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Abstract

A problem with modern deep learning recognition systems is that they often respond to stimuli
of an unknown class overly confident, but wrong. Open-set recognition highlights this behavior
and provides evaluation methods to estimate the generalization capability of models beyond the
classic train/test set split. In this thesis, we incorporate a Radial Basis Function (RBF) layer into
deep convolutional networks to model the deep feature distribution. We evaluate such networks
on standard open-set evaluation protocols and compare their performance with standard Soft-
max classification models. Additionally, we utilize negative training samples and compare with
the Entropic Open-Set Loss Softmax extension. We show that standard deep RBF network with
Gaussian activation functions does not outperform Softmax based methods in open-set recogni-
tion. We extend the RBF network in two ways, which both show increased open-set recognition
performance over the baseline RBF network. Based on these results we conjecture that solely us-
ing an RBF layer for the classification sub-system of a deep neural network might not be sufficient
to solve the open-set recognition problem.
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Chapter 1

Introduction

Turing (1950) posed the intriguing question of whether machines can think. One important con-
stituent of thinking is the recognition of patterns (Minsky, 1961). In humans, recognition is an
abstract capability operating on multiple modalities, tightly integrated with cognition. In gen-
eral, it can be decomposed into three parts, first the identification of something familiar, second
the recollection of various associated properties and third, naming it. In machines, all of these
parts have to be studied, modeled and built explicitly. Naturally, a computational formalism
which shares similarities with human thinking is rather appealing for this endeavor, such as arti-
ficial neural networks (Rosenblatt, 1958; Steinbuch, 1961). Initially there was quite some euphoria
about these potential thinking machines, but it turned out that getting them to learn and solve
moderately complex problems is far from trivial (Minsky and Papert, 1969). Thereafter, artificial
neural networks had quite a shadowy existence for some time. Fortunately, many techniques
were developed over the subsequent decades to get these new neural networks to learn complex
problems (Schmidhuber, 2015). At the beginning of the century, advances in Graphics Processing
Unit (GPU) technology provided massive speedups in parallel computation. This allowed for a
renaissance in neural networks. They were adapted to the newly available accelerators, by the
2010s the so-called Deep Learning Era began, where deep learning started to surpass traditional
machine learning methods (Sevilla et al., 2022). Not only did deep learning overtake traditional
machine learning, but task by task, human performance was reached and surpassed. For example
in image classification, measured on the ImageNet task (Russakovsky et al., 2015) a deep learning
model surpassed the performance of a human expert for the first time in 2015 (He et al., 2015b).
While these results are impressively showing the capabilities of neural networks, it is important
to note that these tasks are usually evaluated under very carefully controlled laboratory condi-
tions. Most importantly, it is assumed that there exists a fixed number of classes, which is known
and that the dataset used contains samples from each of those classes. These assumptions have
been termed closed-set (Majewski and Basztura, 1984). However, outside of the laboratory these
assumptions no longer hold in most cases. A visual object recognition systems will not be con-
strained to inputs sampled from a set of predefined classes, but it could be exposed to any visual
scene occurring “in the wild”. Common deep-learning based classification systems will assign
a class to any input, even if the input is completely unrelated due to the close-world assumption.
To make matters worse, if the classifier’s output is interpreted as a confidence of its decision, for
example by treating the outputs as a probability after applying the well known Softmax function, it
is very likely that the unrelated object is classified as a random class with a very high confidence
(Dhamija et al., 2020). The impressive performance in the laboratory compared to the abysmal
performance in the wild does raise serious questions on the applicability of the current approach.
This issue is anything but new, in fact it has been known since the beginnings of the field.
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With the arrival of the first commercial computers in the 1950s, research on artificial intelli-
gence started formally and with it automated pattern recognition. It is plausible that these early
computers have been the driving force behind the development of pattern recognition. Comput-
ers promised a huge increase in efficiency for businesses, especially when combined with efficient
interfaces to the real world. A first important technology was the development of optical character
recognition (Mori et al., 1992), which is a form of automated pattern recognition. During that time
research on pattern recognition proliferated greatly and combined discoveries from various other
branches of science (Nagy, 1968). A pattern recognition system was described by Kanal (1974) as a
three stage process: measurement, feature extraction and classification. Measurement refers to the
digitization of signals e. g. a camera in Optical Character Recognition (OCR). Feature extraction is
the complex task of finding and selecting those bits of information of a measurement that would
allow discriminating different patterns. Additionally, feature extraction reduces the data size and
thus makes pattern recognition tractable in the first place on limited computing power. Classi-
fication refers to assigning each observation to one of many predefined classes (Nagy, 1968). In
classification, number of possible classes was assumed to be fixed and known.Motivated by prac-
tical issues in OCR, such as errors in scanning or poor paper quality, Chow (1957) described a
recognition system which can abstain from making a classification if the estimated error is too
large. This type of system has been subsequently studied more thoroughly in (Chow, 1970). Thus
already early on, the notion of uncertainty regarding the output of a pattern recognition systems
was developed.

Uncertainy can be decomposed into two parts: “statistical” and “systematic” uncertainty
(Hüllermeier and Waegeman, 2021). “Statistical uncertainty” is due to random effects in the data
acquisition and is also known as aleatoric uncertainty. “Systematic” uncertainty originates from
a mispecified model due to incomplete knowledge and is usually termed epistemic uncertainty.
The method of Chow (1957) dealt with aleatoric uncertainty, because the model for characters oc-
curring in a specific language is well defined. However, that author did also suggest to study
epistemic uncertainty. Hellman (1970) did so by studying a nearest neighbor classification rule
with a reject option. This system does not assume any knowledge of the statistics of the data, but
only looks at the available labeled training data. If there is too much disagreement among the
nearest neighbors about which class to assign to a new data point, it can be rejected as not be-
longing to any of the known ones. Thus this model does take epistemic uncertainty into account.
Another type of epistemic uncertainty has been studied by Ide and Tunis (1967). They analyzed
the robustness of a speech recognition system where the data distribution changes over time and
propose an unsupervised method to account for the change. This effect on a classifier has been
studied formally much later (Shimodaira, 2000) under the term covariate shift. Although the issue
of the uncertainty of a pattern recognition systems has been known for quite some time (Duda,
1970), its systematic analysis has been somewhat ignored for some decades according to Herbei
and Wegkamp (2006).

Dealing with these uncertainties is closely related to the notions of generalization (Bishop, 1995,
p. 377ff), which is the capability of a recognition systems to make correct decisions on unseen
data. However, evaluating this capability is a rather tricky endeavor. In general, the standard
evaluation method for pattern recognition is the so called test set error or “accuracy”, which is in
turn dependent on the test set. The advantage is that it is easy to compute and there are strong the-
oretical justifications for this measure. Most statistical pattern recognition systems are grounded
in statistical learning theory, which allow claims about generalization in the first place. Therein, a
core assumption is that when the data used to train and test a system follows the same distribu-
tion as the one encountered in practice, then the average test set error becomes a good estimate of
a certain notion of generalization (Devroye et al., 1997, p. 2ff ). Great difficulties arise, when it is
simply practically infeasible to construct such a dataset. This infeasibility is inherent in certain
pattern recognition sub-fields, such as in speaker recognition (Majewski and Basztura, 1984) or face
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recognition (Fayin Li and Wechsler, 2005).
As a first remedy, the classifier needs to be quipped with the capability to give a “don’t know”

answer, also known as classification with rejection (Chow, 1957; Hellman, 1970) and many more
terms in different fields. While there can be multiple causes that should lead to a rejection decision
in a classifier, we are mainly interested in the case where the inputs are visually similar to the
training data, but very different semantically. Which happens to all machine learning system
that were not trained data sampled from all possible input classes. This specific setting has been
called open-set because data that is similar in the raw representation such as images our sounds
(e.g voices), but semantically different (Majewski and Basztura, 1984). This open-set recognition
terminology (Scheirer et al., 2013) is used in this work, because it contrasts nicely with the closed-
set baseline.

A potential candidate classifier that incorporates the open space risk could be classic Radial Ba-
sis Function Networks (RBFN). Therein the classification output is determined by the distance of a
sample to some “representation”, which allow a probabilistic interpretation of class membership,
including a “don’t know” option if the distance of a sample to all radial basis centers is larger
than some threshold. Unfortunately, shallow RBFN are notoriously difficult to train especially on
large problems like ImageNet classification. However, RBFN are just one type of architecture and
Radial Basis Functions could be applied in other manners.

While the open set recognition problem is of general nature, concerning all types of classifiers,
recently it has been applied to classifiers constructed using deep learning (Bendale and Boult,
2016). Therein, the classifier has been equipped with a “don’t know” option by estimating the
likelihood that a sample belongs to any of the learned classes using the distribution of deep fea-
tures and Extreme Value Theory. Their estimation of the “don’t know” option is closely related
to applying a Radial Basis Function with a Weibull kernel onto the deep features, but they are
not using this information to inform the actual classifier, instead it’s used as a so-called “Meta-
Recognition” (Bendale and Boult, 2016). In the ontology of Hendrickx et al. (2021), the Extreme
Value Theory approach is a dependant rejector, which can be used to extend other classifier models
with an rejection option. Alternatively, an integrated rejector can be designed, where a single model
performs the classification and rejection. While this is non-trivial, it has the theoretical advantage
that both aspects can be optimized jointly, leading to better performance and less bias (Hendrickx
et al., 2021).

Such an approach is the topic of this thesis. With the main question of whether such an inte-
grated classification-rejection does in fact lead to better open-set recognition performance. To study
this question, we first have to integrate Radial Basis Functions (RBF) into a deep learning network.

1.1 Research Questions
RQ1: Deep RBF Survey What does the literature tell us about parametrization, topology and

interpretation of RBF neural networks?

RBFs appear in neural network at multiple places and in different forms. The goal of this
question is to provide an overview of the design space of RBF neural networks with a focus
on deep neural networks.

RQ2: Deep OSR What are the confounding factors in the open set recognition problem for deep
neural networks?

Open set recognition with classifiers based on deep neural networks becomes increasingly
difficult for unknowns that are more similar to the known training set, even with large
datasets (Palechor et al., 2023). It is not obvious why that is the case. To answer this research
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question, existing explanations and hints from the literature should be collected, critically
analyzed and combined to provide an account of the core issue.

RQ3: Deep RBF prototypes What is the open set recognition performance for “prototypical”
deep RBF networks with one center per known class?
Most recognition approaches are based on prototype theory. In this setting, it is assumed
that a prototype exists which represents a condensed representation of all required fea-
tures that explain class membership. Deep RBF networks provide an intuitive framework
to model such an approach and offers fine-control on the representation. Such a network
should be evaluated using common evaluation protocols (Bisgin et al., 2023) to provide a
reference point for a baseline deep RBF variant. Additionally, the RBF should be compared
to a standard Softmax CNN with Entropic Open-Set Loss (Dhamija et al., 2018).

RQ3.1: What loss function is appropriate for a RBF classification layer?
RQ3.2: What is the baseline performance for the handwriting recognition problem without

using negative samples?
RQ3.3: What is the baseline performance for the handwriting recognition problem with

using negative samples?
RQ3.4: What is the baseline performance for the image classification problem without using

negative samples?
RQ3.5: What is the baseline performance for the image classification problem with using

negative samples?

RQ4: Multiple Representations How does an exemplar approach compare with prototypes in
OSR?
Most recognition approaches, including those described in the previous questions are based
on prototype theory. In this setting, it is assumed that a prototype exists which represents a
condensed representation of all required features that explain class membership.
An alternative view is the exemplar approach, therein classification is performed by simi-
larity to the most similar example in memory. To adapt a classifier to work in the exemplar
regime, it needs to allow for multiple centers per class. Presumably also the deep represen-
tation dimensions should be higher than in the prototype case.

RQ4.1: How to train with multiple representations?
RQ4.2: How does the performance differ compared to a prototype approach?

For comparison, the same experiment setup as in the prototype variant is used.

RQ5: Deep Local Metric Is it beneficial for deep representations to collapse at their RBF center?
Minimizing a loss using Gaussian RBF units will minimize their scale parameter σ. Intu-
itively this is useful because by minimizing within-class variance and maximizing between-
class variance, a minimum description length could be achieved in the representation space,
as a proxy for optimal representation of the deep features.
However, one might argue that this violates the positivity assumption of metric spaces, which
states that distinct points have positive distance. If the deep feature representations are
interpreted as a metric space, points from distinct samples should not have a distance of 0.
It is not clear if this is of any practical relevance.

RQ5.1: What alternative functions could be used as activation function for the RBF such
that representation collapse is prevented?

RQ5.2: Does such a RBF improve open-set recognition performance?
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1.2 Notation
Throughout this work the following notation is used, unless otherwise indicated.

General

J loss function

p(·) probability density function

p̂(·) estimated probability density function

yc classification output / estimated probability for class c

t target output

Open-set recognition

Dp positive samples from known classes

Dn negative samples

Du unknown test samples

Radial Basis Functions

φ(·) radial basis function

δ(·) distance function

ψ(·) activation function

1.3 Structure
The remainder of the thesis follows the structure: after a brief survey of works related to ours in
Chapter 2, the necessary background on radial basis functions and open-set recognition is explained
in more detail in Chapter 3. The datasets used in our experiments are described in Chapter 4. A
brief exposition of deep radial basis function neural networks and an analysis of the open-set recognition
problem is given in Chapter 5. Our chosen approach is described in Chapter 6 and the performed
experiments in Chapter 7. The results are present in Chapter 8 and discussed in Chapter 9. We
conclude the thesis in Chapter 10.





Chapter 2

Related Work

The main topic of this thesis is an investigation of a mathematical construct Radial-Basis Functions
as a component in statistical machine learning evaluated in terms of open-set recognition perfor-
mance. All of these three core concepts have a long history and quite some overlap. For the sake
of brevity, only works related to the first and third will be briefly discussed in this section.

2.1 Open-set recognition
In this work open-set recognition refers to a viewpoint that the performance of a statistical recogni-
tion system can not be solely measured by the accuracy on the traditional train/test split. Because
the possible inputs to the system outside of carefully controlled laboratory conditions are huge
and not necessarily covered completely by the training data.

2.1.1 Related fields
Modern machine learning is not well known for having a standardized terminology and nomen-
clature nor for rigorously adhering to previously introduced terminology. This can lead to a lot of
confusion and duplication of research effort. Sometimes terms are also deprived of their histori-
cal meaning to accommodate researchers instead of the other way around. Normally in science,
whenever there is evidence that a certain characteristic has been neglected in previous research
or a new and large sub problem is discovered, then there is a chance for a new sub-field to form.
However, particularly in machine learning, in absence of nomenclature, whenever two terms are
used to refer to the same thing, there is now a chance for at least two new sub-fields to form. With
the result that it becomes increasingly difficult to disentangle all the subfields over time. Nonethe-
less, an attempt is made in this section to list research that is in some sense related with open-set
recognition. Later on, open-set recognition itself will be discussed in more detail in Section 3.3.

Outliers

In statistics, the term outlier refers to an observation which is markedly different compared to
some notion of “normal” data (Edgeworth, 1887). In the early days, such observations have been
called discordant observations. Outliers have been a subject of study in statistics for centuries, par-
ticularly methods to identify them and how to deal with them (Beckman and Cook, 1983).
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Outlier detection The field of outlier detection is concerned precisely with the detection of such
discordant observations (Hodge and Austin, 2004). According to these authors, anomaly detection
and novelty detection are synonyms for outlier detection.

Novelty detection According to Pimentel et al. (2014), novelty detection is concerned with de-
tecting whether some new data is different from some other data. This in turn requires some sort
of agreement on what “normal” data looks like and how different or discordant observations can be
identified. Again, according to these authors, anomaly detection and outlier detection are not only
synonyms for novelty detection. But all three of them are applications of one-class classification.

Anomaly detection Finding observations which are very different from others, like an outlier
is a problem called anomaly detection according to Chandola et al. (2009). Unsurprisingly, outlier
detection is again stated as a synonym for anomaly detection, such is novelty detection, although they
differ in their motivation for application.

Out-of-Distribution detection A recently introduced, but still closely related to the previous
approaches is out-of-distribution detection. Which is concerned with figuring out whether an obser-
vations belongs to the same distribution as the training data (Hendrycks and Gimpel, 2017). Un-
like the authors describing the previously mentioned approaches, Hendrycks and Gimpel (2017)
make no claim about the similarities and differences between out-of-Distribution detection and out-
lier detection, novelty detection nor anomaly detection.

