multiplicities of DMSO residual proton signals are built and utilized as the reference to evaluate the 

experimental multiplicity of the peak cluster hypothesis. Note, a pentet or a doublet of triplet is the 

most likely multiplet patterns of the DMSO signal. There are other possible multiplet patterns as well. 

For example, while the proton residual signal of the DMSO is significant smaller than the signals from 

the molecule, it could appear as a triplet or a doublet with the peaks at the multiplet boundary 

submerging into the spectrum noise. To model this flexibility, another human-mimicking rule is 

implemented to calculate the multiplicity measurement score.  It is:  

 

If (the multiplet hypotheses space of the peak cluster hypothesis contains a pentet or a 

doublet of triplet), 

     then Multiplicity Measurement Score = 1, 

Else If (the multiplet hypotheses space of the peak cluster hypothesis contains a triplet),  

     then Multiplicity Measurement Score = 0.5,  

Else If (the multiplet hypotheses space of the peak cluster hypothesis contains a doublet), 

     then Multiplicity Measurement Score = 0.25, 

Else Multiplicity Measurement Score = 0.  

The calculation of the proton number measurement score requires the proton number of the peak 

cluster hypothesis computed, which itself is computed by dividing the integration of the peak cluster 

hypothesis by the integration proton ratio (see loop indicator in Fig 29). Note, this is another 

evidence to show the integration proton ratio calculation could be used to help identifying the 

solvent signals. With the proton number of the peak cluster hypothesis known, another human 

mimicking rule is implemented to calculate the proton number measurement score. Specifically, it is: 

  

If (proton numbers close to integer value),  

    then Proton Number Measurement Score = 0.5,  

Else Proton Number Measurement Score = 1.  

Note, in this rule, we do not give 0 as the proton number measurement score. This is due to the fact 

that even the proton number of the peak cluster hypothesis is close to a “reasonable” integer value, 

it does not give enough evidence to prove that the peak cluster hypothesis is the signal from the 

molecule. But it does supply some information to reduce the peak cluster hypothesis’ likelihood to 

be the signal of DMSO residual protons, and therefore a “softer” score 0.5 is used instead of “severe” 

score 0. 
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With the three computable rules, the DMSO likelihood score is computed and assigned for each 

peak cluster hypothesis. To limit the size of DMSO signal candidates, a subset of peak cluster 

hypotheses space is selected as the DMSO signal candidate list, where each peak cluster hypothesis 

has a high DMSO likelihood score. Note, with this list, the DMSO identification process is efficiently 

embedded into the system’s hypothesis-driven human mimicking framework, in which a back-

tracking mechanism is utilized to reselect alternative DMSO signal candidates from the list as the 

DMSO signal to avoid the mistake of DMSO identification. This implementation is highly consistent 

with the DMSO identification approach that human spectroscopists adopt. 

      

4.4.1.2 H2O Detection 

 

The identification of the H2O signal is a challenging task. This is due to its wide chemical shift range 

and its varying signal shape. Therefore, spectroscopists rely on several inexact rules to 

approximately select some NMR signals as the likely H2O signals. To further reduce the ambiguity on 

the identification of the H2O signal, spectroscopists turn to rely on the matching analysis between 

the spectrum and the molecular structure to validate the eligibility of the H2O signal candidates. 

Closely following this human strategy, the system implements several weak rules to compute a H2O 

likelihood score for each peak cluster hypothesis, and to utilize these scores to select a subset of 

peak cluster hypotheses space as the H2O signal candidate list. The H2O signal candidates are 

sequentially fed into the searching module in Fig 29 to search for a consistent peak cluster list. The 

existence of the consistent peak cluster list supplies the additional evidence to validate the 

correctness of the selected H2O signal candidate. In contrast, the nonexistence of this list indicates 

the impropriety of the selected H2O signal candidate, and therewith brings on the deletion of the 

H2O signal candidate from the H2O candidate list (see Fig 29 for the flow chart).  

Some weak rules, spectroscopists use to identify H2O signal candidates, are:  

(1) The H2O signal often appears in the chemical shift range of 3.0-4.9ppm.  

(2) The H2O signal often has broad signal shapes.  

(3) The H2O signal often appear as a singleton (single broad peak), but it is also likely that it appear 

as 2 or 3 heavily overlapped (non-well-separated) peaks.  

(4) Peaks from the H2O signal are not well-separated peaks.  

(5) The H2O signal often has the proton numbers, which is not proportional to the proton numbers 

of the signals from the molecule.  

Similar to the approach of identifying the DMSO signal, a H2O likelihood score is computed for each 

peak cluster hypothesis. Specifically, five measurable factors are introduced, while each factor is 

measured along a weak rule mentioned above. They are chemical shift measurement score, signal 

width measurement score, peak number measurement score, peak separation measurement score, 

and proton number measurement score. H2O likelihood score is defined as the multiplication of the 

five factors. Formally, we show it in formula (3).  

𝑯𝟐𝑶 𝒍𝒊𝒌𝒆𝒍𝒊𝒉𝒐𝒐𝒅 𝒔𝒄𝒐𝒓𝒆 =  𝑪𝒉𝒆𝒎𝒊𝒄𝒂𝒍 𝑺𝒉𝒊𝒇𝒕 𝑴𝒆𝒂𝒔𝒖𝒓𝒆𝒎𝒆𝒏𝒕 𝑺𝒄𝒐𝒓𝒆 × 𝑷𝒆𝒂𝒌 𝑾𝒊𝒅𝒕𝒉 𝑴𝒆𝒂𝒔𝒖𝒓𝒆𝒎𝒆𝒏𝒕 𝑺𝒄𝒐𝒓𝒆 ×

𝑷𝒆𝒂𝒌 𝑵𝒖𝒎𝒃𝒆𝒓 𝑴𝒆𝒂𝒔𝒖𝒓𝒆𝒎𝒆𝒏𝒕 𝑺𝒄𝒐𝒓𝒆 × 𝑷𝒆𝒂𝒌 𝑺𝒆𝒑𝒂𝒓𝒂𝒕𝒊𝒐𝒏 𝑴𝒆𝒂𝒔𝒖𝒓𝒆𝒎𝒆𝒏𝒕 𝑺𝒄𝒐𝒓𝒆 ×

𝑷𝒓𝒐𝒕𝒐𝒏 𝑵𝒖𝒎𝒃𝒆𝒓 𝑴𝒆𝒂𝒔𝒖𝒓𝒆𝒎𝒆𝒏𝒕 𝑺𝒄𝒐𝒓𝒆          (3) 
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To compute the chemical shift measurement score, the experimental chemical shift of the peak 

cluster hypothesis is measured and compared with the expected H2O chemical shift range (3.0-

4.9ppm). Similar to the process of computing the DMSO chemical shift measurement score, a group 

of non-intercrossed bins are defined in the chemical range of 3.0-4.9ppm, and a chemical shift 

measurement score is assigned to a peak cluster hypothesis based on which bin its chemical shift 

falls into. Note, a uniform bin partition is implemented into the system to compute the chemical 

shift measurement score for H2O and DMSO. But in principal, any other non-uniform bin partitions, 

which could better model human spectroscopists’ subjective belief, could be used to replace the 

uniform partition to improve the system performance. Specifically, the rule we adopt is:  

 

If (Chemical Shift ∈ 3.50-4.40ppm), then Chemical Shift Measurement Score = 1,  

Else If ((Chemical Shift ∈ 3.0-3.5ppm) || (Chemical Shift ∈ 4.4-4.9ppm)),  

          then Chemical Shift Measurement Score=  0.5,  

Else Chemical Shift Measurement Score = 0.  

To compute the peak width measurement score, a similar rule is implemented. It is:   

 

If (half height width > 1.2 Hz), then Peak Width Measurement Score = 1,  

Else If ((half height width < 1.2Hz) && (half height width > 0.9Hz)),  

        then Peak Width Measurement Score = 0.5,   

Else If ((half height width < 0.9Hz) && (half height width> 0.5Hz)), 

       then Peak Width Measurement Score = 0.25, 

Else Peak Width Measurement Score = 0.  

Analogically, the rule to compute the peak number measurement score is: 

 

If (number of peak = 1), then Peak Number Measurement Score = 1,  

Else If (number of peak = 2), then Peak Number Measurement Score = 0.5,  

Else If (number of peak =  3 || number of peak = 4 ),  

           then Peak Number Measurement Score = 0.25,  

Else Peak Number Measurement Score = 0.  

 

To compute the peak separation measurement score, the overlapping level among signal peaks are 

measured. Note, the peak cluster hypothesis, which only contains a single peak, is given a peak 

separation measurement score as 1 (this is clear since there is no overlap in a single peak pattern). 

The following rule is used to measure the overlapping level among peaks and give the peak 

separation measurement score:  

From the most left peak position to the most right peak position of the peak cluster 

hypothesis, the system scans for the maximum amplitude and the minimum amplitude.  

Overlapping Indicator = minimum amplitude/ maximum amplitude, 
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If (Overlapping Indicator > 0.7), then Peak Separation Measurement Score = 1, 

Else If (Overlapping Indicator > 0.4 && Overlapping Indicator < 0.7),  

            then Peak Separation Measurement Score = 0.5, 

Else If (Overlapping Indicator > 0.1 && Overlapping Indicator < 0.4),  

            then Peak Separation Measurement Score = 0.25, 

Else Peak Separation Measurement Score = 0. 

The calculation of the proton number measurement score requires the proton number of the peak 

cluster hypothesis to be computed, which itself is computed by dividing the integration of the peak 

cluster hypothesis by the integration proton ratio (see loop indicator in Fig 29). With the proton 

number of the peak cluster hypothesis known, another human mimic rule is implemented to 

calculate the proton number measurement score. Specifically, it is: 

 

If (proton numbers close to integer value), then Proton Number Measurement Score = 0.5,  

Else Proton Number Measurement Score = 1.  

Note, in this rule, we do not give 0 as the proton number measurement score. This is due to the fact 

that even the proton number of the peak cluster hypothesis is close to a “reasonable” integer value, 

it does not give enough evidence to prove that the peak cluster hypothesis is the signal from the 

molecule. But it does supply some information to reduce the peak cluster hypothesis’ likelihood to 

be the signal of H2O, and therefore a “softer” score 0.5 is used instead of “severe” score 0. 

Relying on the five computable rules, the H2O likelihood score is computed and assigned for each 

peak cluster hypothesis. To limit the size of H2O signal candidates, a subset of peak cluster 

hypotheses space is selected as the H2O signal candidate list, where each peak cluster hypothesis 

has a high H2O likelihood score. Note, with this list, the H2O identification process is efficiently 

embedded into the system’s hypothesis-driven human mimicking framework, in which a back-

tracking mechanism is utilized to reselect alternative H2O signal candidates from the list as the H2O 

signal to avoid the mistake of H2O identification. This implementation is highly consistent with the 

H2O identification approach what human spectroscopists adopt.      

To illustrate the approach of solvent detection, we represent the solvent detection flowchart in Fig 

30. 
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4.4.2 Determine Integration Proton Ratio (Integration per Proton) 
 

The Integration proton ratio is a reference for computing the proton number of the peak cluster 

hypothesis. Its calculation is the prerequisite of the searching module in Fig 29. To compute the 
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integration proton ratio, the system uses the spectrocopists’ integration proton ratio computation 

process (see 2.1.3.4) as the reference. Specifically, the theoretical multiplet distribution list is utilized 

to define a set of chemical shift bins (intervals), in which the range of each chemical shift bin is 

defined by the chemical shift range of a theoretical multiplet distribution. This is followed by 

classifying peak cluster hypotheses into different chemical shift bins with their experimental 

chemical shift. When a peak cluster hypothesis is assigned to a chemical shift bin, a chemical shift 

match between the peak cluster hypothesis and the theoretical multiplet distribution happens. 

Formally we denote the match a chemical shift consistent peak cluster hypothesis theoretical 

multiplet distribution pair. The computation process to identify all chemical shift consistent peak 

cluster hypothesis theoretical multiplet distribution pairs has quadratic computational complexity 

(assuming that there are n theoretical multiplet distributions and m peak cluster hypotheses, totally 

there are m*n peak cluster hypothesis theoretical multiplet distribution pairs needed to be checked 

for chemical shift consistency). For each chemical shift consistent peak cluster hypothesis theoretical 

multiplet distribution pair, an integration proton ratio is computed. This is done by dividing the 

proton number of the theoretical multiplet distribution by the integration of the peak cluster 

hypothesis. Through computing integration proton ratios of all chemical shift consistent peak cluster 

hypothesis theoretical multiplet distribution pairs, the system builds an integration proton ratio list. 

Note, some chemical shift consistent peak cluster hypothesis theoretical multiplet distribution pairs 

produce the similar integration proton ratio in value, and therefore their integration proton ratios 

are averaged and only recorded once in the list.  

To further discriminate the rational integration proton ratios from the integration proton ratio list, 

the total proton numbers in the spectrum is computed with the given integration proton ratio and 

compared to the total proton number in the theoretical multiplet distribution list. This is 

implemented by integrating all signals in the spectrum except the signals from the solvent 

candidates, and followed by dividing the integration of the whole spectrum by the given integration 

proton ratio.  

With a rational integration proton ratio, the computed proton number of the spectrum should be 

comparable to the sum of proton numbers from the theoretical multiplet distribution list. If the 

computed total proton numbers of the spectrum is significantly deviated from the total proton 

numbers of the theoretical multiplet distribution list, it gives a strong evidence to deny the 

correctness of the given integration proton ratio, therefore it causes the deletion of the integration 

proton ratio from the integration proton ratio list. After iterating the integration proton ratio list, the 

remaining integration proton ratios, which pass the checking of the total proton numbers, are 

recorded as the final output integration proton ratio list. To further discriminate upon the output 

integration ratio list, the system relies on the searching module (in Fig 29) to find a consistent peak 

cluster hypothesis list, which could reasonably mach the theoretical multiplet distribution list. If the 

list is not existent, it could indicate the wrong integration proton ratio. Therefore a back-tracking 

mechanism (see the second return back loop in Fig 29) is implemented in the system to select an 

alternative integration proton ratio to avoid the mistake in integration proton ratio calculation. This 

implementation supplies a highly reliable integration proton ratio computation procedure, which is 

highly consistent with the integration proton ratio calculation approach that human spectroscopists 

adopt.                
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To illustrate the integration proton ratio computation procedure, we represent its flowchart in Fig 31. 
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4.4.3 Matching of Experimental Peak Cluster Hypotheses and Structural 

Multiplet Distributions 
 

In the previous NMR spectrum molecular structural verification system mentioned in 2.2 (Golotvin, 

et al., 2006), a brute force search has been adopted to match the experimental multiplet list and the 

theoretical multiplet list with chemical shift. This is followed by a Monte Carlo routine to further 

optimize the match with proton number and multiplicity. The (primitive) brute force searching 

strategy is feasible under the previous system’s problem setup. This is due to the fact that chemical 

shift is a NMR property assigned to individual multiplets, and therefore a brute force searching for a 

match between the experimental multiplet list and the theoretical multiplet list only requires pair-

wise comparisons on chemical shift between the experimental multiplet list and the theoretical 

multiplet list. The computational complexity of complete pair-wise comparisons is quadratic 

(assuming that there are n experimental multiplets and m theoretical multiplets, then there are 

totally n*m experimental-theoretical multipelt pairs needed to be compared towards their chemical 

shifts). However, the feasibility of the brute-force searching is at the expense of ignoring other 

useful NMR information, and therefore producing a wrong match. The accuracy and the efficiency of 

stochastic optimization e.g. Monte Carlo optimization rely on the reasonable selection of the starting 

point of the search. A wrong (non-suboptimal) starting point could conduce the wrong solution so 

that the performance of the optimization is deteriorated (see 7.2.3.2). Hence, even with the brute-

force searching strategy, using chemical shift only, the previous system produces a “bad” match as 

the optimization starting point, which will deteriorate the utility of the following optimization upon 

proton number and multiplicity. Hence, it often biases the system to converge to an unreasonable 

match as the output. In contrast, spectroscopists utilize all NMR information (e.g. chemical shift, 

proton number, coupling, coupling constants, connectivity) to build a match between experimental 

multiplets and predicted multiplets. When a reasonable match is built, the consistency analysis is 

over. There is no stochastic optimization process during spectroscopists’ structure verification 

procedure. However, the human’s approach to build a reasonable match with all NMR information is 

not an easy task. This is due to the essential complexity of some NMR properties. Specifically, 

distinctive from chemical shift, most NMR properties are not bound with an individual multiplet, 

instead they are assigned to a number of multiplets together. For example, it is often impossible to 

accurately estimate the integration and up to the proton numbers of an experimental multiplet if it 

is heavily overlapping with other experimental multiplets.  Alternatively, it is possible to reliably 

estimate the integration and to compute the proton number of the set of experimental multiplets, 

which are overlapped altogether. This violates the pair-wise comparison assumption assumed in the 

previous system (Golotvin, et al., 2006), and essentially increases the computational complexity of 

the searching routine. Specifically, without a pair-wise comparison assumption, all possible subsets 

of both the experimental multiplet list and the theoretical multiplet list are needed to be generated 

and utilized for building a match. To analyze its computational complexity, we assume that there are 

n experimental multiplets and m theoretical multiplets. Therefore, there are totally n! different 

experimental multiplet subsets and m! different theoretical multiplet subsets, which could be 

generated from the experimental multiplet list and the theoretical multiplet list. To search for a 

match with NMR properties e.g. proton numbers, etc. with the brute force searching strategy, pair-

wise comparison between the experimental multiplet subsets and the theoretical multiplet subsets 
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need to be implemented. To sum them up, there are totally n! * m! possible pairs. This shows the 

factorial complexity (exponential computational complexity), which makes brute force searching 

infeasible.   

Furthermore, in 2.2.2, we discussed the limitation of the approach to build an experimental 

multiplet list and a theoretical multiplet list – both of them are missing multiplet interpretations. 

Specifically, we argue that both the experimental multiplet list and the theoretical multiplet list only 

represent a small subset of all possible multiplet interpretations, and we emphasize that the missed 

multiplet interpretations could become vital elements for a correct structural verification decision. 

To avoid the problem, our system extends the experimental multiplet list to the peak cluster 

hypotheses space, and extends the theoretical multiplet list to the theoretical multiplet distribution 

list (see 4.1). These extensions dramatically increase sizes of searching spaces built from the 

spectrum or the structure. Especially, by introducing the concept of theoretical multiplet 

distribution, the system creates the continuous multiplet space, which represents infinite theoretical 

multiplets that can continuously change in their chemical shifts and signal shapes. Obviously, with 

the number of theoretical multiplets going to infinity, the methodologies used in the previous 

systems, especially brute-force searching strategy adopted, are out of the scope. 

With this analysis, we realize that by introducing both experimental peak cluster hypotheses space 

and theoretical multiplet distribution list, and relying on additional NMR knowledge e.g. proton 

numbers, connectivity, etc, we dramatically increase the computational complexity of the system, 

which makes the primitive brute-force searching strategy incompetent. To efficiently search for a 

match in the new problem setup, an optimization/ heuristic search needs to be designed to replace 

the brute-force search to build a match. Many optimization approaches have been proposed in the 

computer science community and been used in various application domains. To list a few of them, 

simulation annealing, genetic programming, genetic algorithms, Monte Carlo sampling are all well-

known optimization approaches. All these approaches are based on the combination of a greedy hill 

climbing strategy and a random walk strategy. The purpose of introducing random walk into the 

approach is to avoid the problem of “trapping” in a local maximum instead of the global maximum. 

The same strategy is also widely adopted in many computing domains such as building artificial 

neural networks (Duda, et al., 2000) (Mitchell, 1997) (Hastie, et al., 2003), inducing logistic 

regression (Duda, et al., 2000) (Hastie, et al., 2003). For our problem, it would be convenient to 

directly apply one of these techniques. However, as we will discuss in 7.2.3, all these optimization 

approaches work in solution space, and their performance relies on a reasonable searching starting 

point. Unfortunately, the task of building a reasonable match as the starting point itself is difficult in 

our problem setup. As we have already explained, a full search with NMR information beyond 

chemical shift is infeasible. Also, any simplification of using NMR information will conduce a “bad” 

starting point in the solution space. These facts refute the proposal of directly applying these 

classical optimization approaches. Instead an optimization /heuristic searching approach needs to be 

designed to ease the complexity of building a reasonable match. In fact, with the reasonable match 

built by using all NMR information, a structure verification solution is found, which makes additional 

optimization in the solution space unnecessary. 

To find an effective optimization policy to build a reasonable match, we try to mimic human 

spectroscopists’ logic. This is motivated by the fact that spectroscopists can quickly find a reasonable 

match, even though they have a big space of all possible experimental and predicted multiplet 

interpretations in their brains. We believe that this superiority of human over computer relies on 
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spectroscopists’ flexibility to build complex search heuristics and back-tracking mechanisms. 

Therefore, our design of the optimization policy is focused on building a search heuristic as close as 

possible to that adopted by spectroscopists, and implementing back-tracking mechanisms to mimic 

spectroscopists’ flexibility to change previously made decisions. Specifically, a mechanism is 

designed to mimic spectroscopists assigning a rank throughout the peak cluster hypotheses space. 

This is implemented by pair-wise comparisons between the experimental peak cluster hypotheses 

space and the theoretical multiplet distribution list alone chemical shift, proton number and 

multiplicity. A mechanism is designed to mimic spectroscopists to sequentially build the peak cluster 

list by greedy searching the ranked peak cluster hypotheses space. A mechanism is designed to 

mimic spectroscopists’ selection and deselection of the peak clusters from the partially built peak 

cluster list. This is implemented with the inner consistency analysis among the peak cluster list along 

connectivity, whenever a newly selected peak cluster hypothesis is added to the peak cluster list. As 

a result, the inconsistent peak cluster hypotheses are deselected from the peak cluster list, and put 

back in the peak cluster hypotheses space. Note, the deselected peak cluster hypotheses are not 

deleted from the peak cluster hypotheses space. Instead they are “punished” by reducing their 

priorities. In addition, a mechanism is designed to mimic spectroscopists to completely overthrow 

the current peak cluster list when the reasonable peak cluster hypotheses list is nonexistent, and 

rebuild a new peak cluster list by adopting a boosting mechanism (Freund, et al., 1996) (Efron, et al., 

1994). As we represented before in Fig 29, the mechanism is used for example to select the 

alternative solvent signals, the alternative integration proton ratio, and this varying input NMR 

information will perturb the ranks defined in the peak cluster hypotheses space so as to produce the 

different searching track in the next searching iteration.  

       

4.4.3.1 Searching Module Architecture 

 

The searching module is composed of the two iteration loops: a boosting loop (outer loop) and a 

loop to build the peak cluster list (internal loop). The data processing flow chart of the outer loop is 

shown in Fig 32. The outer loop is an iterative procedure (1) to rank the peak cluster hypotheses 

space, (2) to call the internal loop to build a peak cluster list, (3) to modify the rank of the peak 

cluster hypotheses space, and (4) to restart searching a new peak cluster list.   

The flow chart of the internal loop is shown in Fig 33. The internal loop is an iterative procedure (1) 

to sequentially add the peak cluster hypothesis into the peak cluster list, (2) to analyze the 

consistency for the partial built peak cluster list, and to deselect the inconsistent peak cluster 

hypotheses from the peak cluster list, (3) to reduce the priorities of the deselected peak cluster 

hypotheses in the peak cluster hypotheses space. 
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Theor et ica l  M ul t i p l et 

D i s t r i b u t i o n  L i s t 

Peak Cluster Hypotheses Space 

Assigning Order through Hypotheses Space (1) 

Reordering Hypotheses Space (3) 

Internal loop to build a Peak CLuster List (2) 

Ranked Peak Cluster Hypotheses Space 

Is Consistent?(A) Iteration Stop?(B) 

No 

No 

Yes Yes 

Output Peak Cluster List 

w ith  Probabi l i ty 

Fig 32  Searching Module Out Loop Flow Chart 

Module (1): to rank the peak cluster hypotheses space 

Module (2): to call the internal loop to build a peak cluster list 

Module (3): to modify the order of the peak cluster hypotheses space 

Decision Module (A): to judge the consistency 

Decision Module (B): to judge the end of iteration. 

 

So lvent  Candidate L ist  and 

Integration/Proton Ratio Lists 

1 D  1 H  N M R  S p e c t r u m 
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Specifically, in Fig 32, from top to bottom, first, the experimental peak cluster hypotheses space, the 

list of the theoretical multiplet distributions, the list of solvent signal candidates, the list of 

integration proton ratios and the 1D 1H NMR spectrum are fed into Module (1) to assign an initial 

confidence score to each peak cluster hypothesis in the peak cluster hypotheses space. Here, each 

peak cluster hypothesis is compared with every theoretical multiplet hypothesis and all possible 

combinations of them through chemical shift, proton numbers, multiplicity, coupling constants to 

compute a structure matching score of it. (Note, the number of theoretical multiplet distributions is 

reasonably small compared to the size of peak cluster hypotheses space. Therefore pair-wise 

comparisons upon all combination of them are computationally feasible in practice.) 

In parallel, the peak cluster hypothesis is compared with the corresponding section of the 1D 1H 

NMR spectrum (e.g. the peak cluster hypothesis’ integration, baseline level, multiplicity complexity) 

to give it a spectrum fitting score. This is followed by combining the structure matching score and 

the spectrum fitting score to give the peak cluster hypothesis a confidence score. In this way, an 

initial rank is defined within the peak cluster hypotheses space, while the consistent peak cluster 

hypothesis is associated with a high confidence score, and the inconsistent peak cluster hypothesis is 

associated with a low confidence score. 

Next, the ranked peak cluster hypotheses space is fed into internal loop (Module (2)) to build the 

peak cluster list (see next paragraph for detail).  

After that, a decision mechanism (Decision Module (A)) is applied to the peak cluster list to judge if it 

is reasonable enough to be used to explain all theoretical multiplet distributions. As a result, if all 

theoretical multiplet distributions are explained by the peak cluster hypotheses in the list with high 

confidence, the outer loop iteration terminates, and the peak cluster list is reported.  Else, the peak 

cluster list is fed into Module (3) together with 1D 1H NMR spectrum, the solvent signal candidate 

list and the integration proton ratio list to re-calculate the confidence score for each peak cluster 

hypothesis in the peak cluster hypotheses space. This causes the change of the rank in the peak 

cluster hypotheses space. Then, with the peak cluster hypotheses space re-ranked, the current peak 

cluster list is deleted, and the procedure goes back to Module (2) to restart the iteration. This 

continues until the number of iteration reaches the maximum number of steps defined.      
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Ranked Peak Cluster Hypotheses Space 

1 D  1 H  N M R  S p e c t r u m 

Selecting Most Likely Peak Cluster 

Hypothesis into Peak Cluster List (1) 

Peak Cluster List 

Theor et ica l  M ul t i p l et 

D i s t r i b u t i o n  L i s t 
Module (1): to sequentially add the peak cluster hypothesis into the peak cluster list 

Module (2): to deselect the inconsistent peak clusters from the peak cluster list if they 

are inconsistent in connectivity. 

