
Incremental Visual Understanding of Java Source Code

Martin Pinzger, Katja Gräfenhain, Patrick Knab, and Harald C. Gall
Department of Informatics, University of Zurich, Switzerland

{pinzger,graefenhain,knab,gall}@ifi.uzh.ch

Abstract

Many program comprehension tools use graphs to visu-
alize and analyze source code. The main issue is that ex-
isting approaches create graphs overloaded with too much
information. Graphs contain hundreds of nodes and even
more edges that cross each other. Understanding these
graphs and using them for a given program comprehension
task is tedious, and in the worst case developers stop using
the tools.

In this paper we present DA4Java, a graph-based ap-
proach for visualizing and analyzing Java source code.
DA4Java provides features to stepwise add information to
graphs as well as features to remove irrelevant nodes and
edges from graphs.

In a case study with the JDT Debug plugin of Eclipse
we compared our approach with Creole and Imagix-
4D. We performed two typical program comprehension
tasks and evaluated user effort to create the graphs for
the comprehension tasks as well as size and complexity of
the resulting graph. In both tasks, our approach outper-
formed Creole and Imagix-4D. Graphs created with
DA4Java contained significantly fewer nodes and edges
and needed less effort to understand.

1. Introduction

Program comprehension is a necessary step in achiev-
ing objectives such as fixing errors, changing or adding fea-
tures, or improving code and design [13]. Program compre-
hension is a major cost factor in developing and maintain-
ing software systems. Vendors of integrated development
environments, for example, Eclipse and Microsoft Visual
Studio, have built in features for speeding up program com-
prehension. They provide code search functionality, class
and call hierarchy browsing, cross-reference browsing, etc.
Though modern development environments have been im-
proved towards program comprehension they lack adequate
visual support for more advanced program comprehension
tasks. Providing such support has been a key objective of

research and tool vendors.
Several approaches and tools have been developed, for

example, Rigi [6], Creole1, CodeCrawler [3], or Imagix-
4D2. Most of these tools use graph-based visualizations
where nodes represent source code entities such as pack-
ages, classes, methods, and fields. Edges denote depen-
dency relationships between them such as class inheri-
tance/subtyping, method calls, and field accesses. Typi-
cally, these tools follow the extract-abstract-view metaphor
as described by Ebert et al. [1]. They first load all the in-
formation into the graph which then is queried, filtered, and
edited by the user. For instance, Creole starts with an
overview-graph on the package level whose package nodes
then can be expanded to analyze source code details. This
approach follows the mantra presented by [11] which is use-
ful to get an overview of the implementation. But it bears
the problem that graphs get cluttered with irrelevant details
that need to be filtered out by the user.

In this paper we focus on Java source code and present
DA4Java (Dependency Analyzer for Java), a graph-based
visualization approach for program comprehension. The
main objective of DA4Java is to reduce the cognitive ef-
fort to understand graphs. Large graphs with many nodes
and edges that overlap each other are usually not aesthetic
and require more effort to understand. Our approach sup-
ports the creation of condensed, aesthetic graphs by show-
ing only the information relevant to solve a program com-
prehension task. To keep the size and complexity of graphs
minimal, DA4Java uses nested graphs and a set of features
to add and filter nodes and edges. The adding features allow
the user to incrementally compose the graph. For instance,
the ’Add callers’ feature adds methods that call a selected
entity and only the corresponding method calls to the graph.
Features for filtering are used to remove irrelevant informa-
tion and stay focussed on the program comprehension task
at hand. Our approach enables the understanding of the big
picture by hiding details as well as the understanding of de-
tails by hiding the irrelevant parts of the system.

We integrated DA4Java into Eclipse and evaluated it

1http://www.thechiselgroup.org/creole
2http://www.imagix.com



Package
Java class
Java interface

Method call

Method
Constructor

JDIThread

JDIDebugTarget

(a) Creole

*org

*eclipse

*jdt

*debug

*core

*internal

*debug

*core

breakpoints

*model

*JDIThread

handl. wonSu.

*JDIDebugT.

Package
Java class
Method
Method call

(b) DA4Java

Figure 1. Packages, classes, and methods using the package breakpoints.

in a case study with the Eclipse plugin JDT Debug. The
evaluation of our approach is based on the comparison of
DA4Java with two existing program comprehension tools,
Creole and Imagix-4D. We used the tools in two gen-
eral program comprehension tasks concerning the analysis
of static dependency relationships between Java packages
and classes. The main criteria for the comparison were the
user-effort to create and analyze the graph, and the size and
complexity of the graph. In both tasks, our approach cre-
ated graphs that were significantly less complex and eas-
ier to understand than the graphs created with Creole and
Imagix-4D.

The remainder of the paper is structured as follows: In
the next section we motivate our approach with an exam-
ple. The DA4Java approach with its features to add and
filter information to/from graphs is presented in Section 3.
In Section 4 we compare our approach with Creole and
Imagix-4D. Related work is presented in Section 5. In
Section 6 we draw the conclusions and outline future work.

