
Martin Glinz
Dustin Wüest

A Vision of an Ultralightweight
Requirements Modeling Language

July 2010

University of Zurich
Department of Informatics (IFI)
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland ifi

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

–
N

o.
IF

I-2
01

0.
00

06

M. Glinz
D. Wüest: A Vision of an Ultralightweight Requirements Modeling Language
Technical Report No. IFI-2010.0006, July 2010
Requirements Engineering
Department of Informatics (IFI)
University of Zurich
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland
URL: http://www.ifi.uzh.ch/rerg

A Vision of an Ultralightweight Requirements Modeling Language

Martin Glinz, Dustin Wüest
Department of Informatics

University of Zurich, Switzerland
{glinz, wueest} @ ifi.uzh.ch

Technical Report 2010.IFI-2010.0006 – July 2010

Abstract—Despite all efforts in creating and disseminating
requirements modeling languages, natural language is still
the dominant language for writing requirements specifica-
tions in practice. Furthermore, when documenting early
requirements, natural language (in combination with pic-
tures) outperforms today’s requirements modeling lan-
guages.
In this paper, we present a vision and research roadmap for
an ultralightweight requirements modeling language which
can be used as easily as natural language with pictures, but
has a visual structure with some lightweight semantics that
allow the visual expression of hierarchical structure, context,
general relationship, flow, and influence, while all the details
are specified in natural language, both form-based and free-
text. Furthermore, it should be possible to evolve parts of
such an ultralightweight model into classic models of struc-
ture and behavior with full-fledged semantics by incremen-
tally adding more formal model elements and tightening the
meaning of the already existing ones.
We envisage that such a modeling language – when sup-
ported by appropriate tools – will (1) outperform natural
language requirements specifications with respect to com-
prehensibility, changeability, analyzability and internal
traceability, (2) be simpler and more straightforward to read
and create than today’s heavyweight modeling languages, (3)
provide an efficient and effective means for expressing re-
quirements at an early stage.

Keywords—requiremements modeling language; ultra-
lightweight; natural language specification;

I. INTRODUCTION
The idea of describing requirements in a requirements

modeling language has been around for more than thirty
years now [24]. Since then, a plethora of modeling lan-
guages has been developed and used for modeling require-
ments, including the ubiquitous UML [17]. In our own
work in Zurich, we have more than ten years experience
with the development of the requirements modeling lan-
guage ADORA [7][20].

Despite all effort that went into the development of re-
quirements modeling languages, the vast majority of re-
quirements specifications created today in industry are still
written in natural language, augmented with tables, pic-
tures, and, increasingly, some isolated model diagrams.
Standards and templates such as the IEEE guideline for
software requirements specifications [13] or the Volere
template [21] are also based on natural language. This
situation is not just due to the inability of industry to adopt
the existing modeling technology. It is a strong indicator

that heavyweight modeling languages such as UML don’t
fit the needs of industrial requirements engineers [6].

Another strong indicator of the requirements modeling
malaise was the “Next Top Model” contest at RE’09 [12],
where the combined power of natural language and rich
pictures outperformed all modeling approaches in the task
of specifying a requirements problem [10] at an early
stage.

Furthermore, a lot of the so-called non-functional re-
quirements [8], in particular quality requirements and con-
straints, can’t be expressed as models and have to be writ-
ten in natural language.

This situation motivates us to propose the creation and
use of an ultralightweight modeling language (or ULM, for
short), a small language with little formal expressive
power, but one that easily integrates with natural language,
helps structure a natural language requirements specifica-
tion and provides some simple modeling constructs for
those things typical requirements engineers and
stakeholders hate to express textually: structure, relation-
ships, influence, and flow. On the other hand, the envis-
aged language shall be constructed such that powerful tool
support for editing, navigating, and analyzing specifica-
tions is possible.

We don’t aim at replacing heavyweight modeling lan-
guages such as UML or ADORA, but at improving that
huge number of textual requirements specifications that
have no structure beyond a chapter-section-subsection
classification and are not analyzable beyond careful read-
ing.

In this paper, we make a case for such an ultralight-
weight modeling language, sketch how it could look, de-
scribe potential tool support and present a roadmap to-
wards such a language and tool. A condensed version of
the ideas laid out in this paper will appear in [10].

II. CORE REQUIREMENTS FOR A ULM
Requirements specifications at an early stage are by

their very nature mainly narrative and pictorial: most of the
information transmitted from stakeholders to requirements
engineers comes in this form. Hence, we have a first core
requirement for a ULM:

R1. A ULM shall provide strong support for writing
textual requirements and drawing pictures.

On the other hand, we want to harness the power of
modeling for overcoming the greatest weakness of text and
pictures: their unstructuredness and total informality.
Hence we have two further core requirements:

R2. A ULM shall provide model elements for structur-
ing text.

– 2 –

R3. A ULM shall provide model elements for drawing
pictures as diagrams, with individually identifiable ele-
ments and some very lightweight semantics.

Visual languages are strong in providing an overview
of a problem with little cognitive effort, while for the de-
scription of details, textual notations are superior to visual
ones:

R4. A ULM shall be visual in the large and textual in
the small.

One of the biggest advantages of modeling languages
over textual ones is that the syntax and semantics of mod-
els can be exploited by tools:

R5. A ULM shall enable the creation of tools that pro-
vide powerful means for editing, navigation, selective
visualization and analysis of specifications.

When competing with natural language and pictures,
both readability and writability of models is of paramount
importance:

R6. A ULM shall be easy to read, to write and to learn.
As a corollary, we can state that a ULM needs to be a

small language in terms of modeling elements.
Many of today’s modeling languages are visually ill-

designed [16]. In order not to repeat old mistakes, we state:
R7. The visual syntax of a ULM shall be well-designed

with respect to the design principles for visual notations.

III. DESIGNING A ULM

A. Design Considerations
Based on the requirements presented in the previous

section and on our own experience with visual modeling
language design, we now discuss design considerations for
a ULM that go beyond the general principles stated in
[16].

Hierarchical structure. Requirements specifications
are organized in hierarchies: document hierarchies (sec-
tion-subsection-paragraph), component hierarchies (sys-
tem-subsystem), classification hierarchies, etc. There are
two intuitive visual structures for expressing hierarchy:
nesting and trees, the latter coming in two flavors (Fig. 1).

