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Zusammenfassung

Distributed-Denial-of-Service (DDoS) Angriffe stellen in der heutigen digitalen Landschaft
weiterhin eine anhaltende Bedrohung dar. Kollaborative Verteidigungsansätze gewinnen
immer mehr an Popularität, indem sie einen verteilten Verteidigungsansatz für einen ver-
teilten Angriff vorschlagen. Ein zentraler Punkt solcher kollaborativer Abwehransätze ist
der Austausch von DDoS Angriffsdaten unter den Parteien der Abwehrarchitektur.

In der Forschung werden zwar Konzepte vorgeschlagen, die den kollaborativen Austausch
von DDoS Informationen ermöglichen, datenzentrierte Lösungen werden jedoch selten
erforscht. Oftmals haben die vorgeschlagenen Konzepte einen gemeinsamen Nachteil: Sie
sind von spezifischen Technologien oder Hardware abhängig, was ihre breite Anwendung
einschränkt.

Ziel dieser Arbeit ist es, eine datenzentrische Lösung vorzuschlagen, die es dezentralen Par-
teien in einer kollaborativen DDoS-Abwehrarchitektur ermöglicht, DDoS Angriffsinforma-
tionen auszutauschen. Die vorgeschlagene Lösung nutzt die Idee hinter einem Data Mesh
Network für den Informationsaustausch. Zusätzlich wird die vorgeschlagene Architektur
durch einen Service ergänzt, welcher das Erforschen und Visualisieren von ausgetauschten
Daten ermöglicht.

Zunächst wird eine umfassende Untersuchung des Themas und der verfügbaren Tools
zum Aufbau einer DDoS-Data-Mesh-Architektur durchgeführt. Anschliessend wird ein
Entwurfsvorschlag für die DDoS-Data-Mesh-Architektur, einschliesslich des Services für
die Erforschung und Visualisierung der Daten, beschrieben. Auf der Grundlage dieses
Entwurfs wird ein Prototyp des DDoS-Data-Mesh implementiert und eingesetzt, wobei die
zuvor untersuchten Tools verwendet werden. Abschliessend wird der Prototyp im Hinblick
auf seine Leistung und Datenererforschungsfunktionen bewertet.

Die vorgeschlagene Lösung nutzt einen Technologie-Stack, der aus MySQL-Instanzen als
DDoS-Datenspeicher, Trino als verteilte Query-Engine und Apache Superset als Service
für die Datenerforschung, besteht. Diese Kombination ermöglicht den effizienten Aus-
tausch und die Erforschung von DDoS-Daten, was sie zu einer effektiven und datenzen-
trischen Lösung für kollaborative DDoS-Abwehrszenarien macht.
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Abstract

Distributed Denial-of-Service (DDoS) attacks continue to pose a persistent threat in to-
day’s digital landscape. Collaborative defense approaches continuously gain popularity
by proposing a distributed defense approach for a distributed attack. Central to such col-
laborative defense approaches is the exchange of DDoS attack data amongst the parties
of the defense architecture.

While existing research proposes concepts that enable the collaborative sharing of DDoS
information, data-centric solutions remain scarce. Oftentimes, the proposed concepts
share a common drawback: Their dependence on specific technologies or hardware that
restricts their broad adoption.

This thesis aims to propose a data-centric solution that enables decentralized parties in
a collaborative DDoS defense architecture to exchange DDoS attack information. The
proposed solution utilizes a data mesh network to handle information exchange, comple-
mented by a data discovery service to act upon the exchanged DDoS data.

First, extensive research into the subject and tools available to build a DDoS data mesh
architecture is explored. Subsequently, a design proposal for the DDoS data mesh ar-
chitecture, including data discovery capabilities, is described. Based on this design, a
DDoS data mesh prototype is implemented and deployed, using the tools explored ear-
lier. Finally, the data mesh is evaluated in regard to its performance and data discovery
capabilities.

The solution proposed utilizes a technology stack consisting of MySQL instances as DDoS
data repositories, Trino as a distributed query engine, and Apache Superset as the data
discovery service. This combination enables the efficient exchange and exploration of
DDoS data, making it effective for collaborative DDoS defense scenarios and a viable
data-centric solution for the exchange of DDoS attack data.
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Chapter 1

Introduction

1.1 Motivation

Distributed Denial-of-Service (DDoS) attacks have been a persistent and challenging is-
sue on the Internet, leading to numerous proposals for countering these attacks from both
centralized and distributed (cooperative) perspectives. One promising approach is the
adoption of cooperative defense strategies. These can offer various benefits such as re-
ducing the burden on individual domains, enhancing detection and mitigation capabilities
and blocking malicious traffic closer to its source. However, implementing a cooperative
defense in the highly diverse internet environment is a complex task. The environment is
extremely heterogeneous and encompasses diverse technologies, organizational structures
and legal frameworks that pose their respecting set of challenges [46].

Given the wide distribution of DDoS attacks, an effective defense strategy involves a dis-
tributed approach to block attacking traffic closer to its source [46]. With the growing
emphasis on data-driven cybersecurity, a data mesh structure offers an intriguing solu-
tion to enhance defense systems that currently operate in isolation. Unlike a data lake,
which centralizes data storage, a data mesh is a decentralized and distributed architecture
enabling independent information exchange and collaboration between organizations [8].
For DDoS attacks, a data mesh can facilitate the sharing of crucial information, including
attack origin, type, volume, detection methods and mitigation techniques. By leveraging
a data mesh, organizations can collectively strengthen their defense against DDoS threats.

Several technologies and concepts have been employed to enable the collaborative shar-
ing of DDoS information. Previous research [46] utilized Distributed Ledger Technology
(DLT) to establish a signaling platform. Traditional approaches like D-WARD [38], MUL-
TOPS [19] and Distributed Packet Filtering - DPF [42] proposed specialized hardware
and protocols for information sharing. While these approaches have their respective ad-
vantages, they share a common drawback: Their dependence on specific technologies or
hardware restricts their broad adoption. Given the diverse nature of systems forming the
backbone of the Internet, an ideal solution should be data-centric.

1



CHAPTER 1. INTRODUCTION 2

1.2 Thesis Goals

This thesis focuses on exploring the possibilities of DDoS data mesh networks, directly
addressing the motivation outlined above. The main objective is to investigate and im-
plement data exchange and discovery aspects within the context of a collaborative DDoS
defense. To achieve this goal, we assume a specific use case where certain components of a
collaborative DDoS defense are already in place. Particularly, the capturing and analysis
of DDoS attack data into DDoS fingerprints is assumed throughout the thesis. This allows
us to narrow our focus to the design and implementation of data exchange and discovery
using a data mesh network. More specifically, the goals of this thesis can be summed up
into the following two main goals:

• Give an overview of DDoS attack basics and associated related work. Produce
a basis for the comparison of a DDoS data mesh approach, listing its associated
advantages and drawbacks.

• Design and implement a data mesh architecture, including a discovery service to
find information about the nature and characteristics of DDoS attacks.

1.3 Methodology

To achieve the stated goals and create a baseline DDoS data mesh architecture, we followed
this approach:

• Referenced Research: We start by surveying the existing research and available tools
to gain an understanding of the current landscape. This allows us to design the
architecture, taking into account the state-of-the-art research and tools available.
Additionally, we formulate the necessary requirements based on the goals of the
thesis and the nature of the architecture.