Module (3): to modify the order of the peak cluster hypotheses space 

Decision Module (A): to judge if the theoretical multiplet lists are all explained by the 

peak cluster list. 

Decision Module (B): to judge the maximum number of iterations. 

 

Fig 33  Searching Module Internal Loop Flow Chart 
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In Fig 33, from top to bottom, first, the ranked peak cluster hypotheses space and partially built peak 

cluster list are fed into Module (1), where the partially built peak cluster list is used to re-rank the 

peak cluster hypotheses space. This is followed by selecting the peak cluster hypothesis with highest 

confidence score from the re-ranked peak cluster hypotheses space to add into the partially built 

peak cluster list. Specifically, to re-rank the peak cluster hypotheses space, a pseudo spectrum is 

constructed from the partially built peak cluster list, and then difference between the input 1D 1H 

NMR spectrum and the pseudo spectrum is calculated. This “difference spectrum” is used to 

recalculate the spectrum fitting scores of the peak cluster hypotheses in the peak cluster hypotheses 

space.  

Next, the consistency on coupling connectivity is analyzed (in Module (2)) among the peak cluster 

hypotheses in the partially built peak cluster list to adjust the peak cluster hypotheses’ confidence 

score in the peak cluster list. The peak cluster hypotheses with low confidence scores are deselected 

from the partially built peak cluster list.  

After that, a decision mechanism (Decision Module (A)) is used to judge if all theoretical multiplet 

distributions are explained by the peak cluster list with chemical shift, proton number, multiplicity, 

and connectivity. If it is, the internal iteration loop terminates, and the construction of the peak 

cluster list is finished. Otherwise, the procedure goes to Module (3), where the confidence scores 

associated with the deselected peak cluster hypotheses are reduced to decrease their priorities to 

be used to build the peak cluster list. After that, the procedure returns back to Module (1) to select 

the next peak cluster hypothesis to add into the peak cluster list. The iteration continues until the 

maximum number of iterations is reached.        

Note, in 4.4.3, the system architecture of the searching modules is described. In Chapter 5, the 

probabilistic model of the searching module is explained to further describe the searching heuristics 

and back-tracking mechanisms the system adopts. Specifically, the heuristic searching criterions are 

introduced in 5.2, and the computational detail of the confidence score is introduced in 5.3. 

   

 

4.4.4 Quantification Module 

 
With the reasonable peak cluster list identified, quantification becomes simple. Specifically, a 

relative confidence score is computed for each peak cluster in the peak cluster list. The relative 

confidence score is computed as the absolute difference between the best structure matching score 

of the peak cluster hypothesis to the theoretical multiplet distribution subsets and the second best 

structure matching score of the peak cluster hypothesis to them (see formula 15 and 16 in 5.3 at 

page 100). As a result, any peak clusters with significantly large relative confidence scores are 

selected for quantification. In case of all peak clusters in the peak cluster list having  low relative 

confidence scores, a “give up“ signal is sent by the module to show the inability to do the 

quantification. 
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4.4.5 Creating a Structure Verification Report 
 

With the peak cluster list identified, the generation of a structure verification report is 

straightforward.  Specifically, the confidence score of the peak cluster hypothesis in the peak cluster 

list is used to measure how well it explains the theoretical multiplet distribution. In case of all peak 

cluster hypotheses in the peak cluster list having significantly big confidence scores, a conclusion of 

structure verification consistency is made and reported by the module. In case of some peak cluster 

hypotheses in the peak cluster list having significantly low confidence scores, a conclusion of 

structure verification inconsistency is made and reported by the module. Note, the peak cluster 

hypothesis’ confidence score is further decomposed to discover and report which matching factors 

(e.g. chemical shift, proton number, multiplicity, coupling constants, coupling connectivity, the 

spectrum fitting level, etc) are the cause to the inconsistency.  
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Chapter 5 A Probabilistic Explanation of the System 

Architecture 
 

In this chapter, we describe the heuristic search methods in the Consistency Analyzer (see Fig 29) 

with the maximum likelihood principal, and give the computational detail of how to estimate the 

search heuristics.  The content in the chapter is an explanation of the system architecture in Chapter 

4 from the probabilistic perspective. Therefore, readers who are not interested in the math detail 

can safely skip the chapter without loss of continuity. 

  

5.1 Probabilistic Model of the Search Module 

The structure verification is a procedure to search the peak cluster hypotheses space for a 

reasonable peak cluster list to explain the theoretical multiplet distributions (computed from the 

molecular structure). For this target, a series of peak cluster hypothesis evaluations are 

implemented to assign and reassign a confidence score to the peak cluster hypotheses. The majority 

of these evaluations use empirical chemical and NMR knowledge e.g. chemical shift range, coupling 

constant range.  To deal with these uncertainties in the evaluation procedure, a probabilistic model 

is appropriate.      

Here, in the scope of this thesis, we denote the input 1H NMR spectrum as 𝑆, peak cluster 

hypotheses space as 𝐻, the theoretical multiplet distribution list as 𝒚 = (𝑦1 ,𝑦2 ,… ,𝑦𝑚 ), where the 

size of  𝒚
 
 is denoted as m. Correspondingly, we denote the peak cluster list as  𝒙 = (𝑥1,𝑥2 ,… , 𝑥𝑚 ). 

With the notation given above, to simplify the problem, by assuming the peak clusters in peak 

cluster list are one-to-one mapped to the theoretical multiplet distributions, there are 𝑚𝑛  possible 

peak cluster lists in total which can be built from 𝐻 to explain 𝒚. Note, that n is used to denote the 

size of 𝐻. The ensemble of all possible 𝒙 constructs a peak cluster list hypotheses space, denoted as 

 𝑿. Obviously, each 𝑿 is decomposable as (𝑋1 ,𝑋2 ,… ,𝑋𝑚 ), while there is a one-to-one mapping 

between 𝑦𝑖and 𝑋𝑖 , where, 0 < 𝑖 < 𝑚. 

By considering   𝑿 = (𝑋1 ,𝑋2 ,… ,𝑋𝑚 ) as m random variables, the conditional joint probability 

𝑝 𝑿 𝒚, 𝑆 =  𝑝(𝑋1 ,𝑋2 ,… ,𝑋𝑚 |𝑦1 ,𝑦2 ,… ,𝑦𝑚 ,𝑆) gives a natural measurement of consistency between 

the peak cluster list hypotheses space 𝑿 and theoretical multiplet distribution list 𝒚 for a given 

spectrum . With this interpretation, the structure verification problem is transformed into the 

maximum likelihood estimation framework. Formally, the optimal peak cluster list 𝒙𝒎𝒂𝒙 is computed 

as: 

 

𝒙𝒎𝒂𝒙 = 𝐚𝐫𝐠𝒎𝒂𝒙𝒙∈𝑿 𝒑(𝑿|𝒚,𝑺)                      (4) 

In mathematics,𝑥𝑚𝑎𝑥 = arg𝑚𝑎𝑥𝑥 𝑓(𝑥) denotes the value of x for which f(x) is maximized.  

The purpose of this modeling is to show the existence of the optimal peak cluster list and to prove 

that the optimal peak cluster list is guaranteed to be available in theory. Furthermore, the use of a 
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probabilistic model makes probabilistic inference theory - a powerful computational tool available 

for computing 𝒙𝒎𝒂𝒙. 

Obviously, the search through 𝑿 has exponential computational complexity. This is due to the fact 

that the computation of the joint probability distribution 𝑝 𝑿 𝒚, 𝑆  requires to compute all 𝑚𝑛  

samples’ probability in 𝑿. To reduce the computational complexity, the structure of  𝑝 𝑿 𝒚, 𝑆  is 

decomposed into a product of a group of conditional probabilities (chain rule):  

 

𝒑 𝑿 𝒚,𝑺 =  𝒑 𝑿𝟏,𝑿𝟐,… ,𝑿𝒎 𝒚𝟏,𝒚𝟐,… ,𝒚𝒎,𝑺  

= 𝒑 𝑿𝟏 𝒚𝟏,𝒚𝟐,… ,𝒚𝒎,𝑺 × 𝒑 𝑿𝟐 𝑿𝟏,𝒚𝟏,𝒚𝟐,… ,𝒚𝒎,𝑺 × …× 𝒑 𝑿𝒎 𝑿𝟏,𝑿𝟐,… ,𝑿𝒎−𝟏,𝒚𝟏,𝒚𝟐,… ,𝒚𝒎,𝑺     (5) 

Given the above decomposition, the following series of inequalities are tenable, where the 

inequations turn into equations if 𝑋1 ,𝑋2 ,… ,𝑋𝑚  are conditionally independent.    

arg𝑚𝑎𝑥𝒙∈𝑿 𝑝 𝑿 𝒚, 𝑆 = arg𝑚𝑎𝑥𝒙∈𝑿  𝑝 𝑋1 ,𝑋2 ,… ,𝑋𝑚  𝑦1 ,𝑦2 ,… ,𝑦𝑚 ,𝑆  

≥ arg𝑚𝑎𝑥𝑥1 ,𝑥2 ,…,𝑥𝑚−1∈𝑋1 ,𝑋2 ,…,𝑋𝑚−1
𝑝 𝑋1 ,𝑋2 ,… ,𝑋𝑚−1 𝑦1 ,𝑦2 ,… ,𝑦𝑚 , 𝑆  

× arg𝑚𝑎𝑥𝑥𝑚∈𝑋𝑚
𝑝 𝑋𝑚  𝑋1 ,𝑋2 ,… ,𝑋𝑚−1 ,𝑦1 ,𝑦2 ,… ,𝑦𝑚 , 𝑆  

≥ arg𝑚𝑎𝑥𝑥1 ,𝑥2 ,…,𝑥𝑚−2∈𝑋1 ,𝑋2 ,…,𝑋𝑚−2
𝑝 𝑋1 ,𝑋2 ,… ,𝑋𝑚−2 𝑦1 ,𝑦2 ,… ,𝑦𝑚 , 𝑆  

× arg𝑚𝑎𝑥𝑥𝑚−1∈𝑋𝑚−1
𝑝 𝑋𝑚−1 𝑋1 ,𝑋2 ,… ,𝑋𝑚−2 ,𝑦1 ,𝑦2 ,… ,𝑦𝑚 ,𝑆  

× arg𝑚𝑎𝑥𝑥𝑚∈𝑋𝑚
𝑝 𝑋𝑚  𝑋1 ,𝑋2 ,… ,𝑋𝑚−1 ,𝑦1 ,𝑦2 ,… ,𝑦𝑚 , 𝑆  

≥ ⋯ 

≥ arg𝑚𝑎𝑥𝒙𝟏∈𝑿𝟏
𝑝 𝑋1 𝑦1 ,𝑦2 ,… ,𝑦𝑚 ,𝑆 × arg𝑚𝑎𝑥𝒙𝟐∈𝑿𝟐

𝑝 𝑋2 𝑋1 ,𝑦1 ,𝑦2 ,… ,𝑦𝑚 , 𝑆 × …  × 

× 𝐚𝐫𝐠𝒎𝒂𝒙𝒎∈𝑿𝒎
𝒑 𝑿𝒎 𝑿𝟏,𝑿𝟐,… ,𝑿𝒎−𝟏,𝒚𝟏,𝒚𝟐,… ,𝒚𝒎,𝑺                                    (6)    

 

As a conclusion from (6), the maximum likelihood estimation of 𝑋1 ,𝑋2 ,… ,𝑋𝑚  could be 

asymptotically approached with the product of the maximum likelihood estimation of the disjunctive 

subsets of 𝑋1 ,𝑋2 ,… ,𝑋𝑚 . In fact, this asymptotical property supplies the theoretical backbone of the 

heuristic searching criterions (see 4.4.4.3) used in the searching module to approximately find the 

optimal peak cluster list in an efficient way.  

 

5.2 Searching Heuristics  

The set of inequations (6) suggest an order to build the optimal peak cluster list 𝒙𝒎𝒂𝒙 in 𝐻 instead of 

directly computing 𝒙𝒎𝒂𝒙 in the peak cluster list hypotheses space 𝑿 (see Fig 34). This gives the 

searching heuristics of the searching module (see 4.4.3).  
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To asymptotically estimate arg𝑚𝑎𝑥𝒙∈𝑿  𝑝 𝑋1 ,𝑋2 ,… ,𝑋𝑚  𝒚, 𝑆 , the maximum likelihood of the 

partially built peak cluster list arg𝑚𝑎𝑥𝑥1 ,𝑥2 ,…,𝑥𝑖∈𝑋1 ,𝑋2 ,…,𝑋𝑖
𝑝 𝑋1 ,𝑋2 ,… ,𝑋𝑖 𝒚, 𝑆 , 𝑖 ∈ (1,…𝑚)  is 

estimated sequentially. However, the estimation of 

arg𝑚𝑎𝑥𝑥1 ,𝑥2 ,…,𝑥𝑖∈𝑋1 ,𝑋2 ,…,𝑋𝑖
𝑝 𝑋1 ,𝑋2 ,… ,𝑋𝑖 𝒚, 𝑆 itself has the factorial computational complexity. To 

further simplify the problem, the products of arg𝑚𝑎𝑥𝑥𝑗∈𝑋𝑗
𝑝 𝑋𝑗  𝑋1 ,𝑋2 ,… ,𝑋𝑗−1 ,𝒚, 𝑆 , 𝑗 ∈ (1,… , 𝑖) 

is computed to approximately estimate arg𝑚𝑎𝑥𝑥1 ,𝑥2 ,…,𝑥𝑖∈𝑋1 ,𝑋2 ,…,𝑋𝑖
𝑝 𝑋1 ,𝑋2 ,… ,𝑋𝑖  𝒚, 𝑆  instead. This 

simplification makes the greedy search applicable. Specifically, the likelihood 𝑝 𝑥𝑖 𝒚, 𝑆  is estimated 

as the initial confidence score of the peak cluster hypothesis in the peak cluster hypotheses space 

(see Fig 32, Module (1)), and arg𝑚𝑎𝑥𝑥1∈𝑋1
𝑝 𝑋1 𝒚, 𝑆 is used as the heuristic to select the first peak 

cluster hypothesis 𝑥1  to add into the peak cluster list. Similarly, the likelihood 

𝑝 𝑥𝑖  𝑥1 ,𝑥2 ,… , 𝑥𝑖−1 ,𝒚, 𝑆 is estimated to modify the confidence score of the peak cluster hypothesis 

𝑥𝑖  in the peak cluster hypotheses space (see Fig 33, Module (1)), and 

arg𝑚𝑎𝑥𝒙𝟏∈𝑿𝟏
𝑝 𝑋1 𝒚, 𝑆  

 

arg𝑚𝑎𝑥𝒙𝟐∈𝑿𝟐
𝑝 𝑋2 𝑋1 ,𝒚, 𝑆  

 

arg𝑚𝑎𝑥𝑥1 ,𝑥2∈𝑋1 ,𝑋2 , 𝑝 𝑋1 ,𝑋2 𝒚, 𝑆  
arg𝑚𝑎𝑥𝒙𝟑∈𝑿𝟑

𝑝 𝑋3 𝑋1,𝑋2 ,𝒚,𝑆  

arg𝑚𝑎𝑥𝑥1 ,𝑥2 ,…,𝑥𝑚−1∈𝑋1 ,𝑋2 ,…,𝑋𝑚−1
𝑝 𝑋1 ,𝑋2 ,… ,𝑋𝑚−1 𝒚,𝑆  arg𝑚𝑎𝑥𝑥𝑚∈𝑋𝑚

𝑝 𝑋𝑚  𝑋1 ,𝑋2,… ,𝑋𝑚−1 ,𝒚,𝑆  

arg𝑚𝑎𝑥𝒙∈𝑿  𝑝 𝑋1 ,𝑋2,… ,𝑋𝑚  𝒚, 𝑆  

 

Fig 34 The Order to Build the Peak Cluster List  

... … 

… 

... … 

… 
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arg𝑚𝑎𝑥𝑥𝑖∈𝑋𝑖
𝑝 𝑋𝑖 𝑥1 ,𝑥2 ,… , 𝑥𝑖−1 ,𝒚,𝑆  is used as heuristic to select the next peak cluster hypothesis 

𝑥𝑖  to be added into the peak cluster list.  

However, the above greedy searching criterion is inaccurate, since for all 𝑖 ∈ (1,… ,𝑚), we have 

 arg𝑚𝑎𝑥𝑥𝑗∈𝑋𝑗
𝑝 𝑋𝑗  𝑥1 ,𝑥2 ,… , 𝑥𝑗−1 ,𝒚, 𝑆  ≤ arg𝑚𝑎𝑥𝑥1 ,𝑥2 ,…,𝑥𝑖∈𝑋1 ,𝑋2 ,…,𝑋𝑖

𝑝 𝑋1 ,𝑋2 ,… ,𝑋𝑖  𝒚,𝑆  𝑖
𝑗=1 . To 

remove this inaccuracy, the conditional probability 

𝑝(𝑥𝑚𝑎𝑥𝑗 |𝑥𝑚𝑎𝑥 1 … , 𝑥𝑚𝑎𝑥𝑗 −1 ,𝑥𝑚𝑎𝑥𝑗 +1 ,… , 𝑥𝑚𝑎𝑥𝑖 ,𝒚, 𝑆)  is estimated for every 

𝑥𝑚𝑎𝑥𝑗 ∈ (𝑥𝑚𝑎𝑥 1,𝑥𝑚𝑎𝑥 2,… , 𝑥𝑚𝑎𝑥𝑖 ), here (𝑥𝑚𝑎𝑥 1, 𝑥𝑚𝑎𝑥 2,… , 𝑥𝑚𝑎𝑥𝑖 )  denotes the partial peak cluster 

list built by sequentially selecting 𝑥𝑗  to maximize 𝑝 𝑋𝑗  𝑥1 ,𝑥2 ,… , 𝑥𝑗−1 ,𝒚, 𝑆  , 𝑗 ∈ (1,… , 𝑖). This is 

followed by deselecting all 𝑥𝑚𝑎𝑥𝑗  from (𝑥𝑚𝑎𝑥 1, 𝑥𝑚𝑎𝑥 2,… , 𝑥𝑚𝑎𝑥𝑖 ), which makes 

 

𝒑 𝒙𝒎𝒂𝒙𝒋|𝒙𝒎𝒂𝒙𝟏 … ,𝒙𝒎𝒂𝒙𝒋−𝟏,𝒙𝒎𝒂𝒙𝒋+𝟏,… ,𝒙𝒎𝒂𝒙𝒊,𝒚,𝑺 <  𝐚𝐫𝐠𝒎𝒂𝒙𝒙𝒂∈𝑯,𝒙𝒂 𝒏𝒐𝒕 ∈ (𝒙𝒎𝒂𝒙𝟏,,…,𝒙𝒎𝒂𝒙𝒊) 𝒑 𝑿𝟏 𝒚,𝑺  (7) 

tenable, and by sending them back into the peak cluster hypotheses space (see Fig 32, Module (2)).   

Note that, criterion (7) guarantees that only the peak cluster hypotheses with maximum conditional 

probability  𝑝 𝑥𝑚𝑎𝑥𝑗 |𝑥𝑚𝑎𝑥 1 … , 𝑥𝑚𝑎𝑥𝑗 −1, 𝑥𝑚𝑎𝑥𝑗 +1,… , 𝑥𝑚𝑎𝑥𝑖 ,𝒚, 𝑆  are kept in the partial peak cluster list 

(𝑥𝑚𝑎𝑥 1 ,… , 𝑥𝑚𝑎𝑥𝑖 ). Since 𝑝  𝑥𝑚𝑎𝑥𝑗|𝑥𝑚𝑎𝑥1 … , 𝑥𝑚𝑎𝑥𝑗−1, 𝑥
𝑚𝑎𝑥𝑗+1

, … , 𝑥𝑚𝑎𝑥𝑖, 𝒚, 𝑆  ∝  𝑝 𝑥𝑚𝑎𝑥 1,… , 𝑥𝑚𝑎𝑥𝑖  𝒚,𝑆  

for all 𝑥𝑚𝑎𝑥𝑗 ∈ (𝑥𝑚𝑎𝑥 1,𝑥𝑚𝑎𝑥 2 ,… , 𝑥𝑚𝑎𝑥𝑖 ) , this approximately maximizes the joint conditional 

probability 𝑝(𝑥𝑚𝑎𝑥 1 ,𝑥𝑚𝑎𝑥 2,… , 𝑥𝑚𝑎𝑥𝑖 |𝒚,𝑆).  As a result, the following equation is approximately 

tenable. 

 arg𝑚𝑎𝑥𝑥𝑗∈𝑋𝑗
𝑝 𝑋𝑗  𝑥1 ,𝑥2 ,… , 𝑥𝑗−1 ,𝒚, 𝑆  ≈ arg𝑚𝑎𝑥𝑥1 ,𝑥2 ,…,𝑥𝑖∈𝑋1 ,𝑋2 ,…,𝑋𝑖

𝑝 𝑋1 ,𝑋2 ,… ,𝑋𝑖  𝒚, 𝑆  

𝑖

𝑗=1

 

  

5.3 Estimating Probability with Chemical and NMR Knowledge 

The searching routine requires the estimation of the conditional probability  𝑝 𝑥𝑖 𝒚, 𝑆  , 𝑥𝑖  ∈ 𝐻 and 

𝑝  𝑥𝑗|𝑥1 … , 𝑥𝑗−1, 𝑥
𝑗+1

, … , 𝑥𝑖, 𝒚, 𝑆 ,  𝑥𝑗  ∈ (𝑥1 ,𝑥2 ,… , 𝑥𝑖)  (see 4.4.4.2). 𝑝 𝑥𝑖  𝒚, 𝑆  is interpreted as the 

likelihood of the peak cluster hypothesis 𝑥𝑖  to be in the optimal peak cluster list for the given input 

NMR spectrum and the theoretical multiplet distribution list. This likelihood is determined by using 

NMR and chemical knowledge such as 𝑥𝑖 ′s consistency with each subset of y in chemical shifts, 

proton number, multiplicity, coupling constants, 𝑥𝑖 ′s fitness to the input spectrum, 𝑥𝑖 ′s reliability, 

etc. As already shown in section 4.4.3,  𝑝 𝑥𝑖 𝒚, 𝑆  is estimated by the product of 𝑥𝑖 ′s structure 

matching score and spectrum matching score. Formally, we have 

𝒑  𝒙𝒊 𝒚,𝑺 = 𝜽𝒙𝒊,𝒔𝒕𝒓𝒖𝒄𝒕𝒖𝒓𝒆
× 𝜽𝒙𝒊,𝒔𝒑𝒆𝒄𝒕𝒓𝒖𝒎

   . (8) 

Furthermore, 𝜃𝑥𝑖 ,𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒  is estimated as the maximum matching score between 𝑥𝑖  and every 

subset of  y, which is denoted as 𝑦𝑗 , 𝑗 ∈ (1,… ,𝑚!), in chemical shift, proton number, multiplicity, 

and coupling constants. Formally, we have 

𝜃𝑥𝑖 ,𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 = max(𝜃𝑥𝑖
𝑦1 ,… ,𝜃𝑥𝑖

𝑦𝑗 ,… ,𝜃𝑥𝑖
𝑦𝑚 !)   
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   with 𝜽𝒙𝒊

𝒚𝒋
= 𝒇(𝜽𝒙𝒊,𝒄𝒔

𝒚𝒋
,𝜽𝒙𝒊,𝒑𝒏

𝒚𝒋
,𝜽𝒙𝒊,𝑴

𝒚𝒋
,𝜽𝒙𝒊,𝑱

𝒚𝒋
) = 𝜽𝒙𝒊,𝒄𝒔

𝒚𝒋
× 𝜽𝒙𝒊,𝒑𝒏

𝒚𝒋
× 𝜽𝒙𝒊,𝑴

𝒚𝒋
× 𝜽𝒙𝒊,𝑱

𝒚𝒋
     (9) 

Here, 𝜃𝑥𝑖,𝑐𝑠
𝑦𝑗

 is a measure for the matching between 𝑥𝑖  and 𝑦𝑗  in chemical shift. 𝜃𝑥𝑖 ,𝑝𝑛
𝑦𝑗 is a measure for 

the matching between 𝑥𝑖  and 𝑦𝑗  in proton number. 𝜃𝑥𝑖,𝑀
𝑦𝑗

 is a measure for the matching between 𝑥𝑖  

and 𝑦𝑗  in multiplicity. 𝜃𝑥𝑖,𝐽
𝑦𝑗

 is a measure for the matching between 𝑥𝑖  and 𝑦𝑖 ’s coupling constants.  

To simplify the computation, we assume that each measure independently influences the structure 

matching measure 𝜃𝑥𝑖
𝑦𝑗 in (9). 

𝜃𝑥𝑖 ,𝑠𝑝𝑒𝑐𝑡𝑟𝑢𝑚  is estimated as the product of 𝑥𝑖 ′s fitness to the input spectrum, and 𝑥𝑖 ′s  reliability. 

Formally, we have 

𝜽𝒙𝒊,𝒔𝒑𝒆𝒄𝒕𝒓𝒖𝒎
= 𝒇(𝜽𝒙𝒊,𝒔𝒇

,𝜽𝒙𝒊,𝒓𝒆𝒍𝒊
) =𝜽𝒙𝒊,𝒔𝒇

× 𝜽𝒙𝒊,𝒓𝒆𝒍𝒊
   (10) 

Here, 𝜃𝑥𝑖 ,𝑠𝑓  is a measure to scale 𝑥𝑖 ′s fitness to the spectrum S, and 𝜃𝑥𝑖 ,𝑟𝑒𝑙𝑖   is a measure to scale 𝑥𝑖 ′s 

chance to be a simple, clean, non-overlapped experimental multiplet. Note, to simplify the 

computation, we assume each measure independently influences the spectrum matching measure 

𝜃𝑥𝑖 ,𝑠𝑝𝑒𝑐𝑡𝑟𝑢𝑚  in (10). 