2. Motivating example

Consider the following program comprehension sce-
nario: the developers of the JDT Debug plugin want to
refactor the package breakpoints. A first step towards
this refactoring is to find out which other packages, classes,
and methods will be affected by these modifications. One
way to answer this question is to analyze the incoming
method calls of package breakpoints.

Visualizing the dependencies with Creole we got the
graph depicted in Figure 1a. The graph is cluttered with
nodes and edges and the user-effort to understand the graph
and find the answer to the question is high.

The graph depicted in Figure 1b was created with

DA4Java. It shows the same level of detail as the graph
created with Creole. In contrast to the Creole graph it
contains only the nodes and edges that are needed to answer
the question, namely, the entities that call methods of pack-
age breakpoints. The number of nodes is reduced from
41 to 14 (not considering the nodes representing the mem-
bers of class JDIThread). The number of edges is even
smaller and there are no edge-crossings in the DA4Java
graph. The effort to understand this graph and to answer
the question is reduced significantly.

The main problem of existing program comprehension
tools is the lack of features to control the amount of infor-
mation visualized in graphs. This lowers their applicability
for several program comprehension tasks such as presented
by Pacione et al. [7]. This concerns:

• Features to incrementally add entities and relationships
to the graph that are relevant for solving program com-
prehension tasks.

• Features to remove nodes and edges from the graph
that are irrelevant in context of a program comprehen-
sion task.

3. Dependency Analyzer for Java

In [16] von Mayrhauser and Vans stated ”tools must
quickly and succinctly answer programmer questions, ex-
tract information without extraneous clutter, and represent
the information at the level at which the programmer cur-
rently thinks.” These are the key requirements according
to which we developed DA4Java. For the description of
our approach, we first present the basic visualization tech-
nique of DA4Java. After this follows the presentation of
the main contribution of this paper, i.e., the set of features
to compose and filter graphs.

2



DA4Java uses nested graphs to represent source code
information at the various levels of abstraction. Nodes in
the graph represent source code entities which are pack-
ages, classes, methods, and fields. Edges in the graph repre-
sent static dependencies between source code entities which
are class inheritance/subtyping, method calls, and field ac-
cesses. In the remainder of the paper we focus on method
calls.

Nested graphs reflect the hierarchic structure of Java pro-
grams. Packages contain sub-packages and classes which
contain the class members (e.g., inner classes, methods, and
fields). According to this hierarchy package nodes contain
sub-package and class nodes, which contain the nodes rep-
resenting class members. These are the different abstraction
levels that DA4Java supports.

*org

*eclipse

*jdt

*internal

*debug

*core

*breakpoints

*JavaWatch.

updat.

setAc. setMo.

setEn.

isAcc.

remov.

setDe.

addIn.<init>

isMod.

Package
Java class
Method
Method call

Figure 2. Example graph visualizing the par-
ent packages and some methods of class
JavaWatchpoint.

Nested graphs allow the user to combine top-down and
bottom-up source code analysis. DA4Java supports ex-
isting cognition models for program comprehension: top-
down the building of mental models [12] and bottom-up the
building of program and situational models [8]. The user
expands package or class nodes to view more implementa-
tion details and collapses nodes to remove details. Figure 2
depicts an example graph showing the parent packages of
class JavaWatchpoint and an excerpt of its methods.
The button in the top-left corner of nodes is used to expand
or collapse nodes.

Instead of visualizing each single dependency relation-
ship DA4Java aggregates edges between nodes to one
edge. The width of an edge represents the number of ag-
gregated low-level edges (e.g., method calls). This reduces

the number of edges in a graph and facilitates a more aes-
thetic layout. Figure 3 depicts an example of aggregating
method calls between the two classes JavaWatchpoint
and JavaBreakpoint.

*JavaBreak.

confi. recre. handl.setEn.

*JavaWatch.

setAc. setMo.setEn. handl.creat.

Package
Java class
Method
Method call

(a) expanded method calls

*JavaWatch.

*JavaBreak.

(b) aggregated

Figure 3. Example of aggregating method
calls between JavaWatchpoint and
JavaBreakpoints.

In Figure 3a both class nodes are expanded and five call
edges are drawn between the methods. In Figure 3b both
class nodes are collapsed and the five edges are aggregated
to a single edge. When expanding the nodes it works the
other way round, i.e., the single edge is expanded to five
edges. The edge aggregation for packages works in the
same way.

The cognitive effort to understand graphs needs to be
reasonable to quickly and succinctly answer programmer
questions. In other words, the visualization needs to present
the nodes and edges for solving the program comprehension
task without unnecessary noise. DA4Java allows the user
to create such graphs by providing a set of features to in-
crementally compose graphs, and filter irrelevant nodes and
edges. The features to add information to the graph are pre-
sented in the following subsection.