Figure 1. Options for intuitive visualization of hierarchy

Both tree options have an implicit connotation of ele-
ments on the same hierarchical level being ordered accord-
ing to their visual presentation, which is frequently not the
case and thus misleading. Furthermore, graphic trees need
more space than a nested notation and linear trees are
visually inflexible. On the other hand, tool support for
viewing only selected parts of a hierarchy is trivial for
linear trees and rather easy for graphic trees, while it is
hard for nested structures with an arbitrary layout. How-

ever, this problem has been solved [20]. Hence, we prefer
nesting for a ULM.

Contextualization. Whenever only a part of a model is
visualized, this part needs to be contextualized, i.e. the sur-
rounding context is required for understanding this part of
the model [16]. Some existing modeling languages, UML
being the most prominent example, just ignore this prob-
lem, thus forcing readers to reconstruct the context by
mentally merging various diagrams. Fisheye views [5] [2]
[20] are a proven technique for contextualizing partially
visualized models. From a modeling language point of
view, nested hierarchical structure suffices for contextuali-
zation, as such structures allow the application of fisheye
views. However, fisheye views can become clumsy when
viewing inner parts of large models and they can’t visual-
ize the full context when an element is part of more than
one hierarchy. Hence, for a ULM it is recommendable to
choose a design that additionally provides the option of
explicitly stating one or more hierarchical paths for a given
model element, thus explicitly defining the context of this
element.

Small visual vocabulary. Any ULM design will use a
small visual vocabulary, otherwise one would eventually
end up with a new normal-weight modeling language
instead of a lightweight one. The requirement that the
language needs to be easy to learn also leads to a language
which is small with respect to the number of its visual
constructs. Using graphic modifiers for the objects of the
language (see Table I in next subsection) can further re-
duce the number of concepts to be learned. Despite the
small vocabulary, the expressiveness of a specification
written in a ULM must be ensured. This can be accom-
plished in two complementary ways that both are based on
the principle of textual enrichment: (i) embedding natural
language text in the language (e.g., as a part of an object)
provides the full expressive power of natural language, but
at the expense of analyzability; (ii) textual attributes simi-
lar to UML’s tagged values [17] or ADORA’s standardized
properties [7] provide analyzable detail information, but
with limited expressive power.

Naming. A major drawback of natural language speci-
fications is that natural language does not distinguish
nouns that denote an identifiable concept from other nouns
that don’t. As a consequence, any phrase that shall be
identifiable and traceable must be assigned an explicit
identifier by the engineer who writes the specification. A
ULM can (and must) add value here by providing a flexi-
ble naming concept that allows to tag a word or phrase to
be a name and to create a traceability link just by referring
to such a name elsewhere. Even when the person who
writes a specification does not set any explicit traceability
links, such a naming concept improves traceability: having
a set of known names improves both the precision and
recall of automatic traceability retrieval in comparison to a
situation where names need to be guessed/inferred by the
retrieval algorithm. Furthermore, a good ULM design
makes it possible to annotate icons in a picture with
traceable names.

Semantic enrichment. A ULM model will be more
valuable (and, hence, more worthwhile to create) when the
ULM provides an evolution path to full-scale models by
incrementally enriching ULM models with additional
syntax elements and semantics of the target modeling

Main

First

Third

Second

Rb

Rk

Rx

P

Q

Main

First

Second

Third

Rb

Rx

Rk

P

Q

Main

First Second Third

Rb
1

RkRx

P Q

a. Nested b. Graphic tree c. Linear tree

– 3 –

language or by providing a straightforward transformation
from a ULM model into a model expressed in the target
modeling language.

Lightweight analysis. The additional effort required
for modeling a problem in a ULM instead of using plain
natural language and pictures is only justifiable when there
is a clear benefit in terms of better analyzability of the
ULM models (and, as a consequence, also better
comprehensibility). Some analysis capabilities, e.g. the
analysis of hierarchical structure and context, just pay off
by enabling powerful tool capabilities for editing,
navigation, tracing and selective visualization support.
Further, a ULM design needs to support model validation.
For example, one will choose a design that makes
incompleteness analysis possible to some extent (e.g.
names that are used but not defined) or exploit the
semantics of relationships.

TABLE I. A PRELIMINARY SET OF LANGUAGE ELEMENTS

B. A Preliminary Language Design

In this subsection we sketch a concrete ULM based on
the design considerations and core requirements given
above. Table I summarizes the visual syntax. The specifi-

cation in the appendix gives an impression of the look and
feel of the language. This is not meant to be a complete
and polished language design. Our intention is to make our
vision of a ULM more concrete, tangible and criticizable.

Objects. A model in this language is a set of objects
that may be specialized by modifiers and can have rela-
tions among each other. Technical items can have a hierar-
chical inner structure. The context of an object is given by
its embedding in a hierarchical structure or an explicit
context name path. An object may have multiple contexts.

Names. Objects may have a name and an additional
shorthand identifier. Names, when prefixed with any of
their context paths, must be unique. Fig. 2 illustrates the
naming concept.

Object content. The content of an object can consist of
• other objects, possibly linked by relations, and
• text in natural language, possibly with links to

other objects.
Missing / hidden information. Incompletely specified

objects are marked with an ellipsis after their names. If
some content of an object is hidden from a diagram (e.g.
because it is specified separately or because a diagram is
intended to give an overview only), this is indicated by a
‘[...]’ symbol. Suppressed annotations on relations (see
below and Fig. 3) are marked by a pull down handle sym-
bol.

Figure 2. A naming concept for a ULM

Figure 3. Examples of relation annotations

Objects

Relations

Modifiers

Context

Living item (Person, actor,...)

Static relationship
Influence (affects, uses,...)
Flow (of information, data, control,...)

Hierarchical structure

External
Fuzzy

Multiple
Boundary

Pathname Pathname provides the context for the
element the grey box is attached to

Connector

+
x

Enrichements
AND-Connector

OR-Connector

Picture

Missing / hidden information
Name... Incompletey specified object

[...] Object contains information not shown
on this diagram

(any
picture)

A relation having annotations not
shown on this diagram

Technical item (object, component,
activity, function, service, goal, system,
device, ...)