Similarly, 𝑝  𝑥𝑗|𝑥1 … , 𝑥𝑗−1, 𝑥
𝑗+1

, … , 𝑥𝑖, 𝒚, 𝑆 , 𝑥𝑗  ∈ (𝑥1 ,𝑥2 ,… , 𝑥𝑖) is decomposed as the product of a 

structure matching score and a spectrum matching score. The structure matching score and the 

spectrum matching score are different from 𝜃𝑥𝑖 ,𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒  𝑎𝑛𝑑 𝜃𝑥𝑖 ,𝑠𝑝𝑒𝑐𝑡𝑟𝑢𝑚 , since the computation of 

the scores of 𝑥𝑗  requires the consideration of the matching measure for other peak clusters  

(𝑥1 … , 𝑥𝑗−1, 𝑥𝑗+1,… , 𝑥𝑖 ) in the peak cluster list. To distinguish the difference, we denote the structure 

matching score as   𝜃𝑥𝑖 ,𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒
′ , and denote the spectrum matching score as 𝜃𝑥𝑖 ,𝑠𝑝𝑒𝑐𝑡𝑟𝑢𝑚

′ .  In 

addition, the factors are introduced to punish the previous deselect of 𝑥𝑗  from the peak cluster list 

(see 4.4.3 and Fig 33 Module (2)). Due to the independency of the structure measurement and the 

spectra measurement, different factors are used to punish the structure matching score and the 

spectra matching score respectively. Formally, we have 

𝒑  𝒙𝒋|𝒙𝟏… ,𝒙𝒋−𝟏,𝒙𝒋+𝟏,… ,𝒙𝒊,𝒚,𝑺  =  𝜽𝒙𝒋,𝒔𝒕𝒓𝒖𝒄𝒕𝒖𝒓𝒆
′ ×  𝟏 − 𝒃𝒊𝒂𝒔𝒔𝒕𝒓 

𝒄𝒏𝒕𝒔𝒕𝒓_𝒓𝒆𝒋 × (𝜽𝒙𝒋,𝒔𝒑𝒆𝒄𝒕𝒓𝒖𝒎
′ × (𝟏 − 𝒃𝒊𝒂𝒔𝒔𝒑𝒆)𝒄𝒏𝒕𝒔𝒑𝒆_𝒓𝒆𝒋)      

(11) 

Here, 𝑏𝑖𝑎𝑠𝑠𝑡𝑟  and 𝑏𝑖𝑎𝑠𝑠𝑝𝑒  are hyper parameters to define the level of the punishment in structure 

matching and spectrum matching respectively. 𝑐𝑛𝑡𝑠𝑡𝑟 _𝑟𝑒𝑗   denotes the times 𝑥𝑗   was deselected from 

the peak cluster list due to structural inconsistencies. 𝑐𝑛𝑡𝑠𝑝𝑒 _𝑟𝑒𝑗  denotes the times of deselecting 𝑥𝑗  

from the peak cluster list due to spectrum inconsistencies. 

Furthermore, 𝜽𝒙𝒋,𝒔𝒕𝒓𝒖𝒄𝒕𝒖𝒓𝒆
′  is estimated as the maximum matching score between 𝒙𝒋  and any subset 

𝒚𝒌 𝒌 ∈ (𝟏,… ,𝒎!) of y  in chemical shift, proton number, multiplicity, coupling constants, and 

connectivity. Formally, we have  

 𝜽𝒙𝒋,𝒔𝒕𝒓𝒖𝒄𝒕𝒖𝒓𝒆
′ = 𝐦𝐚𝐱(𝜽𝒙𝒋

𝒚𝟏,′ ,… ,𝜽𝒙𝒋

𝒚𝒌,′ ,… ,𝜽𝒙𝒋

𝒚𝒎!,′ )  (12) 

with  𝜽𝒙𝒋

𝒚𝒌,′
= 𝒇(𝜽𝒙𝒋,𝒄𝒔

𝒚𝒌 ,𝜽𝒙𝒋,𝑴

𝒚𝒌 ,𝜽𝒙𝒋,𝑱

𝒚𝒌 ,𝜽𝒙𝒋,𝒄𝒐𝒏

𝒚𝒌,𝒙,𝒚
,𝜽𝒙𝒋,𝒑𝒏

𝒌 ) = 𝜽𝒙𝒋,𝒄𝒔

𝒚𝒌 × 𝜽𝒙𝒋,𝑴

𝒚𝒌 × 𝜽𝒙𝒋,𝑱

𝒚𝒌  × 𝜽𝒙𝒋,𝒄𝒐𝒏

𝒚𝒌,𝒙,𝒚
 ×  𝜽𝒙𝒋,𝒑𝒏

𝒚𝒌   (13) 
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Here, 𝜃𝑥𝑗 ,𝑐𝑜𝑛

𝑦𝑘 ,𝑥 ,𝑦
   is a measure of the connectivity consistency among 𝑥1 ,… , 𝑥𝑖 ,𝑦1 ,… ,𝑦𝑚 !  by assigning 

𝑥𝑗   to 𝑦𝑘 .  

𝜃𝑥𝑗 ,𝑠𝑝𝑒𝑐𝑡𝑟𝑢𝑚
′  is estimated as the product of 𝑥𝑖 ′s fitness to the “difference” spectrum (see below), and 

𝑥𝑖 ′s  reliability. Formally, we have 

 

𝜽𝒙𝒋,𝒔𝒑𝒆𝒄𝒕𝒓𝒖𝒎
′ = 𝒇(𝜽𝒙𝒊,𝒔𝒇

′ ,𝜽𝒙𝒊,𝒓𝒆𝒍𝒊) =𝜽𝒙𝒊,𝒔𝒇
′ × 𝜽𝒙𝒊,𝒓𝒆𝒍𝒊   (14) 

Here, 𝜃𝑥𝑖 ,𝑠𝑓  is a measurement to scale 𝑥𝑖‘s fitness to the “difference” spectrum.  Whereas the 

“difference” spectrum is defined as the absolute difference between the input NMR spectrum and 

the pseudo spectrum constructed with peak cluster list (𝑥1 ,… , 𝑥𝑗−1 ,𝑥𝑗+1  … , 𝑥𝑖).  

With slight modifications, formula (11) and (12) are directly usable for the estimation of the peak 

cluster hypothesis’s relative confidence score for quantification (see 4.4.5). By denoting the peak 

cluster hypothesis s relative confidence score as , we obtain  

 

𝑹𝑪𝑺𝒙𝒊 =  𝑹𝑪𝑺𝒙𝒊,𝒔𝒕𝒓𝒖𝒄𝒕𝒖𝒓𝒆 ×  𝟏 − 𝒃𝒊𝒂𝒔𝒔𝒕𝒓 
𝒄𝒏𝒕𝒔𝒕𝒓_𝒓𝒆𝒋 × (𝜽𝒙𝒋,𝒔𝒑𝒆𝒄𝒕𝒓𝒖𝒎

′ × (𝟏 − 𝒃𝒊𝒂𝒔𝒔𝒑𝒆)𝒄𝒏𝒕𝒔𝒑𝒆_𝒓𝒆𝒋)    (15) 

𝑹𝑪𝑺𝒙𝒊,𝒔𝒕𝒓𝒖𝒄𝒕𝒖𝒓𝒆 = 𝐦𝐚𝐱(𝜽𝒙𝒋

𝒚𝟏,′ ,… ,𝜽𝒙𝒋

𝒚𝒌,′ ,… ,𝜽𝒙𝒋

𝒚𝒎,′ ) −𝒔𝒆𝒄𝒐𝒏𝒅𝐦𝐚𝐱(𝜽𝒙𝒋

𝒚𝟏,′ ,… ,𝜽𝒙𝒋

𝒚𝒌,′ ,… ,𝜽𝒙𝒋

𝒚𝒎,′ )             (16) 

 

5.3.1 Computing 𝜽𝒙𝒊,𝒄𝒔

𝒚𝒋
  

 

𝜃𝑥𝑖,𝑐𝑠
𝑦𝑗  denotes the measure of the consistency between the peak cluster hypothesis 𝑥𝑖   and the 

theoretical multiplet distribution subset  𝑦𝑗   in chemical shift. Formally we have  

𝜽𝒙𝒊,𝒄𝒔

𝒚𝒋
= 𝒇  𝒄𝒔𝒙𝒊 , 𝒄𝒔𝒚𝒋 , 𝒄𝒔𝒍𝒚𝒋 , 𝒄𝒔𝒉𝒚𝒋                          (17) 

Here, 𝑐𝑠𝑥𝑖  denotes chemical shift of peak cluster hypothesis 𝑥𝑖 ’s, 𝑐𝑠𝑦𝑗
 denotes the average chemical 

shift of the theoretical multiplet distribution subset 𝑦𝑗  , 𝑐𝑠𝑙𝑦𝑗
 and 𝑐𝑠ℎ𝑦𝑗  

denote the lowest  and the 

highest end of  𝑦𝑗 ’s chemical shift, respectively.  

Spectroscopists utilize several empirical rules to evaluate the consistency between 𝑥𝑖  and 𝑦𝑗  in 

chemical shift, which are described below.  

(1) If 𝑥𝑖  and 𝑦𝑗  are consistent in chemical shift, the probability of the experimental chemical 

shift 𝑐𝑠𝑥𝑖  fallen into the chemical shift range [𝑐𝑠𝑙𝑦𝑗
, 𝑐𝑠ℎ𝑦𝑗

] is high (> 95%).   

(2)  𝑐𝑠𝑙𝑦𝑗
  and 𝑐𝑠ℎ𝑦𝑗

  can be asymmetric to 𝑐𝑠𝑦𝑗
  

(3)  𝑐𝑠𝑦𝑗
 has the highest probability density in range [𝑐𝑠𝑙𝑦𝑗

, 𝑐𝑠ℎ𝑦𝑗
]. 

To model these empirical rules, the beta function is used to concretely compute 𝜃𝑥𝑖,𝑐𝑠
𝑦𝑗 . This results in: 
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𝜽𝒙𝒊,𝒄𝒔

𝒚𝒋
=  

𝒃𝒆𝒕𝒂  𝒄𝒔𝒙𝒊 , 𝒄𝒔𝒍𝒚𝒋 , 𝒄𝒔𝒉𝒚𝒋 ,𝜶,𝜷    , 𝒄𝒔𝒍𝒚𝒋 < 𝑐𝑠𝒙𝒊 < 𝒄𝒔𝒉𝒚𝒋  

𝜺         ,𝒐𝒕𝒉𝒆𝒓𝒔
      (18) 

with   

where,  

. 

Here, 𝛼  and 𝛽  are hyper-parameters, which are computed with 𝑐𝑠𝑦𝑗
, 𝑐𝑠𝑙𝑦𝑗

, 𝑐𝑠ℎ𝑦𝑗
.  𝜀  is a small 

positive real number used to model the noise in the measurement channel.   

Note, under the premise to satisfy above empirical rules, the choice of the function to calculate 𝜃𝑥𝑖,𝑐𝑠
𝑦𝑗  

is arbitrary. Other functions e.g. triangle or ladder function can be used here instead. 

 

5.3.2 Computing 𝜽𝒙𝒊,𝒑𝒏

𝒚𝒋
 

 

With the integration proton ratio given, the proton number of the peak cluster hypothesis can be 

computed directly. On the other hand, the proton number of the given theoretical multiplet 

distribution subset is simply the sum of the proton number of all theoretical multiplet distributions 

in the subset. With both proton numbers calculated, a strict decision rule is used to measure the 

consistency between 𝑥𝑖  and 𝑦𝑗 ’s proton numbers.  Formally, we have 

 

𝜃𝑥𝑖,𝑝𝑛
𝑦𝑗 = 𝑓  𝑝𝑛𝑥𝑖 ,𝑝𝑛𝑦𝑗

   

=  
𝟏 − 𝜺,    𝒑𝒏𝒙𝒊

= 𝒑𝒏𝒚𝒋
      

𝜺,        𝒑𝒏𝒙𝒊
≠ 𝒑𝒏𝒚𝒋

   
   (19) 

Here,  𝑝𝑛𝑥𝑖   denotes the proton numbers of the peak cluster hypothesis 𝑥𝑖  , 𝑝𝑛𝑦𝑗
 denotes the proton 

numbers of the theoretical multiplet distribution subset 𝑦𝑗 .  is a small positive real number used to 

model the noise in the measurement channel.  

  

5.3.3 Computing 𝜽𝒙𝒊,𝑴

𝒚𝒋
 

 

Different from 𝜃𝑥𝑖,𝑐𝑠
𝑦𝑗  and θx i ,pn

y j , 𝜃𝑥𝑖,𝑀
𝑦𝑗  is computed only if it is possible to match multiplicity between 

𝑥𝑖  and 𝑦𝑗 . While it is impossible to match 𝑥𝑖  and 𝑦𝑗 ’s multiplicity, 𝜃𝑥𝑖,𝑀
𝑦𝑗  is set as the default value 1. 

Specifically, two conditions are required to be satisfied for computing  𝜃𝑥𝑖,𝑀
𝑦𝑗  . (1) The peak cluster 

hypothesis 𝑥𝑖  should appear as a clear first order multiplet pattern. In other words, the multiplet 
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hypothesis space of the peak cluster hypothesis should contain a first-order multiplet interpretation, 

which can explain the majority signal of the peak cluster hypotheses. (2) The theoretical multiplet 

distribution subset should contain only one theoretical multiplet distribution. The first condition 

limits the candidates to the peak cluster hypotheses, which contain clear first-order multiplicity 

pattern. At the same time, it excludes the peak cluster hypotheses which are the signals from second 

(high)-order multiplets. The second condition limits the candidates to peak cluster hypotheses, 

which is one-to-one mapped to the theoretical multiplet distribution. Obviously, in case that a peak 

cluster hypothesis is matched to multiple theoretical multiplet distributions (which mean that the 

observed peak cluster hypothesis is the overlapping of multiple multiplets), reliable multiplicities 

cannot be extracted from the peak cluster hypothesis. Therefore, the match on the multiplicity 

should not be computed. 

With above two conditions satisfied, a strict decision rule is used to measure the consistency 

between 𝑥𝑖  and 𝑦𝑗 ’s multiplicities.  Formally, we have 

 

𝜃𝑥𝑖,𝑀
𝑦𝑗 = 𝑓  𝑛𝑐𝑥𝑖 ,𝑛𝑐𝑦𝑗

   

=  
𝟏 − 𝜺,    𝒏𝒄𝒙𝒊 = 𝒏𝒄𝒚𝒋       

𝜺,        𝒏𝒄𝒙𝒊 ≠ 𝒏𝒄𝒚𝒋    
    (20) 

Here,  𝑛𝑐𝑥𝑖   denotes the number of couplings of the multiplet hypothesis in the peak cluster 

hypothesis  𝑥𝑖 , 𝑛𝑐𝑦𝑗
 denotes the number of coupling of the theoretical multiplet distribution in 𝑦𝑗 . 𝜀 

is a small positive real number used to model the noise in the measurement channel.   

 

5.3.4 Computing Coupling Constant Measure 𝜽𝒙𝒊,𝑱

𝒚𝒋
 

 

Since the coupling constant is the quantity bounded with multiplicity, similar to 𝜃𝑥𝑖,𝑀
𝑦𝑗 , 𝜃𝑥𝑖,𝐽

𝑦𝑗  is only 

computed when above two conditions in 5.3.3 are satisfied. Specifically,  𝜃𝑥𝑖,𝐽
𝑦𝑗  denotes the measure 

of the consistency between the multiplet hypothesis in 𝑥𝑖  and the theoretical multiplet distribution 

𝑦𝑗  in coupling constants. First, both the coupling constants of the multiplet hypothesis in 𝑥𝑖   and the 

predicted coupling constants of the theoretical multiplet distribution 𝑦𝑗  are sorted by the numerical 

size of the coupling constants. Next, n one-to-one consistent mappings are built between the sorted 

coupling constants of 𝑥𝑖  and 𝑦𝑗 . n is the number of couplings of 𝑥𝑖  or 𝑦𝑗 . Then 𝜃𝑥𝑖,𝐽
𝑦𝑗  is represented as 

the product of n consistent measurements defined upon the n one-to-one consistent mapping 

between 𝑥𝑖  and 𝑦𝑗 . Formally, we have 

 

𝜽𝒙𝒊,𝑱

𝒚𝒋
 = 𝜽𝒙𝒊,𝑱𝟏

𝒚𝒋
 × 𝜽𝒙𝒊,𝑱𝟏

𝒚𝒋
 × …× 𝜽𝒙𝒊,𝑱𝒌

𝒚𝒋
× …× 𝜽𝒙𝒊,𝑱𝒏

𝒚𝒋
                   (21) 

Here, 𝜃𝑥𝑖,𝐽 𝑘

𝑦𝑗 denotes the consistent measurement between the kth coupling constant of  and the 

kth coupling constant of . Then,  𝜃𝑥𝑖,𝐽 𝑘

𝑦𝑗  can be written as: 
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𝜽𝒙𝒊,𝑱𝒌

𝒚𝒋 = 𝒇(𝑱𝒙𝒊
𝒌 , 𝑱𝒚𝒋

𝒌 , 𝑱𝒍𝒚𝒋
𝒌 , 𝑱𝒉𝒚𝒋

𝒌 )      (22) 

Here,  𝐽𝑥𝑖
𝑘  denotes of the multiplet hypothesis in 𝑥𝑖 ’s kth coupling constant,  𝐽𝑦𝑗

𝑘  denotes the 

theoretical multiplet distribution 𝑦𝑗 ’s kth predicted coupling constant,  𝐽𝑙𝑦𝑗
𝑘  denotes  𝑦𝑗 ’s kth 

coupling constant range low end, 𝐽ℎ𝑦𝑗
𝑘  denotes 𝑦𝑗 ’s kth coupling constant range high end.  

Spectroscopists utilize several empirical rules to evaluate 𝜃𝑥𝑖,𝐽 𝑘

𝑦𝑗 , which are described below.  

 

(1) If 𝑥𝑖  and 𝑦𝑗 s’ kth coupling constant is consistent, the probability of the experimental 

coupling constant 𝐽𝑥𝑖
𝑘  falls into the coupling constant range [𝐽𝑙𝑦𝑗

𝑘 , 𝐽ℎ𝑦𝑗
𝑘 ] is high (> 95%).  

(2)  𝐽𝑙𝑦𝑗
𝑘   and 𝐽ℎ𝑦𝑗

𝑘  are asymmetric to 𝐽𝑦𝑗
𝑘 .  

(3)  𝐽𝑦𝑗
𝑘  has the highest probability density in range [𝐽𝑙𝑦𝑗

𝑘 , 𝐽ℎ𝑦𝑗
𝑘 ]. 

To model these empirical rules, the beta function is used to concretely compute 𝜃𝑥𝑖,𝐽 𝑘

𝑦𝑗 .  Formally, we 

have 

 

𝜽𝒙𝒊,𝑱𝒌

𝒚𝒋
=  

𝒃𝒆𝒕𝒂  𝑱𝒙𝒊
𝒌 , 𝑱𝒍𝒚𝒋

𝒌 , 𝑱𝒉𝒚𝒋
𝒌 ,𝜶,𝜷   ,   𝑱𝒍𝒚𝒋

𝒌 < 𝐽𝒙𝒊
𝒌 < 𝑱𝒉𝒚𝒋

𝒌  

𝝐          ,               𝒐𝒕𝒉𝒆𝒓𝒔
        (23) 

with,  

 

where, . 

Here, 𝛼 and 𝛽 are hyper parameters, which could be optimized by 𝐽𝑦𝑗
𝑘 , 𝐽𝑙𝑦𝑗

𝑘 , 𝐽ℎ𝑦𝑗
𝑘 .  𝜀 is a small positive 

real number used to model the noise in the measurement channel.   

Note, under the premise to satisfy above empirical rules, the choice of the function to calculate 𝜃𝑥𝑖,𝐽 𝑘

𝑦𝑗  

is arbitrary. Other functions e.g. triangle or ladder function can be used here instead. 

 

5.3.5 Computing Coupling Connectivity Measure 𝜽𝒙𝒊,𝒄𝒐𝒏

𝒚𝒋,𝒙,𝒚
 

 

To estimate 𝜃𝑥𝑖,𝑐𝑜𝑛
𝑦𝑗 , first, all possible one-to-one assignments between (𝑥1 ,𝑥2 ,… , 𝑥𝑖−1 ) and 

(𝑦1 ,… ,𝑦𝑗−1 ,𝑦𝑗+1  … ,𝑦𝑚 ) need to be established. Here, 𝑚 ≥ 𝑖. By adding the additional mapping 

between 𝑥𝑖  and 𝑦𝑗 , all possible one-to-one mappings between (𝑥1 ,𝑥2 ,… , 𝑥𝑖) and (𝑦1 ,𝑦2 ,… ,𝑦𝑚 ) are 

constructed. Formally, we denote the ensemble of all possible assignments as 𝑿, and  𝑿  is 

decomposable as  (𝑋1 ,𝑋2 ,… ,𝑋𝑚 ). Obviously, the size of 𝑿 is 𝐶𝑖−1
𝑚−1. Next, a theoretical connectivity 
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matrix is constructed from the theoretical multiplet distribution list 𝑦1 ,𝑦2 ,… ,𝑦𝑚 . We denote it as 

𝑀𝒚. Specifically, 𝑀𝑝 ,𝑞
𝒚

, the element of the pth row and the qth column of 𝑀𝒚, represents the 

existence of a coupling from theoretical multiplet distribution 𝑦𝑝  to 𝑦𝑞 . (Note, one represents the 

existence, and zero represents the nonexistence.) Similarly, an experimental connectivity matrix is 

constructed for each 𝒙 ∈ 𝑿. We denote it as 𝑀𝒙, while 𝑀𝑝 ,𝑞
𝒙 , the element of the pth row and the qth 

column of 𝑀𝒙, represents the number of experimental couplings from experimental multiplet 

hypotheses 𝑥𝑝  to 𝑥𝑞 . Specifically,  𝑀𝑝 ,𝑞
𝒙  is estimated by counting the number of the couplings in 𝑥𝑝 , 

which have the coupling constant equal to a coupling constant of 𝑥𝑞 .  With above matrixes, the 

connectivity consistency analysis is easily implemented by comparing the corresponding numbers of 

𝑀𝒙and 𝑀𝒚. If  𝑀𝑝 ,𝑞
𝒙 ≥ 𝑀𝑝 ,𝑞

𝒚
for all p and q where both 𝑥𝑝  and 𝑥𝑞  are existed and assigned to 𝑦𝑝  and 

𝑦𝑞 , the assignment of 𝑥𝑖  to 𝑦𝑗  is consistent with 𝑥1 ,𝑥2 ,… , 𝑥𝑖−1 ,𝑦1 ,… , 𝑦𝑗−1 ,𝑦𝑗+1 ,… ,𝑦𝑖  in connectivity. 

Formally, we have 

 

𝜽𝒙𝒊,𝒄𝒐𝒏

𝒚𝒋
= 𝒇 𝒙𝒊,𝑴

𝒙,  𝑴𝒀  =  
𝟏 − 𝜺,      ∃𝒙 ∈ 𝑿 , 𝑴𝒙  ≥    𝑴𝒚

𝜺,                        𝑶𝒕𝒉𝒆𝒓𝒔  
      (24) 

Note, 𝜀 is a small positive real number used to model the noise in the measurement channel.   

The existence symbol in formula (24) shows that the exhausted search through 𝑿 is unnecessary. 

The search stops whenever  ∃𝒙 ∈ 𝑿 , 𝑀𝒙  ≥    𝑀𝒚 is satisfied. To further reduce the computational 

complexity,   𝜃𝑥𝑘 ,𝑐𝑠

𝑦𝑘 × 𝜃𝑥𝑘 ,𝑀

𝑦𝑘  ×  𝜃𝑥𝑘 ,𝐽

𝑦𝑘𝑖
𝑘=1   is computed for 𝒙 ∈ 𝑿 to define an order through 𝑿. In 

this way, the assignment 𝒙, which has large individual matching score on chemical shift, proton 

number, multiplicity and coupling constants, is estimated first. 

 

5.3.6 Spectrum Fitting Score 𝜽𝒙𝒊,𝒔𝒇 and 𝜽𝒙𝒊,𝒔𝒇
′  

 

𝜃𝑥𝑖 ,𝑠𝑓  is used to measure in how far the peak cluster hypothesis 𝑥𝑖  matches the input 1D 1H NMR 

spectrum. This is measured by 𝑥𝑖 ’s integration on the real spectrum. Formally, we have 

𝜽𝒙𝒊,𝒔𝒇
=  𝑰𝒙𝒊  (25) 

Note, 𝐼𝑥𝑖  denote the integration of  𝑥𝑖  on the real spectrum S normalized over the peak cluster 

hypotheses space. 

Similarly, 𝜃𝑥𝑖 ,𝑠𝑓
′  is used to measure in how far the peak cluster hypothesis 𝑥𝑖  matches the 

“difference” spectrum. The procedure to compute the “difference” spectrum is described below. 

Specifically,  

a. Set the “difference” spectra 𝐷 equal to the real spectrum 𝑆. 

b. Loop through (𝑥1 ,𝑥2 ,… , 𝑥𝑖−1) with j 

c. Subtract the signal of peak cluster hypothesis 𝑥𝑗  from 𝐷 to compute the new “difference” 

spectrum. 

d. Repeat b. 
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A hybrid rule is used to measure in how far the peak cluster hypothesis 𝑥𝑖  matches the “difference” 

spectrum. Specifically, if all regions of the “difference” spectrum that the peak cluster hypothesis 𝑥𝑖  

covers contain NMR signals, 𝜃𝑥𝑖 ,𝑠𝑓
′  is measured by 𝑥𝑖 ’s integration into the ”difference” spectrum. 

Else, a small positive real number 𝜀 is assigned to 𝜃𝑥𝑖 ,𝑠𝑓
′ . Formally, we have 

 

𝜽𝒙𝒊,𝒔𝒇
′   =  

𝑰𝒙𝒊
′ ,     𝒊𝒇 𝑫 𝒄𝒐𝒏𝒕𝒂𝒊𝒏𝒔 𝒇𝒖𝒍𝒍 𝒔𝒊𝒈𝒏𝒂𝒍𝒔 𝒐𝒇 𝒙𝒊 

𝜺,                        𝑶𝒕𝒉𝒆𝒓𝒔  
  (26) 

Note, 𝐼𝑥𝑖
′ denotes the integration of  𝑥𝑖  on the “difference” spectrum D normalized over the peak 

cluster hypotheses space, 𝜀  is a small positive real number used to model the noise in the 

measurement channel.  

 

5.3.7 Reliability Score 𝜽𝒙𝒊,𝒓𝒆𝒍𝒊 

 

𝜃𝑥𝑖 ,𝑟𝑒𝑙𝑖  is used to measure spectroscopists’ subjective appraisal of a peak cluster hypothesis 𝑥𝑖 . 

Intuitively, spectroscopists prefer prominent, simple, “clean” experimental peak clusters. Here, 

“clean” means non-overlapping, low-baseline, etc. This can be described with 𝑥𝑖 ’s  fitness to the 

spectrum, 𝑥𝑖 ’s  average line width,  𝑥𝑖 ’s  amplitude asymmetric level,   𝑥𝑖 ’s  base line level, 𝑥𝑖 ’s  out 

overlapping level,  𝑥𝑖 ’s  multiplicity complexity, 𝑥𝑖 ’s peak reliability, etc. Correspondingly, a group of 

factors are defined to estimate 𝜃𝑥𝑖 ,𝑟𝑒𝑙𝑖 . Formally, we have   

  𝜽𝒙𝒊,𝒓𝒆𝒍𝒊 =  𝜽𝒙𝒊,𝒔𝒇 × 𝜽𝒙𝒊,𝒍𝒘 × 𝜽𝒙𝒊,𝒂𝒔𝒚𝒎 × 𝜽𝒙𝒊,𝑴−𝒔𝒊𝒎 × 𝜽𝒙𝒊,𝒐𝒍_𝒐𝒖𝒕 × 𝜽𝒙𝒊,𝒃𝒔  × 𝜽𝒙𝒊,𝒑𝒆𝒂𝒌_𝒓𝒆𝒍𝒊 × …        (27) 

Here, 

(1) 𝜃𝑥𝑖 ,𝑎𝑠𝑦𝑚  is a factor to measure 𝑥𝑖 ’s level of amplitude asymmetry. Specifically, 𝜃𝑥𝑖 ,𝑎𝑠𝑦𝑚  is 

proportional to the sum of the absolute amplitude difference between every symmetric peak pair in 

𝑥𝑖 .   

