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Zusammenfassung

Diese Arbeit geht dem Bedarf an besserer Software fiir die dynamische Malware-Analyse
nach, indem die bereits existierende SecBox-Plattform, eine ressourcenschonende, contai-
nerbasierte Malware-Analyse-Sandbox, verbessert wird. Die Verbesserungen sollen eine
akkurate, einheitliche und reproduzierbare Analyse von diversen Malware-Typen ermog-
lichen. Die Arbeit taucht in die Prinzipien der dynamischen Analyse und in die Grund-
lagen der Reproduzierbarkeit ein, um ein klares Verstdndnis des Problems zu schaffen.
Die verbesserte SecBox-Plattform beinhaltet einen Befehlsrekorder, um akkurat Befehle
zu reproduzieren, sowie einen CSV Generator, um Systemmetriken wie CPU und RAM
Nutzung zu verfolgen. Durch die Evaluation von vier Malware-Typen, einschliellich eines
selbstgeschriebenen Skripts, zeigte die {iberarbeitete SecBox-Plattform iiber verschiedene
Sandbox-Instanzen hinweg eine hohe Einheitlichkeit. Dies unterstreicht ihre Niitzlichkeit
fiir die reproduzierbare, dynamische Malware-Analyse.
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Abstract

This thesis addresses the need for improved tools in dynamic malware analysis by en-
hancing the existing SecBox platform; a lightweight, container-based malware analysis
sandbox. The enhancements aim at ensuring accurate, consistent, and reproducible anal-
ysis of diverse malware types. The thesis delves into the principles of dynamic malware
analysis and what constitutes reproducibility, enabling an in-depth understanding of the
problem space. The enhanced SecBox platform includes a command recorder to metic-
ulously record and replicate commands and a CSV generator to monitor system metrics
like CPU and RAM usage. Through evaluations with four types of malware, one of which
was a custom script, the revamped SecBox platform demonstrated high consistency across
sandbox instances, underscoring its usefulness in reproducible dynamic malware analysis.
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Chapter 1

Introduction

In today’s digital age, malware poses a significant global threat, with cyberattacks be-
coming increasingly severe and frequent. This escalating issue is receiving more attention
across numerous studies on malware, including recent surveys such as that by [1]. Given
the profound implications for cybersecurity across various sectors, from businesses to gov-
ernment institutions, the growing diversity of malware [2] underscores a definitive need
for appropriate tools.

1.1 Motivation

The state-of-the-art survey on dynamic malware analysis by [3] sheds light on some of the
significant challenges faced in the field. They highlight that many research papers suffer
from inadequate evaluation: benign files are often omitted from datasets, and test sets
do not include a realistic ratio of malicious to benign files, making them misaligned with
reality. There is also a concerning lack of comparison to prior tools and transparency,
with source code frequently not made available.

These issues indicate that current research is often neither realistic nor reproducible, un-
derscoring a critical gap in the field. Without appropriate tooling and methodologies,
the research community and industry struggle to effectively combat the growing threat
of malware. This work, motivated by an urgent need for improvement, aims to refine the
SecBox platform [4] - a collaborative, lightweight malware analysis sandbox using con-
tainer virtualization - ensuring it provides accurate, consistent, and reproducible dynamic
malware analysis.

1.2 Description of Work

In order to enhance the SecBox platform to fill the current needs, the primary objective
of this work is to design and implement a set of enhancements that ensure the analysis
within the platform is realistic and reproducible.
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1.3 Thesis Outline

First, an understanding of the current malware landscape is gained within chapter 2, by
taking a look at its evolution and the different types that encompass the prevalent behav-
iors. Within the same chapter, a closer look is taken at dynamic malware analysis and the
concept of sandboxing. Finally, the history of reproducibility is explored and its definition
explained. A comparison of existing tools and what properties constitute reproducibility
is highlighted within chapter 3. Following that, chapter 4 explains the architecture of the
proposed solution and the steps necessary to reproduce an experiment, given the newly
added functionalities. Chapter 5 details the actual implementation of the enhancements
and discusses the necessary measures adopted during this process. Chapter 6 assesses
the effectiveness of the implemented enhancements using various evaluation techniques
or metrics, and chapter 7 concludes the thesis, summarizing the findings, highlighting
limitations, and suggesting future work.



Chapter 2

Background

This chapter presents an essential background to gain a common understanding of the con-

text and significance of this research. It begins by introducing a comprehensive overview
of malware and its different types, its evolution and the impact it has. Subsequently,
malware analysis is defined, with a specific focus on dynamic malware analysis. Finally,
this chapter delves into the concept of reproducibility and its necessity within the field.

2.1 Malware

As indicated in the survey of [5], malware is short for malicious software. Within the sur-
vey, it is highlighted that in addition to the formal name, there exist numerous definitions
of its functionality, however most common is that it is a type of computer code, specifi-
cally designed to be hostile and used to cause harm or subvert the intended function of a
system. Different types of malware exhibit a specific type of behavior and are thus usu-
ally classified into certain categories. Classification is made difficult by the multifaceted
and adaptable characteristics of malware. However, the following terms, as defined in
the paper of [6], have proven to be enduring and encompass the prevalent behaviors of
malware: Virus is a self-replicating malicious program, reminiscent to the biological one.
Developed as an executable, it spreads by copying itself to other host systems. It needs to
be transferred through files, including media and network types. Depending on the com-
plexity of its own code, it is capable of modifying the replicated copies. They are used
for various purposes, including theft of information and/or money, creation of botnets, or
rendering of advertisements [6].

A Worm is, similar to the virus, also a self-replicating malicious program, with the dif-
ference that it requires no human interaction to spread.mentions that it uses targeted
vulnerabilities in the operating system or installed software and consumes a lot of band-
width and processing resources through continues scanning. In doing so, it can destabilize
the host, leading to potential crashes. It is also capable of the same actions as a virus by
virtue of code payloads [6].
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Trojans are a type of program that present themselves as legitimate software. Upon down-
load and execution, it embeds malicious routines of files on the host system. Furthermore,
whilst it is not capable of self-replication, it allows remote access to third-parties. De-
pending on the payload attached to it, a Trojan may display different ways of harm to
the host system [6].

Spyware uses functions in the user’s operating system to spy on user activity. They may
be accompanied by additional capabilities, such as being able to interfere with network
connections to modify security settings on an infected system. Spyware spreads by attach-
ing itself to legitimate software, but can also be introduced through a payload. Tracked
user activity include user behavior, keystrokes and internet usage. The tracked data is
then sent to third-parties [6].

Adware, short for advertising supported software, is designed to automatically deliver
advertisements to the host’s system. This can be done via pop-ups, within other legitimate
software or other means. These unwanted advertisements are used to generate revenue

6].