Classification

A classifier commonly refers to a method which assigns observations to a set of predefined classes
(the closed set). Usually a classifier always assigns a class no matter what. A classifier that can
abstain from making such a decision is still not the standard, even though research into this aspect
of classification dates back to the origin of pattern recognition (Chow, 1957; Hellman, 1970). These
ideas are known nowadays under multiple names such as classification with reject option (Herbei
and Wegkamp, 2006; Bartlett and Wegkamp, 2008), learning with rejection (Cortes et al., 2016),
selective classification (El-Yaniv and Wiener, 2010) or open-set recognition (Majewski and Basztura,
1984; Scheirer et al., 2013).

While the problem of detecting outliers/anomalies or novelties can be formulated in terms of
classification, robust classification system also needs some component to detect outliers. Moya
and Hush (1996) introduced the term one-class classifier to refer to a classifier which generalizes
from the classes seen during training, but also correctly rejects any observations which do not
belong to those seen during training. One-class classification is thus formulated as a measure of
generalization capability.

2.1.2 Methods
The many methods to perform open-set recognition can be categorized into three different ap-
proaches (Hendrickx et al., 2021). A “detector” component could be put in front of a classifier, to
prevent observations that do not belong to any of the known classes to ever reach the classifier.1

Alternatively, a “detector” could use the output of the classifier to decide whether the decision
should be overturned. Or the two components could be integrated into one system, where the
classifier itself makes both decisions simultaneously. An example for an “integrated detector”

1The problem of designing such a detector is precisely that of outlier detection, novelty detection, anomaly detection and
out-of-Distribution detection.
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that uses the classifier output and an intermediate model representation is Open Max (Bendale
and Boult, 2016). In this system, a standard deep network classifier is trained on positive samples
only. Then a separate statistical model is constructed based on the deep features from the deep
network.





Chapter 3

Background

In this chapter, the necessary background information is provided upon which we build our RBF
layer later on and evaluate the resulting model.

3.1 Radial Basis Function Neural Networks
A Radial Basis Function is a function φ : Rn → R which is symmetric around some center µ ∈ Rn,
as in φ(x) = φ(‖x − µ‖), where ‖·‖ is a vector norm. A weighted sum of Radial basis functions
can be used for approximating or interpolating functions.

y(x) =

m∑
i=0

λiφ(‖x− µi‖) (3.1)

Broomhead and Lowe (1988) noted that the capability of multi layer perceptron (Rosenblatt,
1958; Steinbuch, 1961) to generalize on unseen data is essentially an interpolation between train-
ing samples. At that time, not many of the design decisions involved with creating multi layer
perceptron systems were grounded on a strong theoretical basis. As a remedy, Broomhead and
Lowe (1988) to use Radial Basis Functions because they are well known function approximators
with well studied methods for fitting on data. Thus they suggest a new class of neural network
models using Radial Basis Functions. Their proposed architecture is a two layer feed-forward
neural network, containing a hidden layer with radial basis functions and an output layer. In the
original formulation only the the weights λi and the centers yi in the hidden layer are learned.
Such a radial basis function network can solve the exclusive-OR (XOR) problem, which cannot
be solved by single layer linear perceptrons (Minsky and Papert, 1969). In fact it has been shown
that such radial basis function networks are capable of universal approximation under certain
conditions (Park and Sandberg, 1991).

3.2 Deep Radial Basis Function Neural Networks
Deep RBF neural networks were proposed by Lecun et al. (1998) in the variant LeNet-5 for charac-
ter recognition. They used a Euclidean RBF as the output layer, with one RBF per class. Thus the
most likely class was the one, for which the difference of the previous layer’s output and a proto-
type vector was smallest. The centers of these RBF neurons were not learned, but manually set to
some form of prototype drawings of each character. While the CNN architecture has become very
popular in deep learning, the RBF variant has mostly been forgotten. Pineda-Arango et al. (2020)
suggest that this happened because of the results from Simard et al. (2003), which achieved new
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state-of-the art results on the Modified NIST (MNIST) dataset, by using a Softmax output layer
trained with Cross-Entropy loss.1

Fortunately, deep RBF networks have not been forgotten completely and interest in their study
seems to be growing. Zadeh et al. (2018) have recently picked up the study of deep RBF networks,
by investigating their robustness to adversarial attacks. They used an RBF kernel with L1 norm as
distance function and showed increased resistance to targeted and untargeted adversarial attacks
on the MNIST dataset. Pineda-Arango et al. (2020) studied the sample efficiency of deep RBF
networks and found that they achieve higher accuracy when trained with only a small subset of
the whole training data on CIFAR-10 & CIFAR-100. They also investigated pretraining a Convo-
lutional Neural Network (CNN) and initializing the RBF centers with k-means clustering. Zhang
et al. (2020) studied the performance of adding RBFs before a scaled Softmax layer.

3.3 Open Set Recognition
Open set recognition is a type of classification with rejection (Hellman, 1970), where the term open
set puts the focus on the type of observations that need to be rejected. Specifically, observations
that are semantically closely related to those already considered in the training set, because they
have been omitted in the sampling of training data in the first place. As an example Majewski
and Basztura (1984) performed speaker recognition, but for obvious reasons, the training dataset
cannot feasibly contain voices from all people. The set of voices that are not in the training set, are
referred to as the open set. Ideally, a recognition systems would not only classify those classes cor-
rectly that were seen during training, but also correctly abstain from classifying those that were
unknown at training time. This property of a recognition system is technically called generaliza-
tion, although it is quite common to use the term generalization to refer to the situation where the
performance of some measure on the training is highly correlated with the performance on a test
set. For practical reasons, the test set is usually an initially fixed subset of the original dataset that
was collected.2 In the laboratory the performance measure of choice is usually the classification
accuracy, thus when the accuracy of some method on the test set is good enough, it is usually
declared to generalize well. However, this type of generalization is just one aspect. Outside of the
laboratory, researcher were concerned with accuracy in the open set setting. They have realized
early on, that just classifying those observation in the training set does not translate well into real
life performance. Moya and Hush (1996) has used the terminology within-class, between-class and
out-of-class generalization to distinguish between the different aspects of it. Particularly, out-of-
class generalization is the one that is the measure one is interested in for open set recognition. As it
is the ability to distinguish between the classes of the observations seen during training and any
other observation.

From a computer vision perspective, Scheirer et al. (2013) studied open set recognition in detail,
in particular when the number of unknown classes is very large, such as it is the case in general
image recognition. They offer a quantification of the “openness” of a particular recognition prob-
lem, in terms of the number of classes used during training and those estimated to be encountered
in the wild. They argue that extrapolating far away from the known labeled data, which they call
“open space”, increases th uncertainty in the classification. They propose the notion of open space
risk, which is the volume in the representation space assigned to a particular class, but void of
samples. To improve the performance of a statistical open-set recognition system, which is usu-
ally trained by the minimization of an empirical risk estimate. They argue that, additionally the

1Interestingly, they did not only achieve half the error rate compared to Lecun et al. (1998) with their CNN variant,
but also more than half the error rate for the MLP baseline trained with Cross-Entropy. They explain this difference with
faster computers which allowed them to train much longer.

2The history of the MNIST dataset is exemplary of this and will be discussed later on
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open space risk should be minimized.
In other words, the recognition function should be “sharp” around the known samples, which

has been previously pointed out to be of importance for the case of recognition without complete
knowledge of all classes (Bonner, 1966).

More formally, Scheirer et al. (2013) consider a Lebesgue measurable decision function f(x) =
1 if x belongs to a particular class k, where f(x) = 0 means x does not belong to the class. Let O
be the space assigned to any class and SO is a large ball which contains O and all known samples
belonging the the class k. Then open space risk is defined as the fraction

RO(f) =

∫
O f(x)dx∫
SO
f(x)dx

(3.2)

This formulation of open space risk is not necessarily tractable to compute for any f , thus it
needs to be approximated in some way (Scheirer et al., 2013). They propose a regularizer for a
classifier of the type support vector machine (Cortes and Vapnik, 1995).

3.3.1 Issues in OSR
Dhamija (2022) has summarized current methods for open set recognition and their limitations,
like using self-supervised learning, changing network architectures, different loss functions, build-
ing probabilistic models based on the deep feature distributions and using additional extra data.
A first step is to change the standard Softmax Cross-Entropy loss which assumes a closed world,
into a variant that allows for rejection. There are many ways to implement this and even more
regularizers. A common approach is to penalize the magnitude of the logits of negative samples
as proposed in Dhamija et al. (2018), however the success of this approach is highly dependent
on the choice of negative samples. Thus it seems that changes on the loss function are to be nec-
essary but not sufficient. Another popular approach is to use the distribution of deep features
to build a statistical model to identify unknown samples. OpenMax proposes to do so using Ex-
treme Value Theory (Bendale and Boult, 2016) to reject samples which are unlike those seen in
training. Although this approach sounds good in theory, it does not outperform other OSR meth-
ods (Roady et al., 2020; Dhamija, 2022). Walkowiak et al. (2021) gives a potential explanation for
this observation: that the inter-class distances often do not follow a Weibull distribution. Recent
evaluation protocols for OSR have identified a potential cause for the difficulty in previous ap-
proaches, which is that the more similar an unknown class is to those seen during training, the
harder it is to discern among them (Palechor et al., 2023).

In our opinion the fundamental issue shared among most approaches is that the deep feature
representation of a vanilla CNN does not have the correct metric. As in the distance learned in
deep feature space is not equivalent to the natural distance of the objects in the real world. This
could be caused by the tendency of large deep neural networks to take shortcuts during their
training (Geirhos et al., 2020). Which means that network builds a deep representation using the
information from features which are merely correlated within a class in the dataset, but not actu-
ally predictive of the correct class. For example in image recognition of animals, the performance
drops significantly when the location of the camera is moved (Beery et al., 2018). This is a more
widespread problem in image recognition, as it was observed that deep networks mostly rely on
the background of the objects (Xiao et al., 2020).

3.4 Deep learning in image recognition
The idea of artificial neural networks has been studied under various terms and also rebranded
numerous times in the past. Nowadays it is very well known under the term deep learning (Good-
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fellow et al., 2016). The term itself has been introduced originally by Dechter (1986) in a adjacent
field. In general, deep learning refers to the stacking of multiple layers containing “artificial neu-
rons”, which process their respective input and pass along their output. In classic feed-forward
networks, input and output are normally modeled as a vector with elements from R. The idea
of stacking layers of artificial neural networks was already present in the works of Rosenblatt
(1958) and Steinbuch (1961). The next step was to find methods to train such networks efficiently.
Initially, such networks were trained layer by layer (Ivakhnenko, 1971). Then it was suggested
to train the whole network end-to-end by using stochastic gradient descent methods (Amari, 1967;
Robbins and Monro, 1951). Linnainmaa (1970) described the method of backpropagation, which
is an efficient way to optimize arbitrary neural network topologies. Training such deep neural
networks became only practical recently, due to their immense computational costs. Cireşan et al.
(2010) showed that utilizing powerful parallel computing devices like GPUs, the end-to-end train-
ing of such deep networks is not only feasible, but they also exhibit very high performance on
contemporary benchmarks. A modern deep learning system can be organized into three sub-
system: feature extraction, deep features representation and classification.

3.4.1 Feature extraction

A feature is a variable used in a statistical model that hopefully contains some information use-
ful for the modeling task. Traditionally, features were carefully engineered by hand in a pre-
processing step, such that they allow for linear separation (Nagy, 1968). However, the motto of
deep neural networks is to learn everything end-to-end, therefore also the feature extraction should
be done in an automatic fashion. Unfortunately this task is very difficult for image recognition
for two intertwined reasons. First, image data is usually very high dimensional, especially if they
are colored. Thus naively processing an image in a neural network layer wise requires a number
of artificial neurons equal to the number of pixels times color channels. Stacking such layers of
similar size becomes quickly very computationally expensive. The second related problem is that
such a large number of artificial neurons is not only expensive in terms of compute, but also in
terms of samples. Because a large number of neurons means that a large number of parameters
need to be estimated from data, thus a lot of data is needed. The seminal works of Fukushima
(1980) introduced an architecture called neocognitron, which is nowadays much better known un-
der the term CNN. The main idea is to use an efficient sharing of parameters by applying the
convolution operation on a 2D representation of an image and a kernel of much lower dimension-
ality. The result is then reduced by a so called pooling operation, which locally either combines
several outputs or selects one e. g. the largest, which is called max pooling. Additionally, a non-
linear activation function is then applied (Goodfellow et al., 2016, p. 326 ff). Two popular CNNs
based neural network architectures are LeNet and ResNet.

LeNet variant

LeNet networks were originally introduced by Lecun et al. (1998). Wen et al. (2016) proposed a
modification termed LeNet++ which is deeper and wider, but compresses the deep features in
the fully connected layer to only two dimensions. This has the advantage that the deep feature
representation can be directly visually inspected, with acceptable loss of learning capacity. This
variant was adapted by Dhamija et al. (2018), where additionally batch normalization is used after
each convolution block (Ioffe and Szegedy, 2015).
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ResNet-20

For more difficult image recognition problems, such as recognizing cars or animals, a different
network is needed. While the class of functions required to separate digits in a black and white
representation is very complex, the topology of these forms is still somewhat simple. For exam-
ple the MNIST digits consist of lines and at most two loops. The topology of cars and animals is
much more complex and additionally involves information about colors and local texture. The-
oretically, it is well known that very complex functions can be approximated more efficiently in
certain layered compositions. In terms of neural networks this means that certain deeper neural
networks can represent very complex functions much more efficiently than shallow but wide neu-
ral networks (Pascanu et al., 2014; Montufar et al., 2014). However, while simply stacking many
layers upon layers creates a theoretically powerful deep neural network, it is not feasible to train
it with back propagation, due to the well known vanishing gradient problem (Hochreiter, 1998).
For general recurrent neural networks (RNN) this problem can be circumvented with a complex
neural network architecture like the LSTM (Hochreiter and Schmidhuber, 1997). Srivastava et al.
(2015a) applied the same idea to convolutional neural networks (CNN) in an architecture termed
highway networks. It builds upon the idea of using so called gates to control the flow of information
throughout the network. In a highway networks information can “skip around” layers with non-
linear activation functions unmodified, thus on a backward pass, on these highways the gradients
don’t vanish. If we denote the output y of a classic feedforward neural network layer with

y = H(x,WH) (3.3)

whereH is the non-linear transform using the weights WH, then in general a highway network has
the form

y = H(x,WH) · T (x,WT) + x · C(x,WC). (3.4)

T is called a transform gate and controls how much weight should be given to the transformation
H . This has to be balanced with the skipping of information, which is controlled by the carry gate
C. This class of deep neural networks allows the training of very deep networks with over 100
layers (Srivastava et al., 2015b) using SGD. A special type of this network class is obtained if both
gates are open and constant, meaning the transform gate and the carry gate are both fixed to 1.

y = H(x,WH) + x. (3.5)

Networks of this type are better known under the term ResNets (He et al., 2015a). ResNets have
gained widespread popularity after such an network with 152 layers won the ImageNet 2015
competition (Russakovsky et al., 2015).

3.4.2 Deep Features Representation
For a long time it was computationally infeasible to extract such features directly from data end-
to-end as discussed in detail in Section 5.2. With CNN based architecture the input signal can be
compressed to some reasonable dimensionality, the result of this projection is nowadays referred
to as deep features, because they are taken from the deeper layers in a deep neural network. The
precise nature and meaning of these deep features are not well understood. This is not at all unex-
pected, since a complete account of deep features would provide all necessary explanations on the
“magic” of at least some types of neural networks.

Nonetheless, there are a few interesting hypotheses about these deep features. In the case of
a CNN: one approach views these deep features as an abstract high-level representation of the
input. Where the deepest features are the most abstract in a hierarchy of concepts. The reasoning
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goes as follows: since the first layer detects edges and their orientation and the second layer
detects a combination of such edges thus the higher level detect parts of objects and finally the
specific object in question (LeCun et al., 2015). In that view, the deep features should be very sparse,
having only high activity for the specific concept detected and no activity for the rest. Notice
that this view is essentially an argument by analogy, since CNN were originally constructed by
Fukushima (1980) based on insights from Hubel and Wiesel (1962) with their research of the visual
cortex. Therefore, image recognition in animals probably works like a CNN, thus the deepest
layers represent very high-level concepts, e. g. a specific person (Goodfellow et al., 2016, p. 358ff).