(2) 𝜃𝑥𝑖 ,𝑀−𝑠𝑖𝑚  is a factor to measure 𝑥𝑖 ’s multiplicity complexity. Specifically, a rough empirical rule is 

used here to assign   𝜃𝑥𝑖 ,𝑀−𝑠𝑖𝑚  a score. Formally we have 

𝜽𝒙𝒊,𝑴−𝒔𝒊𝒎 =

 

𝟏,      𝟎 ≤  𝒙𝒊𝐬 𝐧𝐮𝐦𝐛𝐞𝐫 𝐨𝐟 𝐬𝐢𝐠𝐧𝐢𝐟𝐢𝐜𝐚𝐧𝐭 𝐦𝐮𝐥𝐭𝐢𝐩𝐥𝐞𝐭 𝐢𝐧𝐭𝐞𝐩𝐫𝐞𝐭𝐚𝐭𝐢𝐨𝐧 ≤ 𝟐            
𝟎.𝟓,        𝟐 <  𝒙𝒊𝐬 𝐬𝐢𝐠𝐧𝐢𝐟𝐢𝐜𝐚𝐧𝐭 𝐦𝐮𝐥𝐭𝐢𝐩𝐥𝐞𝐭 𝐢𝐧𝐭𝐞𝐩𝐫𝐞𝐭𝐚𝐭𝐢𝐨𝐧 ≤ 𝟑                                    
𝟎.𝟐𝟓,     𝟑 <  𝒙𝒊𝐬 𝐬𝐢𝐠𝐧𝐢𝐟𝐢𝐜𝐚𝐧𝐭 𝐦𝐮𝐥𝐭𝐢𝐩𝐥𝐞𝐭 𝐢𝐧𝐭𝐞𝐩𝐫𝐞𝐭𝐚𝐭𝐢𝐨𝐧 ≤ 𝟒                                     

𝛆,       𝐨𝐭𝐡𝐞𝐫𝐬.                                                                                             

       (28) 

Here, 𝜀 is a small positive real number used to model the noise in the measurement channel. 

(3) 𝜃𝑥𝑖 ,𝑜𝑙_𝑜𝑢𝑡   is a factor to measure the overlapping level between 𝑥𝑖  and the neighboring peak 

clusters. Specifically, the following procedure is used to estimate 𝜃𝑥𝑖 ,𝑜𝑙_𝑜𝑢𝑡 . 

a. The nearest local minimum points or the inflexion points on both sides of 𝑥𝑖  are detected. 

b. The ratio of the amplitude of the most left peak of 𝑥𝑖  and the nearest local minimum point 

(or the inflexion point) on the left side, and the ratio of the amplitude of the most right peak of 
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𝑥𝑖  and the nearest local minimum point (or the inflexion point) on the right side are computed 

and averaged.  

c. Normalize 𝑥𝑖 ’s average amplitude ratio through the peak cluster hypotheses space. The 

normalized average amplitude ratio then is used as the estimation of 𝜃𝑥𝑖 ,𝑜𝑙_𝑜𝑢𝑡 . 

(4) 𝜃𝑥𝑖 ,𝑏𝑠   is a factor to measure 𝑥𝑖 ’s relative baseline level. Specifically, 𝑥𝑖 ’s baseline level is 

computed by averaging the amplitudes of the nearest local minimum or inflexion points. 𝜃𝑥𝑖 ,𝑏𝑠   is 

estimated as the ratio between 𝑥𝑖 ’s baseline level and the spectra’s noise level. Note, the 

normalization is implemented through the peak cluster hypotheses space to restrict the value of 

𝜃𝑥𝑖 ,𝑏𝑠  in [0, 1]. 

(5) 𝜃𝑥𝑖 ,𝑠𝑓 ,𝜃𝑥𝑖 ,𝑙𝑤  , 𝜃𝑥𝑖 ,𝑝𝑒𝑎𝑘 _𝑟𝑒𝑙𝑖  (see 5.3.8) 

Note, the independent assumption over 𝜃𝑥𝑖 ,𝑠𝑓 ,𝜃𝑥𝑖 ,𝑙𝑤 ,𝜃𝑥𝑖 ,𝑎𝑠𝑦𝑚 ,𝜃𝑥𝑖 ,𝑀−𝑠𝑖𝑚 ,𝜃𝑥𝑖 ,𝑜𝑙_𝑜𝑢𝑡 ,𝜃𝑥𝑖 ,𝑏𝑠    is 

inaccurate. For example, 𝜃𝑥𝑖 ,𝑜𝑙_𝑜𝑢𝑡  𝑎𝑛𝑑 𝜃𝑥𝑖 ,𝑏𝑠  rely on each other. A Bayesian network could be 

introduced here to model the interdependence among 

𝜃𝑥𝑖 ,𝑠𝑓 ,𝜃𝑥𝑖 ,𝑙𝑤 ,𝜃𝑥𝑖 ,𝑎𝑠𝑦𝑚 ,𝜃𝑥𝑖 ,𝑀−𝑠𝑖𝑚 ,𝜃𝑥𝑖 ,𝑜𝑙_𝑜𝑢𝑡 ,𝜃𝑥𝑖 ,𝑏𝑠 . 

 

5.3.8 Solvent likelihood 𝜽𝒙𝒊,𝒔𝒐 

 

Going back to solvent detection (see 4.4.1), a confidence score is computed for each peak cluster 

hypothesis in the peak cluster hypothesis space to model its likelihood to be a solvent signal. In this 

sector, we formalize the solvent likelihood score computation procedure.   

Specifically, 𝜃𝑥𝑖 ,𝑠𝑜  is used to measure the likelihood of the peak cluster hypothesis 𝑥𝑖  to be a solvent 

signal. According to spectroscopists’ experience, depending on the type of the solvent, different 

factors influence spectroscopists’ recognition decision. As an example, the estimation of the 

likelihood of  to be a H2O signal or a DMSO signal is described in this sector. Formally, we denote 

the H2O likelihood as 𝜃𝑥𝑖 ,𝐻2𝑂, and the DMSO likelihood as 𝜃𝑥𝑖 ,𝐷𝑀𝑆𝑂 . 

A set of empirical rules are used to estimate 𝜃𝑥𝑖 ,𝐻2𝑂. Specifically, (1) the H2O signal appears in the 

chemical shift range of 3.0ppm – 4.9ppm. (2)The number of split peaks in the H2O signal is likely 

between 1 and 3. (3) The H2O signal has a wide line width. (4) The peaks of the H2O signal are 

overlapping. (5) The H2O signal does not have satellite peaks, etc. Correspondingly, a group of 

factors are defined to estimate 𝜃𝑥𝑖 ,𝐻2𝑂. Formally, we have    

𝜽𝒙𝒊,𝑯𝟐𝑶 =  𝜽𝒙𝒊,𝑯𝟐𝑶−𝒄𝒔 × 𝜽𝒙𝒊,𝑯𝟐𝑶−𝑴 × 𝜽𝒙𝒊,𝑯𝟐𝑶−𝒑𝒏 × 𝜽𝒙𝒊,𝒍𝒘 × 𝜽𝒙𝒊,𝒐𝒍_𝒊𝒏𝒕 × 𝜽𝒙𝒊,𝒔𝒂𝒕𝒆 × 𝜽𝒙𝒊,𝒑𝒆𝒂𝒌_𝒓𝒆𝒍𝒊  × …      (29) 

Here,  

(1) 𝜃𝑥𝑖 ,𝐻2𝑂−𝑐𝑠  is a factor to measure 𝑥𝑖 ’s likelihood to be in the H2O signal’s chemical shift range. 

This is computed by fitting a ladder distribution (see 4.4.1.2). 

(2) 𝜃𝐻2𝑂−𝑀  is used to evaluate 𝑥𝑖 ’s likelihood to be a H2O signal with its peak number. Specifically, a 

rough empirical rule is used here to assign   𝜃𝐻2𝑂−𝑚𝑢𝑙𝑡   a score. Formally we have 
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𝜽𝑯𝟐𝑶−𝑴 =  

𝟏,       𝐢𝐟 𝐧𝐮𝐦𝐛𝐞𝐫 𝐨𝐟 𝐩𝐞𝐚𝐤𝐬 𝐢𝐧 𝐱𝐢 𝐞𝐪𝐮𝐚𝐥𝐬 𝐭𝐨 𝐨𝐧𝐞.
𝟎.𝟓,      𝐢𝐟 𝐧𝐮𝐦𝐛𝐞𝐫 𝐨𝐟 𝐩𝐞𝐚𝐤𝐬 𝐢𝐧 𝐱𝐢 𝐞𝐪𝐮𝐚𝐥𝐬 𝐭𝐨 𝐭𝐰𝐨.  
𝟎.𝟐𝟓,     𝐢𝐟 𝐧𝐮𝐦𝐛𝐞𝐫 𝐨𝐟 𝐩𝐞𝐚𝐤𝐬 𝐢𝐧 𝐱𝐢 𝐞𝐪𝐮𝐚𝐥𝐬 𝐭𝐨 𝐭𝐡𝐫𝐞𝐞.

𝛆,       𝐨𝐭𝐡𝐞𝐫𝐬.                                                                 

        (30) 

Here,  𝜀 is a small positive real number used to model the noise in the measurement channel. 

(3)   𝜃𝐻2𝑂−𝑝𝑛  is used to evaluate 𝑥𝑖 ’s likelihood to be a H2O signal with its proton number (See 

4.4.1.2). 

(4) 𝜃𝑥𝑖 ,𝑙𝑤  is a factor to measure 𝑥𝑖 ’s line width. Specifically, 𝜃𝑥𝑖 ,𝑙𝑤  is proportional to the derivation of 

𝑥𝑖 ’s average line width from the average line width of the input spectra S.  

(5) 𝜃𝑥𝑖 ,𝑜𝑙_𝑖𝑛𝑡  is a factor to measure the overlapping level among the peaks of 𝑥𝑖 . Specifically, the 

following procedure is used to estimate 𝜃𝑥𝑖 ,𝑜𝑙_𝑖𝑛𝑡 . 

a. The local minimum points or the inflexion points between the peaks of  𝑥𝑖  are detected. 

b. The ratio of the amplitude of the detected local minimum point (or the inflexion point) and 

the average amplitude of the neighboring peaks are computed.   

c. The product of the amplitude ratios is used as the estimation of 𝜃𝑥𝑖 ,𝑜𝑙_𝑖𝑛𝑡 . 

(6) 𝜃𝑥𝑖 ,𝑠𝑎𝑡𝑒  is a factor to punish  𝑥𝑖  for having the satellite peaks. Specifically, we have 

 

𝜽𝒙𝒊,𝒔𝒂𝒕𝒆
= {

 𝟏 − 𝜺 , 𝒙𝒊 𝒅𝒐𝒆𝒔 𝒏𝒐𝒕 𝒉𝒂𝒗𝒆 𝒔𝒂𝒕𝒆𝒍𝒍𝒊𝒕𝒆 𝒑𝒆𝒂𝒌𝒔  
𝜺,             𝒙𝒊 𝒉𝒂𝒔 𝒔𝒂𝒕𝒆𝒍𝒍𝒊𝒕𝒆 𝒑𝒆𝒂𝒌𝒔  

    (31) 

Here, 𝜀 is a small positive real number used to model the noise in the measurement channel.   

(7) 𝜃𝑥𝑖 ,𝑝𝑒𝑎𝑘 _𝑟𝑒𝑙𝑖  is a factor to measure the reliability of  𝑥𝑖 ’s peaks. It is estimated as a product of the 

confidence scores of 𝑥𝑖 ’s peaks. 

Note, the independent assumption of 𝜃𝑥𝑖 ,𝐻2𝑂−𝑐𝑠 ,𝜃𝑥𝑖 ,𝐻2𝑂−𝑚𝑢𝑙𝑡 ,𝜃𝑥𝑖 ,𝐻2𝑂−𝑝𝑛 ,𝜃𝑥𝑖 ,𝑙𝑤 ,𝜃𝑥𝑖 ,𝑜𝑙_𝑖𝑛𝑡 ,𝜃𝑥𝑖 ,𝑠𝑎𝑡𝑒 , 

𝜃𝑥𝑖 ,𝑝𝑒𝑎𝑘 _𝑟𝑙   is inaccurate. For example, 𝜃𝑥𝑖 ,𝑙𝑤  have direct influence on 𝜃𝑥𝑖 ,𝑜𝑙_𝑖𝑛𝑡 . A Bayesian network 

could be introduced here to model the interdependence among 

𝜃𝑥𝑖 ,𝐻2𝑂−𝑐𝑠 ,𝜃𝑥𝑖 ,𝐻2𝑂−𝑚𝑢𝑙𝑡 ,𝜃𝑥𝑖 ,𝐻2𝑂−𝑝𝑛 ,𝜃𝑥𝑖 ,𝑙𝑤 ,𝜃𝑥𝑖 ,𝑜𝑙_𝑖𝑛𝑡 ,𝜃𝑥𝑖 ,𝑠𝑎𝑡𝑒 . 

 

Similarly, a set of empirical rules are used to estimate 𝜃𝑥𝑖 ,𝐷𝑀𝑆𝑂 . Specifically, (1) the DMSO signal 

appears in the chemical shift range of 2.0ppm – 3.0ppm. (2) The DMSO signal has certain 

multiplicity, e.g. most likely to be a quintuplet or a doublet of triplet. (3) The DMSO signal has certain 

coupling constant from 1.4Hz to 2.1Hz. (4) The DMSO signal has satellite peaks, etc.  

Correspondingly, a group of factors are defined to estimate 𝜃𝑥𝑖 ,𝐷𝑀𝑆𝑂 . Formally, we have 

    

𝜽𝒙𝒊,𝑫𝑴𝑺𝑶. =  𝜽𝒙𝒊,𝑫𝑴𝑺𝑶−𝒄𝒔 × 𝜽𝒙𝒊,𝑫𝑴𝑺𝑶−𝑴 × 𝜽𝒙𝒊,𝑫𝑴𝑺𝑶−𝒑𝒏 × (𝟏 − 𝜽𝒙𝒊,𝒔𝒂𝒕𝒆)  × 𝜽𝒙𝒊,𝒑𝒆𝒂𝒌_𝒓𝒆𝒍𝒊  × …          (32) 

Here,  
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(1) 𝜃𝑥𝑖 ,𝐷𝑀𝑆𝑂   is a factor to measure 𝑥𝑖 ’s likelihood to be in the DMSO signal’s chemical shift range. 

This is computed by fitting a ladder distribution (see 4.4.1.1). 

(2) 𝜃𝑥𝑖 ,𝐷𝑀𝑆𝑂−𝑀  is used to evaluate 𝑥𝑖 ’s likelihood to be a DMSO signal with its multiplicity. 

Specifically, a rough empirical rule is used here to assign   𝜃𝑥𝑖 ,𝐷𝑀𝑆𝑂−𝑀  a score. Formally we have 

 

𝜽𝒙𝒊,𝑫𝑴𝑺𝑶−𝑴 =  

𝟏,       𝐢𝐟 𝒙𝒊𝐬 𝐦𝐮𝐥𝐭𝐢𝐩𝐥𝐢𝐜𝐢𝐭𝐲 𝐢𝐬  𝐚 𝐪𝐮𝐢𝐧𝐭𝐮𝐩𝐥𝐞𝐭 𝐨𝐫 𝐚 𝐝𝐨𝐮𝐛𝐥𝐞𝐭 𝐨𝐟 𝐭𝐫𝐢𝐩𝐥𝐞𝐭.
𝟎.𝟓,       𝐢𝐟 𝒙𝒊𝐬 𝐦𝐮𝐥𝐭𝐢𝐩𝐥𝐢𝐜𝐢𝐭𝐲 𝐢𝐬  𝐚 𝐭𝐫𝐢𝐩𝐥𝐞𝐭.                                                
𝟎.𝟐𝟓,      𝐢𝐟 𝒙𝒊𝐬 𝐦𝐮𝐥𝐭𝐢𝐩𝐥𝐢𝐜𝐢𝐭𝐲 𝐢𝐬  𝐚 𝐝𝐨𝐮𝐛𝐥𝐞𝐭 𝐨𝐫 𝐚 𝐬𝐢𝐧𝐠𝐥𝐞𝐭𝐨𝐧.                 

𝛆,       𝐨𝐭𝐡𝐞𝐫𝐬.                                                                                             

       (33) 

Here, 𝜀 is a small positive real number used to model the noise in the measurement channel.   

(3) 𝜃𝑥𝑖 ,𝐷𝑀𝑆𝑂−𝑝𝑛  is used to evaluate 𝑥𝑖 ’s likelihood to be a DMSO signal with its proton number (See 

4.4.1.1).   

(4) 𝜃𝑥𝑖 ,𝑠𝑎𝑡𝑒 , 𝜃𝑥𝑖 ,𝑝𝑒𝑎𝑘 _𝑟𝑙  (see above). 
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Chapter 6 Experiments 
 

In this chapter we introduce the experimental setup we utilized to evaluate the automatic structural 

verification system. This is followed by presenting the experimental results and discussions about 

them. Emphatically, the experiments are specifically designed to evaluate the performance of the 

system in term of decision accuracy and consistency with human experts.  

  

6.1 Experimental Setup 

To evaluate the performance of the automatic structural verification system, as the premise, we 

firstly have to answer the question about what is the consistency between the structure and the 1D 

1H NMR spectrum. In our opinion, the consistency between the spectrum and the structure means 

that the structure is uniquely explainable with the given spectrum. With this premise, the 

consistency decision making relies on answering the following two questions.  

(1) Does the spectrum explain the proposed structure? 

(2) Does the spectrum only explain the proposed structure? 

 

If the answers to both questions are affirmative, from a practical point of view we say that the 

spectrum and the structure are consistent to each other. 

With the above understanding of consistency between the spectrum and the structure, the accuracy 

of the structural consistency verification system could be warranted by controlling two types of 

errors. They are : 

a. the spectrum-structure pair is consistent, but the system judges that they are inconsistent 

(the first type of error). 

b. the spectrum-structure pair is inconsistent, but the system judges that they are consistent 

(the second type of error). 

Obviously, good accuracy of the system means minimizing both types of errors. The estimation of 

these two types of errors gives us the first measurement of the system’s performance. 

In order to push the system into practice to replace human spectroscopists, it is important to 

convince spectroscopists by showing them the detail assignments between the structure and the 

spectrum. Obviously, high consistency between the assignments of the system to that of the 

spectroscopists will convince them of the reliability of the system, and thereby influence the 

business decision in the management level of the pharmaceutical industry. Hence, the consistency 

between the assignments of the system and spectroscopists gives us the second measurement of 

the system’s performance.         
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6.1.1 Evaluation Criteria 
 

To control both types of errors and the consistency between the system’s assignments and that of 

spectroscopists, three criteria are defined. They are – the False Negative Rate (FN), the False Positive 

Rate (FP) and the Consistency Rate (CR). 

Specifically, in our problem setup, FN is defined as the percentage of cases where the system’s 

decision is inconsistent in all consistent spectrum-structure test pairs. Formally, we have  

𝑭𝑵 = 𝐥𝐢𝐦𝒏𝑪𝑯→∞
𝒏𝑪𝑯
𝑰𝑺

𝒏𝑪𝑯
.  (34) 

 

Here 𝑛𝐶𝐻  denotes the number of experimental test cases where spectrum-structure pairs are 

consistent,   𝑛𝐶𝐻
𝐼𝑆  denotes the number of cases where spectrum-structure pairs are consistent, but 

the system decides that they are inconsistent. 

FP is defined as the percentage of cases where the system’s decision is consistent in all inconsistent 

spectrum-structure test pairs. Formally, we have 

𝑭𝑷 =  𝐥𝐢𝐦𝐧𝐈𝐇→∞
𝒏𝑰𝑯
𝑪𝑺

𝒏𝑰𝑯
.  (35) 

 

Here 𝑛𝐼𝐻  denotes the number of cases where spectrum-structure pairs are inconsistent, 𝑛𝐼𝐻
𝐶𝑆  denotes 

the number of cases where spectrum-structure pairs are inconsistent, but the system decides that 

they are consistent. 

CR is defined as the percentage of the system’s assignments which is consistent with the 

spectroscopists’ assignments in all system’s assignments. Formally, we have 

𝑪𝑹 = 𝐥𝐢𝐦𝒏𝑻𝑺→∞
𝒏𝑻𝑺
𝑯𝑺

𝒏𝑻𝑺
 .  (36) 

 

Here 𝑛𝑇𝑆  denotes the total number of the system’s assignments, where 𝑛𝑇𝑆
𝐻𝑆  denotes the number of 

the system’s assignments which is consistent with the spectroscopists’ assignments. 

In practice, it is impossible to accurately calculate the value of these criteria, since the calculation of 

them requires infinite test cases. Instead, we estimate the values of the criteria by utilizing big (but 

finite) test datasets. Correspondingly, the estimation formulas of the criteria are defined as following. 

𝑭𝑵′ =
𝒏′ 𝑪𝑯

𝑰𝑺

𝒏′ 𝑪𝑯
  (37) 

 

where 𝐹𝑁 ′  is the estimation of FN.  Here 𝑛′
𝐶𝐻 denotes the total number of cases where spectrum-

structure pairs are consistent in the test dataset,   𝑛′
𝐶𝐻
𝐼𝑆

 denotes the number of cases where 

spectrum-structure pairs are consistent, but the system decides that they are inconsistent in the test 

dataset. 
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𝑭𝑷′ =  
𝒏′ 𝑰𝑯

𝑪𝑺

𝒏′ 𝑰𝑯
  (38) 

where 𝐹𝑃′  is the estimation of FP. Here 𝑛′
𝐼𝐻  denotes the total number of cases where spectrum-

structure pairs are inconsistent in the test dataset, 𝑛′
𝐼𝐻
𝐶𝑆

 denotes the number of cases where 

spectrum-structure pairs are inconsistent, but the system decides that they are consistent in the test 

dataset. 

𝑪𝑹′ =
𝒏′ 𝑻𝑺

𝑯𝑺

𝒏′ 𝑻𝑺
   (39) 

where 𝐶𝑅′  is the estimation of CR. Here 𝑛′
𝑇𝑆  denotes the total number of system’s assignments in 

the test dataset, where 𝑛′
𝑇𝑆
𝐻𝑆

 denotes the number of system’s assignments which is consistent with 

the spectroscopists’ assignments in the test dataset. 

 

 

6.1.2 Evaluation Data 

 
In this subsection, we introduce the datasets we used to evaluate the performance of the system. 

 

 

6.1.2.1 Real Compounds and Their Spectra 

 

To accurately estimate the criteria we defined in 6.1.1, we need a reasonably large test dataset, 

which is infeasible to be acquired in practice. Due to the cost involved in doing so, to make the most 

with our limited budget, 85 real compounds with known 2D structure (which contain some amount 

of unknown impurities) were bought and their 1H 1D NMR spectra were acquired by our industrial 

cooperator. All compounds were diluted in DMSO, and were measured with 400MHz NMR 

spectrometer to acquire their spectra. The list of the compounds used in the evaluation is shown in 

Table 4.  

 

 

 

+-Pseudoephedrin 

 

--alpha-Satonin 1,1,1-3,3,3-Hexafluor-2-
propanol
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1,1,2-Trichlorethan

 

1,2,3-Trimethylbenzol 1,2,4-Trichlorbenzol 

1,2-Dichlor-4-nitrobenzol

 

1,2-Dichlorbenzol

 

1,3-Dichlorbenzol

 

1,4-Dinitrobenzol

 

1-Naphthol

 

1-Octen-3-ol

 

1-Octyne

 

2-Aminopyridin

 

2-Butanon

 

2-Methyl-naphthalin

 

2-Phenoxyethanol

 

2_phenyl-ethylakohol
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3-Ethyltoluol

 

3-Indolepropionicacid

 

3-Phenyl-propylalkohol

 

4-Bromanisol

 

5-Fluorouracil

 

6-Methyl-chinolin

 

8-Hydroxy-chinolin

 

Aceton

 

Acetophenon

 

Adamantan

 

Allylglycidether

 

Anthracen

 

Benzaldehyd

 

Benzoesaeuremethylester

 

Benzonitril
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Benzotrifluorid

 

Cumol

 

D,L-Phenylalanin

 

Essigester

 

Essigsaeure-isopropyl-ester

 

Essigsaeurelinalylester

 

Ethanol

 

Ethylallylether

 

Eucalyptol

 

Fluorbenzol

 

Fluoren Formamid
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Fumarsaeure-diethylester

 

Furan-2-
carbonsaeuremethylester

 

Harnstoff

 

Hexamethylbenzol

 

Hexamethyldisiloxan

 

Hydrochinon

 

Imidazol

 

Isopropanol

 

L-+-Rhamnose-Monohydrat

 

L-Leucin

 

L-Prolin

 

Linalool
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Maleinsaeure-dibutylester

 

Maleinsaeure-diethylester

 

Malonsaeure

 

Melamin

 

Mesiylen

 

Methacrylsaeure-2-
ethoxyethylester

 

Methacrylsaeure-butylester

 

Methacrylsaeure-isobutylester

 

N,N,N,N-Tetramethyl-
ethylendiamin

 

N,N-Dimethylacetamid

 

N-Methylformamid

 

Naphthalin

 

Naringenin

 

Nicotinsaeureamid

 

Phenolphthalein
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Phenol     

 

Phenylethylenoxid

 

Propionsaeureethylester

 
Propionsaeuremethylester

 

Propylbenzol

 

Pseudocumol

 

S+-2-4-
Isobutylphenylpropionsaeure

 

Salicylaldoxim

 

Sulfamid

 
THF

 

Triethylamin

 

Triethylphosphat

 

tert-Butylalkohol

 

Table 4  List of Compounds Used in Evaluation 
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6.1.2.2 Simulated Spectra and Theoretical Multiplet Distribution Lists 

 

Since we only had a limited number of real compounds and thereby real spectra, which have limited 

representativeness of spectral variation in term of spectrum baseline, multiplet overlapping, high-

order multiplet, signals of impurities, etc, the estimation 𝐹𝑁 ′  and 𝐹𝑃′  on 85 real compounds and 

their spectra may not be convincing.  

To increase the reliability of estimations on both 𝐹𝑁 ′  and 𝐹𝑃′ , an artificial dataset of simulated 

spectra and their corresponding consistent theoretical multiplet distribution lists were automatically 

generated by our industrial cooperator with a simulation program. We were not informed about the 

approach used to implement the simulation program, to prevent us from “cheating”. What we did 

know is that the program randomly changes the level of spectrum baseline, the level of multiplet 

overlap, the number of high-order multiplet, and the number of impurity signal, etc. In addition, 

some simulated spectra are randomly selected and shown to several top NMR spectroscopists to be 

confirmed regarding their quality and usability.       