Rootkits, as the name implies, are used to gain continuous root access to a host’s system
and thus have high privileges. They employ different obfuscation techniques and are
usually complex, and thus difficult to remove [6].

Bots, derived from the word robots, are designed to perform specific operations. By
remotely taking control of a host’s system, they are capable of spreading to other host
computers and then form a network that is known as a botnet. These botnets are then
used to perform the designated actions and are controlled by an attacker or bot master

6].

Ransomware is a program written to infect a host system or network, in order to hold it
captive while requesting a ransom. This is usually done by encrypting the user’s data and
followed by a message being displayed that prompts the victim to pay a certain amount,
in order to regain access to their data [6].

Cryptominers, as explained in the paper of [7], employ a technique that is also known as
cryptojacking wherein a software or script is loaded onto a victim’s machine, to stealthily
mine cryptocurrency and thereby exhausting their resources. This generates income at
the expense of the victim.

Understanding these distinct types of malware and their behaviors is crucial in creating
an effective data collection system for malware analysis.

2.1.1 Evolution of Malware

The article of [8] shows how much malware has evolved, starting from its roots. Elk Cloner
was the first piece of software written to spread itself. It would spread by cloning itself to
new disks introduced to the system, and once triggered, it would display a poem explaining
how Elk Cloner was copying itself through the victim’s machine and that it may be no easy
task to reverse its effects. This virus was attached to an actual game, written for the Apple
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IIc’s operating system, and served as a fairly harmless practical joke. Great interest was
sparked during its time, and thus many other such pranks began showing up on bulletin
board systems around the world. It did not take long for people to go beyond practical
pranks and start creating malicious software designed to harm a victim’s system. Soon
after the first computer virus was spread, the first versions of antivirus software began
being written as a public product in the latter half of the 1980s. From that moment on,
malware has continued to evolve and become more sophisticated, whilst countermeasures
have done so as well. Whereas at first "virus” was an overarching term for mischievous
software, it later became reserved for malware that had the capability to attack its target
machine, but could not replicate on its own. It was by the early 1990s, that malware
was learning to obfuscate itself. So-called polymorphic viruses were created that could
rewrite themselves whilst keeping their intended functionality. Thus, the so-called cat
and mouse game between researchers and malware authors had begun. The continuous
evolution and sophistication of malware necessitates the development of equally advanced
and adaptable systems for data collection and analysis.

2.2 Dynamic Malware Analysis

As discussed in the state-of-the-art survey by [3], dealing with new and unknown malware,
especially given the obfuscation techniques they employ to stay hidden, is no easy feat To
determine whether an unknown or new executable is malicious or not, it is common to use
an expert analyst, and whilst manual analysis is reliable, there is the issue of scalability. A
tool to combat these issues is automated analysis. Herein, a distinction between static and
dynamic analysis is made. Whilst static analysis relies on the extraction of information
within the code of the sample to be analyzed, dynamic analysis gains information via
direct execution and tracing of artifacts. One key aspect is that the security of the system
could be compromised if no other measures are taken, as the sample code is loaded into
the random access memory (RAM) and executed by the hosting central proccessing unit
(CPU). The advantage of dynamic analysis, on the other hand, is that it is immune to the
various obfuscation techniques that malware employs, as it does not rely on the analysis
of the binary code itself. This is because whether the malware alters itself or not, the
artifacts, or effects it causes, remain the same. Thus, a dynamic malware analysis tool is
composed of three main components: The malware sample, the hardware and operating
system being used, and finally, the analysis tool that is employed. The complexity of
dynamic malware analysis and the inherent challenges it presents underscores the need
for an effective, reproducible, and realistic data collection system.

2.3 Sandboxing

The survey of [3] makes further mention that, in order to combat the aforementioned
security issues of running malware, a so-called guest-host model can be employed, in
which malware and analysis are executed on separate operating systems. This can be
done by virtue of virtual machines, a hypervisor, or an emulator. All of these options are
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ways to ensure a secure environment, i.e. a sandbox. Employment of a sandbox comes
with challenges, as malware can be capable of detecting whether it is being run in an
analysis framework and then subvert its behavior. To avoid this from happening, the
sandbox needs to avoid leaving footprints, such as analysis processes, registry keys and
more. Because of these challenges, there is a constant arms race between malware authors
and analysis tool developers. An advantage that sandboxes provide, on the other hand,
is that there exist a more effective approach for returning the system to a clean state.
Whereas bare metal approaches require completely replacing the hardware or reformatting
the system, sandboxes can make use of so-called snapshots. Snapshots are a process in
which the guest operating system (OS), in its current state, can be saved to a file for
later use. They include the RAM and file system of the guest, thus comprehensively
representing a machine’s state.

2.4 Data Collection in Dynamic Malware Analysis

The process of data collection in dynamic malware analysis is pivotal, instrumental to
elucidating the behaviors exhibited by malware. [9] illustrates the use of function call
monitoring, which pertains to the interception of calls made by a program to designated
functions. This method leverages the power of abstraction provided by functions, which
distill implementation details into semantically richer representations. This is achieved
through hooking, a technique in which a supplementary function, known as the hook
function, is invoked concurrently with the intended function. This hook function is ac-
countable for implementing desired analysis functionalities, which may include recording
its invocation or closely inspecting input parameters. Interception targets primarily con-
sist of Application Programming Interfaces (APIs) and system calls. APIs are groups of
functions presenting a cohesive set of functionalities frequently utilized by applications to
execute tasks, while system calls represent the primary mode through which user-mode
applications request the operating system to perform tasks.

The survey by [9] also highlights other crucial techniques:

Function Parameter Analysis: This process involves the dynamic tracking of actual values
passed when a function is invoked. It aids in correlating individual function calls to provide
a deeper understanding of the program’s behavior.

Information Flow Tracking: Here, the propagation of taint-labels, or specific data, is
tracked throughout system execution. This aids in observing how a program manipulates
and processes data.

Instruction Trace: This involves collecting and analyzing sequences of machine instruc-
tions that have been executed, potentially unveiling insights not immediately evident in
higher-level analysis reports.