We need a nice new system. Registration
support

S3.6 Order processing

a. An anonymous requirement b. A named requirement

A requirement with a name (Order processing), a shorthand
identifier (S3.6) and a reference to another requirement (BP3).
The context is given by a pathname. Additionally, the name of
the immediate parent object is given in the context header.

Order processing shall work according to business process BP3.

E-Shop.Components.S3 Ordering subsystem

c.

Supplier Part
supply 0..*1..*

Receive
event

Classify
event

Display
event

Event
Classified
Event

Discarded
Event

a. An Entity-Relationship style relationship

c. A dataflow model fragment

+Increase
agents' job
satisfaction

Provide service
to the satisfaction
of customers

d. An excerpt from a goal graph

b. The same relationship with annotations suppressed

Supplier Part

– 4 –

Enrichments. The basic objects and relations may be
enriched with additional semantics. Table I specifies two
enrichments for connectors that are useful for describing
flow. Other enrichments may be needed.

Annotations. Relations may be annotated in the mid-
dle and at both ends (Fig. 3). In order to keep models read-
able, the display of annotations can be suppressed.

Attributes. Any object or relation may have metadata
attached, such as author, status, date created, etc. Further-
more, modelers can define typed attributes similar to
UML’s tagged values or ADORA’s standardized properties.
Fig. 4 illustrates the concept. As described in the previous
subsection, typed attributes provide information in a form
that allows analysis by tools.

Figure 4. Attaching attributes to an object

C. Examples
The model in the appendix provides examples: GC

FEDS-Spec is an object representing a document. Its top-
level nested objects serve as an organizational structure.

On lower levels, for example in the Business goals ob-
ject, nested objects are arranged in a diagram, in this case a
goal graph. The ‘fuzzy’ modifier is used to denote soft
goals.

The details of the Core requirements object are hidden
from the overview diagram. The ‘[...]’ marker indicates
that more details are available. On the other hand, the
Glossary of terms object is incomplete. It is displayed in
full (no ‘[...]’ marker), but more needs to be specified
(name followed by ‘...’).

The underlined word incident in the definition of Dis-
patcher in the glossary is a reference to an object with that
name.

In the objects contained in the Stakeholders object,
Importance and Goals are typeset in italics, thus indicating
that these are attributes that are followed by values.

The object BP6, the Emergency Call Process, is part of
two hierarchies. By its visual embedding it is part of the
Core requirements within the GC-FEDS-Spec. On the
other hand, an explicit context path states that this object is
also part of a Business processes object within an object
called FDGC.

Core requirement R4 contains a named, but uninter-
preted picture.

On the second page of the model, the Call processing
object is shown in isolation. In order to contextualize it,
the context paths of the two hierarchies that this object is
embedded in are given.

In the System context object, the external and bound-
ary modifiers are used to mark the context boundary of the
GC-FEDS system and indicate which elements are external
to it.

IV. TOOL SUPPORT
A software tool that supports modeling in a ULM is an

indispensable part of our vision. Requirements engineering
specifications can become very large artifacts over time.
Editing and maintaining such artifacts is cumbersome
without appropriate tool support. A tool can help in editing
the requirements, it can ease and speed up navigation, and
it can provide different views on the specification, thus
providing abstractions and reducing complexity. Further-
more, a tool can provide support for requirements trace-
ability and model validation.

When supporting a ULM, we need tool capabilities for
handling textual specifications way beyond the basic edit-
ing, searching and configuration support that text process-
ing software and classic requirements management tools
provide today. Equally, when handling pictures, we need
tool capabilities beyond those of graphic editors. Further-
more, when eliciting requirements at an early stage, both
engineers and stakeholders love sketching requirements on
whiteboards or blank sheets of paper [19], a procedure that
goes well together with using a ULM and also needs to be
tool-supported, hence.

A. The Tool Metaphor: a Large Canvas
A tool supporting a ULM should have the same flavor

as the supported ULM itself: it should be lightweight and
provide a simple and intuitive user interface.

We envisage that a tool presents a large 2D canvas to
the users, mimicking a classic whiteboard, but with infinite
space. The users can create and freely arrange the objects
of the requirements specification in that 2D space, using a
pointing device (e.g., a mouse) for drag-and-drop manipu-
lation, a keyboard for entering/editing text and a pen or
fingers for sketching.

B. Editing
Mouse and Keyboard. The tool can display a drag-

and-drop interface for a fast construction of diagrams and
the structure of the specification. Natural language is heav-
ily used in requirements specifications. Therefore key-
board input allows for a fast creation of textual elements.
Standard editing features like an undo option can further
facilitate the editing of documents.

Natural drawing. A ULM allows efficient require-
ments modeling at an early stage, and a tool has to support
this. People like to use whiteboards and to sketch by hand
at early stages, because freehand sketching gives them a
great deal of freedom. (Creating a diagram with drag-and-
drop can be easy and efficient, but this kind of interaction
limits the drawing possibilities.) Thus a tool must provide
a form of freehand sketching in order to be suitable for
expressing requirements at an early stage. Furthermore it
must be possible to import pictures.

The value of these drawings and pictures is increased
when the tool recognizes them in a way such that they can
be converted to model elements that have semantics. Sez-
gin et al. [23] discuss the technical details of online sketch
recognition. Another problem is the analysis of imported
images. Individual symbols can be recognized easier while
a person draws them than when given as a static image. In
the latter case, the recognition algorithm must be able to
separate the elements of a drawing into individual sym-
bols. Ouyang et al. investigate symbol recognition in

a. A user-defined attribute

ATTRIBUTEDEF Importance: [Critical | Major | Minor]

b. An object with attributes (both metadata and user-defined)

Q12 Overall performance

Average response time shall be < 0.3 s. Importance: Critical
Author: MG Created: 2010-02-16 Source: End user

– 5 –

drawings [18]. Because a ULM uses few distinctive sym-
bols, the recognition of hand-drawn diagrams should be
easier for a ULM than for a heavyweight language such as
UML. While fully automatic recognition of some parts of
drawings should be feasible, other parts will definitively
require human guidance (Fig. 5).

Figure 5. Converting a drawing into a ULM model

C. Navigation and Views
As requirements specifications can be large artifacts, a

tool must provide help both for navigating and selectively
viewing the specification. Navigation support eases orien-
tation in large models. Selective views provide abstrac-
tions or present details about a part of the model in isola-
tion from the rest. View generation must be versatile,
because different user groups (e.g., novice vs. expert users)
as well as different purposes require specifically adapted
views. Below we summarize some proven techniques for
navigation and view generation.