Specifically, two setups are used to generate the simulated spectra and their corresponding 

theoretical multiplet distribution lists. In the first setup (easy setup), the maximum number of the 

theoretical multiplet distributions (chemical equivalent protons) are controlled to be 16. This is the 

setup which domain experts (spectroscopists) believe could be used to simulate compounds with 

regular complexity. Fig 35 shows a randomly selected example of the simulated spectrum under the 

first setup, and Fig 36 shows its corresponding theoretical multiplet distribution list.  

 

 

 

 

# Generated: 21-Jan-2009 

# Equivaalent protons 

# 

$1 number shift shift_range J coupling_range M complex connection

 identifier proton_number J_het J_het_range J_het_connection M_het %_het

 linewidth 

Fig 35  An example of a simulated spectrum (the first setup) 
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# [-] [ppm] [ppm] [Hz] [Hz] [-] [-] [-] [-] [-] [Hz] [Hz]

 [-] [-] [%] [Hz] 

# 

1 1 4.044 (3.24,4.84) N/A N/A 1 1 N/A H1 3 120

 (100,150) J(1,C13) 2 1.07 0.5-4 

2 2 6.170 (5.37,6.97) 0.66 (2.34,3.66) 2 2 J(2,3) H2 1

 120 (100,150) J(2,C13) 2 1.07 0.5-4 

3 2 6.170 (5.37,6.97) 0.55 (2.45,3.55) 2 2 J(2,4) H2 1

 120 (100,150) J(2,C13) 2 1.07 0.5-4 

4 2 6.170 (5.37,6.97) 12.85 (9.85,15.85) 2 2 J(2,5) H2 1

 120 (100,150) J(2,C13) 2 1.07 0.5-4 

5 3 6.170 (5.37,6.97) 0.66 (2.34,3.66) 2 2 J(3,2) H3 1

 120 (100,150) J(3,C13) 2 1.07 0.5-4 

6 3 6.170 (5.37,6.97) 12.85 (9.85,15.85) 2 2 J(3,4) H3 1

 120 (100,150) J(3,C13) 2 1.07 0.5-4 

7 3 6.170 (5.37,6.97) 0.55 (2.45,3.55) 2 2 J(3,5) H3 1

 120 (100,150) J(3,C13) 2 1.07 0.5-4 

8 4 8.139 (7.34,8.94) 0.55 (2.45,3.55) 2 2 J(4,2) H4 1

 120 (100,150) J(4,C13) 2 1.07 0.5-4 

9 4 8.139 (7.34,8.94) 12.85 (9.85,15.85) 2 2 J(4,3) H4 1

 120 (100,150) J(4,C13) 2 1.07 0.5-4 

10 4 8.139 (7.34,8.94) 0.66 (2.34,3.66) 2 2 J(4,5) H4 1

 120 (100,150) J(4,C13) 2 1.07 0.5-4 

11 5 8.139 (7.34,8.94) 12.85 (9.85,15.85) 2 2 J(5,2) H5 1

 120 (100,150) J(5,C13) 2 1.07 0.5-4 

12 5 8.139 (7.34,8.94) 0.55 (2.45,3.55) 2 2 J(5,3) H5 1

 120 (100,150) J(5,C13) 2 1.07 0.5-4 

13 5 8.139 (7.34,8.94) 0.66 (2.34,3.66) 2 2 J(5,4) H5 1

 120 (100,150) J(5,C13) 2 1.07 0.5-4 

14 6 2.441 (1.64,3.24) N/A N/A 1 1 N/A H6 2 120

 (100,150) J(6,C13) 2 1.07 0.5-4 

15 7 3.839 (3.04,4.64) 2.14 (0.86,5.14) 2 1 J(7,8) H7 1

 120 (100,150) J(7,C13) 2 1.07 0.5-4 

16 8 3.045 (2.25,3.85) 2.14 (0.86,5.14) 2 1 J(8,7) H8 1

 120 (100,150) J(8,C13) 2 1.07 0.5-4 

17 8 3.045 (2.25,3.85) 2.14 (0.86,5.14) 2 1 J(8,9) H8 1

 120 (100,150) J(8,C13) 2 1.07 0.5-4 

18 9 6.569 (5.77,7.37) 2.14 (0.86,5.14) 2 1 J(9,8) H9 1

 120 (100,150) J(9,C13) 2 1.07 0.5-4 

19 10 4.116 (3.32,4.92) N/A N/A 1 1 N/A H10 1 120

 (100,150) J(10,C13) 2 1.07 0.5-4 

20 11 3.337 (2.54,4.14) N/A N/A 1 1 N/A H11 1 120

 (100,150) J(11,C13) 2 1.07 0.5-4 

21 12 3.649 (2.85,4.45) 12.83 (9.83,15.83) 2 1 J(12,13) H12 1

 120 (100,150) J(12,C13) 2 1.07 0.5-4 

22 13 1.440 (-2.64,2.24) 12.83 (9.83,15.83) 2 1 J(13,12) H13 1

 N/A N/A N/A 2 N/A 0.5-100 

23 14 3.053 (2.25,3.85) N/A N/A 1 1 N/A H14 1 120

 (100,150) J(14,C13) 2 1.07 0.5-4 

# 

# IDENTICAL CHEMICAL SHIFTS AND J COUPLINGS 

# If the chemical shifts are identical, shift ranges, proton numbers, J(het), M(het), %(het), linewidths and 

reliabilities also need to be identical. 

# If Js are identical, coupling ranges and Ms also need to bie identical 

# 

$2 ep_no_1  ep_no_2 

CS 2 = 3 

CS 4 = 5 

$3 J_1  J_2 

J J(2,3) = J(3,2) 

J J(2,4) = J(3,5) 

J J(2,5) = J(3,4) 

J J(4,2) = J(5,3) 

J J(4,3) = J(5,2) 

J J(4,5) = J(5,4) 

# 

$4 CHIRAL CENTERS: 

# 

CC N/A 

# 

$5 THROUGH SPACE COUPLINGS: 

# 

TSC N/A 

# 

$6 TAUTOMERISM: 

# 

TA N/A 

 

 

In the second setup (difficult setup), the maximum number of the theoretical multiplet distributions 

are controlled to be 25. This is the setup which domain experts (spectroscopists) believe could be 

used to simulate compounds with higher complexity. Fig 37 shows a randomly selected example of 

the simulated spectrum under the second setup, and Fig 38 shows its corresponding theoretical 

multiplet distribution list.  

 

Fig 36 An example of a simulated theoretical multiplet distribution list (the first setup) 
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# Generated: 05-Mar-2009 

# Equivaalent protons 

# 

$1 number shift shift_range J coupling_range M complex connection

 identifier proton_number J_het J_het_range J_het_connection M_het %_het

 linewidth 

# [-] [ppm] [ppm] [Hz] [Hz] [-] [-] [-] [-] [-] [Hz] [Hz]

 [-] [-] [%] [Hz] 

# 

1 1 1.430 (0.63,2.23) 2.82 (0.00,5.82) 3 1 J(1,2) H1 3

 120 (100,150) J(1,C13) 2 1.07 0.5-4 

2 2 2.704 (1.90,3.50) 2.82 (0.00,5.82) 4 1 J(2,1) H2 2

 120 (100,150) J(2,C13) 2 1.07 0.5-4 

3 3 3.307 (2.51,4.11) 2.82 (0.00,5.82) 2 1 J(3,4) H3 2

 120 (100,150) J(3,C13) 2 1.07 0.5-4 

4 3 3.307 (2.51,4.11) 5.85 (2.85,8.85) 2 1 J(3,5) H3 2

 120 (100,150) J(3,C13) 2 1.07 0.5-4 

5 3 3.307 (2.51,4.11) 0.73 (0.00,3.73) 2 1 J(3,6) H3 2

 120 (100,150) J(3,C13) 2 1.07 0.5-4 

6 4 5.587 (4.79,6.39) 2.82 (0.00,5.82) 3 1 J(4,3) H4 1

 120 (100,150) J(4,C13) 2 1.07 0.5-4 

7 4 5.587 (4.79,6.39) 10.91 (7.91,13.91) 2 1 J(4,6) H4 1

 120 (100,150) J(4,C13) 2 1.07 0.5-4 

8 5 5.109 (4.31,5.91) 5.85 (2.85,8.85) 3 1 J(5,3) H5 1

 120 (100,150) J(5,C13) 2 1.07 0.5-4 

9 6 4.341 (3.54,5.14) 0.73 (0.00,3.73) 3 1 J(6,3) H6 1

 120 (100,150) J(6,C13) 2 1.07 0.5-4 

10 6 4.341 (3.54,5.14) 10.91 (7.91,13.91) 2 1 J(6,4) H6 1

 120 (100,150) J(6,C13) 2 1.07 0.5-4 

11 7 8.316 (7.52,9.12) 4.72 (1.72,7.72) 2 1 J(7,8) H7 1

 120 (100,150) J(7,C13) 2 1.07 0.5-4 

12 7 8.316 (7.52,9.12) 6.63 (3.63,9.63) 2 1 J(7,10) H7 1

 120 (100,150) J(7,C13) 2 1.07 0.5-4 

13 8 6.705 (5.90,7.50) 4.72 (1.72,7.72) 2 1 J(8,7) H8 1

 120 (100,150) J(8,C13) 2 1.07 0.5-4 

14 8 6.705 (5.90,7.50) 16.15 (13.15,19.15) 2 1 J(8,9) H8 1

 120 (100,150) J(8,C13) 2 1.07 0.5-4 

15 8 6.705 (5.90,7.50) 6.63 (3.63,9.63) 2 1 J(8,10) H8 1

 120 (100,150) J(8,C13) 2 1.07 0.5-4 

16 9 3.537 (2.74,4.34) 16.15 (13.15,19.15) 2 1 J(9,8) H9 1

 120 (100,150) J(9,C13) 2 1.07 0.5-4 

17 9 3.537 (2.74,4.34) 5.85 (2.85,8.85) 2 1 J(9,10) H9 1

 120 (100,150) J(9,C13) 2 1.07 0.5-4 

18 9 3.537 (2.74,4.34) 15.03 (12.03,18.03) 2 1 J(9,11) H9 1

 120 (100,150) J(9,C13) 2 1.07 0.5-4 

19 10 3.919 (3.12,4.72) 6.63 (3.63,9.63) 2 1 J(10,7) H10 1

 120 (100,150) J(10,C13) 2 1.07 0.5-4 

20 10 3.919 (3.12,4.72) 6.63 (3.63,9.63) 2 1 J(10,8) H10 1

 120 (100,150) J(10,C13) 2 1.07 0.5-4 

21 10 3.919 (3.12,4.72) 5.85 (2.85,8.85) 2 1 J(10,9) H10 1

 120 (100,150) J(10,C13) 2 1.07 0.5-4 

22 11 4.138 (3.34,4.94) 15.03 (12.03,18.03) 2 1 J(11,9) H11 1

 120 (100,150) J(11,C13) 2 1.07 0.5-4 

23 12 4.080 (3.28,4.88) 2.91 (0.00,5.91) 2 1 J(12,13) H12 1

 120 (100,150) J(12,C13) 2 1.07 0.5-4 

Fig 37  An example of a simulated spectrum (the second setup) 
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24 12 4.080 (3.28,4.88) 1.31 (0.00,4.31) 2 1 J(12,15) H12 1

 120 (100,150) J(12,C13) 2 1.07 0.5-4 

25 13 5.765 (4.96,6.56) 2.91 (0.00,5.91) 2 1 J(13,12) H13 1

 120 (100,150) J(13,C13) 2 1.07 0.5-4 

26 13 5.765 (4.96,6.56) 13.77 (10.77,16.77) 2 1 J(13,14) H13 1

 120 (100,150) J(13,C13) 2 1.07 0.5-4 

27 14 3.276 (2.48,4.08) 13.77 (10.77,16.77) 2 1 J(14,13) H14 1

 120 (100,150) J(14,C13) 2 1.07 0.5-4 

28 14 3.276 (2.48,4.08) 17.23 (14.23,20.23) 2 1 J(14,15) H14 1

 120 (100,150) J(14,C13) 2 1.07 0.5-4 

29 15 3.220 (2.42,4.02) 1.31 (0.00,4.31) 2 1 J(15,12) H15 0-1

 N/A N/A N/A 2 N/A 0.5-100 

30 15 3.220 (2.42,4.02) 17.23 (14.23,20.23) 2 1 J(15,14) H15 0-1

 N/A N/A N/A 2 N/A 0.5-100 

31 16 6.884 (6.08,7.68) 4.90 (1.90,7.90) 2 2 J(16,17) H16 1

 120 (100,150) J(16,C13) 2 1.07 0.5-4 

32 16 6.884 (6.08,7.68) 2.67 (0.00,5.67) 2 2 J(16,18) H16 1

 120 (100,150) J(16,C13) 2 1.07 0.5-4 

33 16 6.884 (6.08,7.68) 2.60 (0.00,5.60) 2 2 J(16,19) H16 1

 120 (100,150) J(16,C13) 2 1.07 0.5-4 

34 17 7.619 (6.82,8.42) 4.90 (1.90,7.90) 2 2 J(17,16) H17 1

 120 (100,150) J(17,C13) 2 1.07 0.5-4 

35 17 7.619 (6.82,8.42) 7.12 (4.12,10.12) 2 2 J(17,18) H17 1

 120 (100,150) J(17,C13) 2 1.07 0.5-4 

36 17 7.619 (6.82,8.42) 2.60 (0.00,5.60) 2 2 J(17,20) H17 1

 120 (100,150) J(17,C13) 2 1.07 0.5-4 

37 18 7.196 (6.40,8.00) 2.67 (0.00,5.67) 2 1 J(18,16) H18 1

 120 (100,150) J(18,C13) 2 1.07 0.5-4 

38 18 7.196 (6.40,8.00) 7.12 (4.12,10.12) 2 1 J(18,17) H18 1

 120 (100,150) J(18,C13) 2 1.07 0.5-4 

39 18 7.196 (6.40,8.00) 2.67 (0.00,5.67) 2 1 J(18,19) H18 1

 120 (100,150) J(18,C13) 2 1.07 0.5-4 

40 18 7.196 (6.40,8.00) 7.12 (4.12,10.12) 2 1 J(18,20) H18 1

 120 (100,150) J(18,C13) 2 1.07 0.5-4 

41 19 6.884 (6.08,7.68) 2.60 (0.00,5.60) 2 2 J(19,16) H19 1

 120 (100,150) J(19,C13) 2 1.07 0.5-4 

42 19 6.884 (6.08,7.68) 2.67 (0.00,5.67) 2 2 J(19,18) H19 1

 120 (100,150) J(19,C13) 2 1.07 0.5-4 

43 19 6.884 (6.08,7.68) 4.90 (1.90,7.90) 2 2 J(19,20) H19 1

 120 (100,150) J(19,C13) 2 1.07 0.5-4 

44 20 7.619 (6.82,8.42) 2.60 (0.00,5.60) 2 2 J(20,17) H20 1

 120 (100,150) J(20,C13) 2 1.07 0.5-4 

45 20 7.619 (6.82,8.42) 7.12 (4.12,10.12) 2 2 J(20,18) H20 1

 120 (100,150) J(20,C13) 2 1.07 0.5-4 

46 20 7.619 (6.82,8.42) 4.90 (1.90,7.90) 2 2 J(20,19) H20 1

 120 (100,150) J(20,C13) 2 1.07 0.5-4 

47 21 6.948 (6.15,7.75) 12.59 (9.59,15.59) 2 1 J(21,22) H21 1

 120 (100,150) J(21,C13) 2 1.07 0.5-4 

48 21 6.948 (6.15,7.75) 19.83 (16.83,22.83) 2 1 J(21,23) H21 1

 120 (100,150) J(21,C13) 2 1.07 0.5-4 

49 22 5.408 (4.61,6.21) 12.59 (9.59,15.59) 2 1 J(22,21) H22 1

 120 (100,150) J(22,C13) 2 1.07 0.5-4 

50 22 5.408 (4.61,6.21) 0.27 (0.00,3.27) 2 1 J(22,23) H22 1

 120 (100,150) J(22,C13) 2 1.07 0.5-4 

51 23 4.895 (4.09,5.69) 19.83 (16.83,22.83) 2 1 J(23,21) H23 1

 120 (100,150) J(23,C13) 2 1.07 0.5-4 

52 23 4.895 (4.09,5.69) 0.27 (0.00,3.27) 2 1 J(23,22) H23 1

 120 (100,150) J(23,C13) 2 1.07 0.5-4 

# 

# IDENTICAL CHEMICAL SHIFTS AND J COUPLINGS 

# If the chemical shifts are identical, shift ranges, proton numbers, J(het), M(het), %(het), linewidths and 

reliabilities also need to be identical. 

# If Js are identical, coupling ranges and Ms also need to bie identical 

# 

$2 ep_no_1  ep_no_2 

CS 16 = 19 

CS 17 = 20 

$3 J_1  J_2 

J J(16,17) = J(19,20) 

J J(16,18) = J(19,18) 

J J(16,19) = J(19,16) 

J J(17,16) = J(20,19) 

J J(17,18) = J(20,18) 

J J(17,20) = J(20,17) 

# 

$4 CHIRAL CENTERS: 

# 

CC N/A 

# 

$5 THROUGH SPACE COUPLINGS: 

# 

TSC N/A 

# 

$6 TAUTOMERISM: 

# 

TA N/A 

 

Fig 38  An example of a simulated theoretical multiplet distribution list (the second setup) 
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6.1.3 Experimental Design to Compute 𝐅𝐍′ , 𝐅𝐏′  and 𝐂𝐑′   
 

 

In this subsection, we introduce the approach to estimate the criteria defined in experimental setup. 

 

6.1.3.1 An approach to Compute 𝐹𝑁′  

 

Real compounds are measured with NMR spectrometers to get their NMR spectra. Naturally, each 

compound and its corresponding measured NMR spectrum form a consistent pair. By feeding all 

these consistent pairs into the system, we can calculate  𝐹𝑁 ′  on real compound dataset. 

Similarly, the simulated spectrum and the corresponding theoretical multiplet distribution list are 

generated in pair, and from the principle of the simulation program (we know that) they are 

consistent. By feeding all these consistent pairs into the system, we get  𝐹𝑁 ′  on simulated dataset. 

 

6.1.3.2 An approach to compute 𝐹𝑃′  

 

To compute 𝐹𝑃′ , we need to generate enough inconsistent pairs. In a real compound dataset, a 

matrix of all possible structure-spectrum pairs is generated, and the consistent pairs are organized to 

the diagonal of the matrix. The off-diagonal elements of the matrix are all inconsistent structure-

spectrum pairs. By feeding all these inconsistent pairs into the system, we can calculate 𝐹𝑃′  on the 

real compound dataset. 

A similar matrix can also be built on the simulated dataset, where each element of the matrix 

represents a spectrum-theoretical multiplet distribution pair. By arranging the consistent pairs in the 

diagonal of the matrix, the off-diagonal of the matrix is composed of all inconsistent pairs. By 

feeding theses pairs into the system, we compute 𝐹𝑃′  on the simulated dataset. 

 

6.1.3.3 An approach to compute 𝐶𝑅′  

 

Computation of 𝐶𝑅′  relies on spectroscopists’ manual interpretations, which makes it impossible to 

compute it in a big test dataset. In addition, simulated spectra are not generated from real 

compounds, instead they are only mapped to the simulated theoretical multiplet distribution lists. 

The theoretical multiplet distribution list is the intermediate result, which is supposed to be the 

output of the Molecular Interpreter (see 4.2) and thereby uninterpretable for human spectroscopists. 

Therefore, we only utilize our 85 consistent real compounds’ structure-spectrum pairs to compute 

𝐶𝑅′ .  
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Five human NMR spectroscopists worked together to manually assign NMR signals to all chemically 

equivalent protons in all 85 given consistent structure-spectrum pairs. On the other hand, the same 

85 structure-spectrum pairs are fed into the system to give automatic assignments between the 

NMR signals and the chemically equivalent protons in each structure-spectrum pair. Then, each 

automatic assigned NMR signal- chemically equivalent protons pair is checked against to the 

assigned pairs given by human spectroscopists. If the pair is consistent with the assignment from 

spectroscopists, it will be counted as consistent assigned pair. Finally, the percentage of the 

consistent pairs in total automatic assigned pairs is computed as 𝐶𝑅′ . 

 

6.2 Experimental Results 

All experiments are run at a personal computer with Intel 2.00GHz processor, 2.00 GB RAM and 

Windows XP. 

 

6.2.1 Experimental Results of Estimating False Negative Rate(FN) 
 

In this section, we give the experiment results of the estimations of the False Negative on both real 

compound dataset and simulated datasets. 

 

6.2.1.1 Experimental Result on Real Compound Dataset 

 

85 consistent structure-spectrum pairs are used to compute 𝐹𝑁 ′ . Experimental results are shown in 

Table5.  

 

Input Consistent Spectrum-Structure Pairs 85 

Predicted Consistent Spectrum-Structure Pairs 81 

Predicted Inconsistent Spectrum-Structure Pairs 4 

Estimated False Negative Rate (𝐹𝑁 ′ ) 0.047 

Total Running Time 68 minutes 

Average Running Time 48.0 Seconds 

 

 

Table 5 Experimental Result of Estimating FN on Real Compound Dataset 
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6.2.1.2 Experimental Results of Simulated Dataset (Easy Setup) 

 

100 consistent simulated spectrum-theoretical multiplet distribution list pairs, which are generated 

by the simulation program with the first setup, are fed into system to compute 𝐹𝑁 ′ . Experimental 

results are shown in Table 6. 

 

Input Consistent Theoretical Multiplet-Structure Pairs 100 

Predicted Consistent Theoretical Multiplet -Structure Pairs 94 

Predicted Inconsistent Theoretical Multiplet -Structure Pairs 5 

Crashed Pairs 1 

Estimated False Negative Rate (𝐹𝑁 ′ ) 0.051 

Total Running Time 11 hours 10 Minutes 

Average Running Time 6.77 Minutes 

 

 

 

 

6.2.1.3 Experimental Results of Simulated Dataset (Difficult Setup) 

 

925 consistent simulated spectrum -theoretical multiplet distribution list pairs, which are generated 

by the simulation program with the second setup, are fed into system to compute 𝐹𝑁 ′ . 

Experimental results are shown in Table 7. 

 

Input Consistent Theoretical Multiplet-Structure Pairs 925 

Predicted Consistent Theoretical Multiplet -Structure Pairs 864 

Predicted Inconsistent Theoretical Multiplet -Structure Pairs 58 

Crashed Pairs 3 

Estimated False Negative Rate (𝐹𝑁 ′ ) 0.059 

Total Running Time 155 hours 25 Minutes 

Average Running Time 9.49 inutes 

 

 

 

 

Table 6 Experimental Result of Estimating FN on Simulated Dataset (The First Setup) 

Table 7 Experimental Result of Estimating FN on Simulated Dataset (The Second Setup) 
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6.2.2 Experimental Results of Estimating False Positive Rate(FP) 
 

 

In this section, we give the experimental results of the estimations of the False Positive on both real 

compound dataset and simulated datasets. 

 

6.2.2.1 Experimental Results of Real Compound Dataset 

 

85 compounds and 85 spectra pairs are used to build a 85×85 pairs matrix. The off-diagonal 

elements of the matrix generate 7140 inconsistent structure-spectrum pairs, which are fed into the 

system to compute 𝐹𝑃′ .  Experimental results are shown in Table 8. 

 

Input Inconsistent Spectrum-Structure Pairs 7140 

Predicted Consistent Spectrum-Structure Pairs 234 

Predicted Inconsistent Spectrum-Structure Pairs 6906 

Estimated False Positive Rate (𝐹𝑃′ ) 0.033 

Total Running Time 107 hours 7 minutes 

Average Running Time 54.0 Seconds 

 

 

 

6.2.2.2 Experimental Results of Simulated Dataset (Easy Setup) 

 

50 consistent spectrum-theoretical multiplet distribution list pairs are randomly selected without 

replacement from the 100 consistent spectrum-theoretical multiplet distribution list pairs generated 

with the first setup. Then, these theoretical multiplet lists and spectra are used to build a 50×50 

pairs matrix. The off-diagonal elements of the matrix generate 2450 inconsistent spectrum-

theoretical multiplet distribution list pairs, which are fed into the system to compute  𝐹𝑃′ . 

Correspondingly, the experimental results are shown in Table 9. 

 

Input Inconsistent Theoretical Multiplet-Structure Pairs 2450 

Predicted Consistent Theoretical Multiplet -Structure Pairs 7 

Predicted Inconsistent Theoretical Multiplet -Structure Pairs 2443 

Estimated False Positive Rate (𝐹𝑃′ ) 0.003 

Total Running Time 7 days 23 Minutes 

Average Running Time 4.68 Minutes 

 

 

Table 8 Experimental Result of Estimating FP on Real Compound Dataset 

Table 9 Experimental Result of Estimating FP on Simulated Dataset (The First Setup) 
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6.2.2.3 Experimental Results of Simulated Dataset (Difficult Setup) 

 

50 consistent spectrum-theoretical multiplet distribution list pairs are randomly selected without 

replacement from the 925 consistent spectrum-theoretical multiplet distribution list pairs generated 

with the second setup. Then, these spectrum-theoretical multiplet distribution list pairs are used to 

build a 50×50 pair matrix. The off-diagonal elements of the matrix generate 2450 inconsistent 

spectrum-theoretical multiplet distribution list pairs, which are fed into the system to compute  𝐹𝑃′ . 

Experimental results are shown in Table 10. 

 

Input Inconsistent Theoretical Multiplet-Structure Pairs 2450 

Predicted Consistent Theoretical Multiplet -Structure Pairs 27 

Predicted Inconsistent Theoretical Multiplet -Structure Pairs 2423 

Estimated False Positive Rate (𝐹𝑃′ ) 0.011 

Total Running Time 96Days 15Hours 30 Minutes 

Average Running Time 56.80 Minutes 

 

 

 

 

 

 

6.2.3 Experimental Results of Estimating Consistent Rate (CR)  
 

To clarify the meaning of assignment consistency between the system and human spectroscopists, 

an example of automatic assignments is demonstrated below. Specifically, automatic assignments 

between chemically equivalent protons and NMR signals of +-Pseudoephedrin by the system are 

shown in Fig 39, which demonstrates extremely high consistency between the assignments of the 

system and that of human spectroscopists (see Fig 19 for the assignments of the spectroscopists).  

 

Table 10 Experimental Result of Estimating FP on Simulated Dataset (The Second Setup) 
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In 85 consistent structure-spectrum pairs (generated from real compound dataset), 81 pairs are 

considered to be consistent by the system. Therefore, the detail assignments of these 81 structure-

spectrum pairs are used to compute 𝐶𝑅′ . The consistency analysis results are settled by human 

spectroscopists and presented in Table 11. Note, the detailed assignments of 81 structure-spectrum 

pair by the system are listed in Appendix B. 

