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Abstract

The heavy economic toll taken by poor software qual-
ity has sparked wide interest in bug prediction systems. If
likely bug locality could be predicted early and well, tar-
geted inspection, testing, etc. could be effectively deployed.
Researchers in bug prediction systems have used historical
data from open-source projects such as Eclipse. Typically,
developers record how, when, where, and by whom bugs are
fixed in code version histories (e.g., CVS) and bug tracking
databases (e.g., Bugzilla). However, there is no standard
or enforced practice to link a particular source code change
to the corresponding entry in the bug database. Linkages
are only provided sometimes and are not always indicated
the same way. Consequently, inferring them is inexact and
unreliable[1].

Many recent bug prediction efforts (e.g. [4, 6, 2, 5])
rely on corpora such as Zimmerman’s [7, 8] dataset linking
bugzilla bugs with source code commits in Eclipse. This
corpus is created by establishing links between the reposi-
tory information and the bug database information through
inexact heuristics (e.g., the bug number occurs in the com-
mit message). As a result, this corpus accounts for only
about 10% of all the bugs in the database. Therefore, what
we have here is a sample of bug occurrences, rather than
the population of all known bug occurrences. Still, this cor-
pus represents a store of valuable information concerning
the location of bug fixes (and thus bug occurrences). Con-
sequently, this type of data is at the core of much work on
bug prediction. Typically one trains predictors on histori-
cally earlier data and then evaluates them on later data in
the commit message). As a result, this corpus accounts for
only about 10% of all the bugs in the database. What we
have here, therefore, is a sample of bug occurrences, rather
than the population of all known bug occurrences. Still this
corpus represents a store of valuable information concern-
ing the location of bug fixes (and thus bug occurrences);

therefore this type of data is at the core of much work on
bug prediction. Typically one trains predictors on histor-
ically earlier data, and evaluates them on later data (both
being drawn from the same sample).

This leads to our core research question: Is this sample
of links biased in some way or does it accurately represent
the entire population of bug occurrences? Moreover, if there
is such bias how does it affect the performance of the bug
prediction systems?

We studied 3 kinds of bias in the Eclipse corpus. First,
are only certain types of bugs linked to source code? In
fact, we have found the ”most” severe bugs are the ”least”
likely to be linked. Second, we ask, are some bug fixers
more likely to link bugs to source code? Indeed, we find
that more experienced people are more likely to link bugs.
Third, we ask does the way a bug is fixed matter?. We find
a strong correlation between a change being linked and the
bug being verified in the bugzilla database. Other possible
sample biases are under study, We studied 3 kinds of bias
in the Eclipse corpus. First, are only certain types of bugs
linked to source code? In fact, we have found the most se-
vere bugs are the least likely to be linked. Second, are some
bug fixers more likely to link bugs to source code? Indeed,
we find that more experienced people are more likely to link
bugs. Third, does the way a bug is fixed matter?. We find
that bugs that are verified after fixing are more likely to be
linked. Other possible sample biases are under study, in-
cluding where and how the bugs are fixed.

We have also looked at whether the existence of bias af-
fects the performance of bug prediction system. Preliminary
work, using the BugCache[3] bug prediction system, indi-
cates that indeed, that the bias towards the least severe bugs
indicates that a proportionately much larger number of low-
severity bugs are predicted. This result raises a nagging,
important question: does the sample bias affect the ability
of bug prediction systems to direct quality-control efforts
towards the most severe bugs? We are now evaluating other
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prediction techniques.
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Is this sample representative? How will bug detection 
systems be a�ected if we train on this sample?

•  Many Open Source Projects keep track 

   of bugs with bug databases (Eg. BUGZILLA)

•  Some commit logs mention bug numbers,

   thus linking bug fixes  

• The sample of linked fixes has been 

   used in bug prediction research

•  But...linked bugs may be a biased
   sample of the population!

Background

Results & Discussion
•  The sample is NOT representative

•  Linked bugs are fixed by more experienced developers 

•  Is this why more experienced developers seem 

   to have more bugs? 

•  More severe bugs are LESS

   likely to be linked!

•  Experiments with Bug Cache prediction 

   maintain severity discrepancy

•  Training on this sample may miss 
   the most severe bugs
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