Overview map. Computer screens and projected dis-
plays are not able to show all parts of an advanced specifi-
cation document at the same time. A simple way to give
the users a better overview over the structure of a docu-
ment is to display an overview map. Additionally, a rec-
tangle on the map indicates the part of the document that is
currently visible on the screen. The overview map can be
extended with more features. For example, clicking an area
in the map could automatically display that part of the
specification.

Expand and collapse hierarchies. Hierarchies are a
crucial structuring concept in a ULM. A tool should ex-
ploit these hierarchies for selectively displaying the parts
of current interest in detail while abstracting or hiding
others. Fisheye views [5] [2] are a proven technique for
achieving this. However, as users can freely arrange the
elements of the specification in the 2D space, a tool needs
to preserve the user-created layout when parts of the speci-
fication are expanded or collapsed. This is a non-trivial
problem that has impeded the practical use of fisheye
views. In our previous work, we have contributed solutions
to this problem [20]; so fisheye view based visualization of
hierarchical models can now be used practically in a tool
for a ULM.

Keyword search and filtering. As in text processing
programs, a user can search for a certain term. All occur-
rences of the term will be highlighted in the normal view

as well as in the overview map (the text in the map is too
small to be read, but the highlighting can give visual cues
on where the term can be found). To further improve the
keyword search, objects that contain the keyword can
automatically be expanded, and other objects can be col-
lapsed.

Filtering uses a slightly different concept. Filtering al-
lows users to generate views where only those model ele-
ments are shown that match given filtering criteria. For
example, in the model given in the appendix, a user might
want to create a view that shows only the important
stakeholders and their goals. He or she can achieve this by
filtering the model with the criteria ‘objects contained in
the Stakeholders object’ and ‘value of attribute Importance
is Major or Critical’.

D. Analysis and Requirements Traceability
Apart from editing and navigation support, a tool can

also help in requirements analysis and traceability tasks.
The semantics of relations and user-defined attributes can
be exploited for tool-based analyses. Traceability links
created by referring to names (see ‘Naming’ in Sect. III)
can also be exploited. Alternatively, a tool also can com-
pute links semi-automatically, e.g. by analyzing the simi-
larity of terms in different parts of the specification [4]. A
related idea is a tool-assisted selection and verification of
terms relevant to the project [15]. As natural language is
ambiguous, a tool shall also support the identification of
synonyms and words with the same stem. For relevant
terms that are missing in the glossary, the tool can add
entries automatically and notify the users about missing
definitions.

When the software tool manages requirements trace-
ability links, it is possible to immediately highlight the
requirements and entities that get influenced by changes in
the specification. This makes users aware of the effects
caused by their changes. In addition, the tool can construct
and present a special view of a traceability tree to the user.

The stronger the semantics of a modeling language, the
more and stronger analyses are possible. However, the lim-
ited semantics of a ULM suffice to support the basic analy-
sis and traceability tasks described above.

E. Simulation and Model Validation
Tool support enables the analysis of diagrams by simu-

lation. Simulation can be used for analyzing dependencies
between requirements and for the validation of the model –
even when a model is not fully formalized. The missing
formality is compensated by interaction with the modeler
during a simulation run [22][9]. Even the weak semantics
of a ULM allow some form of interactive simulation.

For example, a business process (such as the Emer-
gency Call Process in the specification given in the appen-
dix) can be simulated by stepping through the model along
the flow paths. In each step of the simulation, the tool
highlights active objects in the diagram. At the same time,
all stakeholders and objects (requirements, goals, etc.) that
are associated with the active step could also be visually
emphasized. The next step is either determined by the
model or the tool inquires it interactively from the person
who runs and observes the simulation. The observer thus
perceives relationships between the individual process
steps and the involved requirements.

Automatic inference of the Product Manager actor and the Product
and Market objects should be possible, while recognizing the
Board as a group of actors and distinguishing influence from flow
will require human guidance.

Market

Executive
Board

Product
Manager

configures

Directions

Research
Data

Needs

Product

Product Configuration Context

– 6 –

Such an animated simulation also helps validate
requirements with stakeholders: stakeholders can be
demonstrated the animated flow of information and control
when a requested task is performed, which gives them a
better understanding of the requirements than static
reading of models would.

V. DISCUSSION

A. Related Work
We are not aware of any other work specifically di-

rected at creating a ULM or using ultralightweight model-
ing in requirements engineering. Jackson’s work on Alloy
[14] is called ‘lightweight’, but – in contrast to our ap-
proach – refers to lightweight formal modeling. Moody’s
work is on general design criteria for visual notations in
modeling [16].

In our own previous work, we have investigated tool
support for modeling languages with a structure of nested
hierarchical objects (see [20] and work cited there). We
also have investigated the analyzability of semi-formal
models by simulation [22] [9].

[3] and [23] investigate online recognition of model
elements when drawing, while [18] investigates the extrac-
tion of model elements from pictures. Work on analyzing
natural language requirements [1] and on identifying
names in natural language text [15] also becomes relevant
in the context of creating analysis tools for a ULM.

B. Where We Are: Achievements and Limitations
In this paper, we have developed a vision for an ultra-

lightweight modeling language and presented its design
rationale. Further we have presented a draft design for a
ULM and shown that a typical problem can be adequately
modeled with this language. We have also investigated the
problem of supporting a ULM with an adequate tool.

With respect to our initial seven core requirements, we
claim that a ULM carefully crafted along the lines given
by our draft language will easily meet R1-R5. Checking
for R6 requires empirical validation. Except our experi-
ence when writing the model given in the appendix, we
have no empirical evidence yet concerning ease of writing,
reading and learning. So this is subject to future work.
With respect to R7 (that the language meets the design
principles for visual notations [16]), we claim that our
draft language already scores at least better than UML.
Again, an in-depth analysis is subject to future work.

We have not yet investigated some important issues:
for example, the role of color, the inclusion of rich media
such as video and the question whether we need
user/domain specific languages (or at least language dia-
lects).