• Applied Research: With the architecture design outlined, we proceed to implement
and configure the service as a prototype. During this phase, we also handle the de-
ployment of the prototype. Additionally, we evaluate the performance and usability
of the prototype to assess its effectiveness. Finally, we discuss performance, security
and availability trade-offs that must be considered when deploying the architecture
in a non-prototype setting.

1.4 Thesis Outline

This thesis is organized as follows: Chapter 2 provides the necessary background on
various topics addressed throughout the thesis. Additionally, this chapter addresses the
related work, listing and assessing existing tools for their potential use in implementing a
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DDoS data mesh network. Chapter 3 presents the design of the DDoS data mesh network,
outlining its architecture and components. Chapter 4 focuses on the implementation and
configuration of the proof of concept prototype. In Chapter 5, we evaluate the architecture,
examining its performance and usability. Additionally, we analyze architecture trade-offs
and implementation considerations. Finally, Chapter 6 offers the concluding summary,
considerations and insights into future work regarding the topic of this thesis.



Chapter 2

Fundamentals

2.1 Background

2.1.1 Distributed and Decentralized

It is crucial to distinguish between distributed and decentralized systems as this distinc-
tion has significant implications for designing and utilizing various technologies, systems
and applications. In the realm of data architectures, this difference has a particularly note-
worthy effect on their architecture, governance, security and potential applications. To
visualize the contrast between these two types of systems, figure 1 depicts their respective
network topologies.

While distributed and decentralized systems share traits like having multiple nodes, built-
in redundancy and scalability, they differ in their organizational structure. This is outlined
below (cf. figure 2.1):

Figure 2.1: Distributed and Decentralized Systems

• Distributed systems: Managed by a central coordinator or a group of coordinators
who handle node communication and synchronization.

4
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• Decentralized systems: Lack centralized authority or coordinator. Each node has
equal authority and can communicate directly with other nodes because there is no
central point of control.

Distributed systems rely on a coordinator to ensure all nodes function correctly, while
decentralized systems can self-organize and adjust to network changes without central
coordination. The extent of centralization and control sets apart distributed and decen-
tralized systems. The chapters 2.1.4 Data Lakes and 2.1.5 Data Mesh Networks touch on
the benefits and drawbacks of centralized and decentralized data architectures.

2.1.2 DoS and DDoS

Denial-of-Service (DoS) attacks are typically characterized by preventing the legitimate
use of a service. A Distributed-Denial-of-Service (DDoS) attack describes a DoS attack
employing multiple attacking entities [37]. Over time, DoS and DDoS attacks have evolved
to incorporate many different methods to render a victim machine unavailable. According
to [31], the following are the most prominent DoS attack types:

• Packet flooding attacks

• Application layer attacks

• Protocol attacks

Packet flooding, or volume-based, attacks describe attacks where a large number of pack-
ets are sent to a victim machine. This results in excessive endpoint, transit and network
bandwidth consumed at the destination [31]. The bandwidth consumption then renders
the service unavailable for its legitimate clients. The packet types used in packet flooding
attacks can vary. The most common packet types are TCP floods, ICMP echo request/re-
ply, or UDP floods [31, 32].

Another approach to executing a DDoS attack is to exploit specific vulnerabilities in an
application. A slow read attack, for example, starts with the attacker sending a GET
request followed by a POST request advertising a window size of 0 bytes. The web server
then stores the connection in its queue, waiting for the attacker to advertise a window of
non-zero size. The attacker, however, does not advertise a new window size, which leads
to the web server waiting an indefinite amount of time[60]. Application layer attacks like
the slow read attack have been proven effective against many popular web servers [24].

Protocol attacks exploit the inner workings of certain protocols to attack a victim. For
example, in a reflection amplification attack, the attacker spoofs the IP address of the
victim. The attacker then sends a request for information, usually using UDP or TCP.
The response is then sent to the IP address of the victim [44]. The reflected traffic is
sent to a different target and amplified as small requests can trigger significantly larger
responses [29]. The attack, therefore, exploits the inner workings of the UDP or TCP
protocols to cause damage to the target system.
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2.1.3 Characterizing DDoS Attacks

Even though the first publicly known DDoS attack occurred more than 25 years ago [9],
the attack still threatens many online services. As mentioned above, many DDoS attack
types exploit mechanisms deeply rooted in the internet. The widespread use of certain
protocols makes it hard to prevent such attacks in the first place. The landscape of DDoS
attack mechanisms continues to evolve. However, the circumstances enabling attacks have
not significantly changed in recent years [29, 31]. This places research on attack mitigation
and prevention in a particularly challenging environment.

Given the widespread landscape of DoS and DDoS attacks, most defense mechanisms
require specific and up-to-date data to be effective [36]. This raises the question of how
to represent DoS and DDoS attacks and what data to collect. One possible technique
is to structure related data from attacks as fingerprints [2]. During an attack, DDoS
attack traffic can be collected either from network flows or package captures (PCAPS).
Existing tools can then be used to distill important characteristics of the attack traffic
in the form of DDoS fingerprints [12]. These fingerprints therefore describe DDoS attack
traffic data that can be used to uniquely characterize a DDoS attack. The data collected
as fingerprints may include the type of attack, its duration, payload content, source IP
addresses, traffic volume and frequency [32] [1]. This small and compact representation
of an attack is easier to share and allows for a more efficient exchange of DDoS attack
data. This, in return, can be used to update defense mechanisms to prevent attacks with
similar patterns [3].

According to [46], DDoS defense mechanisms see an increasing number of cooperative ap-
proaches. Collaborative defense has emerged as a promising countermeasure against dis-
tributed attacks [40]. Unlike centralized defense approaches, collaborative defenses lever-
age the collective intelligence and resources of a network of participants. This promises
benefits in information quality and offers better scalability of the defense architecture [27]
[41] [62]. Moreover, it allows to move from a reactive to a proactive network-based mitiga-
tion and response approach [51]. However, the implementation of collaborative defenses
also creates the necessity of storing and exchanging data amongst the participants of the
network. This consequently requires the establishment of resilient frameworks for data
sharing and management within the collaborative defense architecture.

2.1.4 Data Lakes

Data lakes are centralized repositories where structured, unstructured and binary data
can be stored. The data is usually stored in its raw format. After the data has been
gathered in a data lake, it can be transformed and used for various tasks such as reporting,
visualization, advanced analytics and machine learning.

Data lakes have gained popularity in recent years by providing a single point for collecting,
organizing and sharing data [61]. In many organizations, data lakes are utilized to increase
data accessibility and ease of integration. With the reduction of cost for storing data in
recent years [13], companies manage increasingly larger data volumes for analytics or to
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store for undetermined future use [50] [26]. Therefore, the centralized nature of data lakes
offers a viable solution for that need.

Although data lakes offer many advantages in storing and managing large quantities of
data, their use has some potential drawbacks. The lack of structure of the data stored in
a lake might make it difficult to understand, access, or search for [47]. This, in return,
may raise issues with data quality and reliability. Additionally, the centralized nature of
data lakes leads to vast amounts of data being stored in a single location. Therefore, data
lakes can become disorganized and challenging to handle without adequate governance
[45]. Similarly, centralized data repositories may be exposed to cybersecurity threats such
as data breaches or hacking. It is crucial to implement appropriate security measures to
safeguard against such risks.