Autostart Extensibility Points (ASEPs): Monitoring these points is critical as malware
often leverage ASEPs to ensure their activation during the system’s boot process or when
specific applications are initiated.
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2.5 Reproducibility

The article of [10] highlights that the term "reproducibility” is nonstandard and unsettled
across sciences. However, the article makes mention that the term was coined by Claer-
bout, a geophysicist known for his work in the field of signal processing and notably, the
development of reproducible research [11]. He originally makes mention that reproducibil-
ity is achieved with transparency, by association with a software platform and a set of
procedures that permit the reader of a paper to see the entire processing trail from the
raw data and code, to figures and tables. The article also mentions that the U.S. National
Science Foundation subcommittee on replicability in science defines reproducibility as the
ability of a researcher to duplicate the results of a prior study using the same materials as
were used by the original investigator. A second researcher should thus be able to build the
same analysis files and implement the same statistical analysis, with the same raw data in
an attempt to yield the same results. This paper sticks to these definitions, and as further
supported by the reproducibility award, given by [12]. Badges are rewarded according
to whether results can be reproduced (as closely as possible if hardware differs), artifacts
are available, and whether the artifacts are evaluated and reusable. Reproducibility, as
defined and practiced in this research, is a key attribute of the proposed data collection
system, ensuring consistent and verifiable results across different instances of dynamic
malware analysis.
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Chapter 3

Related Work

To gain an understanding of whether reproducibility is promoted in current and past
research, this chapter offers a high-level look at the context of computer research to
identify properties enabling reproducibility, followed by a summary of relevant dynamic
malware analysis tools and research.

3.1 Methodology

A semi-systematic literature research containing various combinations and variations of
the terms malware, reproducible, analysis, research, and cybersecurity on Google Scholar
yielded no papers specifically focusing on reproducibility within the context of dynamic
malware analysis. However, in the broader context of computer research, there is a
plethora of relevant studies. Thus, a summary of the findings of the broader context
is first made.

In order to understand how reproducibility can be promoted and enabled, the higher
level findings are used to draw out reproducibility properties, as these properties can
be applied to computer research in general. The properties are then used to highlight
whether different research within the context of dynamic malware analysis allows for
reproducibility. It should be noted that the focus was primarily on highly relevant or recent
tools and research. Other tools that could have been included were omitted, considering
how similar the missing properties to enable reproducibility were.

3.2 Reproducibility in Computer Research and Its Appli-
cation in Dynamic Malware Analysis

This section will now first examine what constitutes reproducibility and the associated
challenges within the broader context of computer research. Following that, a closer
look is taken into different dynamic malware analysis tools. That is, to which extent
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reproducibility principles have been integrated into their functionality and whether gaps
exist.

3.2.1 Enabling Reproducibility in Computer Research

Within his paper, [13] shows that reproducibility has the potential to serve as a minimum
standard for judging scientific claims when full independent replication is not possible.
He created a spectrum of reproducibility that starts from publication only, on to full
replication. In order to facilitate reproducible research, written code should be published,
ideally cleaned-up, along with the corresponding metadata and data sets used. As a
further aspect, the role of metadata in reproducible computational research is explored
in the paper of [14]. Method details, such as versions and parameters, but also steps
along the entire scientific process should be written down, including data collection and
selection strategies, and finally, hardware and statistical methods as well that link these
elements to publication.

In the case study of [15], a survey, addressed to researchers in academic and private sec-
tors, was made. They used the findings to create guidelines to enable reproducibility. The
reproduction process should be highly automated (this could be achieved with an execu-
tion script) as this decreases manual intervention, which may introduce variability and
inconsistency during analysis. Published code should be provided as source code and/or
run within a virtual environment to address security issues. Commercial libraries and
other components that are locked behind payments should be avoided, and the software
and environment for the reproduction process should stay available. A possible tool that
is mentioned to achieve a lot of these points includes Docker, as the Dockerfiles can con-
tain simple creation instructions for images and can be easily shared due to their small
size. Furthermore, this ensures controlled and reproducible environments.

To summarize the prior findings, the following points need to be taken into consideration
when aiming for reproducibility:

e Source code provided, ideally cleaned up.

e Data set is publicly available or provided.

e Metadata, including but not limited to method details, the steps taken along the
entire scientific process, and the hardware as well as statistical methods has to be
included.

e The published code should be run within a virtual environment to address security
issues.

e Commercial libraries and other components locked behind payments should be
avoided.

e The reproduction process should be highly automated as manual intervention is
prone to introducing variability and inconsistency.
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e The software and environment, as well as datasets used, need to stay available as
research papers stay relevant far into the future.

3.2.2 Reproducibility in Dynamic Malware Analysis

This subsection will examine whether the properties and practices identified before, are
applied within the context of dynamic malware analysis. A heavier emphasis is put on
tools and research included within the surveys done by [9] and [3]. Dynamic malware
analysis systems not running on virtual environments will be skipped, as these already
run a security risk and are thus an obstacle to reproducibility.

TTAnalyze, which is an extension of the QEMU software, is introduced in the paper
of [11]. Malware is dynamically analyzed via execution within an emulated operating
system environment, simulating Windows XP, where the actions are monitored. To be
more precise, malware samples are loaded into a controlled environment. Afterwards, it
then uses a method of hooking system calls to monitor the actions of the malware. A log
is generated during execution, which includes API calls made by the malware and their
parameters, changes to the files system or registry, and network activity. Theoretically,
as the analysis of malware behavior can be automated, the data collection part could
be reproducible. However, this is only speculation as the source code is not supplied.
The software itself continued work under the name Anubis [16]. Later on, it underwent
another name change to LastLine and became commercial software.

CWSandbox, presented in the work of [17], executes malware samples in a simulated
environment, much like TTAnalyze and, as will be discussed further below, DRAKVUF.
It monitors all system calls, thereby automatically generating a detailed report. Because
they operate similarly, a comparable basis in the realm of dynamic malware analysis
can be drawn. Furthermore like Ether, which will be discussed in the next section, the
software functions by proactively monitoring the actions of malware during execution,
with the difference that API hooking and DLL injection is used, thus making it more
versatile. A log is generated with a wide range of activities, including files system and
registry modifications, network activities and API calls and great emphasis is put on the
automation of the software. As neither source code, nor data sets used are provided, only
a speculation can be made that the data collection part could be reproducible as well, as
the analysis process is automated. The software is currently only available commercially,
as it later continued work under the name Threat Track and is now known as Threat
Analyzer [18].

Ether, which is another example of a dynamic analysis software that is unfortunately
closed source, is found within the works of [19]. It is designed to overcome some lim-
itations that traditional analysis software presents, mainly how malware can obfuscate
itself when discovering that it is being analyzed. The software itself is described in low
level detail, such as it leveraging Intel VT [20], but further meta data cannot be gath-
ered. Transparency is achieved by utilizing hardware virtualization extensions. There is
no mention of automation within the paper.
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DRAKVUF, first presented in the work of [21], uses hardware-assisted virtualization ex-
tensions to create an isolated, controlled and consistent environment for malware analysis.
It aims to achieve high levels of stealth and is currently still maintained. Furthermore, it
is open source and well-documented [22]. The software is capable of monitoring at both
kernel and user-space levels. Automation is supported to some extent. DRAKVUF is still
maintained and as it is open source, commercial libraries and components aren’t in use.
Data collection is done by capturing every system call and many types of hardware events
and a detailed log is generated that provides rich metadata about the behavior of each
malware sample. The main challenge of reproducibility is that it is user reliant to ensure
the properties being held.