3.1. Features to add information to graphs

DA4Java supports two ways of adding information to a
graph: the first way is to select the entities in an Eclipse
view such as the Package Explorer and add them to the
graph. The second way is to select nodes in the graph and
add entities and relationships via their incoming or outgo-
ing dependency relationships. For the explanation of these
features we use the examples depicted in Figure 4. The fea-
tures are:

Add entities Adds selected entities, their parents, and de-
scendants to the graph. The selection is done in the Eclipse
Package Explorer or similar views. Method calls between
added entities as well as between added entities and meth-
ods that are already contained in the graph are included as

3



*org

*eclipse

*jdt

*internal

*debug

*core

breakpoints

Package
Java class
Method call

(a) Added package
breakpoints

*org

*eclipse

*jdt

*debug

*core

*internal

*debug

*core

*model

*JDIDebugT.

*JDIThread

breakpoints

(b) Added callers of breakpoints

*org

*eclipse

*jdt

*debug

*core

*internal

*debug

*core

breakpoints

*model

*JDIThread

*JDIDebugT.

(c) Added method calls between the classes
JDIDebugTarget and JDIThread

Figure 4. Example of analyzing the incoming method calls of package breakpoints.

well. In the example, we selected the package break-
points from the Package Explorer and added it to the
graph. The resulting graph is depicted in Figure 4a. It shows
the package breakpoints and all its parent packages.
Add callers Adds methods to the graph that call the se-
lected node. The corresponding method calls, parent pack-
ages, and classes of methods are also added to the graph.
Nodes of different types can be selected in the DA4Java
graph. If a package node is selected, methods that call any
method of the selected package are added. If callee meth-
ods of the selected package are not present in the graph,
they are added. In the example, we selected the node rep-
resenting package breakpoints and added its callers.
Figure 4b depicts the result. Two packages debug.core
and model contain methods that call methods of package
breakpoints.
Add callees Adds methods that are called by methods of
the selected node to the graph. The corresponding method
calls, parent packages, and classes of methods are added to
the graph as well. Nodes of different types can be selected
in the DA4Java graph. If a package node is selected, meth-
ods that are called by any method of the selected package
are added. If caller methods of the selected package are not
present in the graph, they are added.
Add calls between selected nodes Given at least two se-
lected nodes in the graph, this feature adds the method calls
between these nodes. Nodes of different types can be se-
lected in the DA4Java graph. For example, if two classes
are selected the incoming and outgoing method calls be-
tween the methods of both classes are added. Methods that
are not present in the graph but involved in method calls are
added to the graph as well. In Figure 4c we expanded the
package model and added the method calls between the

two classes JDIDebugTarget and JDIThread. They
are represented by the two edges between the class nodes.

3.2. Features to filter information from graphs

While adding information to the graph the number of
nodes and edges in the graph increases until the graph be-
comes too complex and can hardly be grasped by the user.
To re-focus on relevant source code entities and dependency
relationships, DA4Java provides a number of features to
filter nodes and edges from the graph. These are:

Keep callers and remove other nodes Removes nodes
that do not call a method of the selected node. The corre-
sponding method calls are removed from the graph as well.
If a package or class is selected, DA4Java takes into ac-
count calls to methods of the selected package/class that
are present in the graph. This feature allows the user to
re-focus on the incoming method calls and involved entities
of the selected node. For example, we applied this filter to
the node JDIThread of the previous example graph de-
picted in Figure 4c. The result is depicted in Figure 5a. The
only entity that calls methods of class JDIThread is the
class JDIDebugTarget. All other nodes and edges were
removed.

Keep callees and remove other nodes Removes nodes
that are not called by a method of the selected node. The
corresponding method calls are also removed from the
graph. If a package or class is selected, DA4Java takes
into account calls from methods of the package/class that
are present in the graph. This function allows the user to re-
focus her analysis on outgoing method calls and involved
entities of the selected node.

4



*org

*eclipse

*jdt

*internal

*debug

*core

*model

*JDIThread

*JDIDebugT.

Package
Java class
Method
Method call

(a) Kept the callers of class JDIThread and
removed other nodes and edges.

*org

*eclipse

*jdt

*internal

*debug

*core

*model

*JDIDebugT.

JDIDebugT. JDIDebugT.

break.remov. suspe.canSu. isOut.resum. findT.creat. mayBe.handl.

*JDIThread

isOut.termi. dispo. remov.isSus.setRu. mayBe.suspe.resum.<init> getUn.

(b) Removed node internal dependencies from classes JDIThread and
JDIDebugTarget.

Figure 5. Example of analyzing the method calls from JDIDebugTarget to JDIThread.