However, for very deep networks the situation changes a bit. Such networks usually employ
skip-connections and work very well for all sorts of tasks. But by using skip-connections, the input is
no longer purely abstracted in a sequential hierarchy, since the input signal is somewhat “passed-
through” at every supposedly level of abstraction. Greff et al. (2017) provides an explanation in that
not ever convolution layer creates a new abstraction level, but that a new level possibly arises at
the transition to a different dimensionality in the representation. This complicates the picture
quite a bit of what the output of a bunch of stacks of convolution layers actually represents. From
this perspective it is not immediately obvious what the deep features exactly are and how many of
those are needed for a particular task, respective how to choose the dimensionality. However, we
can look at the CNN as a non-linear dimensionality reduction method, which is subject to study
in the field of manifold learning (Cayton, 2005). Which studies the question of how to represent
a high-dimensional input signal faithfully in lower dimensions and works with the assumption
that the signal in most high-dimensional data that we usually are interested in, lie in fact on
a manifold of much lower dimensionality. This assumption is nowadays also known under the
term manifold hypothesis (Narayanan and Mitter, 2010). The dimensionality of this manifold would
provide a potentially useful reference point to pick the dimensionality of the deep feature space.
This is also called the intrinsic dimension of the data. In theory there exists a plethora of methods
to estimate it, but the practical application in high dimensions is far from trivial (Grassberger and
Procaccia, 1983). Estimates from different methods do agree somewhat for an intrinsic dimension
of the digits in the MNIST dataset in the range of 8-15 (Hein and Audibert, 2005; Costa and Hero,
2006). Whereas the intrinsic dimension of the Canadian Institute For Advanced Research (CIFAR)
datasets is possibly twice of that (Pope et al., 2021). Note that there are certain assumptions
on the additive noise component of the data that makes it high-dimensional in the first place.
Depending on the magnitude of the noise compared to the signal, a different approach might be
needed (Blanchard et al., 2006). However, the further study of this matter and the relation of the
intrinsic dimension to the dimension of the deep features is out of scope of this thesis, thus we defer
further investigations to later works (Pestov, 2007; Fefferman et al., 2016; Ansuini et al., 2019).

Another interesting characterization of the deep feature representation is through the lens of cod-
ing theory. The idea of disentangled representation is to find features that are independent of the
others (Schmidhuber, 1992), which is based on ideas to remove redundant signals in the repre-
sentation (Barlow, 1989). Such disentangled representations are rather useful: e. g. to disentangle
between shapes and styles of MNIST letters (Chen et al., 2016).

3.4.3 Classification
In a deep learning based pattern recognition system, the last layer is usually used to perform the
classification step. If this model is designed with the knowledge about K classes then the last
layer can be constructed with K elements. As a decision rule the index of the largest element can
be used to assign a class, i. e. one applies the argmax function on the last layer.

Since the argmax function is not differentiable another method is needed. The differentiable
Softmax function, as introduced by Bridle (1990) approximates the argmax function and can thus
be used with gradient descent learning methods. Let a model f : Rinput → RK map the input x
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to K values zk. Then the Softmax function can be used to approximate argmax by squashing each
logit zk for k ∈ {1, ..,K} to the domain [0, 1]:

softmax(z)k =
ezk∑K
j ezj

(3.6)

The Softmax function therefore can be used to estimate the probability of a sample x belonging to
class k:

p̂k(x) = softmax (f (x))k ≈ p(k|x) (3.7)

Note that the normalization
∑K

j ezj assumes that exactly K classes are possible, thus all inputs
are mapped to one those. If more states than the known K are possible, the output of softmax(z)i
becomes a biased estimate of the true class probability pk(x).

The standard loss function for neural networks with a Softmax classification layer is the Cate-
gorical Cross-Entropy loss:

JCCE(x) = −log (p̂k (x)) (3.8)

Entropic Open-Set loss

When adding negative samples x ∈ Dn during training the standard Categorical Cross-Entropy loss
can not directly be used, because Equation 3.8 is 0 for all negative samples. One way to overcome
this issue is by adding a special extra background class such that the problem is translated into a
different classification among K + 1 classes. One problem with this approach is that it assumes
that all the possible negative samples forming the background class are similar, which is a very un-
likely assumption. Alternatively, one can enforce an uncertain output of the classifier for negative
samples. Dhamija et al. (2018) introduced an objective function to train statistical multi-class mod-
els that utilize the Softmax function, such that the resulting probabilities more faithfully reflect the
uncertainty of the model for a particular decision. This is achieved by modifying the standard
categorical cross-entropy loss to enforce a maximum entropy distribution for observations that
are known to not belong to any of the classes of interest.

JEOS(x) =


− ln (p̂k (x)) if x ∈ Dp belongs to class k

− 1

K

K∑
k=1

ln (p̂k(x)) otherwise
(3.9)

Because of the normalization in the Softmax function Equation 3.6, for negative samples, the
loss JEOS(x) is minimal when all p̂k are equal, thus when p̂k(x) = 1

K . In terms of the logits zk,
there are multiple local minima, namely whenever all zi = zj , ∀i, j ∈ { 1, ..,K | i 6= j }.

Dhamija et al. (2018) introduced another loss called Objectosphere loss, which attempts to over-
come the multiple minima issue with Entropic Open-Set loss. By adding an additional term that
penalizes large deep feature activations for negative samples and enforces a minimal deep fea-
ture activation for positive samples. However, this loss adds two additional hyperparameters
that need careful tuning through cross-validation. For the sake of scope of the thesis, this loss
will no be considered in the experiments. While in the experiments in from Dhamija et al. (2018)
show that Objectosphere loss performs better than Entropic Open-Set loss on some datasets, Entropic
Open-Set loss in turn performs better than a background class approach. The improved performance
for Entropic Open-Set loss has also been observed on large dataset like ImageNet (Palechor et al.,
2023).
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3.5 Exemplar and Prototyp-based Classification
Classifying objects into groups is a very natural activity for humans and essential for any im-
age recognition in living beings. The mechanisms of how this is performed in humans is studied
within the framework of the cognitive sciences. In that literature this mechanisms is also known un-
der the term categorization (Seger and Miller, 2010). There are many theories about categorization,
but most of them can be grouped into two approaches. In brief terms, theory of Prototypes as-
sumes that classification is performed by converting an observations into an abstract higher level
representation which contains all the defining features of a particular class. Then this abstract
representation is compared to those in memory to find the appropriate prototype which defines
the class. Alternatively, the theory of exemplars directly compares the observation with those in
memory to find the one that is most similar, which in turn defines the class Jäkel et al. (2008).
Note the similarities of the exemplar-based classification with the well known nearest neighbor
classification method (Hellman, 1970).



Chapter 4

Data

The scope of this work is restricted to the task of classification in the image domain. However
even after this restriction, there are still dozens of potential datasets publicly available for exper-
imentation. This chapter will describe the used dataset in detail, along with the justification for
their usage in this work.

4.1 Closed-set
We refer to the original source datasets as closed-set datasets to emphasize that usually the task
performed on these is closed-set image recognition. In Table 4.1 a list of the used datasets is shown
with their respective sizes.

4.1.1 MNIST
The most popular dataset for the task of image classification is undoubtedly MNIST (Bottou et al.,
1994; LeCun et al., 1995). Its small data size per sample (28×28 gray scale pixels) and low number
of classes (10), makes the MNIST dataset ideal for development and verification purposes of the
RBF layers, because it requires comparatively less computing resources for training and allows
for informative visualizations of its ten classes. The MNIST dataset contains 60k training and 10k
testing images. The MNIST dataset is based on the National Institute of Standards and Technol-
ogy (NIST) special database 19 (Grother and Hanaoka, 1995), containing handwritten digits and
letters. A competition on the NIST dataset distressed some researchers, because the training data
for the competition was created by paid workers, whereas the test data was collected from high
school students (LeCun et al., 1995). They argue that in this case, the training and test data belong
to different distributions, thus preventing the use of many machine learning methods. Subse-
quently, they modified the NIST dataset by creating a new training/test split, where the digits of
paid workers and unpaid students are mixed.

While this dataset is useful for development purposes, its value for benchmarking and com-
paring different methods is nowadays very limited. The original LeNet CNN variant achieves an
error rate of 0.95%− 1.1% (Lecun et al., 1998). Modern deep learning architectures achieve an er-
ror rate in the range of 0.23% (Cireşan et al., 2012), which translates to 23 mistakes on the testset.
Such a high classification accuracy raises questions about the error rate of the labels the dataset
itself (Cohen et al., 2017). The original estimate of human performance was 0.2% (LeCun et al.,
1995). An extensive analysis of the MNIST dataset estimates the label error rate in the test set as
0.15% (Northcutt et al., 2021). Thus it can be argued that the MNIST dataset is solved with CNNs.
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Table 4.1: CLOSED-SET DATASET. Source datasets used to construct the open-set dataset variants

Total Size

Resolution Classes Training Test

MNIST 28× 28× 1 10 60k 10k
EMNIST-letters 28× 28× 1 26 124k 20k
KMNIST 28× 28× 1 10 60k 10k
CIFAR-10 32× 32× 3 10 50k 10k
CIFAR-100 32× 32× 3 100 50k 10k

To study differences in CNN based classifiers a different dataset should be used, fortunately the
selection of images is just a subset of the much larger NIST dataset.

4.1.2 EMNIST
The original NIST dataset contains images with 128 × 128 pixels (Grother and Hanaoka, 1995)
and provides not just images of digits, but also lower and uppercase letters. However, it requires
some more preprocessing compared directly using MNIST, which could be a contributing factor
for explaining the popularity of the derivative dataset MNIST. To improve the accessibility of the
original dataset, Cohen et al. (2017) introduced the Extended Modified NIST (EMNIST) dataset.
It follows the same preprocessing steps and provides 28× 28 pixel images. It is also much larger
than MNIST, by providing 280k images for the task of digit recognition.

The EMNIST dataset consists of multiple subdatasets: digits with 10 classes, letters with 26
classes (lower and uppercase), and a balanced dataset containing digits and letters, where certain
lowercase letters are merged with their uppercase version1 with a total of 47 classes. Compared
to MNIST, EMNIST is a substantially harder classification problem. The baseline provided in
(Cohen et al., 2017) achieves an accuracy of 95.9% for the digits subset and 78.0% for the balanced
subset. This baseline is a form of multi layered perceptron with random weight initialization,
where only the final readout layer is trained (Rosenblatt, 1962).

4.1.3 KMNIST
For quite some time, the MNIST dataset has been the measure used to compare different algo-
rithms and methods. While the benchmarks nowadays use different dataset, the “*-MNIST”
format itself has spread to other datasets. One of them is Kuzushiji-MNIST (KMNIST), which
is a dataset with the same format as MNIST, but with different content (Clanuwat et al., 2018).
Kuzushiji refers to an old cursive Japanese script, which is no longer taught nowadays and thus
can only be read by certain scholars. The creation of this dataset has been partially motivated by
the approximately two million books, written in Kuzushiji, that cannot be read anymore by the
general public. The dataset contains 60k training and 10k testing images of size 28 × 28 pixels
divided into 10 classes, just like MNIST. KMNIST is slightly more difficult to learn for machines,
possibly due to an increased intra-class variance. Kuzushiji consist of 49 character, out of those
the authors have selected 10. However, in classical Japanese, some characters can be written in
multiple distinct forms. For an example, see the Hiragana “tsu” in Figure 4.1. This property of the
dataset might be of interest for openset recognition tasks.

1the letters c,i,j,k,l,m,o,p,s,u,v,w,x,y,z
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Figure 4.1: KMNIST EXAMPLE HIRAGANAS. “tsu” has multiple forms for the same character. Source:
Clanuwat et al. (2018)

4.1.4 CIFAR-10/100

While handwriting recognition is already a difficult task for machines to perform, the visual com-
plexity in the real world is undoubtedly much larger. Handwriting systems are still limited to a
couple dozens of classes with certain variations, but there exist innumerable visual classes in the
natural world. The further study and subsequent teaching of machines to understand natural
visual scenes requires data, quite a lot of it. The proliferation of the Internet and its associated
growth of search engines enabled the economical creation of such datasets. Torralba et al. (2008)
collected millions of images by entering English nouns into search engines and downloading the
resulting images. The list of nouns in turn was readily made available by the WordNet database
(Miller, 1995). One issue with image recognition is that the data is very high dimensional, usu-
ally in terms of pixels: width × height × channels. Which leads to two issues, first already the
storage of the dataset take up huge amount of space and second is machine learning in high di-
mensions very expensive in terms of compute. Thus using the smallest possible image that still
allows for recognition would be appropriate. Torralba et al. (2008) experimentally measured the
recognition rate of humans on different datasets as a function of image resolution and discovered
that even with a resolution of 32 × 32 pixels (color image), human could still correctly recognize
about 85%−90% of scenes/objects. Therefore their dataset chose this image dimension as a trade-
off. One issue with this dataset is that the labels are noisy, because the label is the term used to
search for it. This does not necessarily mean that an image returned by the search engine actually
contains the search term in the image. The get better labels for the images, Krizhevsky (2009)
coordinated a manual labeling of a subset of these images. Human raters selected thus those im-
ages that are clearly identifiable as the label and are photo-realistic. They created two datasets
by selecting 10 classes with 6k images each and another one consisting of 100 classes with 600
images. Both received a train/test split of 5 : 1. The resulting datasets are now widely known as
CIFAR-10 and CIFAR-100. Where the name refers to the funding institute CIFAR. The classes of
CIFAR-10/100 are mutually exclusive, where CIFAR-100 was explicitly created to provide a set of
negative samples for the CIFAR-10 image recognition task.
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4.2 Open set
In this work an open-set dataset, denotes a set of sets containing a regular dataset for the positive
samples and another for the negative samples. Evaluation might be done on a third dataset or on
parts of the negative dataset. The naming of these derived datasets is constructed by the origin
of their respective positives-negatives-unknowns source dataset. These subsets are abbreviated with
Dp for the positives, Dn for the negatives and Du for the unknowns. All the source dataset were
obtained from the PyTorch package. The used source datasets D̃x consist of some classes Cx. In
general the classes of some datasets x, y, .. can be split into two disjoint sets: a “known” set Cp and
a proxy for all other possible inputs, the “unknown” set Cu. In the used setup here, two source
datasets x, y are split such that Cp ⊆ Cx, Cn ⊂ Cy and Cu ⊂ Cy with the constraint that Cn ∩ Cu = ∅.
In other words one dataset is used as-is and a second dataset is split class-wise into a negative
sample set used during training and an unknown test set used to evaluate the open-set recognition
performance. This way data from Du was never seen during training, but similar data Dn which
was collected in the same manner, but depicts different information.

The used source datasets D̃ provide a standard training/test split D̃train ⊂ D̃, D̃test ⊂ D̃ such
that D̃train ∩ D̃test = ∅. We keep the train/test split for Dp, whereas Dn is constructed only from
the train split and conversely Du only contains the test split from the source dataset. Thus the
open-set datasets can be characterized by the following four cardinalities |Dtrain

p |, |Dtrain
n |, |Dtest

p |
and |Dtest

u |.

4.2.1 Digits-Letters-Letters
This open-set dataset was constructed by taking all classes from MNIST as Dp and normalize the
data with µ = 0.1306, σ = 0.3081. The negative set Dn consists of the first 8 classes from the
EMNIST dataset and the subsequent 18 are used as unknowns Du. Samples from this com-
bined open-set dataset are shown in Figure 4.2. The resulting dataset cardinalities are |Dtrain

p | =
60000, |Dtrain

n | = 38400, |Dtest
p | = 10000, and |Dtest

u | = 10000. This dataset is unbalanced in terms
of the number of classes used as unknowns and negatives, |Cu| > |Cn|. Due to the number of
available samples in Dn the resulting subsets used during training are also unbalanced. In pre-
liminary experiments a balanced split has been used, but the differences in the used methods was
rather small due to saturation of the performance measure. Thus with this unbalanced split the
task is made slightly more difficult for a network to learn.

4.2.2 Kuzushiji-Letters-Letters
This dataset was constructed analogously to the previous one (Digits-Letters-Letters) but uses KM-
NIST instead of MNIST for Dp. Because closed-set accuracy on KMNIST is slightly lower than on
MNIST, meaning that the task is more difficult, no unbalanced class split has been performed.
Thus the negative set Dn consists of the first 13 classes of EMNIST and the unknowns Du of the
rest. The resulting dataset cardinalities are therefore |Dtrain

p | = 60000, |Dtrain
n | = 60000, |Dtest

p | =
10000, and |Dtest

u | = 10000. Examples from the dataset are shown in Figure 4.3.