 

Fig 39 Automatic assignments between NMR spectrum and structure of +-Pseudoephedrin  

H3, 0.9 protons 

H13, 0.9 protons H14, 1.0 protons 
H2O 

DMSO 
H10, H11,H12,      

3.0protons H15, 0.8 protons 
H6, H7, H8, 

3.0 protons 
H9, 1.0 proton 

H1,H2,H4,H5, 

3.8 protons 
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Names DMSO H2O #As correct As comments 
errors 
made 

+-Pseudoephedrin 1 1 8 8 
 

0 

--alpha-Satonin 1 1 9 5 unproblematic 4 

1,1,1-3,3,3-Hexafluor-2-propanol 1 1 2 2 
 

0 

1,1,2-Trichlorethan 1 1 2 2 
 

0 

1,2,3-Trimethylbenzol 1 1 3 3 
 

0 

1,2,4-Trichlorbenzol 1 1 3 3 
 

0 

1,2-Dichlor-4-nitrobenzol 1 1 3 3 
 

0 

1,2-Dichlorbenzol 1 1 2 2 
 

0 

1,3-Dichlorbenzol 1 1 1 1 should be 2 PC 0 

1,4-Dinitrobenzol 1 1 1 1 
 

0 

1-Naphthol 1 1 6 3 
 

3 

1-Octen-3-ol 1 1 6 5 
make two PC @ 

~5.0ppm 1 

1-Octyne 1 1 5 5 
do not seperate 

PCs 0 

2-Aminopyridin 1 1 4 4 
 

0 

2-Butanon 1 1 3 3 
 

0 

2-Methyl-naphthalin 1 1 5 5 
 

0 

2-Phenoxyethanol 1 1 5 5 
 

0 

2_phenyl-ethylakohol 1 1 5 5 
 

0 

3-Ethyltoluol 1 1 5 5 
 

0 

3-Indolepropionicacid 1 1 9 7 
 

2 

3-Phenyl-propylalkohol 1 1 6 4 
 

2 

4-Bromanisol 1 1 3 3 
 

0 

5-Fluorouracil 1 1 2 2 
make two PC @ 

~11.0ppm 0 

6-Methyl-chinolin 1 1 6 6 
 

0 

8-Hydroxy-chinolin 1 1 6 6 
 

0 

Acetophenon 1 1 4 4 
 

0 

Adamantan 1 1 2 2 
 

0 

Allylglycidether 1 1 7 7 
 

0 

Anthracen 1 1 3 3 
 

0 

Benzaldehyd 1 1 4 4 
 

0 

Benzoesaeuremethylester 1 1 4 4 
 

0 

Benzonitril 1 1 3 1 
 

2 

Cumol 1 1 3 3 
make two PC @ 

~7.0ppm 0 

D,L-Phenylalanin 1 1 
   

0 

Essigester 1 1 3 3 
 

0 

Essigsaeure-isopropyl-ester 1 1 3 3 
baseline need to 

be improved. 0 

Essigsaeurelinalylester 1 1 4 2 
 

2 

Ethanol 1 1 3 3 
 

0 

Eucalyptol 1 1 4 2 unproblematic 2 

Fluorbenzol 1 1 2 2 
 

0 

Fluoren 1 1 5 1 
 

4 

Formamid 1 1 2 2 impurities?? 0 

Furan-2-carbonsaeuremethylest 1 1 4 4 
 

0 
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Harnstoff 1 1 1 1 
 

0 

Hexamethylbenzol 1 1 1 1 
 

0 

Hexamethyldisiloxan 1 1 1 1 too big PC! 0 

Hydrochinon 1 1 2 2 
 

0 

Imidazol 1 1 3 3 
 

0 

Isopropanol 1 1 3 3 
 

0 

L-+-Rhamnose-Monohydrat 1 1 9 7 
OH exchanged; 
unproblematic 2 

Linalool 1 1 9 9 
impurity in PC @ 

1.55 0 

L-Leucin 1 1 6 5 
 

1 

L-Prolin 1 1 3 0 
 

3 

Maleinsaeure-dibutylester 1 1 5 5 
 

0 

Maleinsaeure-diethylester 1 1 3 3 
 

0 

Malonsaeure 1 1 1 1 
 

0 

Melamin 1 1 1 1 
 

0 

Mesiylen 1 1 2 2 
 

0 

Methacrylsaeure-2-
ethoxyethylester 1 1 6 4 

 
2 

Methacrylsaeure-butylester 1 1 6 6 
 

0 

Methacrylsaeure-isobutylester 1 1 4 4 
 

0 

N,N,N,N-Tetramethyl-
ethylendiamin 1 1 1 1 

 
0 

N,N-Dimethylacetamid 1 1 3 3 
 

0 

Naphthalin 1 1 2 2 
 

0 

Naringenin 1 1 9 6 

seperate PC @ 
3.25ppm; 

unproblematic 3 

Nicotinsaeureamid 1 1 4 4 
seperate PC @ 
8.1 & 7.5 ppm 0 

N-Methylformamid 0 1 2 2 

seperate PC @ 
8.0 & 2.6 ppm; 

DMSO not found 0 

Phenol 1 1 3 3 
 

0 

Phenolphthalein 1 1 7 3 
 

4 

Phenylethylenoxid 1 1 3 3 
 

0 

Propionsaeureethylester 1 1 4 4 
 

0 

Propionsaeuremethylester 1 0 2 2 
 

0 

Propylbenzol 1 1 5 3 unproblematic 2 

Pseudocumol 1 1 5 3 

unproblematic; 
aromatics 
exchanged 2 

S+-2-4-
Isobutylphenylpropionsaeure 1 1 8 2 

4 severe and 2 
unproblematic 

errors; aromatics 
unp. 6 

Salicylaldoxim 1 1 6 4 unproblematic 2 

Sulfamid 1 1 1 1 
 

0 

tert-Butylalkohol 1 1 2 2 
 

0 

THF 1 1 2 2 
 

0 

Triethylamin 1 1 2 2 split PC @ DMSO 0 
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Triethylphosphat 1 1 2 2 
 

0 

   
309 260 CR = 84.14% 49 

 

 

 

 

In Table 11, Table Item: “DMSO” presents the identification status of the DMSO signal by the system 

- “1” represents a correct identification, while “0” represents an incorrect identification. Table Item: 

“H2O” presents the identification status of the H2O signal by the system – “1” represents a correct 

identification, while “0” represents an incorrect identification. Table Item: “#As” presents the total 

number of assignments given by the system. Table Item:  “correct As” presents the number of the 

assignments given by the system which are consistent with those of human spectroscopists. Table 

Item: “comments” presents the additional comments from spectroscopists above the system’s 

assignments. (refer to Appendix B for detail system’s assignments) Table Item: “error made” presents 

the number of assignments wrongly made by the system.  

From Table 11, we see that there are totally 309 assignments which are made by the system upon 81 

structure-spectrum pairs. Wherein, 260 assignments are consistent, and 49 assignments are 

inconsistent, and this gives us the estimation of CR as 84.14%. Note, in 49 inconsistent assignments, 

there are 19 cases commented as “unproblematic”, which means even the system gives the different 

assignments to the assignments of spectroscopists, these differences are reasonable and acceptable 

by spectroscopists. If we added these “unproblematic” cases into the consistent assignment set, we 

would have totally 279 consistent assignments in 309 system’s assignments. This would give us the 

estimation of CR as 90.29%. Nevertheless, both estimations give us a good indication to show the 

high consistency between the system and the spectroscopists. 

       

6.3 Discussion of the Experimental Results  

In this subsection, we discuss the experiment results along the decision accuracy, the time 

complexity and the consistency to human spectroscopists. 

 

6.3.1 Decision Accuracy 
 

Table 5 and 8 give us the estimated false negative rate (FN) of 0.047 and false positive rate (FP) of 

0.033 on the real compound dataset. These results demonstrate that the two types of errors 

measured of the system of the real compound dataset are controlled within the 5% error rate bar. 

Hence, the accuracy of the system is significantly higher than 90%, which satisfies the goal 

(requirement) a and b defined in the beginning of Chapter 3. Note, the benchmark of 90% accuracy 

was defined through carful discussion among NMR spectroscopists and compound library 

management experts from our industrial cooperator and several pharmaceutical companies. 

Table 11 Experimental Result of Estimating CR on Real Compound Dataset 
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Furthermore, Table 6 and 9 give us the estimated false negative rate (FN) of 0.051 and false positive 

rate (FP) of 0.003 of the simulated dataset (easy setup). Table 7 and 10 give us the estimated false 

negative rate (FN) of 0.059 and false positive rate (FP) of 0.013 of the simulated dataset (difficult 

setup). These additional experimental results over simulated datasets further confirm that both 

types of errors of the system are well within the 5% error rate bar, and thereby prove the accuracy 

of the system to be above 90%.  

With above results, we have experimentally confirmed that the system reaches the decision 

accuracy which satisfies the goal set by industrial participants. 

      

6.3.2 Time Complexity 
 

Table 5 shows that given the structure and the spectrum consistent, average running time per 

spectrum is about 22.3 seconds, and Table 8 shows that given the structure and the spectrum 

inconsistent, average running time per spectrum is about 32.4 seconds. Both time expenses well-

satisfy the requirements of compound library management.  

Currently the pharmaceutical industry utilizes Liquid Chromatography-Mass Spectrometry (LC-Mass) 

technique as the standard approach for automatic quality control of their compound libraries. The 

advantage of the technique is that Mass spectra are automatically interpretable, and in fact the 

automatic interpretation itself cost instantaneous time (within a second). However, Mass spectra 

technique suffers from supplying limited information about molecular structure, and from its 

inability for quantification (see Chapter 1). Therefore, it cannot supply enough accuracy for structure 

verification tasks. In addition, LC-Mass is a slow technique and takes on average 8 minutes to acquire 

the Mass spectrum of the sample to the best of our knowledge. This is mainly contributed to the 

slow infiltration of Liquid Chromatography. Comparatively, NMR requires less than a minute to 

acquire a 1D 1H NMR spectrum. This gives us a margin of about 7 minutes for automatic NMR 

spectrum molecular structural consistency analysis. Therefore, the average time expense of the 

system essentially demonstrates the speed advantage of NMR technique compared to that of LC-

Mass technique. From the experimental results, we see that the system takes roughly a half minute 

on average to execute a structure NMR spectrum verification task of the real compound test dataset. 

This is the time expense, which is dramatically smaller than 7 minutes, and therefore strongly 

demonstrates the feasibility that NMR-based automatic structure verification is faster than that of 

LC-Mass based technique. 

For the simulated dataset (easy setup), the average running time for a consistent test case is about 

6.77 minutes, and the average running time for an inconsistent test case is about 4.68 minutes. The 

average time expenses on the simulated dataset (easy setup) are dramatically higher than that on 

the real compound dataset. This is due to the complexity of the simulated dataset which is designed 

to surpass that of the real compound dataset. With this additional complexity, the system often 

takes more time to search for a reasonable solution. Nevertheless, average time expense on the 

simulated dataset (easy setup) is still within the 7 minutes time margin, and thereby comparable to 

that of LC-Mass technique.  
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For the simulated dataset (difficult setup), the average running time for a consistent test case is 

about 9.49 minutes, and the average running time for an inconsistent test case is about an hour. The 

average time expense on the simulated dataset (difficult setup) becomes higher than that of the LC-

Mass approach. This especially happens to the inconsistent test cases. However, for the following 

reasons, we believe that it is still acceptable for the pharmaceutical industry, and in practical 

application, the average time expense should be significantly smaller than an hour:   

 

1. The simulated dataset (difficult setup) is designed to simulate very complex chemical 

compounds, which don’t often appear in the routine compound library management.  

2. The experiment was conducted on a PC with 2.00GHz computational power, which is 

significantly slower than the computer used to control NMR spectrometer and process NMR 

data.  

3. Advances in computational speed according to Moore’s law should half the execution time 

every 18 months.   

 

Considering these three factors, we believe that the time expense of the system is not a big issue. 

With some suitable investment into computer hardware, even the time expense of the system on 

complex chemical compound can be effectively controlled on the level of the time expense of LC-

Mass technique.    

      

 

 

 

0

200

400

600

800

1000

1200

1400

1600

1800

Real Data Simulated Data (First Setup) Simulated Data (Second 
Setup)

Time Complexity in Seconds on Different 
Test Datasets

Consistent Test Cases Inconsistent Test Cases

Fig 40 Average Time Expenses on Different Datasets  
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An observation on the time expenses is that the average running time on the real compound dataset 

is significantly smaller than the running time on the simulated dataset (easy setup). The same also 

applies to the running time on the simulated dataset (easy setup) is significantly small than the 

running time on the simulated dataset (difficult setup)(see Fig 40). This is due to the fact that the 

simulated datasets are designed to simulate more complex compounds than compounds we meet in 

the compound library management environment. This complexity of the compound results in a 

larger search space built by the system, and thereby increases the time consumption of the heuristic 

search (optimization) approach. This conjecture could be further confirmed by the fact that the 

running time for the simulated dataset (difficult setup) is longer than the running time for the 

simulated dataset (easy setup).  

Another observation of the time expenses is that for the same dataset, the average running time for 

the consistent test cases often is shorter than the running time for the inconsistent test cases. This 

trend is not very obvious for the real compound dataset and the simulated dataset (easy setup), but 

very visible for the simulated dataset (difficult setup). Probably the search space for the real and the 

(easy setup) simulated dataset is reasonably small, so that the time expense is not big, and the 

difference between partially searching the space for a solution and completely searching the space 

for a solution are not significantly big either. Therefore, the time expense over the whole structural 

verification tasks is mainly contributed by the NMR spectrum interpretation (e.g. peak picking, 

multiplicity analysis) instead of searching for a consistency analysis solution itself. On the other hand, 

the simulated dataset (difficult setup) represents more complex compounds. This induces the 

system to build a larger search space, which makes a complete search impossible. Consequently the 

time expense on the consistent test cases is significantly smaller than that of the inconsistent cases.  

Specifically, a consistent test case implies the existence of a solution in the search space. A well-

designed heuristic search can find a solution quickly without scanning the whole space. Conversely, 

an inconsistent case implies the nonexistence of the solution in the search space. Thereby, no 

matter how good the heuristic approach is, it has to scan the whole space before being able to 

confirm the nonexistence of the solution. In practice, the search space could be big enough to make 

a whole scan of it impossible. Nonetheless, the search heuristic will still scan a significantly large part 

of the space before it decides to give up. 

In summary, the difference of the search efficiency of the consistent test cases and the inconsistent 

cases directly causes the different time expenses (especially of the complex compounds) of the 

consistent test dataset and the inconsistent test dataset. This conclusion is experimentally confirmed 

by the time expenses on the simulated data (difficult setup), where for a consistent case, the 

average running time is 9.49 minutes, but for an inconsistent case, the average running time is about 

an hour. 

 

6.3.3 Assignment Quality, Consistency between the System and 

Spectroscopists   
 

Table 11 give us the estimated consistency rate (CR) of 84.14% on the 81 real compound structure-

spectrum pair. This result demonstrates that the system is highly consistent with human 
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spectroscopists in detail NMR property analysis and assignments. Could we optimistically 

understand this result as the system reaches 84% capacity of human spectroscopists on structural 

verification tasks? 

The answer is “No”. Specifically, the consistency rate (CR) gives us a good indicator to measure the 

consistency between the system and spectroscopists. But it is not the only indicator. There are 

additional indicators, which could be used to measure the consistency between the system and 

spectroscopists. To list some of them, we could measure the consistency between the system and 

spectroscopists on spectral baseline selection, on peak cluster identification, on peak cluster 

multiplicity analysis, on impurity identification, etc. Note, in Table 11, the comments of 

spectroscopists are given to indicate the deviation of the system from spctroscopists on these 

measurements which are beyond the CR.  

In addition, even if we rely on CR to evaluate the consistency between the system and 

spectroscopists, we still don’t know whether the CR of 84.14% has reasonable persuasion to 

convince spectroscopists, since there are no quantitative requirements about consistency rates, 

which has been proposed by our industrial cooperation partner, and has historically not made record. 

However, through more than three years negotiation with NMR spectroscopists, we clearly 

understand that the only way to completely convince them of the effectiveness of the system is to 

show them that the system does the job exactly like them. From this point of view, the system needs 

to be continually improved to convince spectroscopists, since there is still a margin of about 15% 

mistakes. Nonetheless, the consistency rate of 84.14% on the assignments does motivate all 

spectrocsopists involved in the project to believe that it is possible to reach a higher consistency rate 

(e.g. 95%) with some suitable improvements. A consistency rate (CR) of 95% (as what they believe) 

should be enough to convince the decision makers in the management level of pharmaceutical 

companies to decide using the system as the supplement of NMR spectrometer to replace LC-Mass 

technique on automatic structural verification tasks of compound library management. 

Table 11 shows that the system makes 49 inconsistent assignments. Except 19 “unproblematic” 

cases, there are a total of 30 cases where the system makes incorrect assignments. To pursue the 

reason, the majority mistakes of these 30 cases come from insufficient J-coupling analysis. 

Specifically, there are two scenarios where the system would not execute J-coupling analysis: 

1. While a peak cluster hypothesis is mapped to multiple theoretical multiplet distributions, the 

system would expect that multiple first-order multiplets overlap altogether in the spectrum 

so that the experimental multiplicity of individual multiplet becomes unsolvable. Therefore, 

the system won’t execute J-coupling analysis on the peak cluster hypothesis. 

2. While a peak cluster hypothesis is mapped to a theoretical multiplet distribution, which is 

generated by the chemically equivalent but magnetically inequivalent protons, the system 

would expect that the peak cluster hypothesis shows the high-order multiplet pattern which 

is beyond the first-order multiplet analysis. Therefore, the system won’t execute J-coupling 

analysis on the peak cluster hypothesis. 

Compared with the system, spectroscopists show a more flexible pattern recognition ability, which 

helps them to reduce the ambiguity when they meet the two scenarios. To illustrate these 

advantages of spectroscopists, and reveal the weaknesses of the system, we utilize two examples to 

explain the two scenarios. Specifically, in Fig 41, the system assigns proton groups 1, 2, 5, 12 to the 



126 ∙   Automatic Verification of Small Molecule Structure with One Dimensional Proton Nuclear Magnetic Resonance 

Spectrum 
 

 
 

peak cluster on the top, and assigns proton groups 3, 4, 5 to the peak cluster on the bottom. Clearly, 

this example belongs  

  

  

 

 

 

to the first scenario, where multiple proton groups are assigned to a single peak cluster. Therefore, 

the system only relies on chemical shift and proton numbers to do the assignments. Unfortunately, 

all these proton groups are shown in similar chemical shift positions, and thereby make them 

undistinguishable with the information on chemical shift. As a result, any grouping of these proton 

groups which are consistent on proton numbers are considered as the reasonable assignments by 

the system. The assignments shown in Fig 41 are one of them and are indeed consistent in both 

chemical shift and proton number. However, through discussion with spectroscopists, we know that 

Fig 41 Wrong assignments by the system, and their corrections on Essigsaeurelinalylester 



Experiments   ∙   127 
 

 
 

the assignments are wrong. Specifically, spectroscopists will assign proton group 1 to the right peak 

of the peak cluster at the bottom, and assign proton group 4 and 5 to the middle part of the peak 

cluster at the top. This is owed to spectroscopists’ ability to check multiplicities on overlapped 

multiplets. To pursue the reason, from the structure spectroscopists know that proton group 4 and 5 

are coupled to each other to show complex multiplicity patterns. Therefore, it is impossible to assign 

them to the peak cluster at the bottom, which only shows two singleton patterns. On the other hand, 

the signal patterns in the middle of the peak cluster on the top shows complex multiplet pattern, 

and thereby it is reasonable to assign these proton groups to it. With this additional check, 

spectroscopists end with the correct assignments, while the system makes the wrong assignments.        

In Fig 42, the system assigns proton group 0, 2 to the peak cluster at the left, and assigns proton 

group 3, 5 to the peak cluster at the right. Clearly, this example belongs to the second scenario, 

where chemically equivalent but magnetically inequivalent protons are assigned to a single peak 

cluster. Therefore, the system only relies on chemical shift and proton numbers to do the 

assignments. Unfortunately, two groups (0, 2 and 3, 5) are identical with the measurement only 

upon chemical shift and proton number. This makes them undistinguishable by the system. 

Consequently, the system will arbitrarily select assignments among them. In contrast, 

spectroscopists can identify the subtle difference between the two groups. Specifically, with the help 

of a J-coupling analysis, spectroscopists know that there is an additional proton which will cause the 

splitting of the NMR signal of proton group 3, 5, and therefore make the NMR signal of proton group 

3, 5 showing more complex multiplet pattern to that of proton group 0, 2. Clearly, the peak cluster 

at the left shows a triplet-like signal pattern, which is more complex than that of the peak cluster at 

the right, which shows a doubleton-like pattern. This gives spectroscopists enough evidence to 

assign proton group 0, 2 to the peak cluster at the right, and assign proton group 3, 5 to the peak 

cluster at the left.     

    

 

 

 

Fig 42 Wrong assignments by the system, and their corrections on Benzonitril 
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The above two examples show that to reach the level of the accuracy of human spectroscopists, 

more advanced signal pattern recognition techniques (which are beyond first-order multiplet 

analysis) are needed to be designed and added into the system. We believe that a good starting 

point would be to start a first-multiplicity analysis upon the overlapped NMR signals and 

magnetically inequivalent NMR signals.  

Based on the distribution of errors in the real dataset (see Table 11), we can safely say that the 

system can reach the consistent rate (CR) of 95% in the real dataset with above improvement. 

Anyhow, a lot more research is needed to be done before the system is mature enough for the 

practical evaluation, and we will leave the discussion of them to future work in Chapter 9. 

In addition, as the supplement of the experimental result shown in Table 11, there are some other 

inconsistencies between the system and spectroscopists, which can’t be measured by the 

consistency rate (CR). Fig 43 to Fig 45 gives us three examples. In Fig 43, the inconsistency between 

the system and spectroscopists comes from the baseline identification. With baseline set too high, 

the system does not put the most right peak in Fig 43 to the peak cluster. As the result, even the 

assignments of the system were correct, spectroscopists would still doubt about the correctness of 

the system, if they saw the case in Fig 43. Similarly, in Fig 44, the peak cluster should be split to two 

peak clusters, and in Fig 45, the two peak clusters should not be split. Theses deviations of the 

system also hamper spectroscopists’ confidence about the system’s performance.   

From these counterexamples, we summarize that to build a mature system, which is accepted by 

spectrscopists, a lot of detail engineering works still needs to be done to further improve the 

components of the system, which cause these deviations.   

    

 

 

Fig 43 Baseline Problem on Essigsaeure-isopropyl-ester Fig 43 Peak Cluster should Split on Linalool 
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Fig 44 Peak Cluster should not Split on 1-Octyne 
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Chapter 7 Contribution 
 

This chapter introduces the potential impact of our work on the NMR and pharmaceutical industry. 

As the contribution to applied computer science, it also proposes a human-logic based optimization 

strategy, and compares it with several classical optimization approaches. We hope that the human 

logic based strategy could be utilized by other computational participants to solve similar problems 

in various application domains, especially in fields where computer could be used to replace human 

experts.  

    

7.1 Impact for NMR and Pharmaceutical Industries 

In this section, we explain the potential impact of the successful system on NMR and pharmaceutical 

industry. 

 

7.1.1 Impact on the NMR industry 
 

NMR is the most comprehensive technology for molecular structure identification in modern world. 

For a long time it suffered the disadvantages of a high price, high operational cost and complex 

spectrum interpretation procedure. High price and high operational cost keep it away from extensive 

routine molecular structure identification tasks in drug discovery, drug production and drug quality 

control processes. The fact that NMR interpretation relies on highly educated and experienced 

people limits its application in universities and research institutions. As the result, most of molecular 

structure identification and verification tasks in production and QA/QC processes still utilize other 

(cheaper but easier to operate) analytical instrumentation techniques such as LC-Mass techniques.  

In order to popularize NMR technique into the routine molecular structure identification tasks, over 

the past 30 years, NMR manufactures have been constantly improving the spectrometer hardware, 

and reducing production cost. As a result, the low end NMR spectrometer has a price comparable to 

the price of LC-Mass spectrometer. With the breakthrough in detector (probe) technology, the 

operational cost of NMR spectrometer is also dramatically reduced. Through carful and detailed 

market research, NMR manufactures get the conclusion that the total cost (including spectrometer 

price and operational cost) of low end NMR is reduced to the same level as the cost of LC-Mass 

technology. Therefore, the only bottleneck left is the complexity of NMR spectrum interpretation. To 

take over this big market, which used to belong to LC-Mass technology, NMR manufactures need an 

automatic NMR spectrum interpretation software to reduce requirements on human quality. Ideally, 

they want the spectrum interpretation to be fully automatic so that the requirements on human 

spectroscopists are reduced to a minimum.  Since >99% of the structure identification or verification 

tasks in routine production and QA/QC processes utilize 1D 1H NMR spectrum, the primary goal of 

NMR manufactures is focused on automation of 1D 1H NMR spectrum interpretation.                 
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In the range of this thesis, we built a fully automatic molecular structure 1D 1H NMR spectrum 

verification system, which includes the fully automatic 1D 1H NMR spectrum interpretation, and 

fully automatic NMR signal-structure proton assignments. The experimental results show that the 

system reaches the decision accuracy which is acceptable to be used as the automatic structure 

verification tool in industry. It also demonstrates that the total time expense of NMR acquisition and 

interpretation is comparable to the time expense of the LC-Mass technology. In addition, to some 

extent, it exhibits the consistency between the system and spectroscopists. Conclusively, as the 

prototype, the system proves the feasibility of automating the structural verification procedure, and 

thereby taking over the last barrel of applying NMR technology in routine structural verification tasks. 

Based on our system, reliable commercial software are under development, and are designed to be 

embedded into NMR spectrometer control software to ease the complexity of spectrum 

interpretation and structural verification. To summarize, we hope that by adding this software into 

the NMR system, NMR technology could be pushed to replace LC-Mass in structure verification tasks 

of routine production and QA/QC process, and finally increase the market share and application 

scope of NMR technology in life science industry. 

    

7.1.2 Impact on the Pharmaceutical Industry 
 

It is crucial to guarantee the effectiveness of the drug discovery process to insure the quality of the 

compound library. It is the long term interest for the compound library management participants to 

seek new approaches to improve the quality of the compound library. NMR technology has obvious 

superiorities for structure verification tasks. Therefore, it is used as the arbitrate technology to 

supplement the analysis of LC-Mass technology. Due to the expensive human effort consumption, 

majority structural verification tasks still rely on LC-Mass technology. As a result, there is long term 

desirability to automate the NMR spectrum verification process in the compound library 

management.    