For one, large organizations often rely on centralized data storage in lakes or warehouses.
A central data team is then assigned to manage access to that storage and handle re-
quests from product owners and other parties of the organization [10]. For another, large
organizations also invest in domain-driven design and autonomous domain teams. Even
though these domain teams know what data they need, they still have to act through the
centralized data team to get the insights they require [10]. Oftentimes the data team then
becomes a bottleneck, hindering the domain teams to get the timely insights they need.

2.1.5 Data Mesh Networks

A mesh topology describes an interconnection of nodes that can communicate with each
other [43]. This idea can be extended to a data mesh network, where the data is owned
and managed by the nodes that are part of the mesh. The utilization of standardized
interfaces and APIs then allows for data owned by a node to be shared to the other nodes
in the network.

Data mesh networks, therefore, offer a decentralized approach to managing data inside
an organization [15]. Further, data mesh networks promote distributed architectures
and domain-driven ownership of the data [18]. This clear distribution of ownership may
increase data quality, as every node is only responsible for its share of the data. Data
organization and structuring can therefore be done at the scale of the data held by a node.
As the size of datasets grows, the computational power required for filtering, organizing
and searching in the data also increases [34]. Therefore, breaking down the data into
smaller subsets, nodes in a data mesh network, may decrease the overall computational
power needed to filter, organize and search in the data.

Data mesh networks are a novel approach to promise decentralized data governance.
However, data mesh networks have their own set of disadvantages and challenges. For
one, they require more time and coordination to set up than typical data architectures.
Establishing decentralized ownership and ensuring standards for data quality is central
for the mesh to be functional. Additionally, for nodes to efficiently exchange data within
the network, it is essential to establish standardized interfaces and APIs. These APIs
and Interfaces must be effective for all the nodes in the mesh while still adhering to the
initially defined standards. This may prove challenging if there is a significant difference
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in how the data is structured between all nodes in the mesh. Distributed data ownership
may also come with potential security risks, as every node is individually responsible for
securing the data it holds.

Data mesh networks are novel approaches to data architectures that aim to solve prob-
lems associated with more traditional, centralized data architectures. While centralized
approaches provide the benefits of data accessibility and ease of integration, they tend
to suffer from disorganization and a lack of governance [45] [15]. On the other hand, de-
centralized data architectures come with a higher cost for the establishment but promise
better data quality and the utilization of distributed hardware. Ultimately, the effective-
ness of both types of data architectures heavily depends on the application domain.

In a collaborative DDoS defense architecture, a data mesh can be used to implement some
of the requirements that were described in section 2.1.3 Characterizing DDoS Attacks.
The data mesh provides each domain team with their own storage of DDoS attack data.
Additionally, it allows for the standardized exchange of DDoS attack data between the
domain teams. The below figure 2.2 outlines the idea behind a collaborative DDoS defense
utilizing a data mesh. The figure displays multiple independent domain teams as part
of a data mesh network. The domain teams hold DDoS attack data that can be joined
together to create an overview of the attack. Insights gained from this attack overview
may then be used to more effectively update the defenses against DDoS attacks.

Figure 2.2: DDoS Data Mesh Network
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2.2 Related Work

2.2.1 Existing Tools and Solutions

Data lakes have become popular for organizations looking to consolidate their data in a
centralized repository in recent years. However, traditional data architectures like data
lakes or warehouses face scalability, agility and ownership limitations as data sources be-
come more complex and heterogeneous [singhintercathedra] [45]. In response to these
limitations, the data mesh architecture has emerged as a new paradigm for building scal-
able and decentralized data platforms. Despite the growing interest in data mesh, there
is a significant gap in research on this topic compared to traditional data architectures.
Additionally, a lack of tools for implementing a data mesh network impairs its widespread
adoption. The little research on existing data mesh networks suggests that the best ap-
proach to building your data mesh architecture is with a custom tech stack tailored to
your specific needs [10] [14, 33]. In this related work section, we are focusing on exist-
ing tools that allow the implementation of a data mesh architecture. Next, we discuss
whether these tools may be used to implement a data mesh network to share and organize
DDoS-specific data.

In the below table 2.1, we have provided an overview of available tools that can be used
to implement a data mesh architecture. The table is organized into three columns: Tech-
nology, Storage Principle and Source Availability. The Technology column lists the name
of each tool under consideration. The Storage Principle column describes the type of data
storage each tool uses. Some of the stacks listed below make use of distributed file systems.
While the file systems themselves can not be considered decentralized, their combination
with other tools and their position in the data mesh architecture might make the solution
decentralized. The Source Availability column indicates whether the tool is open-source
or proprietary.
The tools listed below can be grouped into three categories: Single tool solutions, pre-built
stacks and tools for custom stacks. Single tool solutions are tools and products that allow
the implementation of a data mesh architecture using a single tool. Pre-built stacks are
combinations of tools recommended by existing research and may be used to implement
a data mesh architecture [10]. Tools for custom stacks include tools that might be used
to implement single parts of a data mesh architecture.
Some of the technologies listed in the table can not strictly be assigned to either de-
centralized or distributed and open or closed source. The Source Availability column
entries with the value N/A denote that the technology is neither open nor closed source.
BigQuery and Amazon Athena are managed services where the underlying architectures
and codebases are not publicly accessible. However, both tools provide a public API
that enables users to interact with their data using a variety of programming languages,
tools and integrations. The API documentation is publicly available and in the case of
BigQuery, a large community of users contributes to its development and improvement.
The Confluent Data Mesh Prototype is not a fully-fledged software product but a pro-
totype showcasing some of the key concepts and ideas behind data mesh architectures.
As such, it can not be classified as open-source or closed-source software. The Storage
Principle column entries with the value N/A denote that the technology does not provide
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the ability to store data. Therefore, they can not be assigned to either be decentralized or
distributed. BigQuery, Trino and Starburst are query engines and do not offer the ability
to store data themselves. Similarly, Grafana and Apache Superset are data visualization
and BI tools whose primary functionality is not data storage.

While this table displays an overview of helpful tools, it is not complete. As previously
mentioned, existing research on data mesh architectures suggests building a custom so-
lution tailored to the needs of a user. This can be done through a seemingly infinite
amount of combinations of existing tools. Future research might expand on this thought
and further evaluate the usability of existing and newly released tools in a data mesh
architecture.

Technology Storage Principle Source Availability

Single Tool Solutions
Dataplex [20] Distributed Closed Source
Confluent Data Mesh Prototype [11] Decentralized N/A

Pre-Built Stacks

Google Cloud [21] Distributed Closed Source
BigQuery [22] N/A N/A
AWS S3 [5] Distributed Closed Source
Amazon Athena [4] Distributed N/A
MinIO [35] Distributed Open Source
LakeFS [30] Distributed Open Source
Trino [57] N/A Open Source

Tools for Custom Stacks

Starburst [49] N/A Closed Source
InterPlanetary File System (IPFS ) [25] Decentralized Open Source
Trino [57] N/A Open Source
Grafana [23] N/A Open Source
Apache Hadoop [6] Distributed Open Source
MySQL [39] Centralized Open Source
Apache Superset [7] N/A Open Source

Table 2.1: Table of potential tools for the implementation of a DDoS data mesh architec-
ture.