C. Where to Go: A Research Roadmap
Having made a case for an ultralightweight require-

ments modeling language, we subsequently present a re-
search roadmap towards creating a fully developed, indus-
trial-strength ULM.

Language design. The next step towards a real ULM
will be designing a carefully crafted language. The lan-
guage draft presented in this paper may serve as an inspira-
tion. The design should be guided by (i) analytical consid-
erations (for example, semiotic clarity [16] or orthogonal-
ity and minimality of language constructs), (ii) experi-

ments (for example, about intuitive understanding and ease
of learning), (iii) benchmarking (specify a problem both in
a conventional language and in the new language and
compare the results), and (iv) empirical work (try the lan-
guage on real-world problems). Design and preliminary
validation should be closely intertwined. Design trade-offs
will have to be made between simplicity and (formal)
semantic expressivity. (Informal expressivity is secured by
making unrestricted natural language text a part of the
language.)

Another criterion that should be assessed is the effort
required to transform a model written in the new language
into a conventional model (class models, activity models,
state machine models, etc.).

In a first step, the design should focus on simplicity
and domain independence, but also on extensibility. As
soon as a stable, high-quality language core is achieved,
extensions can be considered, for example the inclusion of
media beyond text and pictures, or domain-specific lan-
guage dialects. Support for specific problem areas such as
software product line requirements modeling or software
product management modeling could also be considered in
further steps.

Tool design. The challenges in tool design are primar-
ily of technical nature. Existing algorithms for smart edit-
ing and navigation in hierarchical structures need to be
drawn together and adapted. Mechanisms for selective
visualization and smart report generation need to be
adapted to the needs of a ULM. New concepts and algo-
rithms for handling multi-hierarchies and for semi-formal
analyses need to be developed. On the basis of existing
work on understanding sketches, mechanisms for evolving
pictures into models have to be developed.

Some basic tool support is required already in the early
stages of language design: creating specifications with
general-purpose drawing tools impedes the empirical tasks
in language design.

Method/process considerations. Using a ULM
doesn’t a priori require methods or processes different
from those we already have. Nevertheless, it would be
worthwhile to investigate whether using a ULM enables
methods and/or document structures different from what
we have today.

Validation. Ultimately, the ‘grand’ research challenge
in validating a ULM is to test the validity of the two basic
hypotheses that form the basis and motivation for develop-
ing a ULM:

 (H1) A well-designed ULM outperforms both plain
natural language with pictures and classic modeling lan-
guages when specifying requirements at an early stage.

(H2) Average requirements engineers will prefer using
a ULM over plain natural language with pictures when
given a choice.

However, testing these hypotheses empirically can
only be the last step, when a fully developed ULM, well-
supported by a tool, is available. On the way to that goal,
intermediate validation work will be needed that addresses
more specific topics, such as language design quality,
language expressivity, suitability and ease of use. Suitabil-
ity can be subdivided into suitability for (i) creating and
communicating requirements, (ii) analyzing and verifying
requirements, (iii) transforming requirements written in a
ULM into more formal requirements models, and (iv)

– 7 –

using a specification written in a ULM as a basis for archi-
tecture and implementation.

VI. CONCLUSIONS
We hope that this paper will stir the discussion on

ultralightweight requirements modeling languages for
early-stage requirements specification and motivate other
researchers to contribute critique and ideas. In our own
research we plan to further investigate both the language
and tool design issues. We are convinced that the light-
weight model structure will make ULM specifications
significantly better than plain natural language ones while
retaining the flavor of naturalness and ease of use.

REFERENCES
[1] Ambriola, V., V. Gervasi (2006). On the Systematic Analysis of

Natural Language Requirements with CIRCE. Automated Software
Engineering 13, 1 (Jan 2006). 107-167.

[2] Berner, S., S. Joos, M. Glinz, M. Arnold (1998). A Visualization
Concept for Hierarchical Object Models. Proc. 13th IEEE
International Conference on Automated Software Engineering
(ASE’98). 225-228.

[3] Chen, Q., J. Grundy, J. Hosking (2008). SUMLOW: Early Design-
Stage Sketching of UML Diagrams on an E-Whiteboard. Software
Practice and Experience 38, 9 (Jul. 2008). 961-994.

[4] Cleland-Huang, J., B. Berenbach, S. Clark, R. Settimi, E.
Romanova (2007). Best Practices for Automated Traceability.
IEEE Computer 40, 6 (Jun. 2007). 27-35.

[5] Furnas, G. W. (1986). Generalized fisheye views. Proc. ACM
CHI86 Conference on Human Factors in Computing Systems,
Boston, Mass. 16-23.

[6] Glinz, M. (2000). Problems and Deficiencies of UML as a
Requirements Specification Language. Proc. Tenth International
Workshop on Software Specification and Design. San Diego. 11-
22.

[7] Glinz, M., S. Berner, S. Joos (2002). Object-Oriented Modeling
with ADORA. Information Systems 27, 6. 425-444.

[8] Glinz, M. (2007). On Non-Functional Requirements. Proc. 15th
IEEE International Requirements Engineering Conference
(RE’07), Delhi, India. 21-26.

[9] Glinz, M., C. Seybold, S. Meier (2007). Simulation-Driven
Creation, Validation and Evolution of Behavioral Requirements
Models. Dagstuhl-Workshop Modellbasierte Entwicklung
eingebetteter Systeme (MBEES 2007). Informatik-Bericht 2007-
01, TU Braunschweig, Germany. 103-112.

[10] Glinz, M. (2010). Very Lightweight Requirements Modeling. To
appear in: Proc. 18th IEEE International Requirements
Engineering Conference (RE’10), Sydney, Australia.

[11] Gotel, O. (2009). GC-FEDS Replacement System: Request for Re-
quirements Modelers. Case description distributed at the Next Top
Model Contest at RE’09 [12]. http://www.gotel.net/ntm/brief.htm.

[12] Gotel, O., J. Cleland-Huang (2009). Next Top Model: A Require-
ments Engineering Reality Panel. Proc. 17th IEEE International
Requirements Engineering Conference (RE’09), Atlanta, GA. 357-
357.

[13] IEEE (1998). IEEE Recommended Practice for Software Require-
ments Specifications. IEEE Std. 830-1998.

[14] Jackson, D. (2002). Alloy: A Lightweight Object Modelling
Notation. ACM Transactions on Software Engineering and
Methodology 11, 2 (April 2002). 256 - 290.