Cuckoo Sandbox [23] is a widely-used, open source malware analysis tool, that is currently
unmaintained, but a full rewrite is in progress. It allows configuration of various aspects
of the analysis environment, including virtual machines and network settings. It is also
capable of generating its analysis results, which supports sharing and collaboration, and
thus in turn reproducibility. Further, a thorough documentation is available online. Anal-
ysis includes techniques, such as hooking system calls, tracking of file systems and registry
changes, and capture of network traffic. To analyze malware, a suspicious file or a URL
is submitted into the tool. The sandbox then sets up an isolated environment, to execute
the submitted file in. The previously named techniques are then used to collect a vast
amount of data about its behavior. Furthermore, it is also capable of taking screenshots
to capture visual activity of the malware. The software is open source, and thus does
not use any commercial components. Once set up, the software is capable of processing
multiple samples in a row without manual intervention. It also includes detailed logs and
thus provides comprehensive metadata. The one hindrance to reproducibility is the same
one as with DRAKVUF: User reliability and responsibility.

Finally, it is important to acknowledge the presence and significance of commercial dy-
namic malware analysis tools, such as SOCRadar’s Threat Intelligence [24], any.run [25],
and Joe Sandbox [26]. These tools are widely used in the industry and provide crucial
services in malware detection and analysis. However, due to their closed-source nature,
full assessment of their reproducibility properties remains challenging. This emphasizes
the transparency advantage of open-source tools.

3.2.3 Discussion

From the prior findings, a definite lack of focus on the discipline of reproducibility can be
gathered, even though the usage of sandboxes already facilitates reproducibility. Virtual
environments provide a stable testing ground, where configurations can be set prior to
the analysis step. The research papers didn’t provide their source code, but supplied
the steps to achieve similar code. Two of the research papers presented within the prior
section became commercial software. The open source tools proved to be ideal to use
for reproducible research, but are user reliant to do so. If the usage of these tools were
less user heavy and introduced automation of the reproduction process to lessen manual
intervention, the open source tools would already fulfill all necessary properties. The two
open source solutions require the user to manually set up and customize the environment.
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To fully ensure reproducibility, it is essential that the users document their setup, config-
uration and analysis procedures in detail, but also that they share their malware samples
and raw analysis data whenever possible. This is something that could be automated
or facilitated within SecBox with the help of scripts and prompts. A further common
obstacle is the usage of a non public malware data set, or missing information on how
these data sets are used. Within the Table 3.1, v* will refer to a property being fulfilled,
x to a property not being fulfilled, and ”!” to a property being partially fulfilled or being
user reliant.

Table 3.1: Comparison of Reproducibility Properties Across Analysis Tools
TTAn- CWSand- FEther DRAKVUF Cuckoo This

alyze box Sandbox Work
Source code provided X X X v v v
Data set available or X X X X X v
provided
Metadata ! ! ! ! ! v
No commercial X X Un- v v v
libraries /components known
Automated Process un- un- X ! ! !
known known

Long-term availability X X X v ! !
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Chapter 4

Architecture

This chapter provides an overview of the architecture of the proposed solution. The objec-
tive is to provide a high-level overview of the implementation in order to gain a sufficient
understanding of the system and potentially reimplement it using different technologies.

4.1 Overview of the System

SecBox [4] is a collaborative, container-based, lightweight dynamic malware analysis sand-
box platform. It provides access to a selection of malware samples, allows real-time in-
teraction with the sandbox via terminal interfaces, and provides interactive visualization
capabilities. Furthermore, it features a multi-step analysis process that allows users to
discern malicious behavior using a baseline instance as a reference. Downstream analysis
tasks are supported through the export of system call and network packet data.

4.2 Enhancements for Reproducibility

To enhance SecBox’s reproducibility features, this thesis introduces two important fea-
tures. These enhancements aim to ensure that the system adheres to the principles of
reproducibility that are discussed in the prior chapter.

Firstly, a mechanism is implemented that records terminal commands issued to the sand-
boxes. The automation aspect of reproducibility is addressed by this feature. These
recordings can be output into JavaScript Object Notation (JSON) files that can be up-
loaded into the SecBox environment to precisely replicate the original analysis process,
maintaining the same command sequence, timing, and the terminal it corresponds to.
This allows other users to repeat analysis and experimentation of malware samples.

Secondly, a Comma-Separated Values (CSV) generator has been implemented to accu-
rately track and record CPU and RAM usage. This implementation was motivated by
the need to provide more detailed and accurate metadata for analysis sessions. It replaces
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Figure 4.1: The SecBox Architecture, marked in blue are the parts, where changes were
implemented [4]
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the malfunctioning post-analysis graphs for performance metrics in the original platform,
thereby enhancing the reproducibility and comparability of analysis sessions.

4.3 Core Components

This section provides an overview of the key architectural components within the SecBox
platform and their functionalities. The system is composed of three main components:

4.3.1 Frontend

The frontend, constructed using Vue 3, primarily facilitates user interaction and data
visualization. It comprises several navigable pages to guide users through different phases
of the analysis process. These pages include:

Home Page: A welcoming interface for users when they first access the system. It displays
some recent reports. From here, users can initiate the analysis process by selecting a
malware sample and a Linux image from respective drop-down lists.

Live-Analysis Page: Enables users to monitor and interact with running sandboxes in
real-time. Within a component called the live terminal, the recording feature introduced
in this work comes into play. The exact sequence of commands issued to the terminals
corresponding to both infected and healthy instances of the sandbox are recorded and
can be reused to replicate the same analysis in the future. A helper function within the
live analysis component had to be implemented as well to enable dynamic and automatic
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switching between the combined and split terminal. This feature is crucial for the repro-
ducibility aspect introduced in this thesis, as this allows a user to rerun the exact same
commands, at the same time again.

Post-Analysis Page: Allows users to select relevant charts that visualize the results of
their analysis.

Report-Page: Provides a platform for users to annotate the selected charts, facilitating
the interpretation and understanding of the data.

Report Dashboard: Lists past analyses, thus offering a convenient way for users to revisit
previous work.