2.2.2 Requirements for the DoS Data Mesh Architecture

Our data mesh architecture has several requirements to be considered when evaluating
potential tools and technologies. Firstly, in line with the core principles of a data mesh,
it must be fully decentralized. This means that each domain team should own their data
and be able to make autonomous decisions concerning how it is stored, managed and
used. Secondly, we prefer on-premise data storage as it is more cost-effective and easier
to test and implement. The data shared across the data mesh network will solely consist
of DDoS fingerprints. As explained in chapter 2.1.3, these fingerprints only represent the
necessary key performance indices needed to categorize the attack data. As a result, the
DDoS fingerprints are not very large. Nonetheless, we value the performance of the data
mesh as an important requirement, as it will heavily impact the data discovery experience
down the line. Finally, the mesh should provide the option to implement monitoring
capabilities later on, allowing us to monitor data quality and performance closely.
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2.2.3 Single Tool Solutions

While searching for tools that might be used to implement a data mesh architecture,
we noticed a distinct lack of single tool solutions. This could be due to the relatively
novel nature of data mesh architectures or the difficulty in building a single solution
that can cater to all the requirements of such a complex system. Although there are
some single tool solutions available that can be used for building data mesh architectures,
they tend to be rather restrictive. Dataplex and the Confluent data mesh prototype
exclusively store data on the cloud. This lack of alternative storage options might not
suit users looking for an on-premise data mesh solution. Further, these solutions introduce
additional restrictions from cloud providers, such as rate limits or object size limits. As a
result, we have determined that these limitations are unsuitable for implementing a data
mesh architecture in our use case.

2.2.4 Pre-built Stacks

The pre-built stacks recommended by existing research on data mesh architectures [10]
offer a more flexible alternative to the single tool solutions discussed above. On the one
hand, the stacks of Google Cloud + BigQuery and AWS S3 + Amazon Athena take a
similar approach to cloud-based storage as the previously discussed single tool solutions.
We deem these stacks unsuitable for our use case for the same reasons of inflexibility and
limitation.
On the other hand, the stack consisting of MinIO + LakeFS + Trino offers an alternative
suitable for our use case. The stack utilizes MinIO as an object store with LakeFS as an
independent hierarchical file system on top of the underlying object storage. Within a
data mesh framework, each domain team offers access to their data through data products
consisting of one or multiple SQL tables. To simplify storage and accessibility, a single
LakeFS repository can store all data products for a domain team. These products can then
be accessed via a shared SQL schema. Each data product is stored in its own directory
tree within the LakeFS file system. Using standard SQL joins, Trino can then be used
to merge data products from different domains [10]. This solution therefore offers the
possibility of a decentralized data mesh architecture that is free from any limitations of
cloud providers. Figure 2.3 shows a possible topology of a data mesh architecture using
MinIO, Trino and LakeFS.

2.2.5 Tools for Custom Stacks

The list of tools available for constructing a custom stack for data mesh architectures is
where the table is most incomplete. According to the requirements above, our data mesh
mainly needs to ensure two core functionalities: The ability for the mesh nodes to store
data and a way to query that data in a standardized manner.

Apache Hadoop offers one possible approach to provide the nodes of the mesh with data
storage. Every domain team would manage one Hadoop repository in a data mesh ar-
chitecture. Hadoop is a distributed, open-source platform that allows for storing and
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Figure 2.3: Data Mesh Architecture Topology with MinIO and Trino [28]

processing large datasets across clusters of computers using simple programming models
[6]. The platform benefits from its long-standing position as a popular tool for imple-
menting data lakes, data warehouses and other data architectures. Therefore, Hadoop
offers a multitude of related projects, such as Apache Ambari. These related projects
may be helpful in the implementation of a data mesh architecture, depending on the use
case. MySQL offers another possible approach to handle the storage of DDoS attack data
at the domain teams. MySQL is a relational database management system (RDBMS)
that is commonly used for managing structured data in a centralized manner [39]. The
RDBMS itself is not decentralized. However, if each domain team manages their own
MySQL instance to store DDoS data, the overall storage of the data mesh network is
decentralized.

Trino, Starburst and the InterPlanetary File System may be utilized to allow commu-
nication between the different nodes in a mesh architecture. Trino, formerly known as
PrestoSQL, is a distributed query engine. It uses SQL-like syntax and high concurrency
to quickly query large datasets across multiple data sources such as Hadoop, Cassandra,
MySQL and others. It allows users to access and analyze data in real-time by leveraging
distributed processing across multiple nodes in a cluster [53]. In a data mesh architecture,
Trino can query the decentralized repositories of each domain team in a standardized way,
similar to the pre-built stack of MinIO + LakeFS + Trino described above. Starburst is
an enterprise-grade, fully supported version of Trino [49]. Although Starburst Enterprise
and Trino share the same underlying technology, Starburst Enterprise offers additional
features and services that make it better suited for enterprise-level applications.
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The InterPlanetary File System (IPFS) is a network protocol that enables decentralized
and distributed peer-to-peer sharing and storage of hypermedia through a distributed
file system [25]. It allows users to access and share files without relying on centralized
servers or hosting services. It utilizes a content-addressed system that allows data to be
identified and accessed based on its unique hash [25]. In a data mesh architecture, IPFS
can access decentralized data repositories by allowing data to be stored and accessed
via a distributed file system. Each domain team would establish its own IPFS node for
sharing and storing data. Other teams can then access this data by searching the IPFS
network for the relevant node and obtaining the data. This approach allows data to be
stored and accessed without needing a central server or data warehouse, resulting in a
more robust, expandable and decentralized system. Additionally, IPFS delivers features
like versioning, immutability and content-addressed storage, which can help ensure data
integrity and traceability across the mesh.

Grafana and Apache Superset are open-source platforms designed for data exploration,
visualization and analytics. Grafana specializes in real-time monitoring and observability,
making it ideal for visualizing metrics, logs and time-series data [23]. Apache Superset
offers support for data exploration, analysis and business intelligence [7]. Grafana sup-
ports many data sources like databases, cloud services and monitoring systems, providing
a wide array of visualization options and interactive dashboards. It is advantageous in
use cases that involve infrastructure monitoring, application performance monitoring and
IoT data visualization [23]. Meanwhile, Apache Superset offers a user-friendly interface
and versatile visualization choices to gain insights from complex datasets. It caters to
various data sources, including databases, data lakes and popular data platforms. This
facilitates the creation of interactive dashboards, reports and visualizations. It is com-
monly employed for ad-hoc analysis, data exploration and generating data-driven reports
and visualizations [7].

2.2.6 Discussion

The existing research on data mesh architectures has provided us with a foundation of
tools that we can utilize to design and implement our DDoS data mesh network. It is worth
noting that the current body of research indicates a scarcity of readily available solutions
for constructing a data mesh network, particularly ones that can be customized to suit
our specific DDoS defense architecture. The single tool solutions found lack flexibility and
customizability, which renders them unsuitable for our specific requirements in building
a DDoS data mesh network. Similarly, tools from pre-built stacks tend to exhibit the
same limitations in terms of adaptability. Many tools found in the existing body of
research heavily depend on cloud storage. In our DDoS data mesh network, however, we
want to allow the domain teams to make autonomous decisions with regard to how data
storage is handled. While cloud-based storage can therefore not be ruled out entirely, we
do not want to enforce it either. Therefore, for the design and implementation of our
data mesh, we will primarily focus on tools that specialize in individual functionalities
of the mesh. The above-mentioned domain-team-autonomy inside the data mesh also
creates a challenge for the efficient exchange of the data across the mesh. To conquer this
challenge, we will incorporate Trino in the design and implementation of the data mesh.
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Trino specifically suits our needs by allowing for standardized queries across multiple,
heterogeneous, storage instances. This provides the key functionality of data exchange
across the data mesh network while offering the greatest amount of flexibility in data
storage.