4.2.3 CIFAR10-50-50
The open-set dataset for natural image recognition is based on the CIFAR datasets. CIFAR-10 is
used as Dp. The first 50 classes from CIFAR-100 as Dn and the rest for Du. The resulting dataset
cardinalities are therefore |Dtrain

p | = 50000, |Dtrain
n | = 25000, |Dtest

p | = 10000, and |Dtest
u | = 5000.
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Figure 4.2: SAMPLE IMAGES FROM DIGITS-LETTERS-LETTERS DATASET.
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Figure 4.3: SAMPLE IMAGES FROM KUZUSHIJI-LETTERS-LETTERS DATASET.
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airplane automobile bird cat deer dog frog horse ship truck

Positives

apple aquarium_fish baby bear beaver bed bee beetle bicycle bottle

Negatives
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Unknowns

Figure 4.4: SAMPLE IMAGES FROM CIFAR10-50-50.
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Problem Analysis

In this chapter we discuss the use of radial basis functions in deep neural networks and the con-
founding issues in open-set recognition.

5.1 Deep RBF network design space
As per our first research question RQ-1, we are interested in the different ways that radial basis
function can be parametrized in general and utilized in a deep neural network.

We will call a deep neural network which uses radial basis function units in any layer a deep RBF
network. A RBF unit is a type of artificial neuron, which responds proportional to the similarity
of the input to some other point µ. We will refer to µ as the center of the unit. The similarity is
computed using a distance function δ : Rd × Rd → [0,∞) and a center µ. An activation function
ψ : [0,∞) → R modulates the response of the unit. The general form of a radial basis function φ is
therefore

φ(x) = ψ(δ(x, µ)) (5.1)

The shape of many activation functions can be tuned with another parameter σ, which is often
called the width or scale of the basis functions (Ghosh and Nag, 2001). As a general and flexible
formulation, we will let ψ, δ, µ and σ be parameters θ = {ψ, δ, µ, σ} and refer to parametrized
radial basis function φ as the radial basis function unit: RBFθ.

RBFθ(x) = ψ(δ(x, µ);σ) (5.2)

In Table 5.1 a selection of deep RBF models is listed with their specific parametrization. The
notation is adapted such that σ denotes the scale parameter of the activation function ψ. A com-
mon choice for the activation function ψ is the parametrized Gaussian function exp(−αx2). As a
distance function the Euclidean distance is usually used:

δEuc(x, µ) =

d∑
i=1

(xi − µi)
2 (5.3)

In principle, such radial basis function units can be used in any layer of a deep neural network
architecture. We can denote the first layer as the one receiving the networks input and the last one
producing the output. Most deep RBF networks position the RBF at the last layer L (Lecun et al.,
1998; Zadeh et al., 2018; Pineda-Arango et al., 2020; van Amersfoort et al., 2020), sometimes as
input to the Softmax function (Zhang et al., 2020). A rather rare positioning is in the earlier layers
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Table 5.1: DEEP RBF SURVEY. Some deep RBF models from the literature are categorized in terms of their
parameterization and topology. L−n denotes the nth last layer and C denotes the convolutional layers.

Parametrization

Work Placement RBF Hyperparameter Learnable Softmax

Lecun et al. (1998) L ‖x− µ‖22 (µ) (µ)

Tabernik et al. (2016) C
exp(−σ‖x−µ‖2

2)∑
x exp(−σ‖x−µ‖2

2)
µ, σ

Zadeh et al. (2018) L ‖W ᵀx+ b‖pp p W, b

Amirian and Schwenker (2020) L−1 1− (x−µ)ᵀD(x−µ)
σ2 D, µ, σ X

Pineda-Arango et al. (2020) L exp(−σ‖x− µ‖22) σ µ
L 1

‖x−µ‖2
2+σ

σ µ

Zhang et al. (2020) L exp(−σ‖x− µ‖22) σ µ X
van Amersfoort et al. (2020) L exp(−σ 1

n‖Wx− µ‖22) σ W, µ

in the case of a CNN. Such a scheme has been proposed, where a type of RBF is replacing a filter
in the convolutional layers C (Tabernik et al., 2016; Tabernik, 2021),

5.2 The open set recognition problem
In RQ-2 we ask about the confounding factors in the open-set recognition problem for deep neural
networks. A general description of open-set recognition has been presented in Section 3.3.

We are now concerned with the precise definition of the open set recognition problem.
In general terms, the open set recognition problem is concerned with teaching a machine to rec-

ognize certain items in the real world under resources constraints. This constraint means that
usually only a finite, potentially rather small set of data is available to teach the machine and that
the learning should be quick in terms of time and compute cost. Otherwise the trivial solution
would be allowed to collect and memorize all items in the reachable world. The prefix open set
is a historical artifact, because general pattern recognition is a very hard problem. Understand-
ably, researchers have initially focused on a much simpler but still very difficult problem: closed set
recognition. Therein, the set of items is artificially constrained to contain only very few items. A lot
of progress in pattern recognition happened using methods evaluated on such artificial tiny sub-
sets of all possible items. The problem arises when such systems leave the lab and are deployed
in the real world where they are exposed to the full set of naturally occurring items.

In the domain of images, we argue that for example the general image recognition problem, in the
spirit of a thinking machine, is not constrained to some closed set, but in fact open. Therefore open
set image recognition is equivalent to the general problem of pattern recognition where the patterns
are images. Thus we can resort to the vast literature on pattern recognition for insights. Recall that
in machines pattern recognition is fundamentally concerned with the linear separation of some
input signal x. In the case of two items of interest a hyperplane W that separates the two classes
is needed (Bishop, 2006, p. 181).

y(x) = Wx+ b (5.4)

The theoretical problem of finding such a W is extensively studied and a multitude of fast
solver are known given certain assumption of x (Nagy, 1968; Bishop, 2006).

The biggest practical problem has been, since the beginnings, actually computing these meth-
ods for a large signal x. For illustration purposes, let us assume x consists of a grayscale im-
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age with w × h pixels. There is a dataset of n images, thus all the data can be represented as
X ∈ Rn×(h×w). A classic method to find W in Equation 5.4, under certain assumption, is the
ordinary least square approximation, which can be computed as follows:

Ŵ = (XᵀX)−1Xᵀy (5.5)

Let us abbreviate the dimension of X with p = w × h then the computational complexity of
Equation 5.5 is

O(p2n+ p3) (5.6)

These number grows rather quickly, some quick napkin math tells us that a reasonable image
of side length 1024 pixel requires

((103)2)3 = 1× 1018

operations, which requires about a day of computing time on a modern GPU1. While there are
other more sophisticated methods to solve Equation 5.4 with a smaller complexity in terms of
input dimension p like SVMs, the complexity is paid instead by the number of samples n (Cortes
and Vapnik, 1995). The main problem is therefore that statistical learning on the raw input with
a high dimensionality is incredible demanding in terms of computing resources and that without
hue amounts of data, the model would overfit to the training data. The solutions that lead to the
proliferation of deep learning is to use approximation methods. In general such methods work
by projecting the input x to another space by using certain functions φ, wherein the data becomes
separable (Nagy, 1968).

z(x) =

m∑
i

wiφi(x) (5.7)

If m is equal than the dimension of x this is equivalent to Equation 5.4, however if it is smaller
we are effectively projecting to a representation of lower dimensionality. In general this is not
possible without any loss of information, but for inputs with certain structure it might be. Let
us assume for now that m � d without deleterious loss of information. Now for closed-set
recognition a discriminative classifier is needed operating on the z(x) representation, for which
many methods are well known to run in acceptable time (Bishop, 2006). Many of these methods
actually converge to the correct classifier on average, given a very lager dataset to train from
(Vapnik, 1991).

A problem of open set recognition becomes now visible. So far methods are only known to work
well with a very large dataset covering all classes, meaning properly sampling the underlying
data distribution. Unfortunately, a defining property of open set recognition is that we do not have
access to the full data distribution to sample from and train a model with. In general, this situation
is hopeless, but for many practical scenarios such as the recognition of natural images there is
much more structure in the data that we might be able to exploit. A common assumption in pattern
recognition is that the high dimensional input data contains a signal of much lower dimensionality,
this assumption is sometimes called the manifold hypothesis (Cayton, 2005). This means that input
data containing a relevant signal will lie on or close to a manifold which is locally Euclidean. This
assumptions has some intuitive plausibility, imagine a picture of some object and apply certain
transformation like rotation or translation. The resulting pictures will show large differences in
the input encoding in high dimensions, but they all result from the same object, which must
thus have some lower dimensionality. In the visual domain, empirical evidence indicates that
the state space of natural images is lower than the data dimension in pixels (Lee et al., 2003).
Thus with the properly chosen non-linear dimension reduction of high-dimensional input data,

1assuming 1 TFLOPS using single precision floating point numbers
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the standard classifier methods should be still applicable. Unfortunately this task is far from easy
(Dhamija, 2022). The current work is precisely motivated by this difficulty. There are at least
two ways in the pattern recognition “pipeline” where difficulties arise in open-set recognition. One
popular explanation attempt is the idea of “open space risk”. Scheirer et al. (2013) argues that in
most recognition models the decision region is effectively unbounded and therefore even samples
belonging to none of the interested classes always get classified. This idea proposes that decision
region spanned by the decision hyperplanes of a model should be finite and very small (Scheirer
et al., 2014). While this idea was originally developed on classifiers that use separately extracted
features, it was also extended to deep networks, where we have again the case as described above
(Bendale and Boult, 2016). We call this idea the open-space risk hypothesis.

To explain the second hypothesis, we will first set up the necessary formalism to allow for
better distinction between the two.

Let us thus assume that the set of natural objects O belonging to C classes, these object reside
in some conceptual space, equipped with a metric d : O × O → R+. Thus for any two objects
x, y ∈ X from different classes cx 6= cy , their distance, in conceptual space, is positive:

d(x, y) > 0 (5.8)

Formally we have the set of natural objects O, which can be mapped by a distance d to the
similarity between any two objects S. Estimating this distance d̂ purely from the data, is the cen-
tral problem in pattern recognition. If d̂ approximates d sufficiently well then building a classifier
is trivial, e. g. by using the nearest neighbor classifier.

Let us now assume that instances of these objects are photographed as images, then a natural
neural network encodes the object Oi by some highly non-linear transformation fθ into some
representation R. Using accumulated knowledge, the natural neural network can then use the
similarity Sij of Oi to some other objects Oj by computing d(Ri, Rj), for further processing2.

An artificial neural network first cannot directly observe fθ or d, but must estimate both. Equa-
tion 5.9 illustrates the situation visually.

O
d //

f̂θ ��

S

g
��

R̂
d̂

// Ŝ

(5.9)

In our interpretation, the open-space risk hypothesis argues theoretically that the issue lies with
decision boundary and possibly with the estimated distance function d̂, which underestimates the
distances to unseen unrelated samples compared to d (Scheirer et al., 2014). However, multiple
empirical observations indicate that the samples of unrelated classes are misclassified mainly
not because they are too close to the decision boundary (underestimated d), but more severely,
unrelated samples end up mostly within the decision boundary (Dhamija et al., 2018; Dhamija,
2022; Palechor et al., 2023). To our knowledge, it is not widely known why deep features overlap
and how neural networks can be constructed in such a way that they do not overlap. We can,
however speculate on the origin of such an overlap. In the formalism shown in Equation 5.9, a
feature overlap could be caused by an inconsistent estimation of f̂θ. Overlapping deep features
means that there exist multiple different inputsOi andOj which are projected to the same point in
deep feature space or less strictly to some ε-neighborhood of a different input Ri ≈ Rj . But when
these inputs come from unrelated classes ci 6= ci then this should be reflected in their distance in

2For illustrative purpose, this process is greatly simplified and many details are omitted for brevity (Miyashita, 1993;
Seger and Miller, 2010).
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the deep feature space d(f̂(Xi), f̂(Xj)) > 0. Since this issue appears to be more common when
the input are visually related it appears that

P
(
d(f̂(Xi), f̂(Xj)) < ε

)
∝ I(Xi;Xj) (5.10)

This could occur if f̂ maps those parts of the input X which are merely highly correlated
for a particular class, but not causal for the classification. Think of pictures of cows, where the
background is most likely green (Xiao et al., 2020). For deep neural network, it is well known
that they have an affinity to pay attention to certain correlated features, which don’t necessarily
generalize, but work very well in standard benchmarks (Geirhos et al., 2020). We call this second
potential explanation the shortcut hypothesis.

5.2.1 Deep RBF networks for OSR
RBF networks provide a type of classifier which allows fine control over the decision regions. The
radial basis functions can be interpreted as a receptive field which only focuses on data close to
the center of a RBF. Based on the two previously discussed hypotheses on the open-set recognition
problem, we can derive some predictions on the performance of RBF networks.

According to the open-space risk hypothesis, in absence of negative training samples, an RBF
classifier should have a higher performance compared to a standard Softmax classifier, because
it bounds the open-space risk. In presence of negative training samples, the standard Softmax
classifier needs to be modified e. g. with the Entropic Open-Set Loss. While this still uses Softmax
and thus has unbounded decision regions in theory, due to the extra loss, it is statistically less
likely that input samples end up “too far away” in the decision region. Which was the motivation
to construct this loss in the first place (Dhamija et al., 2018). In this case it is less clear if RBF
classifier would show a higher performance than Entropic Open-Set Loss. With RQ-3 we will explore
these performance differences between standard Softmax based methods and deep networks with
RBF based classifier using one basis function per class.

The shortcut hypothesis is not directly concerned with the geometry of the decision region. In-
stead it points to deeper issues with modern neural network methods. It is not obvious how a
RBF based classifier with one basis function center per class would improve performance for this
cause. However, the following informal argument can be made in the case of a multi-center clas-
sifier: in the case of training without negative samples and C classes, where f̂ classifies samples
Xtrain ⊂ Dtrain

p from the training data distribution with a low empirical loss, f̂ possibly performs
a contractive mapping to the vicinity of C “points”. Let us consider those test inputs from the
negative samples Xtest ⊂ Dtest

n , which share high visual similarity with certain training samples
X i

train such that I(X i
train;X

j
test) > ε, where I(x; y) denotes the mutual information between x and

y. Then, but without a formal justification, it is plausible that f̂ projects these samples close to one
of the C “points”, where the closeness is dependent on their similarity I(x; y) and f̂ .

Now if a particular class exhibits exists a certain internal structure i. e. it has a multimodal
distribution withM modes and f̂ is modified in a certain way that it projects on average toM×C
“points”, called f̂M . Without any formal justification, it is then plausible that

P
(
d(f̂M (Xi), f̂M (Xj)) < ε

)
< P

(
d(f̂(Xi), f̂(Xj)) ≤ ε

)
(5.11)

In other words, the probability that two inputs Xi and Xj from distinct classes, but with some
visual similarity are projected close to each other in the deep feature representation should be
lower in the case of f̂M . However, this depends on more general properties of f̂M . Thus it is not
guaranteed that simply projecting the deep features to more than one point per class, will result in
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improved open-set recognition performance. Nonetheless, we explore networks with this property
with RQ-4.
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Approach

In a first step Radial basis functions will be incorporated as a layer in a deep neural network. For
a start, only the image domain is considered. A very popular neural network architecture in this
domain are the Neocognitrons also known as convolutional neural networks. There are multiple
ways to incorporate RBFs in a neural networks, thus we explore different configurations.

These variants will be evaluated first in closed-set image classification tasks to compare and
investigate their general learning behavior.

In a second step, neural networks with RBF layers will be evaluated in open set recognition
tasks. Based on the idea of open-set risk minimization (Scheirer et al., 2013), we expect an RBF
network to perform better in an open set recognition task than a baseline neural network.

Since open set recognition specifically emphasized the need to train a model on negative classes,
different approaches to allow training with negative samples will be investigated. Training with
negatives will allow a better evaluation of the RBF networks in open set recognition tasks.

6.1 RBF Layer
In general a RBF layer consists of K RBF units RBFθ. Each unit processes the whole output of the
previous layer or if placed in the beginning, of the input. In this work we will only consider a RBF
layer placed as the last layer in a deep network, thus replacing the standard Softmax classification
layer. Let us denote the output of the previous layer as z ∈ Rd, where d is the dimensionality of
that layer. We use the Euclidean distance function δEuc to compare z to the center µ of the RBF
unit.

a =
1√
2d
δEuc(z, µ) (6.1)

To prevent numerical issues with very large distances in high dimensions we scale the re-
sulting Euclidean distance with

√
2d. As the activation function we use the standard Gaussian

function parametrized with σ such that it allows for an intuitive interpretation of σ as in the
normal distribution.