4.3.2 Backend

The backend component serves as the main conduit for data flow between the client
and the host, while also managing user interactions. It communicates via WebSockets
with the frontend and host, providing real-time data transfer. Each host monitor has a
corresponding data manager in the backend that processes and forwards the data to the
clients involved in the analysis process. This work implements a CSV generator within the
performance manager that is automatically invoked, when data is handled. The generated
CSV files contribute to the overall reproducibility feature of SecBox, as detailed in the
"Enhancements for Reproducibility” section. User interaction tasks such as controlling
the sandboxes, handling command prompts, and managing reports are also handled by
the backend. The MongoDB database is utilized for data storage, specifically storing
previous analysis results, raw data, and information on host capabilities. This feature
plays a critical role in ensuring reproducibility, as it allows for the consistent storage and
retrieval of analysis data.

4.3.3 Host

The host is the core component of the SecBox solution, responsible for malware isolation
and data collection. It is built using Python and uses Socket.IO for communication with
other components. The host consists of three key sub-components:

Controller: Manages interaction with the sandbox using the Docker software development
kit (SDK). The controller is in charge of starting, stopping, and interacting with gVisor
containers, which provide added separation between the running applications and the host
operating system.

Sandbox: Executes malware in an isolated environment. The malware samples are pulled
directly from Malware Bazaar [27].

Monitors: Extract data from the sandbox and transmit it to the respective data managers
in the backend. The monitors use different means to extract various types of data such
as performance metrics, network metrics, and system call monitoring.
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4.3.4 Running a Reproducible Experiment

Once the installation and initial setup process is complete, the user will need to select
an operating system and a malware sample. Following this, two terminal windows are
presented, to which the user can send any number of commands as desired.

Upon completion of the experiment, the user can generate a record of their inputs by
pressing the GENERATE AND DOWNLOAD SCRIPT button. This action triggers the
download of a JSON file named commandsScript.json. This file encapsulates all issued
commands, the terminal to which they were sent, and their relative timestamps.

To reproduce the experiment, the same user or a different user can upload the previously
generated script using the UPLOAD AND RUN SCRIPT button, after duplicating the
original setup. This will trigger the re-execution of the commands in the corresponding
terminals, respecting the same delays that occurred in the original experiment.



Chapter 5

Implementation

This chapter details the process involved in implementing the two enhancements to the
SecBox platform: the recorder and the CSV generator. The enhancements are primarily
designed to improve the reproducibility of malware analysis sessions by providing robust
automation and precise system resource tracking.

5.1 Porting to ARM

Originally, the plan for this thesis was to deploy SecBox on a Raspberry Pi 3 and subse-
quently enhance the platform’s reproducibility features. This was based on the decision
that Internet of Things devices face unique malware analysis challenges and thus have
become the focus of the security community in recent years [28]. However, this approach
led to several compatibility issues. The bash shell script files (SH files) provided could not
be utilized as multiple software components were either incompatible with the Raspberry
Pi or required different installation instructions. Moreover, the Raspberry Pi 3’s RAM
proved insufficient, which led to the decision to switch to a Raspberry Pi 4. Despite this
change, further complications arose due to missing syscalls in gVisor within an Advanced
RISC Machine (ARM)64 based system [29], for which no workarounds or community ef-
forts were available. Consequently, the final decision was made to switch to a classic Linux
system.

5.2 Command Recorder

The command recorder is implemented as a part of the ’LiveTerminal.vue’ component,
which is a crucial part of the frontend where user interaction with the sandbox takes place.
The main aim of the recorder is to keep track of the commands issued to the different
terminal interfaces (combined, clean and infected) along with their relative timestamps.

Issued commands, the terminal type it was sent to, and the timestamp are pushed into an
array every time a command is entered in any of the terminal interfaces. The array thus
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stores the exact sequence and timing of the commands issued, enhancing the system’s
ability to replicate the analysis process with high fidelity.

The recorder offers three key functions to aid in reproducibility:

DownloadScript: This function facilitates the download of the recorded commands in a
JSON file. The downloaded file can serve as a record of an analysis session, and can be
used to reproduce the same session later.

It is composed of two methods, generateScript and downloadScript. The following lines
show the implementation of the script generator. Note that the line involving timestamp
serves to convert it into a relative one. This means that the amount of milliseconds
starting from the first command is tracked for each subsequent one.

Listing 5.1: Method, responsible for the generation of a command script

generateScript: function () {
let commands = []
let firstCommandTimestamp = this.commands[0]. timestamp ;

for (let commandObj of this.commands) {
commands . push ({
terminal: commandObj. terminal ,
command: commandODbj.command,
timestamp: commandObj.timestamp — firstCommandTimestamp

1)
}

let script = JSON.stringify (commands);

return script;

In order to make the generated script downloadable, another method called download-
Script is created that leverages an invisible anchor element and also simulates a link click,
thus downloading the JSON file. This is shown in the next few lines.

Listing 5.2: Method, responsible for the download of a generated command script

downloadScript: function () {
const scriptContent = this.generateScript ();

Y

const scriptName = 'commandsScript.json ’;

let element = document.createElement(’a’);
element.setAttribute (" href’,
"data:application/json;charset=utf —8,’

+ encodeURIComponent (scriptContent ));

element .setAttribute (’download ’, scriptName);

element .style.display = ’none’;
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document . body . appendChild (element );
element . click ();

document . body . removeChild (element );

UploadScript: This function allows users to upload a previously recorded command script.
The command script is parsed and automatically executed in the system.

Listing 5.3: Method, responsible for the upload of a generated command script
uploadScript: function () {

const inputElement = document.createElement ( input ’);
inputElement . type = ’"file ’;
inputElement . accept = ’.json ’;
inputElement . onchange = (event) => {
const file = event.target.files [0];
const reader = new FileReader ();

reader.onload = () = {
const commands = JSON. parse(reader.result );

this.runScript (commands);
}s
reader .readAsText (file );
};

inputElement . click ();

RunScript: This function takes the parsed commands and replays them in the system,
effectively recreating the analysis session. The function includes an internal mechanism
to respect the timing between the commands, thus ensuring a faithful reproduction of
the original session. It also uses a key called terminal to determine whether the terminal
needs to be switched, thus ensuring that the commands are sent to the correct terminal.

Listing 5.4: Method, responsible for the replay of a generated command script

runScript: async function (commands) {

for (let i = 0; i < commands.length; i++) {
const commandObj = commands|i |;
const command = commandObj.command ;

const terminal = commandObj.terminal;

const delay =i =0 7 0

commands[1i].timestamp — commands|[i —1].timestamp ;

this.S$emit (’update—combined—cli ’, terminal —= ’combined ’);

await new Promise(resolve => setTimeout(resolve , delay));
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Figure 5.1: The download and upload button that has been added to aid in reproducibility

if (terminal == ’combined’) {
this.cli_text = command;
this.onEnter ();

} else if (terminal =——= ’clean’) {

this.cli_text_clean
this.onEnter ();
else if (terminal ——= ’infected ') {
this.cli_text_infected command ;
this.onEnter ();

command ;

Finally, to make the command recorder accessible to users, two buttons have been added
to the user interface, located just below the terminal interfaces: one for downloading the
recorded command sequences, and another for uploading.