With the experimental results of our system, it seems that the system can reach 90% of the human 

spectroscopists’ consistency analysis decision accuracy. And the experimental results also show 

more than 80% consistency between human spectroscopists and the system in assignments. This 

result demonstrates that the system could be used to replace human spectroscopists in structure 

verification tasks to a great extent. Therefore, the automation based on the system is close to be 

mature enough to be used to dramatically reduce the human efforts in the structural verification 

process. With this new automation, it is possible to use NMR to replace LC-Mass for routine 

structure verification tasks in compound library management. As the result, relying on NMR 

technology and high consistency between the automatic NMR spectrum analysis system and NMR 

spectroscopists, the quality control level of compound library will be qualitatively improved. Finally, 

this will in turn improve the effectiveness and the efficiency of the drug discovery process.  
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7.2 Contribution to Computer Science 

 

The core of the system is an optimization routine. The optimization is based on mimicking 

spectroscopists’ human decision logic, which distinguishes itself from other optimization approaches. 

In fact, some optimization approaches (e.g. simulation annealing, Markov chain Monte Carlo, etc.), 

have been utilized to address the problem in the past, but failed. We believe that the inabilities of 

these optimizations are due to the simplicity of their embedded heuristics design, and the lack of 

human-like reconsideration mechanism. Therefore, the optimization is designed to get over these 

inabilities. To explain these characteristics of the optimization in detail, we illustrate our 

optimization policies with an example in 7.2.1. In 7.2.2, we analyze the difference between our 

optimization policies and other optimization methodologies. 

         

7.2.1 Human Logic Based Optimization – a Demonstration 
 

This section shows an example to explain how the optimization process works.  Specifically, in Fig 46, 

we abstract the problem setup by omitting its NMR interpretation. Therein, Input List 1 and Input 

List 2 represent two sets of elements which need to be matched to each other, while there are 

additional constraints defined on Input List 2. (Note, to map this abstract setup to our NMR 

structural verification problem, Input List 1 represents the peak cluster hypothesis space, Input List 2 

represents the theoretical multiplet distribution list, while constrains defined on Input List 2 

represents connectivity  among theoretical multiplet distributions. Therefore, the match between 

Input List 1 and Input List 2 represents searching for reasonable consistent assignments between the 

peak cluster hypotheses space and the theoretical multiplet distribution list.) To illustrate the work 

flow of the optimization, Fig 47 to Fig 52 demonstrate a simulation of a sequential match between 

Input List 1 and Input List 2. Specifically, in Fig 47, pair-wise matches between Input List 1 and Input 

List 2 select the best matched pair (A, 1) as the initial part of the solution. Then, in Fig 48, the 

algorithm continually searches for the next best matched pair (D, 4) and adds it to the solution. Note, 

there is no constraint defined between 1 and 4, and thereby the solution (A, 1) (D, 4) is still 

consistent. Continually, in Fig 49, the algorithm keeps searching for the next best matched pair (C, 

3+5) and adds it to the solution. But now, there are constraints defined between 1 and 3, 3 and 4, 3 

and 5, and thereby the consistencies between A and C, C and D need to be checked. Due to the fact 

that A and C are not matched, pairs (A, 1) and (C, 3+5) are deleted from the solution. As the result, 

only pair (D, 4) is left in the solution. Note, pairs (A, 1) and (C, 3+5) are deleted from the solution, but 

are not deleted from the search space. Instead their priorities to be reselected into the solution are 

reduced. This is designed to mimic human’s logic of reconsideration. Next, in Fig 50, the algorithm 

finds the next best matched pair (B, 3) from the search space, and adds it ito the solution. With a 

constraint defined between 3 and 4, A and D are checked and found to be consistent. Therefore, the 

solution now includes (D, 4) and (B, 3). In Fig 51, (A, 2+5) is added to the solution. In Fig 52, pair (C, 1) 

is added into the solution. Since all elements in Input List 2 are reasonably explained by elements in 

Input List 1, and constrains defined on Input List 2 are satisfied by the elements of Input List 1, match 

is complete. Hence, the complete solution is shown in Fig 53.   
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From the above demonstration, we summarize that there are three characteristics of the human 

logic based optimization, which distinguishes it from other optimization approaches.  

 

a. The human logic based optimization sequentially builds a solution instead of searching for a 

solution in the solution space. This is similar to majority heuristic search algorithms like 

those that are designed for finding the shortest path in a graph (see (Russell, et al., 2002)).  

b. The human logic based optimization contains a mechanism to “shrink” the solution. This 

mechanism is similar to the back-tracking mechanism embedded in the deep-first search 

algorithm (Sedgewick, 1997). But they are different in essence. Specifically, in the back-

tracking mechanism, the solution is “shrunk” by returning back along the previous path. In 
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the human based logic, the solution could be “shrunk” to a status which is never been 

searched before (For the detail discussion of the difference, see 7.2.2). 

c. In the human based logic, the deleted part of the solution could be reconsidered again. This 

mechanism is similar to random walk police adopted by most stochastic optimization 

algorithms, since any part of searching space has chance to be traveled again. (Note, we 

assume that the searching space is connected, see 7.2.2.) But they are distinguished from 

each other in principal. With the random walk police, a dice is thrown in each searching 

status to decide which status to go next. But with the human based logic, revisiting a 

previously visited status is based on the maximum likelihood heuristics, and there is no 

random component involved.  

     

  

7.2.2 Human Logic Based Optimization versus Classical Optimization 
 

 

In this subsection, we analyze the difference of the human logic based optimization from some 

classic optimization methods. 

 

7.2.2.1 Representation of Problem as Graph Search 

 

Given the problem setup shown in Fig 46, optimization approaches convert the problem setup to a 

heuristic search. Here, heuristic search means a cluster of search strategies which utilizes problem-

specific knowledge to make the search of the solution efficiently (Russell, et al., 2002). 

Obviously, the search strategy design relies on the structure of the search space. Therefore, to 

discuss the advantages and the disadvantages of different search strategies, the first task should be 

to reasonably define a search space to represent the problem. With the problem setup in Fig 46, we 

believe that there are three ways to arrange the structure of the search space. To make it easily 

understand, we continue to use the example in 7.2.1 to illustrate the structure of the search space. 

Note, we represent the problem setup presented in Fig 46 to Fig 54, with some simplifications: we 

limit the problem to only contain one-to-one mappings.     

Search Space Structure I 

An undirected graph is built to represent the searching space, where each possible pair between 

Input List 1 and Input List 2 is represented as a graph node. With this structure of the search space, 

the problem of building a solution for the setup in Fig 54 is converted to the problem of searching 

for a reasonable path in the graph (see Fig 55). 
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Search Space Structure II 

A directed graph is built to represent the searching space, where a graph node represents a possible 

subset of all pairs. Note, 

(1) In the graph there are one-to-one mappings between all graph nodes and all possible 

subsets of all pairs.  

(2) There is no circle in the graph. 

With this structure of the search space, the problem of building a solution for the setup in Fig 43 is 

converted to the problem of starting from a reasonable “source” node to search for a reasonable 

“sink” node in the graph (see Fig 56). 
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A fully connected undirected graph is built to represent the searching space, where each graph node 

represents a complete match between List1 and List2 (a possible solution). All these solution nodes 

are connected altogether to construct a fully connected graph. Then, the problem of building a 

solution for the setup in Fig 54 is converted to the problem of searching for the optimal solution 

node in the fully connected graph (see Fig 57). 

 

 

 

 

7.2.2.2 Difference between Human Logic Based Optimization and Best First Search  

 

Generally speaking, best first search describes a subset of the general Tree-Search or Graph-Search 

algorithm in which the next tree or graph node is selected to the searching track based on an 

evaluation function, which is designed by applying problem-specific knowledge, in order to find a 

solution efficiently.  For example, both greedy search (Russell, et al., 2002) and A* search (Russell, et 

al., 2002) belong to the range of best first search.  

Best first search is a fundamental search technology, which is universally applicable to different 

constructions of search space. Therefore, it can be used to search for a solution in any of three graph 

representations of our problem setup. Greedy search and A* search are two typical best first search 

approaches, and therefore, we focus our discussion on their utilities in our problem setup.  First, we 

explain the difference between greedy search and A* search. Greedy search is a primitive 

technology, which selects the next graph node to add into the searching path only based on the 

information in the candidate nodes. Specifically, the candidate node which maximizes the utility of 

reaching the searching goal will be selected into the search path. Clearly, the weakness of this 

searching strategy is that it completely ignores the information in the past search path. This “Markov” 

property makes it incompetent for tasks of searching for an optimal path in graph, where all graph 

nodes belonging to the path have to be evaluated together, and this requires a memory of previous 

historical search paths. Comparatively, the evaluation (heuristic) function of A* search combines the 

A1 B2 C3 A1 B3 C2 

A2 B1 C3 A2 B3 C1 

A3 B1 C2 A3 B2 C1 

Fig 56 Search Space Structure III 
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information in both the candidate node and the previous searching track to determine the next 

graph node to be added into the searching path. This instrument makes A* search competent for 

searching the optimal path in graph.     

By reviewing the three graph representations of our problem setup, we know:  

(1) In the first representation (Fig 55), the solution is represented as a path. Clearly, with the 

instrument to consider a whole path altogether, A* search excels greedy search. 

(2)  In the second representation (Fig 56), solutions are represented by “sink” nodes. Search is 

arranged to always start from some “source” nodes, follow direction of edges to propagate 

to a “sink” node. The graph is subtly arranged in a way that the previous search track is 

recorded in the current graph node. By moving the information of historical searching track 

into graph node, “Markov” property is assigned to the graph representation itself, and this 

makes the mechanism of A* search to consider the historical searching track unnecessary.  

Therefore this representation is indifferent to the choice of greedy search or A* search, and 

both approaches “degenerate” to a hill climbing policy.  

(3) In the third representation (Fig 57), each node represents a possible solution, which is 

independent from other solutions. This representation essentially describes the solution 

space, and thereby search on this representation becomes comparing among different 

solutions. The comparison is naturally pair-wise (Markov). This makes greedy search and A* 

search identical to each other, and both of them “degenerate” to local greedy search (hill 

climbing). 

 

In our problem setup, to use greedy search in the first graph representation, the solution is built by 

sequentially adding new graph nodes to the searching path.  Since the search path is ignored (lost) 

while selecting a new graph node, there is no way to check the constraints defined on Input List 2. 

With these checks missed, the built solution could be totally wrong. As a conclusion, greedy search is 

not suitable for searching the solution in the first graph representation.  

To use greedy search in the second and the third graph representations, there is no principal 

limitation on checking constrains defined on Input List 2, due to the subtle arrangement of the 

search space structure. However, greedy search (hill climbing) is notorious for trapping to local 

minimum or local maximum, which makes it unlikely to find the optimal solution (global minimum or 

global maximum). This especially happens when the searching graph (space) is big.  

To use A* search in the first graph representation, its heuristic design allows it to consider the search 

path while selecting new graph nodes. This makes it possible to check constraints defined on Input 

List 2 in the problem setup. But, A* search is still an approach to sequentially build a solution. 

Therefore, before the complete solution is found, in each searching step the searching path built so 

far only represents a part of the solution. Hence, only a subset of constraints defined on Input List 2 

is checked. With some constrains unchecked, it is impossible to accurately estimate the distance of 

the currently built partial solution to the final solution (goal), and it could happen that the currently 

built partial solution is totally wrong. In computer terms, we say that we cannot build an admissible 

heuristics (Russell, et al., 2002) for A* search for our problem setup. Without this warranty, it is 

possible that A* search converges to a solution far away from the optimal solution.      
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Compared to the best first search, human logic based approach works on the second graph 

representation. To get over the problem of trapping in the local minimum or the local maximum, the 

human logic based approach extends the standard greedy search approach by adding two additional 

mechanisms into it.  

(1) It adds a mechanism to jump from the current graph node to another suitable graph node. 

Here we emphasize that the jump is not arbitrary, and it is guided by shrinking the 

searching path represented by the graph node. This distinguishes it from a random walk 

policy. Note, in the second representation, each node represents a searching path.    

(2)  A previously visited graph node has the chance to be visited again, while this chance get 

smaller each times the graph node is revisited. This distinguishes it from random walk 

policy, when the probability of visiting a graph node is fixed.  

 

We believe that with these two additional mechanisms, the greedy search does mimic human’s logic 

in solving the problem setup defined in Fig 46 and Fig 56. In addition, the experimental result in NMR 

structural verification problem has demonstrated the utility of the human logic based optimization 

approach. 

 

   

7.2.2.3 Difference between Stochastic Optimization and Human Logic Based Optimization 

 

 

Stochastic Optimization Type I 

Stochastic optimization is a cluster of heuristic searching algorithms which works in space with 

Markov property (Russell, et al., 2002) i.e. the second and the third graph representations of our 

problem setup. Stochastic optimization is designed to get over the problem of greedy search, where 

the local minimum or the local maximum is often found as the solution instead of the global 

minimum or the global maximum. To address the problem, stochastic optimization introduces a 

random walk mechanism into greedy search to “escape” from the local minimum or the local 

maximum. Specifically, its workflow is described as following:  

(1) Randomly select a “source” node in the graph as the initial current status node. 

(2)  From the current status node, hill climbing (best first search heuristic) is used to select the 

“best” neighboring nodes as the new current status node.  

(3)  Repeat (2) until the current status node reaches a local maximum or minimum. Here, by hill 

climbing, the search cannot find the next “best” status node (neighboring node), and 

therefore it is “trapped” in the local maximum or minimum. Then, random walk mechanism 

starts to pick up the next status node by “flipping a coin”. 

(4) Go to (2) to continue the search. 

 

Above mentioned is the principal of classical stochastic optimization approaches e.g. well-known 

simulation annealing (Russell, et al., 2002). Clearly, with this random walk mechanism, search is 
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possible to hurdle local maximums or minimums, and converge to the global maximum or minimum 

(optimal solution).  

There are several mutations of the above optimization strategy. For example, instead of starting the 

random component at the time that greedy search traps in a local minimum or maximum, a 

stochastic component could be combined and used together with “high climbing” component in 

every search step. Specifically, instead of selecting the “best” neighboring node in above step (2), 

the algorithm could select several “best” neighboring nodes, and then let the stochastic component 

select a node from this set of “best” neighboring nodes as the next current status node, with 

probability proportional to their fitness to be “best” neighboring node. Formally, this mutation is 

named stochastic hill climbing (Russell, et al., 2002). Another example is that we can start several (k) 

greedy searches simultaneously from different starting points.  Then, in each searching step, a set of 

“best” neighboring nodes are generated for each greedy search. All nodes that belong to these sets 

are added together into a single “best” node set. Next, the stochastic component selects k new 

current status from the set, with the probability proportional to each node’s fitness to be “best” 

neighboring node. This forms the principal of the group of optimization approaches e.g. stochastic 

beam search (Russell, et al., 2002), genetic programming (Russell, et al., 2002), etc. 

 

Stochastic Optimization Type II 

In addition to the optimization approaches mentioned above, there is another type of stochastic 

optimization methodology, which is totally based on random walk strategy. It is particularly suitable 

to work in the third graph representation, in which the solution is selected from the solution space. 

Specifically, the work flow of the approach is: 

(1) The walk starts randomly from a node of the graph. 

(2)  A stochastic component is used to select a neighboring node to walk with the probabilities 

proportional to the fitness of neighboring nodes.  

(3) Repeat (2) for a number of iteration. Then the statistics of number of times each node of the 

graph are visited are recorded. The distributions of the statistics are then used for 

determining which graph node is the optimal solution.  

  

This is the principal of a cluster of optimizations named Markov Chain Monte Carlo approaches.    

To summarize the group of the first type stochastic optimizations, all of them use a random 

component to supplement the greedy search strategy. Obviously, the Markov property of the first 

type stochastic optimization limits its applicability on the first graph representation. To the second 

graph representation, the first type stochastic optimization also shows its inability. Specifically, in 

the second graph representation, the graph is organized as a directed graph with multiple paths 

from “source” nodes to “sink” nodes. It could happen that some of these paths never intersect. 

Lacking connectivity, neither random component nor hill climbing component can guide the search 

to “jump” from the current path to any other paths. Hence the first type stochastic optimization is 

luck of ability to reach the whole search space of the second graph representation, and so as to luck 

of ability to build the optimal solution in this graph representation. To the third graph representation, 
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the first type stochastic optimization is perfectly matched, since there is no limitation on its Markov 

property, and there is no problem of ransacking the search space, either. In fact, the stochastic 

optimization is designed to work in the solution space e.g. the third graph representation. However, 

there is the problem of utilizing the first type stochastic optimization in our problem setup. 

Specifically, the efficiency of the first type stochastic optimization relies on the selection of the 

starting point, and the effect is especially significant while the search space is big. If it happens that 

the starting point is close to the optimal solution, the optimization often converges to the real 

(optimal) solution quickly. Otherwise, the algorithms could become extremely slow. Note, this low 

efficiency mainly originates from the uncertainty of the stochastic component. Unfortunately, to our 

problem setup in Fig 54, the good searching starting point is difficult to be acquired. This is due to 

the constraints defined on Input List 2. Without considering these additional constraints, any best 

first search approaches would fail to create a good starting point. To consider these constraints, the 

best optimization approach to build a solution is the human logic based approach (see 7.2.2.2). In 

fact the human based logic can give a reasonable solution, which makes the further optimization in 

the solution space unnecessary. This gives us an argument why we believe that utilizing human 

based logic to directly build the optimal solution is the better policy than the policy of searching the 

optimal solution in the solution space.   

To summarize the group of the second type stochastic optimization, it relies on Monte Carlo 

sampling. In principal, Monte Carlo sampling requires high amount of instances (ideally infinite 

instances) to give the reliable estimation.  This makes the optimization based on Monte Carlo 

sampling extremely slow. As the conclusion, we don’t believe that the second type optimization 

approach is a practical choice for the problem setup.  

Compared to stochastic optimization, there is no random component in the human logic based 

optimization. Instead a human-mimicking reconsideration mechanism is adopted to avoid trapping 

in the local minimum or maximum. We believe that this reconsideration (controlled “jump” in the 

second graph representation plus reduced chance to revisit the previously visited nodes) mechanism 

is a better choice than the blind random selection, and thereby makes the human logic based 

optimization more efficient than the stochastic optimization under our problem setup (see Fig 46 

and Fig 54)). Theoretically, by excluding the random component, the human logic based optimization 

could be unified under the maximal likelihood principal (see Chapter 5). 

      

7.2.3 Summary of Human Logic Based Optimization 
 

 

In 7.2.2, we introduced some classical optimization methods and explained the problem of applying 

them to our problem setup.  Combined with 7.2.1, we also explained the advantage of utilizing the 

human logic based approach to approach this problem setup. Specifically, we explained the 

difference between the human logic based approach and those traditional optimization approaches, 

and show that the human logic based approach works on the second graph representation, and it 

contains the mechanism to jump under control among nodes in the graph, and has the flexibility to 

revisit the previous visited graph nodes. Practical experience shows that this approach solves the 
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problem of NMR structure verification very well, while other classical optimizations have been 

shown useless. We hope that our approach to NMR structure verification problem and the resultant 

human logic based optimization could be helpful for other practical participants who also face the 

scenario to design the automatic system to replace human beings. Especially, we hope that other 

participants could add our human logic based optimization into their optimization tool box, and 

apply it to other similar problems from different application domains. 
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Chapter 8 Limitation 
 

 

In this chapter we explain the limitation of our NMR structure verification system, and explain where 

we need to improve it. 

 

8.1 Limitation in Technology 

 

In this section, we explain the limitation of our current system and methodologies. 

 

8.1.1 Problems of Isomere, Conformere, and Hetero Coupling 
 

1D 1H NMR spectrum is a powerful tool for molecular structure verification, which is capable to be 

used independently to identify the structure of most compounds (>99%) through sufficient 

interpretation. The automatic system we built inherits majority interpretation skills from NMR 

spectroscopists e.g. chemical shift analysis, proton number analysis, J-coupling analysis, etc. But 

there are still some skills of spectroscopists missed in the system. Most important among them is the 

skill to identify Isomeres, Conformeres, or hetero couplings from the molecular structure, and utilize 

this additional information to improve the quality of the structural verification procedure. Isomeres, 

Conformeres, or hetero couplings are terms used by spectroscopists. Intuitively, they represent the 

scenario, where a molecule has a unique 2D structure, but has two (multiple) 3D structures. These 

different 3D constructions of the molecule will produce different NMR signals, and thereby 

experimentally observable 1D 1H NMR spectrum is actually the mix of all of these NMR signals. Only 

with 2D molecular structure as the input of the system, the subtle difference of 3D constructions of 

the molecule is invisible by the system, and thereafter this additional complexity in the 1D 1H NMR 

spectrum is unexpected by the system. As the result, Isomeres, Conformeres, or hetero couplings 

will cause the system to wrongly convert the structural verification decision from consistency to 

inconsistency, and thereby it deteriorates the accuracy of the system. 

Through discussing with NMR spectroscopists, we understand that experienced NMR spectroscopists 

have the ability to identify Isomeres, Conformeres, or hetero couplings from some molecules by only 

looking at their 2D structures and to precisely predict the corresponding changes in the 1D 1H NMR 

spectrum. We believe that by computerizing this human expertise and adding them into the system 

we can keep improving the accuracy of the system. 
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8.1.2 Keeping Improving Assignment Accuracy 
 

 

To push the automatic molecular structure NMR spectrum verification system into practice, we need 

to keep convincing NMR spectroscopists with the assignment consistency between the system and 

NMR spectroscopists. As we discussed in 7.3.3, our evaluation of assignment accuracy of the system 

on the limited dataset is about 84%, and there is a margin of 16% to be improved. In addition, we 

expect that under practical application environment, the assignment accuracy would decrease. 

These facts motivate us to keep improving the system’s assignments accuracy. As we explained in 

7.3.3, the majority of inconsistencies between the system and NMR spectroscopists on the test 

dataset comes from lack of pattern recognition and pattern matching ability of the system on 

overlapping first-order multiplets and on high-order multiplet. Clearly, to increase the assignment 

accuracy, a first improvement we could implement is to do some first-order multiplet recognition 

upon the overlapping NMR signals, and use them for assignments. This will reduce the assignment 

errors originated from the overlapping of first-order multiplets.  Second, some NMR signal shape 

pattern recognition techniques could be added into the system to identify high-order multiplets 

from the spectrum, and thereupon to reduce the assignment error originated from the magnetic 

inequivalence of protons. Obviously, to improve the assignment accuracy, the new pattern 

recognition and pattern matching techniques mentioned above should be added into the system.  

   

8.1.3 Adding 2D 1H NMR and 1D C13 NMR Interpretation 
 

 

1D 1H NMR spectrum technique is the main work horse for molecular structure verification. 

However, no technique is “omnipresent”. There exist some molecules which cannot be identified by 

the 1D 1H NMR spectrum alone even by top experts in the NMR structural verification field. If this 

incidentally happens, NMR spectroscopists turn to rely on other NMR techniques such as 2D 1H 

NMR spectrum and/or C13 NMR spectrum to supplement the 1H 1D NMR structural verification 

process. Obviously, to automate 2D 1H NMR and C13 NMR structure verification will improve the 

accuracy of the system, and further push the system into the real industrial application beyond 

compound library management. 

     

8.1.4 Combining the Structure Verification of NMR Spectrum with Mass 

Spectrum 
 

More information means more accuracy. Even though mass spectrum is simpler in principal and 

gives only limited information for structural verification, it is based on a totally different principle. 

Absorbing the ability of mass spectrum structure verification into the system could also remedy the 

system’s limitation in certain environments. Depending on the potential application, this merge is 

going to improve the performance of the automatic verification system, and make the system more 

reliable to face possible new challenges emerging from small molecular structure verification tasks.  
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8.2 Limitation of the Experiment 

 

In this subsection, we explain the limitation of our experimental methods.  

 

8.2.1 Limited Representativeness of Simulated Dataset 
 

 

Since we have a limited quantity of real compounds, we used simulated data (spectrum and 

theoretical multiplet distribution list pairs) to evaluate the accuracy of the system.  Here the 

evaluation of the accuracy means the estimations of two types of errors. However, even though the 

simulated spectra are specially designed to simulate all possible scenarios, which can happen in the 

1D 1H NMR spectrum including existence of high order multiplets, existence of overlapping of first 

order multiplets, existence of impurities, shape and position variance of solvent signal, variance of 

baseline, and NMR spetroscopists have been involved to control the quality of the simulated spectra, 

it is still possible to doubt the estimated values of two types of errors. To reliably estimate the two 

types of error so as to the accuracy of the system, we need to test the system against millions of real 

compounds. Only compound libraries of pharmaceutical companies have the size of millions of 

compounds. But they are inventories of the pharmaceutical companies, which are unavailable to the 

public. In addition, even if we have access to use these compound libraries, intentionally acquiring 

NMR spectra of all these compounds is a huge amount of human work. Therefore, the optimal policy 

is to merge the estimation of the system’s accuracy into the routine structural verification tasks of 

compound library management. From this point of view, we need cooperation from some 

pharmaceutical companies. At the moment, our industrial cooperator – a NMR manufacturer starts 

negotiating with some pharmaceutical companies. From their feedback, we understand that 

pharmaceutical companies are interested in our work and are eager to test the system in the 

practical application environment of compound library management.  

  

8.2.2 Limited Representativeness of Real Compound Dataset  
 

 

The real compound dataset is used to evaluate both accuracy of the system and assignment 

consistency between the system and NMR spectrscopists. Obviously, the quality of the estimation 

relies on the representativeness of the dataset. From the practical application point of view, the real 

compound dataset we used is a little bit utopian. Specifically, there are no examples of Isomere, 

Conformere or the hetero coupling in the dataset. There are no examples of compounds which 

cannot be identified by applying 1H 1D NMR interpretation alone, either.  We know that the 

probabilities of the above two scenarios happening in the practical structure verification tasks are 

low, but nevertheless existence of these compounds would deteriorate the performance of the 

system. Without the dataset, which could equably represent these two scenarios and so other 
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scenarios we have not yet expected, the estimation of the system’s performance could not 

represent the system’s behavior in the practical application environment. To pursue the better 

estimation of the system’s performance, we return to the solution we proposed for taking over the 

problem of limited representativeness of simulated datasets (see 8.2.1). While the new deal is 

settled with the pharmaceutical company to allow us to access its compound library, we are able to 

evaluate the system’s performance in the practical application environment. In addition, we are also 

able to measure the damnification of the scenarios e.g. Isomere, Conformere, or the hetero coupling 

on the system performance, and accordingly design new mechanisms to deal with it if necessary.   

 

8.3 Limitation in Industrialization 

 

In this subsection, we explain the limitation of applying the current system to the practical 

application environments within the pharmaceutical industry. 

 

8.3.1 NMR Automation Hardware 
 

 

To implement a practical automatic structure verification solution, solving the problem of automatic 

structure verification is only a part of the whole solution. To realize the automatic structure 

verification in practice, it requires additional NMR hardware e.g. physical sample buffer and 

automatic sample feeding robot arms.  In addition, the system needs to be seamlessly embedded 

into NMR spectrometer control software so that the automatic structure verification is integrated 

into the spectrum acquisition process to give the consistency analysis on time. Obviously, all these 

require NMR manufacturers to invest on both developing the automation hardware and 

reengineering the NMR spectrometer control software. In fact, synchronous to our project, another 

project is executed in our cooperating NMR manufacturing site to develop an automatic sample 

feeding mechanisms and embed it into NMR spectrometers. At the moment, a software team from 

the NMR manufacture is designing the interface between our system and the NMR spectrometer 

control software. With above projects finished, as an independent system, NMR spectrometer is 

ready to accept fully automatic molecular structural verification tasks. 