Remove non-dependent nodes This feature combines
the two previous features. It removes nodes that neither call
nor are called by methods of the selected node. This fea-
ture allows the user to focus on the incoming and outgoing
method calls and involved entities of the selected node.
Remove node internal dependencies Removes internal
method calls of a selected package or class node. Further-
more, child nodes with no calls to methods outside the se-
lected package/class are also removed from the graph. This
feature is used to focus the analysis on inter-node dependen-
cies such as method calls between packages or classes. Ap-
plying this filter to the two classes JDIDebugTarget and
JDIThread of our example, creates the graph depicted in
Figure 5b. It shows only the nodes and edges of entities
and dependencies that are involved in method calls from
JDIDebugTarget to JDIThread. Other methods and
internal method calls were removed.
Remove selected nodes/edges Removes selected nodes
and edges from the graph. If a package or class node is se-
lected their descendant nodes, and incoming and out-going
method calls are also filtered from the graph. If aggregated
edges are selected underlying method calls are removed
from the graph but not their source and target nodes.
Remove non-selected nodes/edges Removes the non-
selected nodes and edges from the graph. If nodes are se-
lected only the edges between these nodes are kept. If edges
are selected, only nodes that are a source or target node of
the selected edges are kept. With this filter the user is able
to focus the analysis on certain nodes/dependency relation-
ships in the graph.

The same set of features, that DA4Java provides for
method calls, are also provided for class inheritance/sub-
typing and field access dependencies.

3.3. Features to handle incomplete graphs

The main advantage of our approach is that the user is
able to control the complexity of graphs and speed up pro-
gram comprehension tasks. There is, however, also a draw-
back: the graph composed by the user may not represent all
information and may give a wrong impression of the cur-
rent implementation. For example, to simplify the graph a
user filters a number of dependency relationships of pack-
age breakpoints. Because of the missing relationships
an overall analysis of the dependency relationships of this
package is not possible anymore. To alleviate this problem
DA4Java provides two features:
Not all descendant nodes are present A node label be-
ginning with a ’*’ signals the user that not all descendant
nodes of the corresponding node are present in the graph.
The ’Add entities’ feature is used to add the missing de-
scendants of this node and their dependency relationships.
Graph edit history DA4Java keeps a history of exe-
cuted add and filter features. For each history-entry the set
of nodes and edges that were added or respectively removed
from the graph are stored. Each executed add and filter fea-
ture can be undone in backwards order. In the other direc-
tion support for redo is also provided.

In the following we compare our approach with two ex-
isting source code analysis tools.

4. Comparison with Creole and Imagix-4D

Creole and Imagix-4D represent two cutting edge
source code analysis tools that use graph-based visualiza-
tions. Creole (version 1.6.1) also uses nested graphs and
edge aggregation. In contrast, Imagix-4D (version 6.2.0)

5



uses flat 2D and 3D graphs. Both tools can handle Java
source code and we have several years of experience in us-
ing these tools for program comprehension tasks.

As case study we selected the JDT Debug plugin of the
Eclipse project. The plugin provides the core functionality
for managing breakpoints, inspecting variables, and eval-
uating expressions. Version 3.2.2 of the plugin comprises
more than 37k lines of code. They are contained in 345
Java classes and 131 interface classes which are organized
in 23 packages. For Imagix-4D we used the tool-internal
parser to process the source code to a fact-repository. This
repository is used by Imagix-4D for all its analysis fea-
tures. DA4Java and Creole both are Eclipse plugins that
use the Eclipse java development tools to parse the source
code. DA4Java stores extracted facts into a Hibernate3

mapped MySQL database. Creole keeps a fact repository
in the main memory.

The comparison of the tools is based on the graphs that
were created with each tool. We chose a general pro-
gram comprehension activity which consisted of two subse-
quent tasks: 1) visualize packages and classes that depend
on class JavaWatchpoint; 2) visualize the methods of
class JavaWatchpoint that call methods of other pack-
ages and classes.

The criteria for the comparison are:

1. User-effort to create and analyze the graph. For each
tool we describe the steps that we needed to create an
adequate graph. With adequate we mean a graph that
shows the mandatory information in an understandable
way so that we were able to solve the given tasks. A
detailed evaluation of the effort with a user study is
subject to future work.

2. Size and complexity of graphs measured with the num-
ber of nodes and edges, and the number of edge cross-
ings [10]. Graphs with a small number of nodes and
edges are usually easier to understand than graphs with
many nodes and edges. In an experiment Purchase et
al. compared different graph layout algorithms con-
sidering several aesthetic criteria. Results showed that
users preferred graphs with few edge crossings over
graphs with many edge crossings [9].

4.1. Packages and classes depending on
JavaWatchpoint

For solving this task, we visualized the packages and
classes that depend on class JavaWatchpoint via in-
coming and outgoing method calls. With this task we
demonstrate the features of DA4Java to incrementally
compose a graph.