[15] MacDonell, S.G., K. Min, A.M. Connor (2005). Autonomous
Requirements Specification Processing using Natural Language
Processing. Proc. ISCA 14th International Conference on
Intelligent and Adaptive Systems and Software Engineering (IASSE
2005), Toronto. 266-270.

[16] Moody, D.L. (2009). The “Physics” of Notations: Toward a
Scientific Basis for Constructing Visual Notations in Software
Engineering. IEEE Transactions on Software Engineering 35, 6.
756-779.

[17] Object Management Group (2009). Unified Modeling Language:
Superstructure, version 2.2. OMG document formal/2009-02-02.
http://www.omg.org/spec/UML/2.2/Superstructure/PDF/

[18] Ouyang, T. Y. and Davis, R. (2009). A Visual Approach to
Sketched Symbol Recognition. Proc. 21st International Jont
Conference on Artifical intelligence, Pasadena, Ca. 1463-1468.

[19] Plimmer, B., M. Apperley (2002). Computer-Aided Sketching to
Capture Preliminary Design. Proc. 3rd Australasian Conference on
User interfaces, Melbourne. 9-12.

[20] Reinhard, T., S. Meier, R. Stoiber, C. Cramer, M. Glinz (2008)
Tool Support for the Navigation in Graphical Models. Proc. 30th
International Conference on Software Engineering (ICSE’08),
Leipzig, Germany. 823-826.

[21] Robertson, S., Robertson, J. (2006). Mastering the Requirements
Process. 2nd edition, Addison-Wesley.

[22] Seybold, C. (2006). Simulation teilformaler Anforderungsmodelle
[Simulation of semi-formal requirements models (in German)].
Doctoral Thesis, University of Zurich. Aachen: Shaker Verlag.

[23] Sezgin, T.M., T. Stahovich, R. Davis (2001). Sketch Based
Interfaces: Early Processing for Sketch Understanding. Proc. 2001
Workshop on Perceptive User Interfaces (PUI’01), Orlando,
Florida.

[24] Teichroew, D., Hershey III, E.A. (1977). PSL/PSA: A Computer
Aided Technique for Structured Documentation and Analysis of
Information Processing Systems. IEEE Transactions on Software
Engineering, SE-3, 1 (Jan. 1977). 41-48.

– 8 –

APPENDIX: THE GC-FEDS PROBLEM MODELED IN AN ULTRALIGHWEIGHT MODELING LANGUAGE
This specification is based on a hypothetical letter in which the Fire Chief of the Gotham City Fire Department asks a
requirements engineering consultancy company for help. He wants a replacement for his current fire engine dispatch sys-
tem and informally describes his problems and needs. The specification below is intended to capture this initial informa-
tion for a meeting with the stakeholders. The original problem description has been created by Gotel [10] with inspirations
from the famous London Ambulance System report.

Re
du

ce

tra
in

in
g

co
st

Pr
ov

id
e

se
rv

ice
!

to
 c

us
to

m
er

sʼ!
sa

tis
fa

ct
io

n In
cr

ea
se
!

di
sp

at
ch

er
!

sa
tis

fa
ct

io
n

Re
du

ce
 c

os
t!

by
 1

0%

Se
rv

ice
 c

al
ls!

ef
fe

ct
ive

ly
&!

ef
fic

ie
nt

ly

2
Bu

sin
es

s
go

al
s

G
1

G
2

G
3

G
5

G
4 Re

du
ce
!

ad
m

in
ist

ra
tiv

e!
ov

er
he

ad

G
6

+

–?
+

+

+
+

+

+

1
 B

us
in

es
s

pr
ob

le
m

s

B1
!!D

isp
at

ch
in

g
er

ro
rs

 c
re

at
e

hi
gh

 o
pe

ra
tio

na
l c

os
t a

nd
 !

 u
nh

ap
py

 c
us

to
m

er
s

B2
 D

isp
at

ch
er

 tr
ai

ni
ng

 a
nd

 tu
rn

ov
er

 ra
te

 c
re

at
e

hi
gh

 c
os

t
B3

 I
ne

ffi
cie

nc
ie

s
cr

ea
te

 h
ig

h
op

er
at

io
na

l c
os

t (
an

d
slo

w!

re

sp
on

se
)

G
C

-F
ED

S-
Sp

ec

 G
ot

ha
m

 C
ity

 F
ire

 E
ng

in
e

D
is

pa
tc

h
Sy

st
em

 (G
C

-F
ED

S)
 R

eq
ui

re
m

en
ts

0
 P

re
fa

ce
!

Th
is

do
cu

m
en

t d
es

cr
ib

es
 th

e
re

qu
ire

m
en

ts
 fo

r a
 n

ew
 fi

re

en
gi

ne
 d

isp
at

ch
 s

ys
te

m
 th

at
 s

ha
ll r

ep
la

ce
 th

e
sy

st
em

cu

rre
nt

ly
in

 u
se

 b
y

th
e

G
ot

ha
m

 C
ity

 F
ire

 D
ep

ar
tm

en
t.!

! Ac
kn

ow
le

dg
em

en
t a

nd
 d

isc
la

im
er

: P
le

as
e

no
te

 th
at

 th
is

is
a

hy
po

th
et

ica
l p

ro
bl

em
 c

re
at

ed
 fo

r e
du

ca
tio

na
l p

ur
po

se
s.

Th

e
or

ig
in

al
 p

ro
bl

em
 d

es
cr

ip
tio

n
ha

s
be

en
 c

re
at

ed
 b

y
O

rle
na

 G
ot

el
 w

ith
 in

sp
ira

tio
ns

 fr
om

 th
e

fa
m

ou
s

Lo
nd

on

Am
bu

la
nc

e
Sy

st
em

 re
po

rt.
 T

he
 v

er
sio

n
pr

es
en

te
d

in
 th

is
pa

pe
r w

as
 in

sp
ire

d
by

 a
 p

re
lim

in
ar

y
na

tu
ra

l la
ng

ua
ge

sp

ec
ific

at
io

n
cr

ea
te

d
by

 M
ar

tin
 G

lin
z

an
d

Jo
y

Be
at

ty
 fo

r t
he

“N

ex
t T

op
 M

od
el

” C
on

te
st

 a
t R

Eʼ
09

 in
 A

tla
nt

a,
 G

a.