ψ(a) = exp

(
−1

2

a2

σ2

)
(6.2)

Since we have selected the distance function δ and the activation function ψ our RBF unit has
two free parameters left µ and σ. Its output can be interpreted as a probability in the same sense
as Softmax outputs a probability.
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RBFθ(x) = ψ(δEuc(x, µ);σ) = exp

(
−δEuc(z, µ)

2

4dσ2

)
(6.3)

6.1.1 Width parametrization
The parameter σ controls the width of the receptive field of an RBF unit. This parameter can be fixed
or learned. The dimensionality of it determines the flexibility of the RBF unit to fit data. This also
means that its dimensionality is related to the risk of overfitting. In preliminary experiments we
used one shared σ ∈ R for all K RBF units in a layer, but found that using dedicated learnable σ
for each unit performs better on our task. σ can also be a vector of dimensionality d or a covariance
matrix.

6.1.2 Multilabel classification
The categorical cross-entropy loss rests on the assumptions that all classes are known in terms of
the classification. Which can be seen from its formulation as the ratio of the logit of the correct
class to the sum of logits from all other possible classes. A generalization of multi-class classifi-
cation is called multi-label classification, where this assumption is dropped and we are no longer
required to know all possible classes. However, multi-label classification additionally does not
assume that only one class or label must be assigned to a sample. In the context of open set classi-
fication, we therefore need a slightly constrained multi-label classification scheme, where only one
label can be assigned, but we do not claim to know the number of all possible labels.

An reasonable approach to model the multi-label classification with K labels is to treat each
label as an independent binary classification, which is called One-vs-rest. This formulation allows
the use of a binary cross-entropy loss. In general the likelihood function is, where tn ∈ {0, 1} is
the correct label for class n, yn is the predicted label:

N∏
n=1

ytnn (1− yn)
1−tn (6.4)

Which can be maximized by minimizing its negative logarithm:

JBCE = −
N∑

n=1

(tn ln(yn) + (1− tn) ln(1− yn)) (6.5)

One issue with this method, is that the loss is imbalanced with respect to a particular target
class (Bishop, 2006, p. 338). The information from the true class is compared with the other classes
and as K gets larger, the contributions from the true class are weighted with only 1/K, thus only
the majority class is learned well.

Alternatively, the loss contribution of the other classes can be reduced by weighting them
accordingly:

JBCEW = −
N∑

n=1

tn ln(yn) +
1

K − 1
(1− tn) ln(1− yn) (6.6)

However, eventually we want the training to include not only known classes but also a set
of negative samples, without necessarily knowing their potential internal class structure. In this
case, the loss would be again unbalanced with regard to the negative classes. As a remedy, we
propose to use a different loss that only involves the largest logit other than the correct label. This
is essentially just a 1-class/one-vs-rest binary cross entropy loss that maximizes the logit of the
true class and minimizes the logit of the nearest false class.
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J t
MaxBCE = − ln(yt)− ln(max

c∈C\t
yc) (6.7)

However, when negative samples are used in training then yt does not always exist.

J t
MaxBCE =


− ln(yt)− ln(max

c∈C\t
yc) if t ∈ Cp,

− ln(max
c∈C

yc) otherwise,
(6.8)

Thus the overall loss function can be written as

JMaxBCE = −
∑
t∈Dc

(
ln(yt) + ln(max

c∈C\t
yc)

)
−

∑
t∈Dn

ln(max
c∈C

yc) (6.9)

For the weighted version we consider imbalances in the number of classes in the positive set
Dp and the negative training set Dn. Let λ denote the weighting factor

λ =
|Dp|

|Dp|+ |Dn|
(6.10)

then we weight the contributions from the wrong class assignment as

J t
MaxBCEW =


− ln(yt)− λ ln(max

c∈C\t
yc) if t ∈ Cp,

−λ ln(max
c∈C

yc) otherwise,
(6.11)

6.1.3 Initialization
The proper initialization of the RBF weights is important for training to converge. Specifically
the inputs to the RBF should fall onto its receptive field. Additionally it would be helpful if the
input is normalized to some range such that the RBF is at least initially sensitive to all deep features
(Bishop, 1995, p. 299). We initialize the elements of the centers of the RBF units by sampling from
a zero centered normal distribution with standard deviation 0.5. Additionally, we constrain the
deep features to be close to the origin by employing batch normalization (Ioffe and Szegedy, 2015).
However, unlike to standard use of batch normalization, we do not use the affine transformation.

6.2 Architectures
This section is describes the architectures that are used in our experiments. They follow a shared
structure to keep most elements equal to improve the utility of our comparison.

6.2.1 Overview
In this work variants of the architecture in Figure 6.1 are used. Generally, they consists of a CNN
based feature extraction head, a deep representation part and a classifier part. To distinguish
between these variants a naming scheme is used as shown in Table 6.1.

6.2.2 Feature extraction
For the task of feature extraction different CNN backbones are used depending on the problem
complexity. Specifically, we use a LeNet variant and a ResNet variant.
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Feature Extraction Deep Representation Classifier

CNN backbone Linear RBF/Softmax

Figure 6.1: MODEL STRUCTURE. The used models follow the depicted organization structure.

Table 6.1: ARCHITECTURE VARIANTS NAMING SCHEME. The naming scheme denotes the three compo-
nents: feature extraction, deep representation and classifier, separated by an underscore. L denotes a linear
fully connected layer.

Component Name Part Description

Feature Extraction Le Lenet variant CNN backbone
Res Resnet-20 CNN backbone

Deep Representation Ld FC linear layer in Rd

Pa average pooling layer
Nb Batch norm layer
D Drop-out layer

Classifier LC Softmax with C classes
Rn;θ RBF classifier with n basis functions parametrized by θ per class

LeNet variant

This model is a variant of the LeNet networks as introduced in Section 3.4.1. Preliminary experi-
ments indicated that two instead of three convolution blocks is sufficient to reach high closed-set
classification accuracies on handwriting recognition problems. Our used LeNet variant Le2 uses
therefore only two convolution blocks to increase training speed and reduce overfitting. Addi-
tionally, the non-linear activation function has been replaced with the GELU function (Hendrycks
and Gimpel, 2016), due to its interesting theoretical properties and increased robustness to noise.
Furthermore, dropout is used after each convolution block (Hanson, 1990; Srivastava et al., 2014).

ResNet-20

In this work, the ResNet-20 variant is used as a feature extraction backbone as introduced in Sec-
tion 3.4.1. ResNet-20 contains 20 layers in total, starting with a convolution layer followed by max
pooling, then pairs of blocks with different dimensions. Each blockH consists of more sub-layers,
namely two convolution layers and batch norm in between. At the deep end the network uses
average pooling and a fully connected layer of dimensionality depending on the number of out-
put classes. In total, ResNet-20 has about 3 × 105 trainable parameters. Unfortunately, PyTorch
does not have a ResNet-20 implementation, thus the building blocks of their ResNet-18 implemen-
tation was used1 and adapted accordingly. As a feature extractor the last fully connected layer is
omitted and added later as part of the classifier as described in the naming scheme 6.1.

1From the package torchvision, version 0.14.1: https://pytorch.org/vision/0.14/models/generated/
torchvision.models.resnet18.html

https://pytorch.org/vision/0.14/models/generated/torchvision.models.resnet18.html
https://pytorch.org/vision/0.14/models/generated/torchvision.models.resnet18.html
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Table 6.2: ARCHITECTURE VARIANTS LIST. The naming scheme denotes the three components: feature
extraction, deep representation and classifier, separated by an underscore. L denotes a linear fully connected
layer.

RBF parametrization
Basis Function Learnable Classifier

Name

Le_PaL32D_L10 - - Softmax
Res_PaL32D_L10 - - Softmax
Le_PaL32BnD_R1;G Gaussian µ, σ RBF1;θ

Le_PaL32BnD_R2;G Gaussian µ, σ RBF2;θ

Le_PaL32BnD_R4;G Gaussian µ, σ RBF4;θ

Le_PaL32BnD_R8;G Gaussian µ, σ RBF8;θ

Le_PaL32BnD_R1;W Wide Gaussian with ρ = 4 µ, σ RBF1;θ

Res_PaL32BnD_R1;G Gaussian µ, σ RBF1;θ

Res_PaL32BnD_R2;G Gaussian µ, σ RBF2;θ

Res_PaL32BnD_R4;G Gaussian µ, σ RBF4;θ

Res_PaL32BnD_R8;G Gaussian µ, σ RBF8;θ

Res_PaL32BnD_R1;W Wide Gaussian with ρ = 4 µ, σ RBF1;θ

6.2.3 Deep Feature Representation
Our deep feature layer consists of an average pooling layer with kernel size 2 × 2. Followed by a
linear projection to the targeted dimensionality of the deep feature space dDF . Batch normalization
is applied on the resulting representation, but only for RBF models. At the end a dropout layer is
used for ensembling and reducing overfitting.

6.2.4 Classifier
As the baseline either a standard Softmax classifier is used for experimental conditions without
negative samples and Softmax with Entropic Open-Set Loss (EOS) when using negative samples.

For the RBF baseline the whole Softmax layer is replaced with the RBF layer as introduced
above. In the subsequent experiments we modify the used RBF units and the ratio of RBF units
to the number of classes.

6.3 Exemplar and Prototyp-based Classification
Most machine learning methods can be mapped to one of the two major theories of human catego-
rization as described in Section 3.5. Interestingly, the formalism of RBF networks can be mapped
to both theories. What needs to be varied is the effective number of RBF centers relative to the
number of (known) classes. If they are equal, then such a RBF network corresponds to the proto-
type approaches. Because all the observations from one class are compared to a single condensed
representation which thus must contain all the class defining features. On the other hand, if the
number of RBF centers is much larger than there are classes, the congruence to the exemplar ap-
proach is apparent. Furthermore, as an extreme case under some additional restrictions, if the
number of RBF centers equals the number of observations, then such a method would be equiva-
lent to the nearest neighborhood rule.
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It is not obvious, which approach performs better in general, if any of them even does so.
Particularly in the open-set recognition case, it is plausible that an exemplar approach could show
improved relative performance.

The RBF networks developed in this work, allow the study of both approaches. Whereas the
prototype approach builds the baseline as it is the “simpler” method.

6.3.1 Exemplar RBF Layer
An exemplar-RBF layer adds additional degrees-of-freedom in the design spaces as well as in the
parameter space. Regarding the design choices there are multiple aspects that can be varied:

Ratio of centers to classes What is an appropriate number of RBF centers for each known class?
The optimal number might be data dependent on the inter-class variances.

Constant Ratio of centers Do all classes require the same number of RBF centers?

Constant RBF types Should all RBF units be of he same type/ parametrization?

To keep the scope of this work bounded, only one variant of exemplar-RBF layer will be ex-
plored. Specifically a constant multiple m of RBF units per class, all of the same type. Instead,
the focus lies on the practicalities of training exemplar-RBF layers in the first place. To train such a
layer modifications to RBF computation and possibly the loss function are needed. With a func-
tioning exemplar-RBF layer, the experiments regarding the RBF image recognition baseline can be
repeated with varying multiples of RBFs per class.

Let us denote a multi-center RBF unit as MRBFθ, containing m regular RBF units. Then the
output of this unit is

MRBFθ(x) = max
m

RBFm
θ (x) (6.12)

We propose to use the JMaxBCEW loss function, by taking the maximum over all RBF units.
A potential problem with multiple centers per class is that all samples, in the deep feature space,
“move” to the initially closest RBF unit, because the samples from the same class usually exhibit
high visual correlation and are thus exciting a similar response in the CNN feature extractor.

As a remedy we propose a regularization which maximizes the entropy of the outputs of
the regular RBF units for each multi-center RBF unit. For easier implementation, we employ a
regularization by using the following extra loss, for K multi-center RBF units containing each m
regular RBF units. Let Y be the distribution of outputs from allK×m RBF units andH(·) denotes
the Shannon-Entropy.

JENT = E [H (Y )] (6.13)

6.4 Deep Feature concentration
Deep features are projected to a very tiny subset of available representation space, because the
final classification layer functions by calculating the distance to some prototype vector. Particu-
larly for the RBF variants used in this work with Gaussian activation function. Minimizing on of
our proposed loss functions would require the deep features of a class to concentrate in one point
at the center of the Gaussian. For reference, Figure 6.2a shows Equation 6.14 with σ = 0.25, for
readability we drop the class index k, a denotes the distance to the class prototype ak, without the
high dimension normalization.
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φk(ak) = φ(a) = e−
a2

2σ2 (6.14)

We hypothesize that the deep features for such an activation function might be not optimal
for the open-set recognition case, although the activation drops exponentially with increasing dis-
tance to the prototype vector for negative samples, it also does so for the samples belonging to
this class. Thus it could be very difficult for such a RBF layer to output very high confidence (e. g.
> 95% ) for the positive samples. Therefore we propose alternative activation functions derived
from the Gaussian, ideally according to our hypothesis such a function would have a wider re-
ceptive field, but still drop off sharply. In (6.15) we construct such a function φA(a; τ). Let τ be
a hyperparameter to control the width of the receptive field. This activation function is shown in
Figure 6.2 Figure 6.2b.

φA(a; τ) =
min

(
e−

a2

2σ2 , τ
)

τ
(6.15)

However, this derivative of this function (Equation 6.16) in the plateau of the receptive field is
zero. Thus while an RBF with this activation function can attract the deep features of the positive
samples close to the center, any negative sample that already projects into the receptive field cannot
be pushed outside anymore.

∂

∂a
φA(a; τ) =


0 if exp(−x2/(2σ2)) > τ

−x exp(−x
2/(2σ2))

τσ2
otherwise

(6.16)

As an approximation of Equation 6.15 we use functions parametrized with ρ ∈ { 2n | n ∈ N+ }
of the form

φB(a; ρ) = exp

(
− aρ

2σρ

)
(6.17)

Let us set ρ = 4, then the derivative of this activation function (Equation 6.18) is non-zero in
the center of the receptive field, but still very small and might suffer from saturation effects during
training. Figure 6.2c shows an example of this activation function.

∂

∂a
φB(a; ρ = 4) = −2x3 exp(−x4/(2σ4))

σ4
(6.18)
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(a) Standard Gaussian activation function
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Figure 6.2: GAUSSIAN ACTIVATION FUNCTION. Plots of the activation functions with σ = 0.25.
Subfigure (a) shows the standard Gaussian, subfigure (b) targeted function and (c) the wide Gaussian
activation-
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Experiments

This chapter gives a description of the exact experimental setups that were performed to answer
research questions RQ-3, RQ-4 and RQ-5. The specific configurations are provided in Table 7.1,
Table 7.2 and Table 7.3. Each table specifies the training and test dataset, the used loss function
and the hyperparameters. The models are optimized with stochastic gradient descent methods,
which try to approximate the full gradient of the loss function by taking small batches of samples
determined by the batch size. During each epoch all samples from the training data are used once
to approximate the gradient. For faster convergence, we use adaptive methods like Adam for
the handwriting recognition task (Kingma and Ba, 2017). For the natural image recognition task
we employ weight decay regularization to reduce the impact of overfitting. However, the Adam
optimizer does not perform well when combined with weight decay, instead we use a modified
version of Adam which improves this combination, called AdamW (Loshchilov and Hutter, 2019).
Additionally, we employ Dropout on the deep features, which is a form of ensembling that greatly
improves generalization (Hanson, 1990; Frazier-Logue and Hanson, 2020). For the CIFAR10-50-50
dataset we use data augmentation to reduce overfitting (Chapelle et al., 2000).

7.1 Metrics
For our experiments we use three metrics to measure the performance of the different models.
First, the standard classification accuracy, which we denote as the closed-set accuracy to emphasize
that this metric does not evaluate the open-set setting. Second, the Open-Set Classification Rate
(OSCR), which does consider the open-set setting. Third, a confidence metric to shed light on the
origins of performance differences as measured by OSCR.