3http://www.hibernate.org

Effort estimation In the following we describe the steps
to create and analyze the graph with each tool:

• DA4Java: We selected the class JavaWatchpoint
in the Eclipse Package Explorer and added the class to
the graph window. Next, we selected the node rep-
resenting the class JavaWatchpoint and via ’Add
callers’ and ’Add callees’ added dependent entities to
the graph. No additional post-processing or layout of
the graph was needed. The result is depicted in Fig-
ure 6a. The view clearly shows that JavaWatch-
point is a consumer of functionality of classes pro-
vided by the external package com and the internal
package model. Within the package breakpoints
JavaWatchpoint calls methods of the two classes
JavaLineBreakpoint and JavaBreakpoint.
The single caller of the methods of JavaWatch-
point are methods of package debug.

• Creole: We used the Package Explorer to select
the two source code directories jdi interfaces
and model. We dropped the selection on the button
’Package Dependencies via Method Calls’. We next
expanded the node of package breakpoints and
its incoming and outgoing edges that denote method
calls. Each edge needed to be double clicked. Fur-
thermore, we had to manually adjust the layout of the
inner graphs of packages debug.core and break-
points to find the entities that depend on class
JavaWatchpoint. Zooming out of package nodes
caused an automatic relayout of the inner graphs so
that we had to redo the manual layout several times.
The final graph is depicted in Figure 6b. The manual
expansion of edges and the layout of inner graphs was
tedious and time-consuming.

• Imagix-4D: We selected the ’Structure’ mode and
configured the view to show Java classes, interfaces,
and method calls. For the layout we configured ’Com-
pact’ and ’FromRoots’. Next, we selected the class
JavaWatchpoint from the Class Index window
and added it to the graph. In the graph window we
selected the node and added all classes via incoming
and outgoing method call relationships. To reduce the
complexity of the graph, we omitted package nodes
and containment relationships between packages and
classes. The Imagix-4D graph is depicted in Fig-
ure 6c. Similar to DA4Java, using the graph compose
and filter functions of Imagix-4D such views can be
created within a short time.

With DA4Java and Imagix-4D less effort was needed
to create the graph. The main problem of Creole is the
lack of facilities to incrementally build the graph. The user

6



needs to start his analysis top-down and dig into the de-
tails. Adequate filters to focus on the entities of interest
and remove irrelevant entities and relationships from graphs
are not provided by Creole. This leads to more complex
graphs that need more effort to handle and understand.
Graph size and aesthetic The following table represents
the measures for each graph.

#nodes #edges #edge crossings
DA4Java 13 5 0
Creole 28 > 50 > 200
Imagix-4D 14 ≈ 38 ≈ 100

DA4Java outperformed both tools, Creole and
Imagix-4D. The graph created with Creole contains
several packages and classes that neither call nor are called
by methods of class JavaWatchpoint. Furthermore,
while DA4Java draws only edges that represent incoming
and outgoing methods calls of class JavaWatchpoint,
Creole represents all call relationships between visible
nodes. With the filter functions provided by Creole we
were not able to filter these nodes and edges from the graph.
This led to a graph that contains 15 additional nodes, over
50 edges, and more than 200 edge crossings.

In contrast to DA4Java and Creole, Imagix-4D
uses flat directed graphs for the visualization of source code.
The downside of this visualization is the missing navigation
facility for a combined top-down and bottom-up analysis by
expanding and collapsing nodes. The graph of Imagix-
4D contains significantly more edges and edge crossings
than the graph of DA4Java. This is due to the fact that
Imagix-4D shows all method calls between visible enti-
ties. Adequate functions to filter method calls between the
caller methods and method calls between the callee meth-
ods are not provided by Imagix-4D.

4.2. Methods of JavaWatchpoint involved in out-
going dependencies

This task is a follow-up to the previous task. For its so-
lution, we visualized the methods of class JavaWatch-
point that are involved in the outgoing call dependencies
to other packages and classes. This task demonstrates the
filter capabilities of DA4Java.
Effort estimation In the following we describe the steps
to create and analyze the graph with each tool:

• DA4Java: We continued with the previous depen-
dency graph (see Figure 6a) and applied the func-
tion ’Keep callees’ to JavaWatchpoint. Next, we
expanded the node representing class JavaWatch-
point and applied the function ’Filter internal depen-
dencies’ to filter the class internal method calls. This

*com

*org

*eclipse

*jdt

*debug

*internal

*debug

*core

*model

*breakpoints

*JavaLineBr. *JavaBreak.

JavaWatch.

Package
Java class
Method calls

(a) DA4Java
Package
Java class
Java interface
Method calls

JavaWatchpoint

(b) Creole

#org#eclipse#jdt#internal#debug

breakpoints.JavaBreakpoint

breakpoints.JavaWatchpoint

internal.ValueCache

request.EventRequest

request.EventRequestManager

core.IJavaDebugTarget

core.IJavaWatchpoint

model.JDIDebugElement

core.JDIDebugModel

core.JDIDebugPlugin

model.JDIDebugTarget

jdi.ReferenceType

request.WatchpointRequest

Java class
Java interface
Method calls

(c) Imagix-4D

Figure 6. Task 1: Packages and classes de-
pending on JavaWatchpoint.