3
 S

ta
ke

ho
ld

er
s

+

Fa
ux

 F
ire

 C
hi

ef
 !

Im
po

rta
nc

e:
 C

rit
ica

l
G

oa
ls

: G
5,

 G
6

Di
sp

at
ch

er
 !

Im
po

rta
nc

e:
 C

rit
ica

l !
G

oa
ls

: G
1,

 G
2

La
dd

er
 o

ffi
ce

r !
Im

po
rta

nc
e:

 M
aj

or
 !G

oa
ls

: G
1,

 G
4

Fi
re

 e
ng

in
e

of
fic

er
! I

m
po

rta
nc

e:
 M

aj
or

 !G
oa

ls
: G

1,
 G

4

Re
so

ur
ce

 o
ffi

ce
r !

Im
po

rta
nc

e:
 M

in
or

 !G
oa

ls
: G

1

Tr
ai

ne
r !

Im
po

rta
nc

e:
 M

aj
or

 !G
oa

ls
: G

1,
 G

2,
 G

3

M
ay

or
 o

f G
C!

 Im
po

rta
nc

e:
 M

in
or

 !G
oa

ls
: G

5,
 G

6

Ca
lle

r !
Im

po
rta

nc
e:

 M
aj

or
 !G

oa
ls

: G
1,

 G
5

O
th

er
s
!Im

po
rta

nc
e:

 M
ar

gi
na

l

5
 C

or
e

re
qu

ire
m

en
ts

 [.
..]

C
al

le
r

Pe
rs

on
 w

o
re

po
rts

 a
n

in
cid

en
t,

ty
pi

ca
lly

 b
y

ca
llin

g
91

1.

D
is

pa
tc

he
r

Pe
rs

on
 w

ho
 re

co
rd

s
in

co
m

in
g

ca
lls

, c
la

ss
ifie

s
an

d
pr

io
rit

ize
s

th
e

in
cid

en
t,

di
sp

at
ch

es
 a

pp
ro

pr
ia

te
 fi

re
 fi

gh
tin

g
re

so
ur

ce
s

an
d

fo
llo

ws
-u

p
th

e
in

cid
en

t u
nt

il i
t i

s
clo

se
d.

Sy

no
ny

m
: d

isp
at

ch
 o

pe
ra

to
r

In
ci

de
nt

 A
 p

ro
bl

em
 re

po
rte

d
by

 a
 c

al
le

r t
ha

t r
eq

ui
re

s
fir

e
fig

ht
in

g
ac

tio
n.

 T
he

 in
cid

en
t p

er
sis

ts
 u

nt
il t

he
 fi

re
 fi

gh
tin

g
ac

tio
n

is
su

cc
es

sf
ul

ly
te

rm
in

at
ed

.

La
dd

er
 A

 p
la

ce
 in

 G
C

wh
er

e
fir

e
fig

ht
in

g
eq

ui
pm

en
t a

nd

pe
rs

on
ne

l is
 lo

ca
te

d.
 S

yn
on

ym
: fi

re
 h

ou
se

.

G
lo

ss
ar

y
of

 te
rm

s
...

Ca
ll

pr
oc

es
sin

g

Di
sp

at
ch

su

pp
or

t

En
vir

on
m

en
t

da
ta

Re
so

ur
ce

da

ta

FD
G

C

Ca
lle

r

Di
sp

at
ch

er
O

nl
in

e
tra

ffi
c

in
fo

M
ap

se

rv
ice

s

W
ea

th
er

da

ta

S1
 D

isp
at

ch
in

g
S2

 F
ire

 e
ng

in
e

on
-b

oa
rd

m

on
ito

rin
g

an
d

co
m

m
an

d
sy

st
em

S3
 A

ux
ilia

ry
 c

om
po

ne
nt

s

Si
m

ul
at

or

M
ea

su
re

m
en

t
m

an
ag

er

En
gi

ne
 o

ffi
ce

r

Fi
re

st

at
io

nTr
ai

ne
r

In
cid

en
t

ar
ch

ive

G
C-

FE
DS

Re
so

ur
ce

of

fic
er

FD
G

C
m

an
ag

em
en

t

4
 S

ys
te

m
 c

on
te

xt

Au
th

or
: M

ar
tin

 G
lin

z!
C

re
at

ed
: 2

01
0-

02
-0

8!
La

st
 u

pd
at

ed
: 2

01
0-

07
-0

2!
St

at
us

: I
ni

ta
l d

ra
ft

fo
r d

isc
us

sio
n

wi
th

 s
ta

ke
ho

ld
er

s

– 9 –

R
1.

1
 S

up
po

rt
fa

st
 a

nd
 re

lia
bl

e
ca

ll
pr

oc
es

si
ng

 P
rio
rit
y:

 C
rit

ic
al

 G
oa
ls

: G
1,

 G
4

R
1.

2
 Id

en
tif

y
du

pl
ic

at
e

ca
lls

 P
rio
rit
y:

 H
ig

h
 G
oa
ls

: G
1,

 G
2

R
3

 P
ro

vi
de

 d
is

pa
tc

h
de

ci
si

on
 s

up
po

rt
 P
rio
rit
y:

 C
rit

ic
al

 G
oa
ls

: G
1,

 G
2,

 G
3

R
4

M
ai

nt
ai

n
a

co
rre

ct
 re

al
-ti

m
e

si
tu

at
io

n
m

ap
 P
rio
rit
y:

 C
rit

ic
al

 G
oa
ls

: G
1,

 G
2,

 G
3,

 G
4

R
5

 P
ro

vi
de

 a
 tr

ai
ni

ng
 m

od
e

(w
ith

 s
im

ul
at

ed
 c

al
ls

 a
nd

 a
ct

io
ns

)
Pr
io
rit
y:

 M
ed

iu
m

 G
oa
ls
: G

3

R
6

 M
ak

e
th

e
us

e
of

 th
e

sy
st

em
 le

ss
 s

tre
ss

fu
l a

nd
 e

as
ie

r t
o

le
ar

n
th

an
 to

da
y

 P
rio
rit
y:

 M
ed

iu
m

 G
oa
ls

: G
2

R
7

 M
ea

su
re

 s
el

ec
te

d
Q

oS
 m

et
ric

s
 P
rio
rit
y:

 L
ow

 G
oa
ls

: G
5

R
8

 M
in

im
iz

e
ov

er
he

ad
 in

cu
rre

d
by

 th
e

ne
w

 G
C

-F
ED

S
fo

r fi
re

 b
rig

ad
es

 P
rio
rit
y:

 M
ed

iu
m

 G
oa
ls

: G
4

R
1

H
an

dl
e

ca
lls

BP
6

Em
er

ge
nc

y
C

al
l P

ro
ce

ss

Ta
ke

 c
al

l
St

ar
t

re
co

rd
in

g

Ta
lk

 to

ca
lle

r

An
al

yz
e

ca
ll

C
la

ss
ify

 &

pr
io

rit
iz

e

H
an

g
up

St
op

re

co
rd

in
g

As
si

gn
 to

di

sp
at

ch
er

+
+

x
D

up
lic

at
e

ca
ll

As
si

gn
ed

 c
al

l

FD
G

C
.B

us
in

es
s

pr
oc

es
se

s

G
C

-F
ED

S-
Sp

ec
.5

 C
or

e
re

qu
ire

m
en

ts

In
co

m
in

g
ca

ll

S1
.1

 C
al

l p
ro

ce
ss

in
g

FD
G

C
...

[..
.]

Bu
si

ne
ss

 p
ro

ce
ss

es
... [..
.]

AT
TR

IB
U

TE
D

EF
 I

m
po

rta
nc

e:
 [

C
rit

ic
al

 |
M

aj
or

 |
M

in
or

 |
M

ar
gi

na
l]

AT
TR

IB
U

TE
D

EF
 G

oa
ls

, S
yn

on
ym

:
N

am
e

AT
TR

IB
U

TE
D

EF
 P

rio
rit

y:
 [

C
rit

ic
al

 |
H

ig
h

| M
ed

iu
m

 |
Lo

w
]

C
al

l p
ro

ce
ss

in
g

sh
al

l w
or

k
ac

co
rd

in
g

to
 c

or
e

re
qu

ire
m

en
t R

1
an

d
bu

si
ne

ss
 p

ro
ce

ss
 B

P6
.

EX
PL
A
N
AT
IO
N
S

G
C

 F
ED

S-
Sp

ec
 is

 a
n

ob
je

ct
 re

pr
es

en
tin

g
a

do
cu

m
en

t.
Its

 to
p-

le
ve

l n
es

te
d

ob
je

ct
s s

er
ve

 a
s a

n
or

ga
ni

za
tio

na
l s

tru
ct

ur
e.

In
 th

e
Bu

si
ne

ss
 g

oa
ls

 o
bj

ec
t,

ne
st

ed
 o

bj
ec

ts
 a

re
 a

rr
an

ge
d

in
 a

 d
ia

gr
am

, i
n

th
is

 c
as

e
a

go
al

 g
ra

ph
. T

he
 ‘f

uz
zy

’ m
od

ifi
er

 is
 u

se
d

to
 d

en
ot

e
so

ft
go

al
s.

R
el

at
io

n
an

no
ta

tio
ns

 a
re

 u
se

d
to

 in
di

ca
te

 p
os

iti
ve

 a
nd

 n
eg

at
iv

e
in

flu
en

ce
.

Th
e

de
ta

ils
 o

f t
he

 C
or

e
re

qu
ire

m
en

ts
 o

bj
ec

t a
re

 h
id

de
n

fr
om

 th
e

ov
er

vi
ew

di

ag
ra

m
. T

he
 ‘[

...
]’

m
ar

ke
r i

nd
ic

at
es

 th
at

 m
or

e
de

ta
ils

 a
re

 a
va

ila
bl

e.
Th

e
G

lo
ss

ar
y

of
 te

rm
s

ob
je

ct
 is

 in
co

m
pl

et
e

(n
am

e
fo

llo
w

ed
 b

y
‘..

.’)
. T

he

cu
rr

en
tly

 a
va

ila
bl

e
in

fo
rm

at
io

n
is

 d
is

pl
ay

ed
 in

 fu
ll

(n
o

‘[
...

]’
m

ar
ke

r)
.

Ita
lic

s i
nd

ic
at

e
at
tri
bu
te
s t

ha
t a

re
 fo

llo
w

ed
 b

y
va

lu
es

. U
nd

er
lin

in
g

a
w

or
d

(e
.g

.,
 G

2)
 in

di
ca

te
s a

 re
fe

re
nc

e
to

 a
n

ite
m

 w
ith

 th
at

 n
am

e.
In

 th
e

Sy
st

em
 c

on
te

xt
 o

bj
ec

t,
m

od
ifi

er
s m

ar
k

th
e

co
nt

ex
t b

ou
nd

ar
y

of
 th

e
G

C
-F

ED
S

sy
st

em
 a

nd
 in

di
ca

te
 w

hi
ch

 e
le

m
en

ts
 a

re
 e

xt
er

na
l t

o
it.

Th
e

C
al

l p
ro

ce
ss

in
g

ob
je

ct
 is

 sh
ow

n
in

 is
ol

at
io

n.
 It

 is
 c

on
te

xt
ua

liz
ed

 b
y

th
e

co
nt

ex
t p

at
hs

 o
f t

he
 tw

o
hi

er
ar

ch
ie

s t
ha

t t
hi

s o
bj

ec
t i

s e
m

be
dd

ed
 in

.

Th
e

ob
je

ct
 B

P6
 b

el
on

gs
 to

 tw
o

hi
er

ar
ch

ie
s:

 (i
)

to
 C

or
e

re
qu

ire
m

en
ts

 b
y

em
be

dd
in

g,
 (i

i)
 to

 F
D

G
C

.B
us

in
es

s
pr

oc
es

se
s

by
 a

n
ex

pl
ic

it
co

nt
ex

t p
at

h.

G
C

-F
ED

S-
Sp

ec
.4

.G
C

-F
ED

S.
S1

 D
is

pa
tc

hi
ng

FD
G

C
.G

C
-F

ED
S.

S1
 D

is
pa

tc
hi

ng

G
C

-F
ED

S-
Sp

ec

A
vi

si
on

 o
f t

he
 s

itu
at

io
n

m
ap

G
ot

ha
m

 C
ity

