
Looking Back on Prediction:
A Retrospective Evaluation of Bug-Prediction Techniques

Eirik Aune1, Adrian Bachmann2, Abraham Bernstein2, Christian Bird1, Premkumar Devanbu1

1University of California, Davis, USA
2University of Zurich, Switzerland

{emaune,cabird,ptdevanbu}@ucdavis.edu {bachman,bernstein}@ifi.uzh.ch

Abstract

The heavy economic toll taken by poor software qual-
ity has sparked wide interest in bug prediction systems. If
likely bug locality could be predicted early and well, tar-
geted inspection, testing, etc. could be effectively deployed.
Researchers in bug prediction systems have used historical
data from open-source projects such as Eclipse. Typically,
developers record how, when, where, and by whom bugs are
fixed in code version histories (e.g., CVS) and bug tracking
databases (e.g., Bugzilla). However, there is no standard
or enforced practice to link a particular source code change
to the corresponding entry in the bug database. Linkages
are only provided sometimes and are not always indicated
the same way. Consequently, inferring them is inexact and
unreliable[1].

Many recent bug prediction efforts (e.g. [4, 6, 2, 5])
rely on corpora such as Zimmerman’s [7, 8] dataset linking
bugzilla bugs with source code commits in Eclipse. This
corpus is created by establishing links between the reposi-
tory information and the bug database information through
inexact heuristics (e.g., the bug number occurs in the com-
mit message). As a result, this corpus accounts for only
about 10% of all the bugs in the database. Therefore, what
we have here is a sample of bug occurrences, rather than
the population of all known bug occurrences. Still, this cor-
pus represents a store of valuable information concerning
the location of bug fixes (and thus bug occurrences). Con-
sequently, this type of data is at the core of much work on
bug prediction. Typically one trains predictors on histori-
cally earlier data and then evaluates them on later data in
the commit message). As a result, this corpus accounts for
only about 10% of all the bugs in the database. What we
have here, therefore, is a sample of bug occurrences, rather
than the population of all known bug occurrences. Still this
corpus represents a store of valuable information concern-
ing the location of bug fixes (and thus bug occurrences);

therefore this type of data is at the core of much work on
bug prediction. Typically one trains predictors on histor-
ically earlier data, and evaluates them on later data (both
being drawn from the same sample).

This leads to our core research question: Is this sample
of links biased in some way or does it accurately represent
the entire population of bug occurrences? Moreover, if there
is such bias how does it affect the performance of the bug
prediction systems?

We studied 3 kinds of bias in the Eclipse corpus. First,
are only certain types of bugs linked to source code? In
fact, we have found the ”most” severe bugs are the ”least”
likely to be linked. Second, we ask, are some bug fixers
more likely to link bugs to source code? Indeed, we find
that more experienced people are more likely to link bugs.
Third, we ask does the way a bug is fixed matter?. We find
a strong correlation between a change being linked and the
bug being verified in the bugzilla database. Other possible
sample biases are under study, We studied 3 kinds of bias
in the Eclipse corpus. First, are only certain types of bugs
linked to source code? In fact, we have found the most se-
vere bugs are the least likely to be linked. Second, are some
bug fixers more likely to link bugs to source code? Indeed,
we find that more experienced people are more likely to link
bugs. Third, does the way a bug is fixed matter?. We find
that bugs that are verified after fixing are more likely to be
linked. Other possible sample biases are under study, in-
cluding where and how the bugs are fixed.

We have also looked at whether the existence of bias af-
fects the performance of bug prediction system. Preliminary
work, using the BugCache[3] bug prediction system, indi-
cates that indeed, that the bias towards the least severe bugs
indicates that a proportionately much larger number of low-
severity bugs are predicted. This result raises a nagging,
important question: does the sample bias affect the ability
of bug prediction systems to direct quality-control efforts
towards the most severe bugs? We are now evaluating other

1

prediction techniques.

References

[1] M. Fischer, M. Pinzger, and H. Gall. Populating a release his-
tory database from version control and bug tracking systems.
In ICSM ’03: Proceedings of the International Conference
on Software Maintenance, page 23, Washington, DC, USA,
2003. IEEE Computer Society.

[2] S. Kim, K. Pan, and J. E. E. James Whitehead. Memories of
bug fixes. In SIGSOFT ’06/FSE-14: Proceedings of the 14th
ACM SIGSOFT international symposium on Foundations of
software engineering, pages 35–45, New York, NY, USA,
2006. ACM.

[3] S. Kim, T. Zimmermann, E. J. W. Jr., and A. Zeller. Predicting
faults from cached history. In ICSE ’07: Proceedings of the
29th international conference on Software Engineering, pages
489–498, Washington, DC, USA, 2007. IEEE Computer So-
ciety.

[4] R. Moser, W. Pedrycz, and G. Succi. A comparative analysis
of the efficiency of change metrics and static code attributes
for defect prediction. In ICSE ’08: Proceedings of the 30th in-
ternational conference on Software engineering, pages 181–
190, New York, NY, USA, 2008. ACM.

[5] S. Neuhaus, T. Zimmermann, C. Holler, and A. Zeller. Pre-
dicting vulnerable software components. In CCS ’07: Pro-
ceedings of the 14th ACM conference on Computer and com-
munications security, pages 529–540, New York, NY, USA,
2007. ACM.

[6] A. Schröter, T. Zimmermann, and A. Zeller. Predicting com-
ponent failures at design time. In Proceedings of the 5th In-
ternational Symposium on Empirical Software Engineering,
pages 18–27, September 2006.

[7] J. Śliwerski, T. Zimmermann, and A. Zeller. When do
changes induce fixes? In MSR ’05: Proceedings of the
2005 international workshop on Mining software reposito-
ries, pages 1–5, New York, NY, USA, 2005. ACM.

[8] T. Zimmermann, R. Premraj, and A. Zeller. Predicting de-
fects for eclipse. In Proceedings of the Third International
Workshop on Predictor Models in Software Engineering, May
2007.

2

A Retrospective Evaluation of Bug-Prediction Techniques
Looking Back on Prediction

Eirik Aune1, Adrian Bachmann2, Abraham Bernstein2, Christian Bird1, Premkumar Devanbu1
1University of California, Davis, 2University of Zurich, Switzerland

Is this sample representative? How will bug detection
systems be a�ected if we train on this sample?

• Many Open Source Projects keep track

 of bugs with bug databases (Eg. BUGZILLA)

• Some commit logs mention bug numbers,

 thus linking bug fixes

• The sample of linked fixes has been

 used in bug prediction research

• But...linked bugs may be a biased
 sample of the population!

Background

Results & Discussion
• The sample is NOT representative

• Linked bugs are fixed by more experienced developers

• Is this why more experienced developers seem

 to have more bugs?

• More severe bugs are LESS

 likely to be linked!

• Experiments with Bug Cache prediction

 maintain severity discrepancy

• Training on this sample may miss
 the most severe bugs

blocker major enhancement critical minor normal trivial

Proportion (%) of linked bugs by severity, in Eclipse

0
10

20
30

40
50

CVS Code Changes

DB

fix

fix

 Population (in Eclipse ~ 100,000)

 Linked Sample
 (in Eclipse ~ 20,000)

Bug Database

fix fix

fix fix

fixfix

fixfix

fix fix

fix fix
CVS Code Changes