Both Grafana and Apache Superset can be used to implement the data discovery require-
ments needed for the second goal of this thesis. However, Apache Superset seems to offer
better integration into some of the tools considered above. This is mainly due to better
community support for libraries required to connect to distributed query engines such as
Trino. Additionally, Superset offers more features for data discovery and visualization,
which makes it better a better fit for our use case.

In conclusion, there is a distinct lack of readily available tools to fully implement a data
mesh architecture for our use case. However, single existing tools can be utilized to
implement certain aspects of the data mesh. For our use case, we will use Trino to
provide the data exchange functionality of the data mesh network. Since Trino supports
a host of data sources, this also grants a high degree of autonomy in the choice of the data
storage for the domain teams. This allows us to design a data mesh capable of fulfilling
all the requirements without compromising on autonomy.



Chapter 3

Design

3.1 Requirements

In this section, this thesis lists the requirements that must be fulfilled: The implementation
of a data mesh network to share DDoS attack data and the implementation of a data
discovery architecture that acts upon the data exchanged in the data mesh. While we
have already touched on the requirements of the data mesh architecture in section 2.2.2 of
the thesis, the following requirements also include the data discovery aspect of the thesis.
Generally, the requirements for the complete architecture can be divided into the following
three groups: Requirements for the data storage, exchange and discovery architecture.

Requirements for the data storage architecture:

• Decentralization: In line with the core principles of a data mesh, it must be fully
decentralized. The domain teams of the data mesh are treated as autonomous
instances, which can make autonomous decisions concerning how their data is stored,
managed and used.

• Allows storing DDoS-related attack data at each domain team in the data mesh.

Requirements for the data exchange architecture:

• Allows exchanging DDoS-related attack data to provide an overview of the dis-
tributed attack.

• The performance of the data exchange does not negatively affect the data discovery
process.

• Allows monitoring of the data exchanges, reducing the obscurity of the architecture.

• Allows integrating data visualization and BI (Business Intelligence) tools.

Requirements for the data discovery architecture:

15
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• Act upon the data exchanged in the data mesh.

• Explore key fields of DDoS Fingerprints shared across the data mesh network.

• Grouping and aggregation of key fields from the fingerprints.

• Creation of metrics and visualizations to communicate an overview of the attack
data.

• Allow for the intermediate storage of the data exchanged in the mesh. This reduces
the traffic the data mesh experiences in the case of re-queries.

3.2 Assumptions

This thesis aims to expand a decentralized, collaborative DDoS defense architecture with
the ability to share DDoS fingerprints and gain insights on attack overviews. Conse-
quently, the design outlined below relies on other aspects within the collaborative defense
setup.

First, we assume that DDoS data has already been captured and processed to generate
fingerprints. These fingerprints serve as crucial indicators for identifying and classifying
DDoS attacks. Therefore, these fingerprints are what is exchanged across the data mesh.
Secondly, we assume these DDoS fingerprints have been stored according to a predefined
storage schema at each participating party within the collaborative defense framework.
The storage schema is known across the data mesh. This ensures a homogeneous represen-
tation of the data shared across the data mesh, simplifying the exchange of fingerprints
across the architecture. Therefore, we can assume the presence of DDoS fingerprints
stored within relational databases at the respective domain teams of our data mesh.

3.3 Architecture

The design presented in this section encompasses the integration of a data mesh architec-
ture and data discovery capabilities. With this design, we aim to enable efficient querying
of DDoS fingerprints stored across decentralized domain teams. Additionally, it facilitates
the utilization of data discovery tools to analyze the collected fingerprints. This enables
the user to get an overview of a DDoS attack. In line with the requirements for the archi-
tecture, the design can be divided into three parts: The data storage, the data exchange
and the data discovery architecture.

3.3.1 Data Storage Architecture

In our collaborative DDoS defense architecture, storage of DDoS data is crucial for the
overall functionality of the system. As the architecture of a data mesh network follows a
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decentralized approach, the storage of this data is similarly decentralized. It is important
to note that this decentralization refers to the position of the domain teams inside a data
mesh. The storage implementation may take many topologies inside the domain teams
themselves. Consequently, each domain team assumes responsibility for managing their
storage, granting them autonomy in making storage utilization and practice decisions.
The primary data stored within these decentralized repositories are DDoS fingerprints.
Therefore, each domain team stores its perspective on DDoS attacks. This reflects their
individual experiences from being the subjects of these attacks. These different perspec-
tives can then be combined to create a more complete dataset.

3.3.2 Data Exchange Architecture

At the core of the collaborative DDoS defense architecture lies the functionality of ex-
changing attack-related data among the domain teams. To achieve this, a robust and
efficient data exchange architecture is required. This architecture should be stateless, en-
suring performance and scalability. Its primary objective is to enable each domain team
to gather and aggregate data from other teams, allowing them to gain a comprehensive
local overview of the combined dataset. However, the decentralized architecture and the
autonomy granted to the domain teams present significant challenges to the data ex-
change process. It necessitates the establishment of standardized interfaces for querying
and aggregating data stored in the repositories of the domain teams. These essentially
serve as the interfaces allowing access to the data storage repositories maintained by each
domain team. Standardizing how data is retrieved from the domain teams facilitates data
aggregation from multiple domains. This standardized approach serves as the foundation
for the data exchange architecture.

In the event of an attack, only the underlying data stored in the data storage architecture
is updated, while the interface provided by the data exchange architecture remains con-
sistent. This design allows for seamless data integration and analysis without disruptions,
ensuring a continuous and reliable flow of information throughout the collaborative DDoS
defense architecture. Once the data is queried and obtained through the data exchange
architecture, it can be further processed and analyzed in the data discovery architecture.

3.3.3 Data Discovery Architecture

The data discovery architecture enables the aggregation and analysis of key performance
indicators (KPIs) derived from the data obtained through the data exchange architecture.
This component is fundamental to every domain team within the collaborative defense
architecture. It facilitates access to the exchanged data by directly retrieving the stored
data resulting from queries made through the data exchange architecture or by integrating
the querying capability of the data exchange architecture within its functionality.

Essentially, this component exists at each domain team, providing the means to access
the exchanged data through the data exchange architecture or directly interact with the
data exchange architecture to retrieve the required data. Once the data is obtained,
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this component also enables the analysis of key data fields. This, in return, allows for
extracting valuable insights from the combined dataset. In a collaborative DDoS defense,
these insights can then be used to update the defense at each party of the collaborative
defense.

3.3.4 Design Overview

Figure 3.1 depicted below provides an overview of the topology of the design. It depicts
a collaborative DDoS defense architecture that consists of three parties or domain teams.
Each domain team implements the three core services from the design: Data storage,
data exchange, and data discovery. The data exchange interfaces act as intermediaries
between visualization and storage services. They serve as the gateway through which
domain teams can access the distributed data storages the respective parties maintain.
Data exchange interfaces are accessed inside the data discovery services. In the topology
below, every domain team has access to the data exchange interfaces of all other domain
teams. Therefore, every domain team has access to the data repositories of all other
domain teams. This allows the local aggregation of decentralized data. Since the data
exchange interfaces are accessed from within the data discovery services, the aggregated
data can be used for analysis and the creation of visualizations.