7.1.1 Open-Set Classification Rate
Dhamija et al. (2018) introduced this metric to evaluate the open-set aspect of pattern recognition
systems. This metric works for recognition systems which give a probabilistic output accompa-
nying a particular class assignment. We denote with P (c | x) the estimated probability by the
recognition system, that the input x belongs to the class c. During deployment of the system,
decision threshold θ must be chosen, according to which the output is either accepted or rejected.
Given some operating environment, an imperfect system will always make different types of mis-
takes, such as erroneously classifying invalid inputs, rejecting valid inputs and miss classifying
valid inputs. Depending on the threshold θ some types of mistakes will occur more often that
others. The OSCR builds upon this idea and constructs two “sub-metrics”. The Correct Classifi-
cation Rate (CCR) which estimates the accuracy on those inputs which have passed the threshold



40 Chapter 7. Experiments

θ and are supposed to do so in the first place, because they come from one of the classes that were
known to the recognition system during training i. e. Dp. The False Positive Rate (FPR) estimates
ratio of inputs that were mistakenly not rejected, even though they should have been rejected,
because they do not come from any of the known classes i. e. Du. Bisgin et al. (2023) defined these
two rates formally as follows, let ĉ denote the correct class for the input x then

CCR(θ) =
|{x | x ∈ Dp ∧ argmaxc P (c | x) = ĉ ∧ P (ĉ | x) ≥ θ }|

|Dp|
, (7.1)

FPR(θ) =
|{x | x ∈ Du ∧maxc P (c | x) ≥ θ }|

|Du|
, (7.2)

These two rates can be estimated for different θ and visualized as a 2D curve with each rate
on one axis. To better compare the resulting curves, we will report the CCR corresponding to a
particular FPR. To be more precise, since we cannot directly evaluate a specific FPR, we pick a
set of evenly spaced points {1.0, 0.1, 0.01, 0.001} and select the closest FPR.1 Then we report the
corresponding CCR computed using the same threshold θ. Note that the CCR corresponding to
the FPR of 1 is equal with the closed-set accuracy.

7.1.2 Confidence metric
The OSCR provides us with an estimate for the performance in the open-set environment. We can
gain more insights about the differences between two models by looking at potential confounds of
the OSCR, namely the average confidence of the model on samples from the known and unknown
classes. For γ− contains an offset α which is 1/K for Softmax classifiers.

γ+ =
1

|Dtest
p |

∑
i=1∧ci∈Cp

yi,ci (7.3)

γ− =
1

|Dtest
u |

∑
i=1∧ci∈Cu

(
1−max

Cu

yi,ci + α

)
(7.4)

7.2 Image Recognition Baseline

7.2.1 Handwriting Recognition
In a first set of experiments, we are interested in the openset recognition performance of deep
RBF networks on the problem of recognizing handwriting (RQ-3). We are interested in two ex-
perimental conditions: one having access to negative samples and one without. The performance
of different RBF network configurations is compared to a standard Softmax classifier in the case of
of no negative samples and to Entropic-Open set loss in the case with negatives. The models used
in these experiments all use the same feature extraction backbone described in subsection 6.2.2.
Two baseline models are used in these experiments, Le_PaL32D_L10 a Lenet like CNN backbone
with a deep feature representation layer of 32 dimensions projected to 10 output dimension and
Le_PaL32BnD_R1;G where the last layer is replaced with 10 Gaussian RBFs each with one learn-
able σ parameter. These two models are compared using two openset datasets, where the model
is trained on a set of positive examples, depending on the experimental condition, additionally

1Note that set of FPR that can be estimated, depends on the output distribution of the recognition system. For exam-
ple, if a system only outputs confidences of either 0 or 1, then only two FPR can be estimated.
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Table 7.1: EXPERIMENT CONDITIONS: HANDWRITING RECOGNITION. Configurations which are only
used during training with negative samples are marked with (-)

Le_PaL32D_L10 Le_PaL32BnD_R1;G

Positive training set MNIST
KMNIST

Negative training set First 13 letters of EMNIST (-)
Test set Last 13 or 18 letters of EMNIST
Optimizer Adam
Epochs 30
Learning rate 0.001
Dropout probability 0.2
Batch size 128
Loss JCCE / JEOS (-) JMaxBCEW

on a set of negative examples and evaluated on a different set of samples. In these experiments
the openset datasets Digits-Letters-Letters and Kuzushiji-Letters-Letters are used.

Without negative samples

In the first experimental condition the baseline open-set recognition performance is assessed,
when no negative samples are available during training (RQ-3.2). The specific configurations
used are listed in Table 7.1.

With negative samples

In the second experimental condition the baseline open-set recognition performance is assessed,
when negative samples are available during training (RQ-3.3). In this case the behavior of the
model Le2_L256_L10 needs to be adjusted, because plain Softmax with categorical cross-entropy
loss cannot utilize negative samples. Instead the Entropic Open-Set Loss is used (Dhamija et al.,
2018). The specific parameters used are listed in Table 7.1.

7.2.2 Natural Image Recognition
In a second set of experiments, we are interested in the open-set recognition performance of deep
RBF networks on the problem of recognizing natural images. Again in the two experimental
conditions: one having access to negative samples and one without. The performance of dif-
ferent RBF network configurations is compared to a standard Softmax classifier in the case of
of no negative samples and to Entropic-Open set loss in the case with negatives. In these ex-
periments we explore the use of deeper models, particularly ResNet-20 in addition to the LeNet
variant. Four models are used in these experiments, Le_PaL32D_L10 a Lenet like CNN backbone
with a deep feature representation layer of 32 dimensions projected to 10 output dimension and
Res_PaL32D_L10 where the Lenet CNN backbone is replaced with an Resnet-20 backbone.

For the RBF variants: Le_PaL32BnD_R1;G and Res_PaL32BnD_R1;G where compared the the
ones above, the last layer is replaced with 10 Gaussian RBF each with a learnable σ parameter. In
these experiments the open-set dataset CIFAR10-50-50 is used.
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Table 7.2: EXPERIMENT CONDITIONS: NATURAL IMAGE RECOGNITION. Configurations which are
only used during training with negative samples are marked with (-)

Le_PaL32D_L10

Res_PaL32D_L10

Le_PaL32BnD_R1;G

Res_PaL32BnD_R1;G

Positive training set CIFAR-10
Negative training set First 50 classes from CIFAR-100 (-)
Test set Last 50 classes of CIFAR-100
Optimizer AdamW
Epochs 160
Initial Learning rate 0.001
Dropout probability 0.2
Weight decay 0.0003
Augmentations AutoAugment
Batch size 128
Loss JCCE / JCCE (-) JMaxBCEW

Learning rate schedule Reduced by one magnitude at epoch 80 and 120

Without negative samples

In the first experimental condition the baseline open-set natural image recognition performance
is assessed, when no negative samples are available during training (RQ-3.4). The specific param-
eters used are listed in Table 7.2.

With negative samples

Analog to the handwriting recognition task, Entropic Open-Set Loss is used for the Softmax variants
when training with negative samples. The specific parameters used are listed in Table 7.2.

7.3 Exemplar-based Image Recognition
To investigate whether multiple representation per class provides any advantage (RQ-4), the ex-
periments on handwriting and natural image recognitions are repeated, but with our multi-center
RBF model. The experimental parameters are the same as those for the RBF variants described in
Table 7.1 and Table 7.2, except for the use of an additional regularization loss JE as described in
Section 6.3.

7.4 Deconcentrated deep features
Both baseline image recognition experiments are repeated again in both conditions each, but with
a different activation function used for the RBF. Specifically, we are interested in the effects of a
“wider RBF” on the open-set recognition performance, since this would reduce the concentration of
deep features at the centers of the RBFs (RQ-5). Table 7.1 and Table 7.2 show the used experimen-
tal parameters.
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Table 7.3: EXPERIMENT CONDITIONS: LOSS FUNCTION COMPARISON.

Le2_L256_R10;G(n)

Positive training set MNIST
KMNIST

Test set Last 13 letters of EMNIST
Optimizer Adam
Initial Learning rate 0.001
Dropout probability 0.2
Epochs 30
Batch size 128
Loss JBCE

JBCEW

JMaxBCE

JMaxBCEW

7.5 Loss functions
An RBF layer as introduced in section 6.1, if placed as the last layer, can replace the usual fully
connected layer with Softmax. However, then the standard categorical cross-entropy loss can no
longer be used, since it’s assumptions are violated. Our research question ( RQ-3.1) is concerned
with precisely this issue: What loss should be used instead? Multiple loss functions have been
discussed theoretically in section 6.1. In a preliminary experiment these loss functions will be
experimentally compared among each other: JBCE , JBCEW , JMaxBCE and JMaxBCEW . In this
experiments the open-set datasets Digits-Letters-Letters and Kuzushiji-Letters-Letters are used.
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Results

This chapter shows the results of the performed experiments. It is structured by the experimental
condition of using negative samples during training. For each condition we will present the
results of a Softmax baseline and our equivalent baseline RBF model. Then the RBF variants of
using multiple centers for each class and the wider receptive field are presented. At the end, the
comparison of the different loss functions is shown. We refer to the CCR at FPR of 1.0 as the
closed-set accuracy, because this is equivalent to having no rejection threshold.

8.1 OSR without negative samples

8.1.1 Baseline
In Table 8.1 the results of the handwriting recognition experiment are shown for the experimental
condition without negative samples. From these results, three observations can be made. First,
while the closed-set performance is comparable between the RBF and Softmax variants, the Soft-
max variant shows slightly higher CCR at a FPR of 1.0. Second, the Softmax variants performed
better at lower FPR on both datasets. Third, the average confidence for detecting the positive
samples γ+ is higher for the Softmax variant, whereas the confidence for rejecting the unknown
negative samples γ− is lower compared to the RBF variant. Interestingly, on th Digits-Letters-
Letters dataset, we find that the closed-set accuracy of both approaches is very similar (±0.1 percent
points), but the confidence γ+ shows quite a difference. On one hand, this indicates that while
both approaches have solved the closed-set classification task almost perfectly, the RBF variants are
much less confident in their predictions (±6.7 percent points). On the other hand, this also means
that the RBF variants output lower probability estimates for the unknown negative samples and
thus show higher confidence in rejecting them γ−. Alternatively, the Softmax variant might be
overconfident and thus falsely accepts more negative samples.

Table 8.2 shows the results for the natural image recognition task on the CIFAR10-50-50 dataset.
First, we see that the deeper Resnet shows higher closed-set accuracy than the Lenet variants.
Overall the Resnet variant trained with standard Softmax shows the best open-set recognition per-
formance. The RBF with the Resnet feature extractor shows similar closed-set accuracy, but the
open-set recognition performance drops off rapidly compared to the Softmax variant. The CCR of
this RBF variant is only half of the Softmax counterpart at FPR of 0.1 and a tenth at FPR of 0.01.
But with the Lenet feature extractor the situation changes. There the RBF variant shows higher
open-set recognition performance than the Softmax variant, even though it shows slightly lower
closed-set accuracy. The confidence γ+ is higher for the Resnets, but γ− is lower compared to the
Lenets, even though the Resnets show better open-set recognition performance. Additionally, the
RBF variants show higher γ+ for both feature extractors, but lower γ− compared to Softmax.
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Table 8.1: OSR PERFORMANCE WITHOUT NEGATIVES FOR HANDWRITING RECOGNITION. The
variant RBF refers to Le_PaL32BnD_R1;G and Softmax to Le_PaL32D_L10. Results show average
values (±σ) of 5 runs after 30 epochs.

Confidence CCR at FPR
γ+ γ− 1.0 0.1 0.01 0.001

Knowns variant

KMNIST RBF 88.5% ±0.3 33.8% ±0.3 95.7% ±0.2 85.4% ±0.5 55.7% ±1.3 20.2% ±3.3
Softmax 95.9% ±0.2 30.8% ±1.4 96.4% ±0.1 86.1% ±1.5 68.4% ±3.7 47.2% ±7.1

MNIST RBF 92.5% ±0.7 31.7% ±0.5 99.3% ±0.0 77.0% ±2.4 29.4% ±5.1 7.0% ±2.7
Softmax 99.2% ±0.0 22.4% ±0.4 99.4% ±0.0 82.1% ±1.6 49.7% ±6.0 25.1% ±5.5

Table 8.2: OSR PERFORMANCE WITHOUT NEGATIVES FOR NATURAL IMAGE RECOGNITION. The
variant RBF refers to Le_PaL32BnD_R1;G or Res_PaL32BnD_R1;G and Softmax to Le_PaL32D_L10

or Res_PaL32D_L10. Results show average values (±σ) of 5 runs after 160 epochs.

Confidence CCR at FPR
γ+ γ− 1.0 0.1 0.01 0.001

CNN variant

Lenet RBF 75.0% ±0.3 32.7% ±0.2 77.5% ±0.7 46.4% ±0.7 21.7% ±0.7 4.6% ±1.0
Softmax 69.9% ±0.2 53.2% ±0.3 79.6% ±0.2 46.1% ±0.4 19.4% ±0.6 2.6% ±1.0

Resnet RBF 86.8% ±0.1 19.9% ±0.2 85.6% ±0.2 32.0% ±2.0 3.2% ±0.6 0.4% ±0.2
Softmax 85.7% ±0.2 28.7% ±0.3 86.7% ±0.2 60.1% ±0.6 29.0% ±0.8 6.3% ±1.3

8.1.2 Multi-Center RBF
Results for networks with more than one RBF per class are shown in Table 8.3. The table shows
results for different numbers of RBFs per class, namely 2, 4 and 8, for reference the results of the
baseline RBF is marked with RBF1. Closed-set accuracy appears to be only marginally affected
by multiple RBFs per class, because the values do neither decrease or increase with more cen-
ters. However, the highest closed-set accuracy is achieved in with 4 and 8 centers, although the
difference is very small and within a standard deviation of the other results. Note that in the case
of Digits-Letters-Letters, the highest closed-set accuracy is the same as the Softmax baseline. It is
possible that a ceiling effect occurs for this experiment and a local maximum is reached caused
by the used Lenet feature extractor. The differences in open-set recognition performance do show
an interesting pattern of an inverted U shape. The open-set recognition performance first increases
with multiple centers of 2 or 4, but decreases again for 8. For both dataset the highest open-
set recognition performance is achieved by either RBF2 or RBF4. This pattern is also visible in
terms of the confidence γ+, which is highest for 2 and/or 4 centers. However, the confidence on
the negative unknowns γ− is lower for the multi-center RBFs, in fact the best performing RBF2

and RBF4 show the lowest in each dataset. This indicates that the improved open-set recognition
performance is possibly due to higher concentration of the samples for each class around their
closest RBF center. But this also leads to lower γ−, however this might not simply be caused due
to the increased total number of RBFs, because then we should see a linear correlation between
the number of centers and γ−, instead we see a U-shape.
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Table 8.3: OSR PERFORMANCE WITHOUT NEGATIVES FOR HANDWRITING RECOGNITION USING
MULTI-CENTER RBFS. The variants RBFi refer to Le_PaL32BnD_Ri;G. Results show average values
(±σ) of 5 runs after 30 epochs.

Confidence CCR at FPR
γ+ γ− 1.0 0.1 0.01 0.001

Knowns variant

KMNIST RBF1 88.5% ±0.3 33.8% ±0.3 95.7% ±0.2 85.4% ±0.5 55.7% ±1.3 20.2% ±3.3
RBF2 91.2% ±0.3 27.6% ±0.4 95.7% ±0.2 86.8% ±0.8 63.9% ±4.8 24.9% ±9.9
RBF4 90.5% ±0.5 29.7% ±0.6 95.7% ±0.2 87.0% ±1.1 63.3% ±3.8 25.6% ±3.0
RBF8 89.9% ±0.4 30.8% ±0.4 95.8% ±0.1 86.6% ±0.8 58.7% ±5.3 24.0% ±5.9

MNIST RBF1 92.5% ±0.7 31.7% ±0.5 99.3% ±0.0 77.0% ±2.4 29.4% ±5.1 7.0% ±2.7
RBF2 94.8% ±0.6 23.7% ±0.2 99.3% ±0.0 80.7% ±3.4 32.4% ±5.9 8.6% ±3.5
RBF4 94.8% ±0.5 25.1% ±0.6 99.4% ±0.0 77.5% ±3.7 32.0% ±10.7 9.8% ±7.3
RBF8 92.8% ±0.3 27.2% ±0.6 99.3% ±0.0 73.4% ±5.6 21.0% ±4.9 3.6% ±0.9

For the natural image recognition task, the multi-center results are shown in Table 8.4. The
baseline single-center RBF shows the highest closed-set accuracy performance with both feature
extractors. With the Resnet it also show the higher open-set recognition performance. But with the
Lenet feature extractor the RBF2 shows slightly better open-set recognition performance.