7



function also filters child nodes that do not call or are
called by methods of other classes. Figure 7a depicts
the graph after applying the two filters. It shows 11
methods of JavaWatchpoint call methods of other
packages and classes. The width of the edges shows
that 4 methods in the center of the graph frequently
call external methods.

• Creole: Proceeding from the graph presented by
Figure 6b, we zoomed into the package break-
points and expanded its outgoing edges. We man-
ually laid out the class nodes to identify the outgoing
method calls of class JavaWatchpoint. Next, we
expanded the node representing class JavaWatch-
point to view its members. We used the filter to hide
field and constant nodes from the graph. After that,
we expanded the corresponding outgoing edges of the
node JavaWatchpoint. To identify the methods in-
volved in outgoing calls we had to manually rearrange
the method nodes. Figure 7b depicts the final graph.
Although, Creole provides a zoom functionality, it
was a tedious job to identify involved methods in this
complex graph.

• Imagix-4D: We continued the analysis from the ex-
isting graph (see Figure 6c) and filtered out the nodes
of classes with calls to JavaWatchpoint. Next,
we configured the view to show classes, methods,
and contains relationships. We selected the node rep-
resenting class JavaWatchpoint and used ’Step
down’ to add the methods contained in JavaWatch-
point. After that we configured the view to display
method calls which resulted in the graph depicted in
Figure 7c. The identification of involved methods was
time-consuming—we had to check each class in the
graph and manually find out which methods use it.

The creation and understanding of the graphs with
DA4Javawas less effort than with Creole and Imagix-
4D. The main problem of Creole is the missing filter func-
tionality which led to cluttered graphs that needed more
effort to create and understand. Creating the graph with
Imagix-4Dwas straight forward, however, identifying the
involved methods was difficult. Imagix-4D lacks a func-
tion to filter internal method calls. Extending the highlight-
ing feature to select dependent nodes via aggregated edges
would have lowered the analysis effort significantly.
Graph size and aesthetic The following table represents
the measures for each graph.

#nodes #edges #edge crossings
DA4Java 23 17 10
Creole 51 > 100 > 250
Imagix-4D 38 ≈ 64 ≈ 230

*com

*org

*eclipse

*jdt

*internal

*debug

*core

*model

*breakpoints

*JavaWatch.

updat. setAc.setRe. handl.creat. creat.remov. setMo.addIn. setEn.recre.

*JavaLineBr. *JavaBreak.

Package
Java class

Method call
Method

(a) DA4Java
Package
Java class
Java interface

Method calls

Method
Constructor

JavaWatchpoint

(b) Creole

breakpoints.JavaWatchpoint

core.JDIDebugPlugin

JavaWatchpoint.createRequest

JavaWatchpoint.recreateRequest

JavaWatchpoint.setAccess

JavaWatchpoint.setEnabled

JavaWatchpoint.setModification

JavaWatchpoint.updateEnabledSta

JavaWatchpoint.createAccessWatc

JavaWatchpoint.createModificat

JavaWatchpoint.addDefaultAccess

JavaWatchpoint.addFieldName

JavaWatchpoint.addInstanceFilte

JavaWatchpoint.handleEvent

JavaWatchpoint.setRequestThread

JavaWatchpoint.createWatchpoint
request.EventRequest
request.EventRequestManager
JavaWatchpoint.getFieldName
core.IJavaDebugTarget
core.IJavaWatchpoint
JavaWatchpoint.isAccess
JavaWatchpoint.isAccessSuspend
JavaWatchpoint.isModification
breakpoints.JavaBreakpoint
JavaWatchpoint.JavaWatchpoint
JavaWatchpoint.JavaWatchpoint

model.JDIDebugElement
model.JDIDebugTarget
JavaWatchpoint.notSupported

jdi.ReferenceType
JavaWatchpoint.removeFromTarget
JavaWatchpoint.setDefaultAccess
JavaWatchpoint.supportsAccess
JavaWatchpoint.supportsConditio
JavaWatchpoint.supportsModific
internal.ValueCache
request.WatchpointRequest

Java class
Java interface

Method calls
Method

Contains

(c) Imagix-4D

Figure 7. Task 2: Methods of JavaWatch-
point involved in outgoing method calls.

8



Also in this task DA4Java showed better results
than Creole and Imagix-4D. The graph created with
DA4Java contains significantly less nodes, edges, and
edge crossings. According to the graph and the mea-
sures, the effect of Creole’s missing filter functionality
becomes even more apparent. Compared to 17 edges in the
DA4Java graph, the Creole graph contains more than
100 edges leading to more than 250 edge crossings. Even in
full screen mode the graph shows a network of overlapping
edges that is difficult to grasp. For such graphs, filtering is
a must.