Figure 3.1: Mesh Design within Cooperative Domains
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3.4 DDoS Analytics

The design enables each domain team to access and analyze an extended dataset by ensur-
ing the implementation of three core services within the data mesh network. To illustrate,
consider the following example within the collaborative DDoS defense architecture. Each
party involved represents a domain team within the data mesh network. When a DDoS
attack occurs, all domain teams locally store network metrics as DDoS fingerprints. One
of the domain teams aims to analyze which ports were most affected to update their
DDoS defenses accordingly. To reach the goal, our design outlines a five-step process for
the domain team to follow:

1. Formulate a query that retrieves DDoS fingerprints from all domain teams.

2. Submit the query to the data exchange interfaces. These return the DDoS finger-
prints stored for the respecting domain team.

3. Calculate the result data that contains which ports were hit and how many times.
This is now based on the extended DDoS fingerprint dataset that includes finger-
prints from all domain teams.

4. Create visualizations based on the result data calculated.

5. Update the DDoS defenses based on the insights gained from the analysis. Imple-
ment appropriate measures to mitigate future attacks targeting the identified ports.

The below sequence diagram 3.2 depicts the five steps explained above. It shows the
interactions between the core services running on each domain team. Note that the
visualization only depicts the services needed for the above example use case. In the
proposed design, every domain team runs all three core services, as shown in figure 3.1.
However, to reduce clutter in the visualization, the data discovery services on domain
teams two and three and the data storage and exchange interface on domain team one
have been omitted. Also note that in this use case, the data discovery service allows
to write and submit the queries needed to retrieve the DDoS Data. Whether the data
discovery service directly supports the writing and submitting of queries will depend on
the actual implementation of the service.

Following this process, domain teams can utilize the combined data stored within each
domain team. This allows them to gain valuable insights into the characteristics of DDoS
attacks. The proposed design enables domain teams in the collaborative DDoS defense
architecture to achieve the main goal of the thesis. It offers a comprehensive data mesh
architecture that facilitates discovering and analyzing attack-related information.
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Figure 3.2: Mesh Design Interactions within Cooperative Domains



Chapter 4

Implementation

4.1 Tools

This Chapter focuses on implementing the design proposed in the previous chapter. With
the tools described in this section, we aim to fulfill the requirements outlined in section
3.1. To store the DDoS Fingerprints, we have opted for MySQL databases. This choice
was driven by the simplicity of converting the fingerprints from their JSON format into
the tables supported by MySQL. Additionally, we have integrated Trino as a distributed
query engine. Trino facilitates the exchange of fingerprints across the data mesh network
in an ad-hoc manner. Furthermore, Apache Superset has been chosen as our data visu-
alization and business intelligence tool. Superset offers seamless integration with Trino
within the data mesh framework. In the upcoming sections, we will delve into the core
functionalities of Trino and Superset, providing the necessary knowledge to comprehend
the implementation fully.

4.1.1 Trino

Trino is a distributed query engine that can query large datasets distributed across one
or more heterogeneous data sources. Trino is deployed as a cluster, allowing it to execute
data processing operations in parallel across numerous servers. The tool consists of two
types of instances: coordinators and workers [53]. The following sections provide a de-
tailed exploration of these instances and other essential components that constitute the
architecture of Trino.

4.1.1.1 Trino Cluster

A Trino cluster consists a coordinator and multiple worker instances. Users establish
connections to the coordinator using SQL query tools. The coordinator interacts with the
workers and together they access the connected data sources configured within catalogs.

21
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The processing of each query is performed in a stateful manner. The coordinator orches-
trates the workload and distributes it in parallel across all the workers in the cluster. Each
node in the cluster runs Trino within a single JVM instance and the processing is further
parallelized using threads [53].

4.1.1.2 Coordinators

The Trino coordinator instance parses statements, plans queries and manages Trino worker
nodes. It acts as the central processing unit of the cluster and serves as the primary node
to which clients connect to submit statements for execution. In any Trino setup, at least
one coordinator and one or more worker instances must be available. The coordinator
instance oversees the activities of each worker and coordinates the execution of queries.
It constructs a logical model of a query consisting of multiple stages, which are then
transformed into a series of interconnected tasks executed by the Trino worker cluster.
Coordinators, workers and clients communicate via a REST API [53].

4.1.1.3 Workers

Trino worker instances are tasked with the execution of queries and the processing of
data. The worker nodes retrieve data from connectors and exchange intermediate data
among themselves. Once data has been retrieved from the connectors, the coordinator is
responsible for retrieving the results from the workers and delivering the final results to
the client. Upon startup, a Trino worker process advertises itself to the discovery server
within the coordinator instance, making it available for task execution. Worker instances
communicate with other worker and coordinator instances through a REST API [53].

4.1.1.4 Connectors

A connector in Trino serves as an interface between Trino and a specific data source, such
as Hive or a relational database. Similar to how a driver facilitates the interaction with
a database, a connector implements the SPI of Trino, enabling Trino to communicate
with the underlying resource using a standardized API. Trino comes with several built-in
connectors, including connectors for JMX, system tables, Hive and a TPC-H connector
designed for TPC-H benchmark data. Numerous third-party developers have also con-
tributed connectors, expanding the capability of Trino to access data from diverse data
sources [53].

4.1.1.5 Trino Dashboard

Trino offers a web interface (UI) that allows users to monitor the Trino cluster and manage
queries. The UI is accessible over HTTP or HTTPS and uses the port number specified
in the config.properties of the coordinator node. On the dashboard, you can view the exe-
cution times, status, resources and query plans of queries ran on the cluster. Screenshots
of the dashboard can be found in the appendix of the thesis (A.1, A.2, A.3).
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4.1.2 Apache Superset

Apache Superset is an open-source data exploration and visualization platform. It pro-
vides an interface and a wide range of interactive visualizations that allow users to explore
and analyze data from different sources. Superset can be deployed in various ways. For ex-
ample, locally, using the available docker-compose, or on Kubernetes, using the available
helm chart [7]. Superset runs as a web application that users can interact with through a
configured URL.

4.1.2.1 Database Connections

Superset can be configured to retrieve data from various data sources. The app does not
come pre-installed with built-in connectivity to databases, except for SQLite, which is
included in the Python standard library. To connect to other databases, you are required
to install the needed packages for that database. A list of compatible and preferred
databases and the installation instructions for the required packages can be found in the
documentation of Superset [7].

4.1.2.2 SQL Lab

What sets Superset apart from many other data visualization and BI tools is the ability
to use SQL statements to retrieve the data necessary for your data discovery needs. The
SQL Lab is a SQL IDE integrated into the web application of Superset. This allows you
to query the data sources previously configured as database connections within the SQL
Lab. Once a query is complete, the resulting data is available inside Superset. Returned
data can also be stored in the form of datasets. This allows the reuse of data without
having to fetch it again from the database. Multiple visualizations can be grouped into
dashboards.