8.1.3 Wider RBF

Table 8.5 shows the results for using a different Gaussian activation function with a wider recep-
tive field (Equation 6.17). For reference, the baseline RBF results from Table 8.1 are added. The
wider RBF variants show increased closed-set accuracy, where again for the case of the Digits-
Letters-Letters dataset the same maximum as with Softmax is reached. Regarding the open-set
recognition performance, the wider RBFs show consistent improvements across all FPR values.
Another difference is visible for the confidences: γ+ is much higher for the wider RBFs but also
γ− is lower. This is partially expected, since the wider RBFs can assign high confidence to more
positive samples without having to collapse them at a single point in deep feature space. The
lower γ− indicates that the negative samples are still close to the receptive field of the RBFs, which
indicates that the deep features of both subsets are highly correlated.

In Table 8.6 the results for the natural image recognition task are shown. In terms of the
confidences, we see the same pattern as with the handwriting task, namely that the wider RBF
variants shown an increased confidence on the positive samples γ+ but reduced for γ− compared
to the baseline RBF variants. For the other metrics there is now a difference dependent on the used
feature extractor. When using the Lenet feature extractor, the baseline RBF variants show better
closed-set accuracy and open-set recognition performance. In case of the Resnet feature extractor, the
ordering is reversed. Note that the Lenet RBF also showed higher open-set recognition performance
compared to the Softmax baseline as shown in Table 8.2.
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Table 8.4: OSR PERFORMANCE WITHOUT NEGATIVES FOR NATURAL IMAGE RECOGNITION USING
MULTI-CENTER RBFS. The variants RBFi refer to Le_PaL32BnD_Ri;G or Res_PaL32BnD_Ri;G.
Results show average values (±σ) of 5 runs after 160 epochs.

Confidence CCR at FPR
γ+ γ− 1.0 0.1 0.01 0.001

CNN variant

Lenet RBF1 75.0% ±0.3 32.7% ±0.2 77.5% ±0.7 46.4% ±0.7 21.7% ±0.7 4.6% ±1.0
RBF2 74.5% ±0.1 33.6% ±0.2 75.4% ±1.9 46.6% ±0.5 22.5% ±0.4 6.0% ±1.3
RBF4 74.0% ±0.4 34.0% ±0.3 72.7% ±3.4 45.1% ±1.7 21.7% ±1.0 4.8% ±2.0
RBF8 74.2% ±0.2 33.7% ±0.2 75.5% ±0.2 45.5% ±0.5 20.8% ±1.0 4.5% ±1.9

Resnet RBF1 86.8% ±0.1 19.9% ±0.2 85.6% ±0.2 32.0% ±2.0 3.2% ±0.6 0.4% ±0.2
RBF2 88.8% ±0.2 17.2% ±0.3 85.2% ±0.3 28.2% ±1.1 1.7% ±0.3 0.1% ±0.1
RBF4 88.4% ±0.2 17.8% ±0.2 85.4% ±0.4 27.4% ±1.4 1.7% ±0.2 0.2% ±0.1
RBF8 87.8% ±0.2 18.2% ±0.4 84.9% ±0.3 29.0% ±1.3 1.8% ±0.5 0.1% ±0.1

Table 8.5: OSR PERFORMANCE WITHOUT NEGATIVES FOR HANDWRITING RECOGNITION USING
WIDER RBFS. The variant RBF refers to Le_PaL32BnD_R1;G and RBFwide to Le_PaL32BnD_R1;W .
Results show average values (±σ) of 5 runs after 30 epochs.

Confidence CCR at FPR
γ+ γ− 1.0 0.1 0.01 0.001

Knowns variant

KMNIST RBF 88.5% ±0.3 33.8% ±0.3 95.7% ±0.2 85.4% ±0.5 55.7% ±1.3 20.2% ±3.3
RBFwide 94.4% ±0.1 27.5% ±0.6 96.2% ±0.1 86.1% ±0.6 62.8% ±1.7 27.7% ±3.8

MNIST RBF 92.5% ±0.7 31.7% ±0.5 99.3% ±0.0 77.0% ±2.4 29.4% ±5.1 7.0% ±2.7
RBFwide 98.2% ±0.3 25.3% ±1.2 99.4% ±0.0 80.6% ±3.9 33.8% ±5.2 8.0% ±4.4

8.2 OSR with negative samples

8.2.1 Baseline
In Table 8.7 the results of the handwriting recognition experiment are shown for the experimental
condition with utilizing negative samples. Similar to the condition without negatives, the con-
fidence on the positive samples γ+ is higher for the Softmax variant, however also γ− is higher
in this variant. It is interesting to note that almost for all variants the confidences on the neg-
ative unknowns γ− is higher than γ+, which is in contrast to the results without negatives in
Table 8.1. The differences is lower for γ− than for γ+. For the Kuzushiji-Letters-Letters dataset
the Softmax variant shows higher closed-set accuracy and open-set recognition performance. For the
Digits-Letters-Letters dataset the situation is reversed and the RBF variants show higher perfor-
mance on both metrics.
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Table 8.6: OSR PERFORMANCE WITHOUT NEGATIVES FOR NATURAL IMAGE RECOGNITION USING
WIDER RBFS. The variant RBF refers to Le_PaL32BnD_R1;G or Res_PaL32BnD_R1;G and RBFwide
to Le_PaL32BnD_R1;W or Res_PaL32BnD_R1;W . Results show average values (±σ) of 5 runs after
160 epochs.

Confidence CCR at FPR
γ+ γ− 1.0 0.1 0.01 0.001

CNN variant

Lenet RBF 75.0% ±0.3 32.7% ±0.2 77.5% ±0.7 46.4% ±0.7 21.7% ±0.7 4.6% ±1.0
RBFwide 76.4% ±0.6 31.2% ±0.3 74.0% ±2.1 41.8% ±1.4 21.0% ±0.5 6.0% ±1.6

Resnet RBF 86.8% ±0.1 19.9% ±0.2 85.6% ±0.2 32.0% ±2.0 3.2% ±0.6 0.4% ±0.2
RBFwide 88.4% ±0.2 14.5% ±0.4 85.9% ±0.3 50.8% ±1.8 7.9% ±1.1 1.1% ±0.5

Table 8.7: OSR PERFORMANCE WITH NEGATIVES FOR HANDWRITING RECOGNITION. The variant
RBF refers to Le_PaL32BnD_R1;G and Softmax to Le_PaL32D_L10. Results show average values (±σ)
of 5 runs after 30 epochs.

Confidence CCR at FPR
γ+ γ− 1.0 0.1 0.01 0.001

Knowns variant

KMNIST RBF 86.5% ±0.3 91.8% ±0.8 95.5% ±0.2 95.4% ±0.1 94.9% ±0.3 89.3% ±2.7
Softmax 94.9% ±0.3 94.6% ±0.9 96.1% ±0.2 96.1% ±0.2 95.9% ±0.2 93.1% ±0.5

MNIST RBF 86.6% ±1.7 96.0% ±0.9 99.2% ±0.0 99.2% ±0.0 99.2% ±0.0 94.7% ±1.7
Softmax 95.2% ±1.8 97.1% ±0.4 99.0% ±0.1 99.0% ±0.1 98.6% ±0.1 90.4% ±2.9
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Table 8.8: OSR PERFORMANCE WITH NEGATIVES FOR NATURAL IMAGE RECOGNITION. The vari-
ant RBF refers to Le_PaL32BnD_R1;G or Res_PaL32BnD_R1;G and EOS to Le_PaL32D_L10 or
Res_PaL32D_L10. Results show average values (±σ) of 5 runs after 160 epochs.

Confidence CCR at FPR
γ+ γ− 1.0 0.1 0.01 0.001

CNN variant

Lenet RBF 64.1% ±0.2 54.1% ±0.2 61.7% ±1.3 45.0% ±0.3 24.3% ±0.8 5.3% ±1.6
Softmax 58.7% ±0.4 75.1% ±0.3 79.5% ±0.2 53.7% ±0.5 26.1% ±0.9 4.8% ±1.1

Resnet RBF 80.2% ±0.3 65.6% ±0.7 85.6% ±0.3 66.0% ±0.6 11.5% ±1.0 1.1% ±0.5
Softmax 79.5% ±0.3 74.0% ±0.4 85.7% ±0.4 68.9% ±0.9 37.0% ±2.6 8.8% ±1.4

Table 8.9: OSR PERFORMANCE WITH NEGATIVES FOR HANDWRITING RECOGNITION USING
MULTI-CENTER RBFS. The variants RBFi refer to Le_PaL32BnD_Ri;G. Results show average val-
ues (±σ) of 5 runs after 30 epochs.

Confidence CCR at FPR
γ+ γ− 1.0 0.1 0.01 0.001

Knowns variant

KMNIST RBF1 86.5% ±0.3 91.8% ±0.8 95.5% ±0.2 95.4% ±0.1 94.9% ±0.3 89.3% ±2.7
RBF2 89.1% ±0.6 89.1% ±1.6 95.2% ±0.1 95.2% ±0.1 94.7% ±0.1 93.5% ±0.3
RBF4 88.0% ±0.7 91.7% ±1.9 95.4% ±0.2 95.3% ±0.2 94.8% ±0.3 92.1% ±0.6
RBF8 87.6% ±0.6 92.5% ±2.9 95.4% ±0.2 95.3% ±0.2 94.7% ±0.3 92.1% ±0.8

MNIST RBF1 86.6% ±1.7 96.0% ±0.9 99.2% ±0.0 99.2% ±0.0 99.2% ±0.0 94.7% ±1.7
RBF2 91.9% ±0.8 93.7% ±1.0 99.2% ±0.1 99.2% ±0.1 99.2% ±0.1 97.5% ±0.7
RBF4 90.7% ±0.9 95.4% ±0.6 99.2% ±0.1 99.2% ±0.1 99.2% ±0.1 97.2% ±0.4
RBF8 89.8% ±0.5 95.5% ±0.9 99.2% ±0.0 99.2% ±0.0 99.2% ±0.0 96.6% ±0.7

For the natural image recognition tasks with negatives during training, the results are pre-
sented in Table 8.8. The RBF variants show the highest confidence γ+ for both feature extractors,
but lower confidence on γ−. The Softmax variant shows both higher closed-set accuracy and open-
set recognition performance, except for the Lenet at FPR of 0.001. Note that the open-set recognition
performance of the RBF variants drops sharply only with the Resnet feature extractor.

8.2.2 Multi-Center RBF
Table 8.9 shows the results for multiple center per class while using negative samples during
training for the handwriting recognition task. Again as in the case of no negatives: RBF2, RBF4,
RBF8 refer to the variants with two, four or eight RBF centers per class. RBF1 is in this case the
baseline from Table 8.7. For the Digits-Letters-Letters dataset, the CCR is constantly high among
all number of centers and only drops at a low FPR of 0.001. Whereas for the Kuzushiji-Letters-
Letters dataset the variant with the highest CCR varies slightly at the different FPR points and
the closed-set accuracy is highest for the baseline RBF without multiple centers. The RBF2 variant
shows the highest performance at FPR of 0.001. The confidence on the positive samples γ+ is also
highest on RBF2 and then decreases with more centers. The confidence on the negative samples
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Table 8.10: OSR PERFORMANCE WITH NEGATIVES FOR NATURAL IMAGE RECOGNITION USING
MULTI-CENTER RBFS. The variant RBF16 refers to Le2_L256_R160;G(n), RBF8 to Le2_L256_R80;G(n)

and RBF16 to Le2_L256_R160;G(n). Results show average values (±σ) of 5 runs after 5 epochs.

Confidence CCR at FPR
γ+ γ− 1.0 0.1 0.01 0.001

CNN variant

Lenet RBF1 64.1% ±0.2 54.1% ±0.2 61.7% ±1.3 45.0% ±0.3 24.3% ±0.8 5.3% ±1.6
RBF2 63.7% ±0.3 55.7% ±0.4 64.6% ±3.5 47.2% ±1.6 23.0% ±0.7 4.9% ±1.8
RBF4 63.9% ±0.8 54.6% ±0.5 64.9% ±6.9 47.1% ±5.2 23.5% ±1.7 5.5% ±1.3
RBF8 63.6% ±0.4 54.1% ±0.1 65.4% ±5.5 46.4% ±3.0 23.2% ±1.3 6.6% ±1.5

Resnet RBF1 80.2% ±0.3 65.6% ±0.7 85.6% ±0.3 66.0% ±0.6 11.5% ±1.0 1.1% ±0.5
RBF2 81.7% ±0.2 64.2% ±0.2 84.1% ±0.4 65.9% ±0.3 10.5% ±0.8 0.8% ±0.1
RBF4 81.2% ±0.2 64.3% ±0.3 84.0% ±0.3 65.5% ±0.8 9.9% ±0.6 0.8% ±0.5
RBF8 80.6% ±0.1 64.1% ±0.6 84.1% ±0.4 64.9% ±0.3 8.0% ±1.2 0.7% ±0.2

γ− shows a different pattern, where the variant RBF2 shows actually the lowest values in both
datasets.

For the natural image recognition task, the results are shown in Table 8.10. For the Resnet
feature extractor, we find that the multi-center RBFs provide no advantage over the baseline in
terms of closed-set accuracy and open-set recognition performance. Only the confidence on the posi-
tive samples γ+ is higher for the multi-center RBF2. For the Lenet feature extractor, the situation
is different. There, multi-center RBFs show highest closed-set accuracy and open-set recognition per-
formance, except for FPR 0.01. These multi-center RBFs also have higher or equal γ− compared
to the baseline, but not lower γ+.

8.2.3 Wider RBF
Table 8.11 shows the results for using a different Gaussian activation function with a wider recep-
tive field (Equation 6.17). Compared to the baseline results in Table 8.7, the wider RBF variants
show better closed-set accuracy and open-set recognition performance. The difference is largest for
the Kuzushiji-Letters-Letters dataset at lower FPR points. Additionally, γ+ is much higher for the
wider RBFs, which was expected, since the wider RBFs can assign high confidence to more posi-
tive samples without having to collapse them at a single point in deep feature space. Regarding
γ−, the two variants differ slightly depending on the dataset.

For the natural image recognition tasks, the results are shown in Table 8.12. Similar to the
results of the handwriting task, the RBFwide variant shows increased open-set recognition perfor-
mance, but only for the Resnet feature exctractor. The open-set recognition performance of the
Lenet variants is much more similar. The wider RBFs also show higher confidence on the positive
samples γ+. However, the closed-set accuracy performance is lower for the wider RBFs compared
to the baseline.
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Table 8.11: OSR PERFORMANCE WITH NEGATIVES FOR HANDWRITING RECOGNITION USING
WIDER RBFS. The variant RBF refers to Le2_L16_R1;G(n;ρ=4) and RBF1;4) to Le2_L16_R1;G(1;ρ=4).
Results show average values (±σ) of 5 runs after 10 epochs.

Confidence CCR at FPR
γ+ γ− 1.0 0.1 0.01 0.001

Knowns variant

KMNIST RBF 86.5% ±0.3 91.8% ±0.8 95.5% ±0.2 95.4% ±0.1 94.9% ±0.3 89.3% ±2.7
RBFwide 93.7% ±0.4 91.6% ±1.0 96.4% ±0.2 96.4% ±0.2 95.5% ±0.3 90.9% ±1.0

MNIST RBF 86.6% ±1.7 96.0% ±0.9 99.2% ±0.0 99.2% ±0.0 99.2% ±0.0 94.7% ±1.7
RBFwide 97.0% ±0.3 96.4% ±0.6 99.4% ±0.0 99.4% ±0.0 99.2% ±0.1 96.9% ±0.4

Table 8.12: OSR PERFORMANCE WITH NEGATIVES FOR NATURAL IMAGE RECOGNITION USING
WIDER RBFS. The variant RBF refers to Le_PaL32BnD_R1;G or Res_PaL32BnD_R1;G and RBFwide
to Le_PaL32BnD_R1;W or Res_PaL32BnD_R1;W . Results show average values (±σ) of 5 runs after
160 epochs.

Confidence CCR at FPR
γ+ γ− 1.0 0.1 0.01 0.001

CNN variant

Lenet RBF 64.1% ±0.2 54.1% ±0.2 61.7% ±1.3 45.0% ±0.3 24.3% ±0.8 5.3% ±1.6
RBFwide 66.4% ±0.4 54.9% ±0.3 61.4% ±1.2 44.7% ±1.3 21.8% ±1.0 4.1% ±0.6

Resnet RBF 80.2% ±0.3 65.6% ±0.7 85.6% ±0.3 66.0% ±0.6 11.5% ±1.0 1.1% ±0.5
RBFwide 81.3% ±0.2 63.4% ±0.7 85.5% ±0.2 67.0% ±0.8 23.6% ±2.1 3.8% ±2.0
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Table 8.13: HANDWRITING OSR PERFORMANCE COMPARISON FOR DIFFERENT LOSS FUNCTIONS
WITHOUT NEGATIVES. The RBF variant used is Le_PaL32BnD_R1;G. Results show average values
(±σ) of 5 runs after 30 epochs.