Comparing the DA4Java graph with the Imagix-4D
graph, we can clearly see the advantage of nested graphs
which group nodes and edges according to the containment
hierarchy. 26 additional ’Contains’ edges are needed by
Imagix-4D to visualize the containment hierarchy. Fur-
thermore, Imagix-4D lacks the filters to remove edges be-
tween nodes such as class internal method calls. DA4Java
provides such a filter which is called ’Remove node internal
dependencies.’ The result is a graph that contains signifi-
cantly fewer edges, is easier to layout and understand.

4.3. Summary of results

In both tasks, DA4Java showed better results than
Creole and Imagix-4D with respect to the effort to cre-
ate the graph and perform the analysis. Examples pointed
out the main advantage of DA4Java which is its set of
add and filter features. They allowed us to create graphs
that contained a significantly smaller number of nodes,
edges, and edge crossings. For instance, in Task 1 the
graph of Creole contained more than 50 edges although 5
edges were enough to provide the answer. Furthermore, the
graphs created in Task 2 confirmed that the more details are
added the more complex graphs become. With DA4Java
the user is able to handle the increasing amount of informa-
tion and create graphs that are task oriented. Answers were
found within short time. In contrast, solving the task with
Creole or Imagix-4D was difficult and needed signifi-
cantly more effort from the user.

5. Related Work

Most of the existing program comprehension tools are
geared to a top-down approach, and lack with regard to
bottom-up exploration. Von Mayrhauser et al. found
that program understanding is not unidirectional, i.e., top-
down or bottom-up exclusively [17]. They present a meta
model that integrates both, the top-down model of Soloway
et al. [12] and the bottom-up model of Pennington [8].
This calls for a better integration of the two approaches.
DA4Java, in comparison with other tools, provides here
a significant improvement.

In [11] Shneiderman et al. discuss the visual informa-
tion seeking mantra: ”Overview first, zoom and filter, then
details-on-demand.” In this paper we demonstrated that this
mantra is not always the best way to go for several gen-
eral program comprehension tasks. For example in tasks, in
which the analysis concerns a particular method or class, it
is more efficient to use a bottom-up approach and stepwise
add more information to the graph than to start top-down
and filter all the details. A combination of both directions is
preferred which is supported by DA4Java.

The following source code visualization tools and tech-
niques are most related to our approach. Rigi is a tool
that concentrates on the mastery of structural complexity of
large systems with graph-based visualizations [6]. It fol-
lows mainly a top-down analysis approach and uses Simple
Hierarchical Multiperspective views (SHriMPs) [15]. They
reduce clutter while preserving the big picture with multi-
ple views. Rigi provides a set of filters via edge and node
types, or incoming and outgoing dependency relationships.
The main difference to DA4Java is its lack of features for
the incremental composition of graphs.
Shrimp [14] is a further development of Rigi. It sup-

ports Simple Hierarchical Multiperspective views. It intro-
duces the concept of nested interchangeable views to allow
a user to explore multiple perspectives of information at dif-
ferent levels of abstraction. Creole is an Eclipse plugin
based on Shrimp and its limitations were already discussed
in this paper.

IBM’s Structural Analysis for JavaTM

(SA4J) is a tool to analyze structural dependencies of Java
applications and detect ”anti-patterns.”4 SA4J provides
similar features in the exploration view as DA4Java.
Sophisticated composition and filtering features such as the
filter for node internal dependencies are missing. Similar
to Imagix-4D it uses flat graphs and does provide only
limited support for a combined top-down and bottom-up
program comprehension approach.
CodeCrawler [3] uses ’Polymetric Views’ to display

various aspects of object-oriented software systems. Its fo-
cus is more on the overall structure of a system, to asses,
for example, design violations. The focus on the big picture
has the tendency to lead to complex views when trying to
get information for smaller units.
Softwarenaut [4] is a tool used for top-down explo-

ration of large software systems and therefore has some of
the already discussed limitations. Its combination of a de-
tail view and overview view is interesting. The overview
view limits cluttering substantially without compromising
the big picture. Features for the incremental composition of
graphs and filtering are not provided by this approach.
Source Viewer 3D [5] is a tool that uses a 3D rep-

resentation to visualize source code. It is a further de-
4http://www.alphaworks.ibm.com/tech/sa4j

9



velopment of the SeeSoft [2] metaphor. They also im-
proved the SeeSoft metaphor with regard to the opti-
mization of simultaneously presenting as much informa-
tion as possible while avoiding information overload. The
SeeSoft metaphor is different from our approach, but
Source Viewer 3D shows, that there are other possi-
bilities to improve the expressiveness of visualizations.