4.2 Storage Implementation

Data storage inside the domain teams should be flexible. Since this implementation uti-
lizes Trino to query the data, the available tools to store the fingerprints are limited to
those supported by Trino. Trino supports a list of both relational, as well as NoSQL
connectors. A complete list can be found in the documentation of Trino [54]. For our im-
plementation, we use MySQL instances running on each domain team. This decision was
mainly driven by the fact that MySQL is a relational database. This allows the storage of
DDoS fingerprints according to a uniform schema. As a result, querying and aggregating
the data becomes easier down the line. Even though Trino can query heterogeneous data
sources, we do not utilize that feature in this implementation. Since the data is homoge-
neous in our use case, we can use homogeneous data sources. Introducing heterogeneous
data sources would add unnecessary complexity to this proof of concept architecture.
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4.3 Data Exchange Implementation

The core functionality of the data mesh is the exchange of DDoS Fingerprints across do-
main teams. As mentioned before, our design utilizes Trino to guarantee this functionality.
In our DDoS data mesh architecture, every domain team runs its own Trino instance. One
domain team is selected as the Trino coordinator instance among the data mesh nodes.
While this instance could simultaneously also be a worker node, it is recommended to
have a dedicated coordinator node [55]. However, this does not exclude the domain team
running the coordinator instance from storing DDoS data. All other domain teams inside
the data mesh are configured as Trino worker instances. All Trino instances are configured
to access all the fingerprint repositories of all domain teams. Queries regarding the ex-
change of DDoS fingerprints are sent to the coordinator node. The coordinator node then
optimizes that query and creates a query plan for the worker nodes to execute. Once the
query is completed, the coordinator node returns the result to the client that submitted
the query.

In our implementation of the DDoS data mesh network, every domain team is therefore
running the following services:

• A MySQL instance storing DDoS fingerprints

• Either an instance of a Trino worker node or an instance of a Trino coordinator node

The below figure 4.1 outlines the topology of our DDoS data mesh design. The figure
depicts a data mesh with three domain teams. Each domain team is running a local,
decentralized data storage. In that storage, the DDoS fingerprints are stored. Each
domain team is also running a Trino instance. In the topology depicted, there are one
coordinator node and two worker nodes. The coordinator and worker instances can access
all the fingerprints repositories of all domain teams. This is depicted with the dashed line.
A client queries the coordinator node to retrieve joint data from all domain teams. The
coordinator node then optimizes the query and creates a query plan. The query plan is
then distributed amongst the worker nodes which fetch the data. The result is returned
to the coordinator node, which returns the final response to the client.

4.4 Data Discovery Implementation

Additionally to data exchange functionalities, the DDoS data mesh architecture should
also include data discovery capabilities. The idea is to directly feed the queried data
from the data mesh into one tool capable of handling the requirements specified above.
In our implementation, we utilize Apache Superset to guarantee that functionality. Each
domain team inside the data mesh network runs its instance of Superset. It would be
possible to only run one instance of Superset on one of the domain teams. That instance
could then be made public across the data mesh network. The other domain teams could
then use that Superset instance to satisfy their data discovery needs. However, we have
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Figure 4.1: Data Mesh Architecture Topology with Trino

decided against that implementation to make the architecture as distributed as possible.
Running only one instance of Superset creates a centralized dependency for all domain
teams. Similarly to how dependencies on centralized data teams lead to bottlenecks in
centralized data architectures, a central Superset instance may create a bottleneck for the
data discovery needs of the domain teams. As a result, each domain team runs its own
instance of Superset.

In the configuration of the Superset instances, the coordinator node is specified as a
database connection. While the coordinator node of a Trino cluster is not a database
instance, it is treated as one by Superset. This allows configuring a Trino coordinator
instance as the recipient of the queries ran from within Superset. Since Superset also allows
the formulation of SQL queries inside the SQL Lab, we can seamlessly integrate this data
discovery platform on top of our previously implemented DDoS data mesh architecture.
Figure 4.2 depicts the topology of our data mesh architecture with the inclusion of data
discovery capabilities. Every Domain team now runs a Superset instance that can send
queries to the coordinator node of the Trino cluster.

4.5 Implementation Overview

To provide an overview of the whole architecture, the below figures 4.2 and 4.3 describe
the topology and interactions of the DDoS data mesh implementation. In line with the
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assumptions in chapter 3.2, we assume that the domain teams hold relevant DDoS data
collected after a DDoS attack. We also assume the same topology described in figure 4.1
consisting of three domain teams. All domain teams hold their local view of the DDoS
attack in the form of DDoS fingerprints inside a relational database that is part of their
domain team. Each domain team runs an instance of Trino and an instance of Superset.
There are two Trino worker instances and a dedicated coordinator instance. In every
Superset instance, the coordinator node has been specified to receive queries executed
from within Superset. The purple arrows depicted in figure 4.2 indicate the ability of each
domain team to query the coordinator node and retrieve data from the data mesh.

Figure 4.2: Topology of the Data Mesh including Data Discovery Capabilities

The sequence diagram 4.3 shows the flow of interactions across the DDoS data mesh
architecture. The diagram depicts the following example use case: Domain team two
submits a query to join the DDoS fingerprint tables from all three domain teams. The
query is sent to the Trino coordinator instance on domain team one. The coordinator
instance optimizes the query and creates a query plan. The query plan is then distributed
to the worker instances running on domain teams two and three. The worker instances
fetch the data from the respective data sources. Once the data has been retrieved, it is
aggregated and joined on the worker nodes as far as possible. The results are then returned
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to the coordinator node, which returns the final result to the Superset instance of domain
team two. From there on, domain team two can use the data to create a visualization
depicting an overview of the attack that includes the information of all domain teams
combined. In a further step, the insights gained from the visualization can be used to
update DDoS defense mechanisms across the data mesh.

Note that for this example, the distribution of the query across the worker nodes has
been chosen arbitrarily. In reality, assigning query partitions to worker nodes depends on
many factors, including network latency, parallelizability and the minimization of data
movement. Section 4.11 explains this in more detail.

Figure 4.3: Data Mesh Architecture Sequence of Interactions

4.6 Deployment on Virtual Machines

For the deployment of the design proposed, we utilize three virtual machines. The specifi-
cations of the VMs are listed in table 5.1 of the Evaulation chapter. Each virtual machine
simulates an independent domain team as part of a collaborative DDoS defense architec-
ture. With three domain teams, we can simulate a collaborative defense architecture that
includes multiple Trino worker nodes and a dedicated Trino coordinator node. Further, it
allows us to have three separate, decentralized, storage instances where DDoS fingerprints
are stored. This allows us to simulate a high degree of decentralization across the data
mesh network. All virtual machines are part of a Tailscale zero-trust network. Inside the
zero-trust network, the VMs strictly communicate through the IPs and domains provided
by the network. Further, all services have been configured to use the IPs and domains
provided by the network strictly. Therefore, the communication between Superset, Trino,
and MySQL instances is not handled over public IP addresses. The Tailscale IP addresses
for the VMs are provided in table 5.1. The inclusion of a zero-trust network allows us
to almost completely shut down any access from the outside the network to the inside
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of the network. This provides an additional layer of security for this proof of concept
implementation.

4.7 Storage Deployment

To store the DDoS fingerprints, we deploy MySQL instances on each virtual machine
within our architecture. This choice was driven by the simplicity of converting the fin-
gerprints from their JSON format into the tables supported by MySQL. Each VM in the
setup hosts a dedicated MySQL instance, configured with a user with local and remote
access privileges to the schema and tables described below. Further, the bind address
in the configuration file of the instances was modified to align with the Tailscale IP of
the corresponding VM. Consequently, each MySQL instance can only be accessed via its
network-specific IP address.