CCR at FPR
1.0 0.1 0.01 0.001

Knowns Loss Function

KMNIST JBCEW 95.4% ±0.3 84.4% ±1.3 53.0% ±3.4 14.5% ±7.7
JBCE 95.7% ±0.2 85.5% ±0.5 60.9% ±4.6 24.6% ±4.6
JMaxBCEW 95.5% ±0.2 85.6% ±1.1 56.0% ±7.5 19.5% ±9.1
JMaxBCE 95.6% ±0.1 85.8% ±0.4 58.1% ±2.9 21.5% ±4.3

MNIST JBCEW 99.2% ±0.0 80.4% ±4.9 34.4% ±8.0 8.6% ±4.7
JBCE 99.3% ±0.0 79.0% ±0.9 32.9% ±4.5 9.7% ±3.0
JMaxBCEW 99.3% ±0.0 77.4% ±3.0 30.2% ±6.6 8.0% ±3.7
JMaxBCE 99.3% ±0.0 76.0% ±5.3 30.4% ±4.1 8.8% ±3.7

8.3 Loss functions
The results of the loss function comparison experiment is shown in Table 8.13 for standard train-
ing without access to negative samples. For the closed-set accuracy, there are no large differences
between the four loss functions. At smaller FPR more variation is present, but only with large dif-
ferences for the Kuzushiji-Letters-Letters dataset, although the standard deviation increases with
smaller FPR. If we look at the highest CCR in both datasets, then it appears that the JBCE∗ loss
functions show higher performance than the JMax∗ ones.

Regarding the other experimental condition, where negative samples are available during
training, the results are shown in Table 8.14. Again, the JBCE loss function shows highest closed-
set performance. However at lower FPR thresholds, the JMax∗ functions appear to perform bet-
ter. There does not seem to be a clear difference across both datasets between JMaxBCE and
JMaxBCEW as both show similar performance.

8.4 Aggregated Results
In Table 8.15 we show the aggregated results over all datasets and CNN feature extractors. Overall
we see that the specific RBF variants used in this work do not show better open-set recognition
performance than the standard Softmax. However, note the very large standard deviations for
these results.
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Table 8.14: HANDWRITING OSR PERFORMANCE COMPARISON FOR DIFFERENT LOSS FUNCTIONS
WITH NEGATIVES. The RBF variant used is Le_PaL32BnD_R1;G. Results show average values (±σ) of
5 runs after 30 epochs.

CCR at FPR
1.0 0.1 0.01 0.001

Knowns Loss Function

KMNIST JBCEW 94.7% ±0.3 94.7% ±0.3 93.3% ±0.4 82.0% ±2.9
JBCE 95.5% ±0.2 95.4% ±0.2 93.6% ±0.5 86.4% ±1.0
JMaxBCEW 95.1% ±0.1 95.1% ±0.1 94.6% ±0.2 90.0% ±1.1
JMaxBCE 95.4% ±0.2 95.3% ±0.2 94.8% ±0.3 89.0% ±2.7

MNIST JBCEW 98.9% ±0.2 98.9% ±0.2 98.1% ±0.3 88.7% ±4.6
JBCE 99.3% ±0.0 99.2% ±0.0 98.2% ±0.5 88.6% ±4.2
JMaxBCEW 99.2% ±0.0 99.2% ±0.0 99.1% ±0.1 92.1% ±4.5
JMaxBCE 99.2% ±0.0 99.2% ±0.0 99.1% ±0.0 95.2% ±1.0

Table 8.15: RESULTS AGGREGATED OVER ALL DATASETS AND FEATURE EXTRACTORS . Softmax
refers to EOS in the case of training with negative samples.

Confidence CCR at FPR
γ+ γ− 1.0 0.1 0.01 0.001

Negatives Variant

No RBF1 85.7% ±6.7 29.5% ±5.8 89.5% ±8.8 60.2% ±22 27.5% ±20 8.0% ±7.9
RBF2 87.3% ±7.9 25.5% ±6.1 88.9% ±9.6 60.6% ±25 30.1% ±23 9.9% ±11
RBF4 86.9% ±8.0 26.7% ±6.2 88.3% ±11 59.2% ±25 29.6% ±23 10.1% ±10
RBF8 86.2% ±7.3 27.5% ±6.0 88.9% ±9.6 58.6% ±23 25.6% ±21 8.1% ±10.0
RBFwide 89.3% ±8.5 24.7% ±6.4 88.9% ±10 64.8% ±20 31.4% ±21 10.7% ±11
Softmax 87.7% ±12 33.8% ±12 90.5% ±8.1 68.6% ±17 41.6% ±20 20.3% ±19

Yes RBF1 79.4% ±9.4 76.9% ±18 85.5% ±15 76.4% ±23 57.5% ±41 47.6% ±46
RBF2 81.6% ±11 75.7% ±17 85.8% ±14 76.9% ±22 56.9% ±41 49.2% ±48
RBF4 81.0% ±11 76.5% ±18 85.9% ±14 76.8% ±22 56.8% ±42 48.9% ±47
RBF8 80.4% ±10 76.5% ±18 86.0% ±14 76.4% ±22 56.3% ±42 49.0% ±47
RBFwide 84.6% ±12 76.6% ±18 85.6% ±15 76.8% ±23 60.0% ±38 48.9% ±46
Softmax 82.1% ±15 85.2% ±11 90.0% ±8.1 79.4% ±19 64.4% ±34 49.3% ±44



Chapter 9

Discussion

We will start the discussion of our experimental results by briefly revisiting RQ2 about the con-
founding factors in open-set recognition. We recall the two hypotheses on the major factors for
the problem of open-set recognition. The open-space risk hypothesis, which states that the decision
boundary of a classifier should be minimal, while still allowing for generalization outside of
the training data (Moya and Hush, 1996; Scheirer et al., 2013, 2014; Bendale and Boult, 2016).
Whereas the shortcut hypothesis states that the extracted features of the deep neural network are
merely well correlated with the task at hand and not those causally related to the input images.
Thus completely inputs, which do however share some visual similarity, get all projected in to the
neighborhood of the training data and overlap in the deep feature space.

In RQ-3 we asked about the baseline performance of a simple Deep Radial Basis Function
Network (DRBFN) with Gaussian activation function, compared to the standard Softmax vari-
ants. According to our interpretation of the open-space risk hypothesis, deep RBF networks should
show higher open-set recognition performance compared to the standard Softmax based networks,
because they limit the open-space risk (Scheirer et al., 2014). However, our results show that our
baseline RBF network only outperforms the Softmax baseline in the handwriting recognition ex-
periment using the Digits-Letters-Letters and negative samples. If we look at the results aggre-
gated over both recognition tasks and both involved CNN feature extractors in Table 8.15. Then
the baseline RBF variants show lower open-set recognition performance on average. Although the
performance of the RBF variants tracks the one of Softmax closely in most experiments. Notably
on the natural image recognition task using a Resnet as feature extractor, the open-set recognition
performance of the RBF variant drops sharply even though they show very similar close-set perfor-
mance. This is in contrast to the Lenet feature extractor, where on this task the open-set recognition
performance of both variants is not only similar, but the RBF variants is actually slightly better,
except for the close-set accuracy. The Lenet-RBF variant shows lower closed-set accuracy, but higher
open-set recognition performance. At this point we cannot provide an explanation for this differ-
ence in performance. All we can do is point out that these two variants differ mostly in their depth
and in the use of residual connections as explained in more detail in Section ??. To gain more in-
sights into the differences of our baseline models, we utilize the confidence metric as described in
Subsection 7.1.2. In both experimental conditions of utilizing negative samples, the RBF baseline
model shows lower average confidence on the known samples γ+ compared to the Softmax vari-
ants. This indicates that the RBF models are less confident in their predictions, even though they
show similar closed-set accuracies compared to the Softmax variants. Conversely, when training
without negatives, but not when using them, the RBF baseline models show higher confidence
γ− in rejecting unknown negative samples. These confidences directly influence the open-set recog-
nition performance, because thresholding is used to perform the rejection functionality. Thus if
the confidence on the known samples γ+ are underestimated then the open-set recognition perfor-
mance drops with high FPR values, given the used evaluation framework.
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Using the standard Gaussian activation function in the RBF model, a high confidence in the
output can only be achieved if the deep features of a samples are very close to the basis function.
In RQ-5 we asked whether such a collapse of the deep features is a beneficial property. With
(6.17) constructed alternative bell shaped functions which are much wider at the center. From the
aggregated results in Table 8.15, we found that this activation function show not only increased
confidence γ+, but also much better open-set recognition performance across all experiments com-
pared to the baseline RBF model.

At least with our parametrization of RBF units and our specific implementation, we did not
find that minimizing the open space risk helps with open-set recognition performance. In fact when
we look closer at the definition of the open space risk, we do think that it is of limited practical
utility.

Since Scheirer et al. (2013) formulates the problem of open set recognition explicitly as the
minimization of the empirical risk and the so called open space risk, we first explored ways to
study the open space risk by computing it for a certain classifier and empirical data.

They define open space risk as:

RO(f) =

∫
O f(x)dx∫
SO
f(x)dx

(9.1)

Where f is a recognition function which is f(x) = 1 if a sample represented by a feature vector
x ∈ Rd belongs to class y. Furthermore, there are two sets SO and O, where SO is defined as a
ball containing O and all training samples. O denotes the part of “open space” which is labeled
as any class. As a first step, we would like to find a way to compute the term RO(f). To compute
this numerically we need to define a finite representation.

Let us denote the representation space as R, which is the finite set of floating point numbers,
the set of training samples as X , where X ⊂ R. Then using the recognition function f , we can
denote the positive labeled space as

R+ = {x | x ∈ R ∧ f(x) = 1} (9.2)

Analogically for X+,

X+ = {x | x ∈ X ∧ f(x) = 1} (9.3)

then we can reformulate O as

O = R+ \ X = R+ \ X+ (9.4)

And from the definition we have

SO = O ∪ X (9.5)

thus

SO = R+ (9.6)

then the open space risk is:
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RO(f) =

∫
O f(x)dx∫
SO
f(x)dx

=

∫
O f(x)dx∫
R+

f(x)dx

=

∫
R+\X+

f(x)dx∫
R+

f(x)dx

=

∫
R+

f(x)dx−
∫
X+

f(x)dx∫
R+

f(x)dx

Now if R = R then

RO(f) = 1

In practice we have to use quantized numbers to compute, in this case case where the set R is
finite, then since f(x) = 1 on R+, the open space risk can be calculated in terms of cardinality:

RO(f) =

∫
R+

f(x)dx−
∫
X+

f(x)dx∫
R+

f(x)dx
(9.7)

=
|R+| − |X+|

|R+|
(9.8)

= 1− |X+|
|R+|

(9.9)

If |X+| = |R+| the open space risk is minimal, this formulation of risk is therefore a function
of the “sharpness” of the decision function and the number of samples. The absolute quantity of
this risk is only meaningful when the number of samples is not much smaller than the cardinality
of the open space. Otherwise the open space risk is approximately always one: RO(f) ≈ 1.

9.1 Limitations
The different model families Softmax and RBF networks were not compared in exactly the same
experimental environment. For instance, the RBF networks use the same loss function in both
experimental conditions, even though our proposed loss functions might only be adequate in the
condition with negatives. It is possible that the RBF models would show higher performance on
the aggregated results when using the standard JBCE loss when training without negatives. An-
other difference exists in the deep features layer between the Softmax and RBF networks. Batch
normalization was used in front of the RBF networks, but not in front of the Softmax networks.
Nonetheless, we believe that the presented experiments provide a fair and informative compari-
son.
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Conclusion

The remarkable performance of modern deep learning models on many benchmarks can be de-
ceiving. Many models only exhibit “human like” performance only in careful laboratory condi-
tions. As soon as these models are exposed to the complex visual scenery outside of the laboratory,
they will at some point be confronted with visual stimuli stemming from natural classes that they
have never seen during their training in the lab. In this situation a human would be curious and
potentially ask peers about this new stimuli. The “thinking machines” however, would pick one
of those classes it knows about and wrongly proclaim, with complete certainty, that this is the
correct answer. Even though the machine has never seen stimuli of this class.

Open-set recognition illuminates this issue by evaluating such models in experimental condi-
tions that try to replicate the effect of encountering new classes of stimuli for the first time. A
popular hypothesis in the field states that the cause for this issue lies in the “unbounded open
space” of the classifier’s decision region. To put some bounds on this region, we reached to the
archives and fetched an older method, radial basis functions, which is known to have bounded
decision regions. To evaluate if they can be used to improve open-set recognition performance.

We integrated radial basis functions into modern deep neural networks with a dedicated RBF
layer. This layer was used to replace the nowadays standard Softmax classification layer. We devel-
oped a novel loss function, particularly for training with negative samples in the open-set setting.
The performance of this deep RBF network was then compared to the standard method of using
Softmax, including the EOS extension for training with negative samples on three different open-
set datasets. We identified a potential shortcoming of RBFs with the standard Gaussian activation
function. As a remedy we proposed a modification termed wider Gaussian RBF, which showed
consistently improved performance over the RBF baseline, but not over the Softmax baseline.
Based on theories of human categorization, we proposed another modification to follow a more
exemplar-based approach. These so-called multi-center RBF units consist of more than one RBF unit
per class. To facilitate training of such an exemplar-based RBF network, we proposed a regularizer,
which helps in keeping more than one center activated. These exemplar-based RBF networks show
improved performance over the RBF baseline, but not as consistent as the wider Gaussian RBF.
Furthermore, we put these results into context with the original motivation of this work, namely
to bound and minimize the open-space risk, which is a widely accepted cause of the above men-
tioned issues in open-set recognition. Given that the studied RBF networks did not outperform the
Softmax baseline, we question the validity of the open-space risk hypothesis. Instead we think the
cause of the open-set recognition problem lies in the shortcut hypothesis and probably requires some
larger changes to the standard deep learning architecture to ever lead to machines that can think
properly.
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10.1 Future work
While the specific deep RBF networks studied in this work did not outperform standard Softmax
based methods on the used datasets. It is important to remember that we have so far explored
only a tiny fraction of the design space of deep RBF networks. Furthermore some techniques show
nuanced effects, dependent on the availability of negative samples during training. Thus more
work is required to first disentangle all involved effects, before constructing high-performance
open-set recognition systems.

• To better understand the factors that determine the open-set recognition performance of the
deep RBF networks studied in this work, it might be of interest to compare the two CNN
feature extractors in a way that isolates their differences. This could be done with an experi-
ment that increases the number of layers of the Lenet such that it matches those of the Resnet.
Thus there would be one difference less between the two and the same natural image recog-
nition experiment can be repeated, with the question of whether the residual connections
are related to the complex open-set recognition performance profile of the deep RBF networks.

• Another promising direction is to potentially improve the performance of the RBFs by ini-
tializing the centers in a better way. One could first pre-train a deep network using standard
Softmax and then place the RBF centers accordingly (Amirian and Schwenker, 2020).

• Our comparison of the used loss functions indicate that the our used loss function JMaxBCEW

might not be optimal in the condition of training without negative samples. A comparison
of the JMaxBCE loss on larger datasets would be interesting.

• Furthermore, since we showed that our wider RBF unit showed improved performance
over the baseline RBF networks and the multi-center RBF networks showed improvements
in some cases, it might be of interest to combine the two approaches. A new multi-center
RBF layer could be created either consisting of only wide Gaussian RBFs or a mixture of
standard and wide RBFs per class.

• It would be obviously interesting to investigate different distance and activation functions.
In particular the family of Weibull kernels, since they have also successfully been used in
open-set recognition (Bendale and Boult, 2016).

• While some form of normalization in the deep feature space can be beneficial for the RBF
networks like batch normalization or layer normalization (Ioffe and Szegedy, 2015; Ba et al.,
2016). It is unclear whether these normalizations are useful in all conditions (negative sam-
ple availability) and during all phases of training.

• RBFs with Gaussian activation function could technically be trained with the full covariance
matrix for the shape parameter σ.

• Increasing the number of free parameters in σ indicated in preliminary experiments a poten-
tially increased risk for overfitting. Thus additional data augmentation might be employed
as a remedy to artificially increase the training data. A modification of manifold mixup could
be used (Verma et al., 2019). Specifically, the mixup case of λ = 0.5 could be treated as a
negative sample for both involved classes.
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