6. Conclusions

Visualizations generated by program comprehension
tools still consist of graphs that contain hundreds of nodes
and even more edges that cross each other. Understanding
these graphs and using them for a given program compre-
hension task is tedious. In this paper, we proposed a graph-
based approach called DA4Java for visualizing and ana-
lyzing Java source code. It consists of features to incremen-
tally enrich graphs such as adding entities, callers, callees,
and their call relationships. It further provides effective fil-
tering features to keep only the interesting nodes and edges
in the graph. Blurred graphs are therefore reduced by effec-
tive filter algorithms to enable a user a quick comprehension
path in large software systems.

With our approach a user remains focused on the pro-
gram comprehension task while increasing the understand-
ing in a stepwise manner. We evaluated our tool in a case
study with the JDT Debug plugin of Eclipse and com-
pared it with two cutting edge tools Creole and Imagix-
4D. Two typical program comprehension tasks were per-
formed and we evaluated the user effort to create the graphs
for the comprehension tasks as well as the size and com-
plexity of these graphs. In both tasks, our approach out-
performed Creole and Imagix-4D. Graphs created with
DA4Java contained significantly fewer nodes and edges
and needed less effort to understand.

As future work we foresee a controlled user experiment
to do a detailed analysis of the features of our tool on more
general program comprehension tasks such as described
in [7]. That will give us additional input for fine-tuning our
graph algorithms and the user interface.

References

[1] J. Ebert, B. Kullbach, V. Riediger, and A. Winter. Gupro
- generic understanding of programs. Electronic Notes in
Theoretical Computer Science, 72(2):59–68, 2002.

[2] S. G. Eick, J. L. Steffen, and S. Eric E., Jr. Seesoft—a tool
for visualizing line oriented software statistics. IEEE Trans-
actions on Software Engineering, 18(11):957–968, 1992.

[3] M. Lanza. Codecrawler - polymetric views in action. In
Proceedings of the International Conference on Automated
Software Engineering, pages 394–395, Linz, Austria, 2004.
IEEE Computer Society Press.

[4] M. Lungu and M. Lanza. Softwarenaut: Exploring hierar-
chical system decompositions. In Proceedings of the Con-
ference on Software Maintenance and Reengineering, pages
351–354, Washington, DC, USA, 2006. IEEE Computer So-
ciety Press.

[5] A. Marcus, L. Feng, and J. I. Maletic. 3d representations
for software visualization. In Proceedings of the ACM Sym-
posium on Software visualization, pages 27–36, New York,
NY, USA, 2003. ACM Press.

[6] H. A. Müller and K. Klashinsky. Rigi – a system for
programming-in-the-large. In Proceedings of the Interna-
tional Conference on Software Engineering, pages 80–86,
Singapore, April 1988. IEEE Computer Society Press.

[7] M. J. Pacione, M. Roper, and M. Wood. A novel software
visualisation model to support software comprehension. In
Proceedings of the Working Conference on Reverse Engi-
neering, pages 70–79, Washington, DC, USA, 2004. IEEE
Computer Society Press.

[8] N. Pennington. Stimulus structures and mental representa-
tions in expert comprehension of computer programs. Cog-
nitive Psychology, 19:295–341, 1987.

[9] H. C. Purchase, D. Carrington, and J.-A. Allder. Empiri-
cal evaluation of aesthetics-based graph layout. Empirical
Software Engingeering, 7(3):233–255, 2002.

[10] E. M. Reingold and J. S. Tilford. Tidier drawings of trees.
IEEE Transactions on Software Engineering, 7(2):223–228,
1981.

[11] B. Shneiderman. The eyes have it: A task by data type
taxonomy for information visualizations. In Proceedings
of the IEEE Symposium on Visual Languages, pages 336–
343, Washington, DC, USA, 1996. IEEE Computer Society
Press.

[12] E. M. Soloway and K. Ehrlich. Empirical studies of pro-
gramming knowledge. IEEE Transactions on Software En-
gineering, SE-10(5):595–609, 1984.

[13] M.-A. Storey. Theories, tools and research methods in pro-
gram comprehension: past, present and future. Software
Quality Control, 14(3):187–208, 2006.

[14] M.-A. Storey, C. Best, J. Michaud, D. Rayside, M. Litoiu,
and M. Musen. Shrimp views: an interactive environment
for information visualization and navigation. In Extended
abstracts on Human factors in computing systems, pages
520–521, New York, NY, USA, 2002. ACM Press.

[15] M.-A. D. Storey and H. A. Müller. Manipulating and doc-
umenting software structures using shrimp views. In Pro-
ceedings of the International Conference on Software Main-
tenance, pages 275–284, Opio, France, October 1995. IEEE
Computer Society Press.

[16] A. von Mayrhauser and A. M. Vans. From code under-
standing needs to reverse engineering tools capabilities. In
Proceedings of the International Conference on Computer-
Aided Software Engineering, pages 230–239, Singapore,
July 1993. IEEE Computer Society Press.

[17] A. von Mayrhauser and A. M. Vans. Program comprehen-
sion during software maintenance and evolution. Computer,
28(8):44–55, 1995.

10