   

8.3.2 Link to Compound Library Management Automation   
 

 

To push the NMR based automatic structural verification solution to routine QA/QC in compound 

library management of the pharmaceutical industry, pharmaceutical companies need to make an 

effort to link its automatic compound sample management system to the automatic sample feeder 

of the NMR spectrometer. By adding this part, the automatic NMR structure verification system 

becomes fully interactive with the automatic compound library management system. At this step, 
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we reach to the milestone to practically test our structural verification system in the real application 

environment. Feedbacks from the evaluation will show us the direction of where and how to 

improve the system. We believe only under this track, NMR based automatic structural verification 

can truly become mature.     
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Chapter 9 Future Work 
 

 

In this chapter, we summarize the future work of both extending the system to a commercial 

product and pushing it to the practical application in compound library management, and potentially 

applying the methodologies we developed for the system to other applications in different fields. 

   

9.1 Future Work in NMR/Pharmaceutical Industry 

 

As we discussed in the limitations (see Chapter 8), to pursue our final goal, we need to keep 

improving the system’s performance. Specifically,  

(1) we need to extend the system’s ability to detect and verify the molecular structures which 

contain Isomere, Conformere, hetero coupling or other unexpected characteristics.  

(2) we need to continually improve the system’s assignment consistency to human 

spectroscopists. This could be improved by adding the mechanism of first-order multiplet 

analysis of overlapping NMR signals, the mechanism of identifying high-order multiplet from 

the spectrum, etc. into the system.  

(3) to build a complete structure verification system, we need to supplement the automatic 1D 

1H NMR structural verification system with both automatic 2D 1H NMR structural 

verification procedure and 13C NMR structure verification procedure. 

(4) Following this track, we could also combine NMR based structural verification procedure to 

that of mass spectrum based structural verification.  Note, these supplements or 

combinations mentioned in (3) and (4) would have limited contributions to improving the 

accuracy of the system. Therefore, the decision of whether to implement these additions 

relies on the actual requirements for the accuracy of the applications.  

(5) we need to push the development of automation hardware in both NMR manufacturing and 

pharmaceutical companies. Without this hardware as mediums, automatic verification 

software itself can not accomplish the automatic structural verification task.  

(6) we need to push the evaluation of the system in the practical application environments. The 

system is complex enough so that there are errors, defects we have never expected. 

Abundant tests in practical application environments give us an opportunity to discover 

these errors and defects, so as to allow us to keep improving the system’s performance. It is 

important because only by passing these practical tests, we can conclude that the system is 

mature to be used in practice. 
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9.2 Future Work in Applied Computer Science 

 

In the majority of practical application fields, humans still show their superiority to the computer. To 

keep improving the efficiency of industrial production, there are increasing requirements in various 

industrial fields to utilize computer technology to replace humans in order to reduce costs and 

increase productivity. Our NMR structure verification problem only shows an example of these 

requirements. We believe that the human logic based approach we summarized from this particular 

problem could be easily transplanted to problems in other domains, where the computer technology 

is motivated to replace human beings e.g. automatic signal analysis from radar or sonar. To validate 

this hypothesis, we are eager to seek another problem from a different industrial field to apply our 

optimization approach. Further, relying on the experience of applying our approach in a second 

application field, we could start to distill the common features among the diversely subtle 

differences of the implementations for two application fields. These common features will supply a 

massive backbone for us to formalize our human logic based optimization algorithm. As the final 

goal, we would like to supply a mature new optimization algorithm to the applied computer science 

community.         
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Chapter 10 Conclusion 
 

 

Technical breakthroughs in NMR spectrometer (especially in NMR probe) over the past 30 years 

make it possible to directly apply NMR technology in QA/QC of compound library management in 

the pharmaceutical industry. Manual NMR spectrum interpretation becomes the only technical 

obstacle to prevent using NMR instead of LC-Mass for structural verification tasks in compound 

library management. This practical requirement motivated several attempts to automate molecular 

structure NMR spectrum verification. Unfortunately, these attempts are denied by the inspection of 

the practical application environment. As a result, NMR still sits as the arbitral method to 

supplement LC-Mass based automatic molecular structural verification process in practical 

application of compound library management. 

To peek the rationales of these automatic NMR structural verification systems, they all use 

optimization methods to search reasonable assignments between the molecular structure and its 1D 

1H NMR spectrum. However, the principles of these optimization procedures are widely divergent 

from the human spectroscopists’ logic to do assignments. We believe this is the reason why these 

systems fail in the practical test. 

Alternatively, in the scope of this thesis, we propose to design and implement a new molecular 

structure NMR spectrum verification system, which mimics human spectroscopists’ logic of structure 

verification analysis. With three years efforts from both NMR spectroscopists and computer 

scientists, the system was built and demonstrated to behave similar to human logic in the structural 

verification task. Evaluated with both a real compound dataset and some simulated datasets, the 

system shows both high consistency analysis decision accuracy and high consistency to human 

spectroscopists in detail assignments. As the results, NMR spectroscopists involved in the project are 

convinced that the system shows better accuracy than previous structural verification solutions, and 

has a potential to reach structural verification decision accuracy of human spectroscopists. More 

importantly, the assignment report generated by the system gives NMR spectroscopists an 

opportunity to check the structural verification result of the system with their chemical knowledge. 

It is the first times that the structural verification system starts to “speak a common language” with 

NMR spectroscopists. The experimental result of high consistency between the assignments of the 

system and that of NMR spectroscopists deeply “touch” the spectroscopists involved in the project, 

and in fact builds their confidence in the system. To foresee the commercial merit of the system, our 

cooperator – the top NMR manufacturer has applied two patents to protect the core technology of 

the system, and has applied their effort to commercialize the system. Through their business 

channel, several pharmaceutical companies have shown their will to evaluate the system. 

As we explained in the limitation (see Chapter 8), the evaluation in the pharmaceutical industry gives 

us the opportunity to test our system in the practical application environment. It is well known that 

only practice can validate the effectiveness of a theory. Therefore, before the system passes the 

evaluation under the practical application environment of the pharmaceutical industry, no one can 

predict the utility of our idea, methodology and system in practice. Nonetheless, we believe that our 
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human logic mimicking strategy supplies an alternative path to domain participants to approach the 

structural verification problem. With the feedback from the evaluation in the practical application 

environment, we have chance to continue improving the system until we reach our final goal – using 

automatic NMR structural verification system as the footstone of structural verification tasks in 

compound library management. 

Overall, we hope that the approach we used to do the optimization could give applied computer 

science participants some hints to solve problems with similar characteristics in various domains. 

Specifically, for the problem of matching two sets of elements with additional constraints defined in 

one of them, the human logic based optimization (heuristic search) could give more flexibility and 

efficiency compared with other classical optimization approaches. We are particularly happy to see 

that the similar human logic based optimization is being applied for solving other practical problems 

in the near future.  
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A. Glossary

 

1 

1D: 1 dimension , 

1H NMR: NMR spectrum generated by measuring NMR signal of protons in compound. 

13C NMR: NMRspectrum generated by measuring NMR signal of the isotype of carbon in compound. 

    

2 

2D: 2 dimension,  

 

3 

3D: 3 dimension, 

 

C 

chemical bond: is the physical process responsible for the attractive interactions between atoms and molecules. See 

http://en.wikipedia.org/wiki/Chemical_bond for more information. 

chemical shift: In nuclear magnetic resonance (NMR), the chemical shift describes the dependence of nuclear magnetic 

energy levels on the electronic enviroment in a molecule. The unit is ppm (parts per million) referring to the differnce of 

the  resonance frequency (in Hertz (Hz)) of a certain nucleus to a reference frequency (Hz). The chemical shifts in  a 1H 

Spectrum are typically in the range of +12 to -4 ppm,  

chemically equivalent functional group: All protons of a molecule with the exact same chemical environment, eg, a 

Methylgroup (CH3),  

chromophore: a chromophore is part (or moiety) of a molecule responsible for its color. 

compound library management: is one such field that attempts to manage and upkeep compound libraries as well as 

maximizing safety and effectiveness in their management. 

computational complexity: The computational complexity of a problem is the number of steps that it takes to solve an 

instance of the problem as a function of the size of the input.It is roughly divided as linear, polynomial and exponential 

complexity,  

coupling connectivity: The pair of protons or pair chemically equivalent proton groups interact with each other through the 

chemical bonds of a molecule and result in the splitting of the NMR signal,  

coupling constant: The size of the  splitting which occurs in a multiplet (difference in frequency measured in Hz between 

peaks), a typical coupling constant value is 7 Hz. In Fig6 a multiplet is shown. The distance in Hz between e.g. the most 

left peak and its direct neighbour is a coupling constant ,  

 

D 

divide and conquer algorithms: Divide and conquer is an important algorithm design paradigm. It works by recursively 

breaking down a problem into two or more sub-problems of the same (or related) type, until these become simple enough 

to be solved directly. The solution to the sub-problems are then combined to give a solution to the original problem.,  

Dimethyl Sulfoxide (DMSO): A solvent often used to store organic compounds of compound libraries in the liquid phase. 

dark region: Any extraneous peaks from an 1D 1H NMR Spectrum, which do not overlap significantly with signal peaks of 

the Molecule,  

deuterated solvents: means the family of solvents in which the hydrogen atoms ("H") are replaced with deuterium (heavy 

hydrogen) isotope ("D"). 
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 F 

false positive: Plainly speaking, it occurs when we are observing a difference when in truth there is none. An example of this 

would be if a test shows that a woman is pregnant when in reality she is not. 

functional group: in organic chemistry, functional groups are specific groups of atoms within molecules that are 

responsible for the characteristic chemical reactions of those molecules. 

 

 

G 

G protein-coupled receptor (GPCR): is a large protein famaly of transmembrane receptor that senses molecules outside 

the cell and activate inside signal transduction pathways and utimately cellular responses.  Detail see 

http://en.wikipedia.org/wiki/G_protein-coupled_receptor. 

graph traveling algorithm: It denotes algorithms, which could explore all graph nodes. Typical graph traveling algorithms 

include deep-first search, breath-first search, etc,  

greedy search: It is a searching metaheuristic of making the locally optimum searching choice at each stage with the hope of 

finding the globle optimum,  

 

H 

liquid chromatography: High-performance liquid chromatography (or High pressure liquid chromatography, HPLC) is a 

form of column chromatography used frequently in biochemistry and analytical chemistry to separate, identify, and 

quantify compounds. HPLC utilizes a column that holds chromatographic packing material (stationary phase), a pump 

that moves the mobile phase(s) through the column, and a detector that shows the retention times of the molecules. 

Retention time varies depending on the interactions between the stationary phase, the molecules being analyzed, and the 

solvent(s) used. 

 HPLC-MS: Liquid chromatography-mass spectrometry (LC-MS, or alternatively HPLC-MS) is an analytical chemistry 

technique that combines the physical separation capabilities of liquid chromatography (or HPLC) with the mass analysis 

capabilities of mass spectrometry. LC-MS is a powerful technique used for many applications which has very high 

sensitivity and specificity. Generally its application is oriented towards the specific detection and potential identification 

of chemicals in the presence of other chemicals (impurities). 

High Throughput Screening (HTS): is a method for scientific experimentation especially used in drug discovery. 

Specifically, using robotics, data processing, control software, liquid handling devices, and sesitive detectors, HTS 

quickly conducts millions of biochemical, genetic or pharmacological tests. Through the process, one can rapidly identify 

active compounds, antibodies or genes which modulate a particular biomolecular pathway. The results of these 

experiments provide starting points for drug design and for understanding the interaction or role of a particular 

biochemical process in biology.      

multiplet hypothesis’s total amplitude: Sum of amplitudes of all peaks belonging to the given multiplet hypothesis,  

 

I 

IR: in the thesis, IR means Infrared spectroscopy (IR spectroscopy), which is the subset of spectroscopy that deals with the 

infrared region of the electromagnetic spectrum. It can be used to identify compounds or investigate sample composition.  

 

M 

Mass: In the thesis, Mass means Mass spectrometry (MS), which is an analytical technique for the determination of the 

elemental composition of a sample or molecule. The MS principle consists of ionizing chemical compounds to generate 

charged molecules or molecule fragments and measurement of their mass-to-charge ratios. 
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molar: a unit of concentration, or molarity, of solutions equal to 1 mol/L 

Monte Carlo methods: are a class of computational algorithms that rely on repeated random sampling to compute their 

results. Because of their reliance on repeated computation and random or pseudo-random numbers, Monte Carlo methods 

are most suited for calculation by a computer. Monte Carlo methods tend to be used when it is unfeasible or impossible to 

compute an exact result with a deterministic algorithm. 

multiplet: The ensemble of all signals from a chemically equivalent functional group in a 1D 1H NMR spectrum is called a 

multiplet. E.g. if the sum of all signals of a chemically equivalent functional group is two the multiplet would be called 

doublet, three a triplet etc.  

multiplet hypotheses space: The ensemble of all possible experimental multiplets extracted from an 1D 1H NMR 

Spectrum,  

multiplicity: see number of couplings,  

 

N 

NMR: Nuclear Magnetic Resonance,  

NP hard: nondeterministic polynomial-time hard. In computational complexity theory, it denotes a group of problems which 

can not be solved in polynomial time, 

HSQC NMR: 2D HSQC (Heteronuclear Single Quantum Coherence) experiment correlates chemical shifts of directly 

bound nuclei (i.e. two types of chemical nuclei). For example 1H,15N-HSQC correlates chemical shifts within NH groups.  

non-deuterated DMSO: DMSO (Dimethyl Sulfoxide) in which deuterium (heavy hydrogen) isotope ("D") are replaced with 

hydrogen atoms ("H"). In practical application, non-deuterated DMSO is cheaper than DMSO. 

nuclear spin: It is an intrinsic quantum mechanical property of an atomic nucleus,  

number of couplings: The number of protons interacting with the target proton through the chemical bonds of a molecule 

and results in the splitting of NMR signal,  

 

P 

peak clusters: A peak cluster denotes an ensemble of positional symmetric peaks from an 1H 1D NMR Spectrum, 

protein kinase: is a kinase enzyme that modifies other proteins by chemically adding phosphate groups to them 

(phosphorylation). Phosphorylation usually results in a functional change of the target protein by changing enzyme 

activity, cellular location, or association with other proteins. Detail see http://en.wikipedia.org/wiki/Protein_kinase 

.  

Q 

quality assurance (QA): refers to planned and systematic production processes that provide confidence in a product's 

suitability for its intended purpose. It is a set of activities intended to ensure that porducts (goods and/or services) satisfy 

customer requirements in a systematic, reliable fashion.  

quality control (QC): is the branch of engineering and manufacturing which deals with assurance and failure testing in 

design and production of products or services, to meet or exceed customer requirements. 

quantification: It is a procedure to determine the molar concentration of the main substance of a liquid state NMR sample, 

whereupon the solvent and impurities that are connected to the solvent are not considered as main substance,  

 

R 

R-group: In a chemical structural formula, a generic substituent can be written as R. This is a generic placeholder which 

may replace any portion of the formula as the author finds convenient. Here a substituent means an atom or group of 

atoms substituted in place of a hydrogen atom on the parent chain of a hydrocarbon in organic chemistry and 

biochemistry.  
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S 

satellite peaks: They are signal peaks in a 1D 1H NMR spectrum created by direct bonding between protons and nuclear 

spin 1/2 particles e.g. 13C, 15N, etc ,  

small molecule: A small molecule is an organic compound which is not a polymer. Biopolymer (e.g. nucleic acids, proteins) 

often have much higher molecular weight than small molecules, but not necessarily. Small molecules are the main form of 

drugs.  structure verification: It is a procedure to check if a given molecule structure is consistence with a given 1D 1H 

NMR spectrum, 

 

T 

theoretical multiplet distributions: The theoretical multiplets with given chemical shift range, coupling constant ranges,  

theoretical multiplets: The multiplets are interpreted from a given molecule. With NMR text book knowledge the 

appearance of each proton of the molecule in the 1D 1H NMR spectrum as a multiplet is estimated. ,  

 

 

X 

X-ray: in the thesis, x-ray means X-ray crystallography, which is a method of determining the arrangement of atoms within 

a crystal, in which a beam of X-rays strikes a crystal and diffracts into many specific directions. From the angles and 

intensities of these diffracted beams, a crystallographer can produce a three-dimensional picture of the density of 

electrons within the crystal. By crystallizing compounds, it could be used to determine the three dimensional structure of 

the compounds.  
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1. +-Pseudoephedrin 

 

           

               

                   

                               

         

 

 

a 
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g h 

H2O DMSO 
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2. --alpha-Satonin 

 

                                      

 

                         

 

               

 

                                  

 

 

H2O 

DMSO 
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c d 

e f g 

h i 
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3. 1,1,1-3,3,3-Hexafluor-2-propanol 

 

                 

 

 

                                        

 

 

 

 

 

 

a b 

DMSO H2O 
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4. 1,1,2-Trichlorethan 
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H2O DMSO 
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5. 1,2,3-Trimethylbenzol 

 

 

 

    

 

 

 

 

a b 

c H2O 

DMSO 
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6. 1,2,4-Trichlorbenzol 

 

 

     

 

                    

 

 

 

a b 

c H2O 

DMSO 
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7. 1,2-Dichlor-4-nitrobenzol 

 

 

  

 

    

   

 

 

a b 

c 
H2O 
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8. 1,2-Dichlorbenzol 

 

 

  

 

     

 

 

 

a b 

H2O DMSO 
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9. 1,3-Dichlorbenzol 

 

 

     

 

 

 

 

 

 

a H2O 

DMSO 
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10. 1,4-Dinitrobenzol 

 

 

  

 

 

 

 

 

 

a 
H2O 

DMSO 



178   ∙    Appendix C 
 

 

11. 1-Naphthol 

 

  

 

 

 

  

      

 

 

a b 

c d 

e f 

H2O DMSO 
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12. 1-Octen-3-ol 

 

            

 

                

    

 

 

 

a b 

c d 

e f H2O 

DMSO 
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13. 1-Octyne 

 

              

 

    

 

       

 

 

a b 

c 
d 

e H2O DMSO 
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14. 2-Aminopyridin 

  

  

 

     

 

    

 

 

a b 

c d 

H2O 
DMSO 
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15. 2-Butanon 

 

 

   

 

   

 

 

 

 

a 
b 

c H2O DMSO 
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16. 2-Methyl-naphthalin 

 

 

    

 

    

 

 

a b 

c d 

e H2O DMSO 
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17. 2-Phenoxyethanol  

 

 

 

  

 

 

                         

 

 

 

c 
d 

a b 

e H2O DMSO 
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18. 2_phenyl-ethylakohol 

 

 

 

 

   

 

         

 

 

 

a b 

c d 

e H2O DMSO 
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19. 3-Ethyltoluol 

 

 

         

 

           

 

       

 

 

 

a b 

DMSO 

d 

e H2O 

c 
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20. 3-Indolepropionicacid 

 

 

   

   

 

   

a 
b 

c 
d 

e 
f 



188   ∙    Appendix C 
 

 

  

 

 

 

 

     

 

 

 

 

 

 

 

 

 

g h 
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H2O DMSO 
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21. 3-Phenyl-propylalkohol 

 

   

   

                  

     

 

 

a b 

c 
d 

e 
f 

H2O DMSO 
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22. 4-Bromanisol 

 

 

       

 

   

 

 

 

 

 

a b 

c H2O 

DMSO 
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23. 5-Fluorouracil 

 

 

 

 

    

 

     

 

 

a 

b H2O 

DMSO 
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24. 6-Methyl-chinolin 

 

  
  

               

       

 

    

 

 

a b 

c d 

e f 

H2O 
g and DMSO 
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25. 8-Hydroxy-chinolin 

 

   

   

    

    

a b 

c d 

e 
f 

H2O DMSO 
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26. Acetophenon 

 

      

 

   

 

    

 

 

 

 

a b 

c d 

H2O DMSO 
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27. Adamantan 

 

 

          

 

    

 

 

 

a 

H2O DMSO 

b 
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28. Allylglycidether 

 

  

 

 

   

 

 

 

 

 

 

a b 

c d 
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e and H2O 
DMSO 

f g 
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29. Anthracen 

 

 

 

 

   

 

 

 

 

a 
b 

c H2O 

DMSO 
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30. Benzaldehyd 

 

 

   

 

   

    

 

 

a b 

c d 

DMSO H2O 
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31. Benzoesaeuremethylester 

 

 

        

 

  

 

     

 

 

 

 

a b 

c d 

H2O DMSO 
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32. Benzonitril 

 

 

    

 

    

 

 

 

 

 

a b 

c H2O 

DMSO 
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33. Cumol 

 

 

   

 

 

     

 

 

 

 

 

 

a b 

c H2O 
DMSO 
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34. D,L-Phenylalanin 

 

       

   

  

 

 

 

c 

a b 

Disappear DMSO 

d, f and H2O 
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35. Essigester 

 

 

    

 

 

                      

 

 

 

a b 

c H2O DMSO 
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36. Essigsaeure-isopropyl-ester 

 

 

   

 

 

 

     

 

 

 

 

a b 

c H2O DMSO 
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37. Essigsaeurelinalylester 

 

   

 

  

   

 

 

a b 

c d 

H2O DMSO 
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38. Ethanol 

 

 

   

 

 

 

   

 

 

 

 

 

a b 

c H2O 
DMSO 
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39. Eucalyptol 

 

        

   
  

 

   

 

 

c 

a 
b 

H2O 

d 
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40. Fluorbenzol 

 

   

 

    

 

 

 

 

a b 

H2O DMSO 
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41. Fluoren 

 

  

 

   

 

    

 

 

a b 

c d 

e H2O DMSO 
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42. Formamid 

 

 

   

 

 

   

 

 

 

a b 

DMSO H2O 
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43. Furan-2-carbonsaeuremethylest 

 

          

 

   

  

 

 

a b 

c 

d 

H2O 

DMSO 



List of Detailed Assignments of 81 Spectrum-Structure Pairs    ∙    213 
 

 

44. Harnstoff 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

a 
H2O 
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45. Hexamethylbenzol 

 

 

 

 

    

 

 

 

 

a 

H2O DMSO 
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46. Hexamethyldisiloxan 

 

 

   

 

 

 

 

 

 

 

a H2O 

DMSO 
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47. Hydrochinon 

 

 

     

 

    

 

 

 

 

 

a 

b 

H2O 

DMSO 
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48. Imidazol 

 

       

     

 

 

 

a b 

c DMSO 

H2O 
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49. Isopropanol 

 

    

 

    

 

 

 

 

a b 

c 
H2O 

DMSO 
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50. L-+-Rhamnose-Monohydrat 

 

  

 

  
    

 

   

a b 

c d 

e f 
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h 

i H2O 
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51. Linalool 

 

   

  

   

a b 

c 
d 

e f 
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DMSO 
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52. L-Leucin 

 

      

  

 

   

 

   

 

 

e 

a b 

c 

d 

H2O 

disappear DMSO 
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53. L-Prolin 

 

 

 

    

 

   

 

 

 

 

a 
b 

H2O 
DMSO 
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54. Maleinsaeure-dibutylester 

 

     

   

    

 

 

 

e 

a b 

c 

d 

H2O 

DMSO 
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55. Maleinsaeure-diethylester 

 

    

 

                

 

 

c 

b 

a H2O 

DMSO 
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56. Malonsaeure 

 

 

 

 

 

 

 

 

 

 

a 

b and H2O 

DMSO 
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57. Melamin 

 

 

 

 

 

    

 

 

 

 

 

 

a 

H2O DMSO 
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58. Mesiylen 

 

 

  

 

 

 

 

 

 

 

 

a 
H2O 

b 
DMSO 
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59. Methacrylsaeure-2-ethoxyethylester 

 

  

 

 

 

a 

b 

c 

d 
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e 

f 

H2O   DMSO 
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60. Methacrylsaeure-butylester 

 

 

 

 

a 

b 

c 
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d 

e 

f 

H2O DMSO 
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61. Methacrylsaeure-isobutylester 

 

  

  

   

 

 

 

a 

b c 

d 

DMSO 

H2O 
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62. N,N,N,N-Tetramethyl-ethylendiamin 

 

    

 

 

 

 

 

 

 

 

 

a 

DMSO 

H2O 
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63. N,N-Dimethylacetamid 

 

 

 

                  

 

 

 

 

 

a b 

c H2O DMSO 
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64. Naphthalin 

 

   

 

 

       

 

 

 

a b 

H2O DMSO 
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65. Naringenin 

 

      

 

 

 

 

 

 

a b 

c d 

e f 
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g h 

i + H2O DMSO 
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66. Nicotinsaeureamid 

 

   

 

 

 

  

 

 

a 

b 

c d 

DMSO 

H2O 
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67. N-Methylformamid 

 

  

 

    

 

 

 

 

a b 

H2O DMSO 
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68. Phenol 

 

   

 

    

 

 

 

a b 

c H2O DMSO 
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69. Phenolphthalein 

 

   

 

   

H2O 
a 

b c 

d 
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e 

f 

g 

DMSO 
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70. Phenylethylenoxid 

 

   

           

 

 

 

 

c 

a b 

H2O 

DMSO 
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71. Propionsaeureethylester 

 

           

     

 

 

 

 

a b 

c d 

DMSO 

H2O 
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72. Propionsaeuremethylester 

 

   

 

     

 

 

 

a b 

c + H2O DMSO 
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73. Propylbenzol 

 

 

 

   

 

   

 

 

 

e + DMSO 

a b 

c d 

H2O 
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74. Pseudocumol 

 

   

 

    

 

 

a b 

c d 

e H2O DMSO 
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75. S+-2-4-Isobutylphenylpropionsaeure 

 

      

 

 

  

 

 

 

a 
b 

c d 
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e f 

g h 

H2O DMSO 
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76. Salicylaldoxim 

 

   

    

    

   

 

a b 

c d 

e 

f 

H2O 

DMSO 
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77. Sulfamid 

 

   

 

 

 

 

 

 

 

 

 

a H2O 

DMSO 
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78. tert-Butylalkohol 

 

 

   

 

    

 

 

 

a 

b 

H2O 

DMSO 
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79. THF 

 

 

   

 

   

 

 

a 

b 

H2O 

DMSO 
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80. Triethylamin 

 

 

 

   

 

 

 

 

 

a 

b + DMSO H2O 
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81. Triethylphosphat 

 

   

 

   

 

 

Note, in totally 85 consistent spectrum-structure pairs, the system only predict that 81 pairs are 

consistent. Therefore, here we only list the assignments on 81 pairs where the system predicts that 

they are consistent.  

a 

b 

H2O 

DMSO 
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