5.3 CSV Generator

The CSV generator plays a key role in enhancing the reproducibility of malware analysis
sessions within SecBox by enabling accurate and reliable tracking of system resource
usage. Integrated within the Performance Manager in the backend of the system, it
records metrics related to CPU and RAM usage in a systematic and automated way.
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The generator operates by extracting data from the system’s stats that are obtained via
docker. To calculate CPU usage, it divides the total CPU usage by the system CPU
usage, factoring in the number of online CPUs. The result is multiplied by 100 to obtain
the CPU usage percentage.

For RAM usage, the generator divides the current memory usage by the memory limit.
This fraction is then multiplied by 100 to represent the RAM usage as a percentage.

A key feature of the CSV Generator is its automatic invocation. Every time data is sent to
the backend, the generator is automatically triggered, ensuring that all relevant resource
usage data is captured. The generated CSV files serve as a reliable record of the system’s
performance during an analysis session. This allows for an accurate reproduction of the
resource usage graphs in the post-analysis phase, thereby contributing to the system’s
reproducibility.
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Chapter 6

Evaluation

This chapter discusses the experimental setup and results of the evaluation conducted to
test the reproducibility features introduced into the SecBox platform. The evaluation aims
to provide empirical evidence supporting the claim that the implemented features, that
being the command recorder and CSV generator, enhance the reproducibility of malware
analysis within the SecBox platform.

6.1 Experimental Setup
The evaluation was conducted on a system with the following specifications:

e Operating System: Ubuntu 22.04.2 LTS
e Processor: AMD Ryzen 9 5900X 12-Core Processor, 4200 Mhz, 24 logical Processors

e Physical Memory (RAM): 32.0 GB

Changes in system configurations, such as different hardware specifications or internet
connection speeds, may impact the performance and reliability of the command execution
and, therefore, the reproducibility of the malware analysis.

Each experiment is carried out by initially setting up the sandbox with an Ubuntu Jammy
container image, and the specified malware sample. Then a set of commands is run in the
different terminals and a JSON file is then generated from the sent commands. Finally,
the script is uploaded in 9 additional instances, in order to test for reproducibility. The
commands are kept basic, since the only relevant metric is whether the patterns remain
the same between each analysis run.

The set of commands run in the different terminals includes basic setup and operations
such as setting up the malware and performing ’apt-get update’. For the Monti ran-
somware, the cat readme.txt command was also used to display the ransom instructions.
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However, the platform only executes commands after the completion of the prior com-
mand, and the script currently does not detect failed commands. Therefore, these tests
and results are contingent upon successful command execution. The reference malware
omits the ’apt-get update’ command.

The data generated during each run, specifically the resource utilization metrics, are
recorded by the CSV generator and subsequently used for analysis and comparison. The
read/write counts are taken from the post analysis graph.

Additional files sourced from Digital Corpora [30] were added to the home directory in
both Docker environments to enhance the realism of the experiment. The downloaded
ZIP file was extracted beforehand.

6.2 Data Analysis Methodology

Data from the CSV files is processed using the pandas [31] library, an open-source data
manipulation and analysis tool in Python. Graphical representations of the processed
data are created using matplotlib [32], a plotting library for Python and its numerical
mathematics extension, NumPy [33]. The cosine similarity graph is generated with the
help of scikit-learn [34]. The cosine similarity matrix compares the RAM and CPU usage
patterns between each sandbox by comparing the corresponding means.

The equation looks as follows:

al-bl+a2~bg
Va} + a3 x /b3 + b}

cosine_similarity (A, B) =

Where a; and as correspond to the mean CPU and RAM usage of one sandbox instance
and b; and by to the mean CPU and RAM usage of a second instance.

6.3 Results

The effectiveness of the command recorder and CSV generator in enhancing the repro-
ducibility of the SecBox platform was tested using three different types of malware. Each
malware type was analyzed across ten trials to measure the consistency of the system’s
resource utilization metrics (CPU usage, RAM usage). The first two malware types in-
clude the read/write count, whilst the last includes the directory graph. The RAM and
CPU usage are scaled from 0 to 1.

6.3.1 Reference Malware

A reference malware with a predictable script is created to ensure accurate results. The
script is written as follows:
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#!/bin /bash

# Create the govdocsdataset directory if it doesn’t exist
# and populate with sample files
if [ ! —d 7/root/govdocsdataset” |; then
mkdir /root/govdocsdataset
echo ”Sample content” > /root/govdocsdataset/filel .txt
echo ”7Another sample” > /root/govdocsdataset/file2 .txt
fi

# Create a few large files

for i in 1 2 3; do
dd if=/dev/zero of=/tmp/${i}.img bs=IM count=1024
sleep 30

done

# Read a bunch of files from /root/govdocsdataset
for file in /root/govdocsdataset /%; do

cat $file

sleep b
done

# Scan a predictable number of hosts.
for i in $(seq 1 5); do
ping —c¢ 1 192.168.1.$i
&> /dev/null && echo 7192.168.1.%i is up” &

done

Running the script within the infected instance led to higher CPU and RAM usage as can
be seen in 6.1 and 6.2. This is as expected as the script creates large files and performs
reading operations as well. This is reflected in 6.4 as well. The cosine similarity graph,
seen in 6.3, shows a high level of similarity as well, which points to the reproducibility of
the script being successful. Finally, because all network layer graphs, as shown in 6.5, of
the different instances looked exactly the same, the graph has been included as well.

6.3.2 Mirai Analysis

Mirai [35], a malware type typically used in large-scale network attacks, forms the first
part of the analysis.

The Figures 6.6 and 6.7 show that the usage is remarkably similar between each sandbox
instance. There is less CPU and RAM utilization within the infected instance and also
less variation as can be seen with the smaller standard deviation error bars. Read and
write operation counts, as seen in Figure 6.9 are higher within the healthy instances, with
one notable spike. This could hint at Mirai causing the system to move into a highly
passive state. The figure 6.8 shows that the similarity cosine between each sandbox is
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Mean CPU Usage with Standard Deviation Error Bars - Reference Malware
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Figure 6.2: RAM Usage Across Multiple Runs With Reference Malware

extremely close to 1.0, indicating that the patterns of CPU and RAM usage are the same
between each instance.

6.3.3 Monti Analysis

The ransomware called Monti forms the second part of the analysis.

The graphs in figures 6.10 and 6.11 show an increase in CPU and RAM usage within
infected instances, with the RAM usage being significantly higher. There was one spike
in CPU usage within one instance. The read/write count in figure 6.13 reflects this as
well, with the infected instances having higher amounts. The cosine similarity graph in
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Cosine Similarity Heatmap between Sandbox Instances - Reference Malware
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Figure 6.3: Cosine Similarity Across Multiple Runs With Reference Malware

Read and Write Counts for each Sandbox - Reference Malware

EEm Healthy - Read
Healthy - Write
8000 B |nfected - Read
B Infected - Write
6000 +
o
c
3
o
4000 4
2000
04

o a > ™ o © A ® o o
S aF aF aF aF aF o S aF o
& & & & & & & & & 8°°+
& & & & & & & & & e
Sandbox 1D

Figure 6.4: Read/Write Counts Across Multiple Runs With Mirai Sample

figure 6.12, just as was the case with the Mirai malware, ranges from around 0.92 to 1.00,
thus showing that the instances all show the same patterns.
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Figure 6.6: CPU Usage Across Multiple Runs With Mirai Sample

Within the SecBox platform itself, a readme.txt file is created within the directory that is
encrypted, containing instructions on how to proceed. All of the files within the encrypted
directory now have a ".puuuk’ file extension. This indicates that the malware operates as
expected, and explains how the higher read/write count comes to be.

6.3.4 Coinminer Analysis

In the final analysis, this work utilized the script named Coinminer F from the original
paper of the SecBox platform [4]. This decision was made because the script obtained
from the platform did not function correctly, occasionally leading to crashes.

Upon execution, there is a noticeable and consistent increase in CPU and RAM activity,
as shown in figures 6.14 and 6.15. The cosine similarity matrix in figure 6.16 is extremely
close to 1 across the board, pointing to the patterns also being the same between each
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Figure 6.8: Cosine Similarity Across Multiple Runs With Mirai Sample

instance. Lastly, as the post analysis graph of the read/write count wasn’t functioning
properly, the directory graph was included instead, as the generated sunburst chart of
figure 6.17 showed the same result between each instance. Notably, two directories are
created, with one being marked for deletion.
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Figure 6.9: Read/Write Counts Across Multiple Runs With Mirai Sample

Mean CPU Usage with Standard Deviation Error Bars - Monti

® Infected

Health
0.5 Y

0.4 4

S
0.3 4

CPU Usage (%)
o
%)
ro—
——
T
--—
-—
! ro—
——
]

0.1+

0.0 4

T T T T T
0 2 4 3] 8
Sandbox ID

Figure 6.10: CPU Usage Across Multiple Runs With Monti Sample

Discussion

The goal of this study was to investigate the effects of implementing reproducibility
features, namely the command recorder and CSV generator, into the SecBox platform.
Across three different malware analyses, the study found a high degree of consistency in
system resource utilization metrics such as CPU and RAM usage, read/write operations,
and directory graphs across different sandbox instances.

The reference malware analysis showed increased CPU and RAM usage across all infected
instances, and higher read/write counts than the healthy instances. The cosine similarity
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Figure 6.12: Cosine Similarity Across Multiple Runs With Monti Sample
scores are very close to 1.0 and all network layer graphs, showed the same layers being
used in the infected instances. This shows a remarkable success in reproducibility.

The Mirai malware analysis showed that the usage patterns were remarkably similar
across all instances with a cosine similarity score close to 1. This implies a high degree
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Figure 6.13: Read/Write Counts Across Multiple Runs with Monti Sample
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Figure 6.14: CPU Usage Across Multiple Runs With Coinminer Sample

of reproducibility in the system’s operation when dealing with this type of malware. One
interesting observation is that the infected sandboxes showed a lower CPU and RAM
usage.

The Monti ransomware analysis revealed increased CPU and RAM usage in infected
instances, and the cosine similarity scores ranged from 0.92 to 1.00, further supporting
the claim of high reproducibility. Additionally, the ransomware’s operation within the
SecBox platform was confirmed as expected, contributing to the higher read /write count
observed.

In the Coinminer analysis, consistent increases in CPU and RAM activity were observed,
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Figure 6.15: RAM Usage Across Multiple Runs With Coinminer Sample
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Figure 6.16: Cosine Similarity Across Multiple Runs With Coinminer Sample

and the patterns were also almost identical across different instances, as evidenced by the
cosine similarity matrix. Notably, there were issues with the read /write count graph, but
the directory graph results provided additional reproducibility evidence.

These results are encouraging and confirm the effectiveness of the implemented features
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in enhancing the reproducibility of malware analysis within the SecBox platform. It is
evident that the tool is capable of producing consistent results across multiple instances,
a valuable trait for comparative analysis and collaboration within cybersecurity research.

6.5 Limitations

While the experimental results affirm the potential benefits of the command recorder and
CSV generator for the reproducibility of malware analysis within the SecBox platform,
several limitations within the study must be acknowledged.

Firstly, the hardware and software configurations used in the study were rather specific,
potentially reducing the generalizability of the findings. The experimental setup was
conducted using a system with Ubuntu 22.04.2 Long Term Support (LTS), AMD Ryzen
9 5900X 12-Core Processor, and 32.0GB RAM, which may not represent the broad range
of configurations that the SecBox platform may encounter in real-world usage. Therefore,
the reproducibility and performance of the features in other setups remain to be seen.

Secondly, the evaluation involved only three types of actual malware: Mirai, Monti, and
Coinminer. Given the diverse and evolving nature of malware, this narrow scope of
samples could limit the breadth of the conclusions that can be drawn from the study. It
is possible that other types of malware, especially those with more complex or stealthy
operation techniques, may produce different results in the reproducibility tests.

Thirdly, the experiments relied heavily on manual operation and observation, which could
introduce human errors and inconsistencies into the process. The lack of automation might
also limit the scalability of the study, as it may be impractical to manually perform tests
with a larger number of malware samples or across a broader range of system configura-
tions.

Lastly, during the Coinminer analysis, the read /write count graph was malfunctioning, a
limitation that prevented the full analysis of this particular aspect of system activity. This
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malfunction underlines the potential for technical issues that may impact the completeness
and reliability of the data collected during the experiments.
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Chapter 7

Summary and Conclusions

This chapter serves as a comprehensive summary and conclusion of the thesis, summariz-
ing the primary research objectives, methodologies employed, and key findings.

7.1 Summary

The objective of this work was to design and implement a reproducible and realistic
data collection system for dynamic malware analysis by enhancing an existing platform,
SecBox [4]. The introduction chapter outlined the need for such an enhancement, given
the evolving landscape of cybersecurity threats and the imperative for better analysis
tools.

In the background chapter, key principles and concepts relevant to dynamic malware
analysis and malware itself were explored, but also what constitutes reproducibility. This
provided a theoretical foundation for the enhancements made to the SecBox platform.

The related work chapter highlighted existing methods and tools in dynamic malware
analysis, helping to identify gaps and opportunities for enhancement in the SecBox plat-
form. It also served to draw out reproducibility properties.

In the architecture chapter, a detailed overview of the proposed solution’s structure was
provided. It served to lay out the architectural groundwork for the improvements made
in the platform, setting the stage for subsequent discussion.

The implementation chapter then delved into the technicalities of developing these fea-
tures. The command recorder was designed to record and replicate all commands issued
to two identical sandboxes, one of which included the selected malware sample. The CSV
generator was implemented to automatically record CPU and RAM usage, providing valu-
able data for analysis.

In the evaluation chapter, the implemented features were tested to assess their effec-
tiveness. The evaluation was conducted using a specific system setup on four types of
malware: A reference malware sample, Mirai, Monti and Coinminer. The results revealed
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a high degree of consistency across different sandbox instances for each type of malware,
indicating effective reproducibility facilitated by the implemented features.

7.2 Conclusion

The research presented in this thesis highlights the successful design and implementation
of enhancements to the SecBox platform, aimed at improving dynamic malware analysis
by ensuring reproducibility. The command recorder and CSV generator have proven to
be effective tools for this purpose. The ability to replicate all commands issued to a
sandbox environment and capture key system parameters like CPU and RAM usage has
significant implications for malware analysis. The consistency in results across sandbox
instances has validated the potential of the designed system to offer accurate, consistent,
and reproducible dynamic malware analysis.

7.3 Implications

The proposed enhancements to SecBox have substantial implications for the field of cy-
bersecurity. By enabling detailed recording of all commands issued in the sandbox envi-
ronment, the command recorder significantly improves the reproducibility of the malware
analysis process, allowing for more accurate comparison and validation of results across
different analysis instances.

The CSV generator, on the other hand, facilitates a deeper understanding of malware
behavior by automatically monitoring key system parameters such as CPU and RAM
usage. Because the recorded data is in CSV format, it offers a streamlined means for
analysts to engage in further analysis. The use of CSV format allows for easier data
manipulation and statistical analysis, which can provide further insights into the behavior
and impacts of various malware types.

These enhancements augment the analytical capabilities of the SecBox platform, and
by extension, the capabilities of malware analysts, making this tool more effective in
combating evolving cybersecurity threats.

7.4 Limitations and Challenges

The work presented is not without its limitations. The testing was confined to three
malware types and a specific system setup. While the results were promising, there’s a
need to validate the system with a broader variety of malware and diverse system setups.

The implemented recorder relies on manual operation, which is prone to human error
and limits scalability. Additionally, the system currently lacks a fail-safe mechanism for
dealing with command execution failures. This could potentially lead to significant issues
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if later commands rely on the successful execution of prior ones. Designing a mechanism to
handle such failures, possibly through the implementation of error detection and rollback
functionalities, is crucial to ensure the integrity and consistency of the analysis process.

A significant challenge encountered during this work was the malfunctioning post.analysis
process. The platform’s in-built capability to generate performance graphs often mal-
functions, and the read-write count graphs can become faulty when faced with large and
steadily increasing data. This issue currently severely limits the usefulness of the system’s
data visualization tools, requiring users to find alternative methods for data interpretation
and analysis.

Lastly, while the development of the CSV generator improved the ability to record and
analyze system resource usage, it currently only supports CPU and RAM usage.

7.5 Future Work

Several areas of potential future work have been identified as a result of this study. These
encompass improvements to the current implementation, as well as exploring new features
and functionalities.

The first point of future work could involve conducting additional testing across a wider
range of malware types and varying system setups. As the system was primarily validated
using three types of malware, broader testing would serve to further validate and improve
the functionality of the enhancements implemented in the thesis.

Given the current reliance on manual operation, automating the command recording pro-
cess to a certain extent would be a valuable avenue for future development. By minimizing
human intervention, it could improve the system’s scalability and reduce the chance of
errors. Careful consideration must be given to preserving user flexibility and command
control in any automated process.

The issue of command execution failure remains a significant concern. As such, designing
a fail-safe mechanism that can handle command execution failures would be a beneficial
addition. This might involve the development of error detection and rollback functionali-
ties, or a strategy for rerunning failed commands.

Efforts to correct the malfunctions of the post-analysis process, particularly the system’s
inherent ability to generate performance graphs, should be a priority. Future work could
focus on debugging and refining this feature to ensure its correct operation, particularly
with large datasets. Additionally, in-built generation of graphs for comparison between
multiple analysis runs could be taken into consideration.

Another potential area of focus is the expansion of the CSV generator’s capabilities to
record other system resources, such as disk input/output (I/0O), network activity, or even
graphics processing unit (GPU) usage. This expansion could provide a more comprehen-
sive picture of malware behavior but would necessitate careful handling to avoid inducing
significant performance overhead.
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Finally, integrating more advanced analytics and visualization tools into the platform
could be a beneficial feature, assisting users in interpreting and understanding the collected
data in a more intuitive or comprehensive manner. Such tools could offer automated
analysis, correlation identification, or trend tracking functionalities, further augmenting
the platform’s analytical capabilities.
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Appendix A

Installation Guidelines

This chapter provides instructions for setting up an instance of the enhanced SecBox [4].
For a comprehensive understanding of SecBox and its enhancements over the original
platform, refer to [36] and [37] respectively.

A.1 Frontend

The frontend requires Node 16.X [38] and Yarn [39]. To install the dependencies, navigate
to SecBox/app and run npm install.

A .enwv file called app.env is already supplied and is set up for local deployment. To deploy
the frontend locally, run npm run serve. For alternative setups app.env must be altered
with the desired backend IP.

A.2 Backend

The backend requires Python 3.9 [40] and pip [41]. All dependencies required for the
backend can be installed in Secbox/api with pip install -r requirements.txt.

A .enw file for local deployment called api.env is supplied as well and can be altered with
an alternative MongoDB address.

The backend can be started with the command

python3 webapp_api.py
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A.3 Host

The host’s dependencies can be installed by navigating to SecBox/host and then running
the command pip install -r requirements.txt.

To set up the host on a machine, run:

sudo ./setup.sh
sudo ./setup_bazel_gvisor.sh

A .env file for local deployment called host.env is supplied. It must be altered corre-
spondingly, should the backend IP not be local.

The host can then be run with

sudo -E python3 host.py