DDoS fingerprints are stored in the MySQL instances along the below schema (4.4). Every
domain team (VM) holds a collection of DDoS fingerprints inside a MySQL instance. That
instance can be accessed through a user with remote access privileges over the Tailscale
IP of the respecting VM. The schemas have been named after the respecting VM hosted.
For example, vm2 ddos data is the schema name for VM2. This distinction is important
because it makes it easier to understand where your data comes from inside the Trino
query statement.

4.8 Trino Deployment

We have established a consistent setup across all virtual machines to deploy the Trino
instances for our data mesh network. Each VM hosts a dedicated Trino instance, with
specific roles assigned to different VMs. VM1 accommodates the Trino coordinator in-
stance, while VM2 and VM3 are configured as Trino worker nodes. To ensure efficient
deployment and management, we leverage Docker containers for running Trino on each
VM. Trino provides a container image that facilitates the instantiation of Trino inside a
container. To configure the Trino instances, we mount the configuration directory from
the host machine into the Docker container. This approach allows us to conveniently mod-
ify instance configurations without having to access the container itself. Docker further
allows us to force communication with the container through the IP provided by Tailscale.
As a result, we avoid modifying the internal configuration of Trino to specify the desired
IP address.

4.8.1 Trino Configuration

A Trino instance can be configured by providing the below files and directories inside
an /etc folder in the installation directory of Trino. In our case, the /etc folder on the
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Figure 4.4: Database Schema for DDos Fingerprints

host machine is then mounted to /etc/trino inside the Docker container. Trino auto-
matically detects the mounted configurations folder and uses that instead of the default
configurations.

• Config Properties: Configuration for the Trino server

• Catalog Properties: Configuration for connectors (data sources)

• JVM Config: Command line options for the JVM

• Node Properties: Node-specific environmental configuration

4.8.1.1 Config Properties

The configuration file, etc/config.properties, holds the settings for the specific Trino in-
stance. Therefore, this is where it is specified whether that instance is a coordinator or a
worker. Below are the configurations that we use for the coordinator and worker instances:

Coordinator Node: etc/config.properties

1 coordinator=true

2 node -scheduler.include -coordinator=false
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3 http -server.http.port =8080

4 discovery.uri=http ://100.76.172.123:8080

Listing 4.1: Trino Coordinator Configuration Properties

Worker Nodes: etc/config.properties

1 coordinator=false

2 http -server.http.port =8080

3 discovery.uri=http ://100.76.172.123:8080

Listing 4.2: Trino Worker Configuration Properties

• coordinator: Allows a Trino instance to function as a coordinator. It can therefore
accept queries from clients and manage query execution.

• node-scheduler.include-coordinator: Allows the instance to be treated as both a co-
ordinator and a worker. However, in the case of larger clusters, executing tasks on
the coordinator can reduce query performance since resources are not fully dedi-
cated to the crucial responsibilities of scheduling, managing and monitoring query
execution [55].

• http-server.http.port: Specifies the port for the HTTP server.

• discovery.uri: Is responsible for facilitating communication between Trino nodes.
Each Trino instance registers itself with the discovery service upon startup and
regularly sends heartbeats to maintain its registration. The discovery service shares
the same HTTP server as Trino, using the same port.

4.8.1.2 Catalog Properties

Trino accesses data via connectors. Connectors are mounted in catalogs. The connector
provides all of the schemas and tables inside of the catalog [53]. Catalogs are registered
by creating a catalog properties file in the etc/catalog directory. To implement our DDoS
data mesh, we configure one catalog property file for each MySQL instance. In line with
the access patterns described in the design chapter, all Trino instances have access to all
MySQL instances. The following three files are therefore configured on every instance:

/etc/catalog/vm1 data.properties

1 connector.name=mysql

2 connection -url=jdbc:mysql ://100.76.172.123:3306

3 connection -user=

4 connection -password=

5 case -insensitive -name -matching=true

Listing 4.3: Trino Catalog Properties for Data Source: VM1

/etc/catalog/vm2 data.properties



CHAPTER 4. IMPLEMENTATION 31

1 connector.name=mysql

2 connection -url=jdbc:mysql ://100.78.69.35:3306

3 connection -user=

4 connection -password=

5 case -insensitive -name -matching=true

Listing 4.4: Trino Catalog Properties for Data Source: VM2

/etc/catalog/vm3 data.properties

1 connector.name=mysql

2 connection -url=jdbc:mysql ://100.93.249.10:3306

3 connection -user=

4 connection -password=

5 case -insensitive -name -matching=true

Listing 4.5: Trino Catalog Properties for Data Source: VM3

• connector.name: Has to match the name of the underlying storage tool used. A list
of all connector names can be found in the documentation of Trino [52].

• connection-url: MySQL connection URL for remote access to the database.

• connection-user: The MySQL user with remote access privileges to the schema and
tables.

• connection-password: The password of the database user.

• case-insensitive-name-matching: Allows using case-insensitive schema and table names.

The above configuration allows every instance of Trino to access all data sources inside the
data mesh network. Further, all database connections are established over the IPs pro-
vided by the zero-trust network. Trino can access the configured catalogs through the dot
notation. For example, you can access the Fingerprints table stored in the vm1 ddos data
schema of VM1 like this: vm1_data.vm1_ddos_data.fingerprints. Generally, database access
follows the pattern <catalog_name>.<schema_name>.<table_name>.

4.8.1.3 JVM Config

The etc/jvm.config file is where you can specify the command line options for launching
the Java Virtual Machine. This file follows a specific format, with each option listed
on a separate line. It is important to note that the shell does not interpret the options
in this file, so it is unnecessary to include quotes even if an option contains spaces or
special characters. Except for the -Xmx entry the below fields represent the default settings
recommended in the documentation of Trino [55] and have been specified for all VMs. -

Xmx specifies how much memory you allow Trino to use on that node. We have adapted
this value to fit the specifications of the hardware we use for the implementation.

/etc/jvm.config
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1 -server

2 -Xmx2G

3 -XX:InitialRAMPercentage =80

4 -XX:MaxRAMPercentage =80

5 -XX:G1HeapRegionSize =32M

6 -XX:+ ExplicitGCInvokesConcurrent

7 -XX:+ ExitOnOutOfMemoryError

8 -XX:+ HeapDumpOnOutOfMemoryError

9 -XX:-OmitStackTraceInFastThrow

10 -XX:ReservedCodeCacheSize =512M

11 -XX:PerMethodRecompilationCutoff =10000

12 -XX:PerBytecodeRecompilationCutoff =10000

13 -Djdk.attach.allowAttachSelf=true

14 -Djdk.nio.maxCachedBufferSize =2000000

15 -XX:+ UnlockDiagnosticVMOptions

16 -XX:+ UseAESCTRIntrinsics

17 # Disable Preventive GC for performance reasons (JDK -8293861)

18 -XX:-G1UsePreventiveGC

Listing 4.6: Trino JVM Configuration

4.8.1.4 Node Properties

The etc/node.properties file consists of configuration settings specific to each Trino node.
A node represents a single installed instance of Trino on a machine. The below configu-
rations have been specified for all Trino instances of the data mesh network:

/etc/node.properties

1 node.environment=bthtest

2 node.id=ffffffff -ffff -ffff -ffff -ffffffffffff

Listing 4.7: Trino Node Property Configuration

• node.environment: Specifies the name of the environment. All Trino nodes in a cluster
must have the same environment name.

• node.id: This is the unique identifier for this installation of Trino. This must be
unique for every node. We generated these IDs for the nodes in our data mesh with
the uuidgen command on the VMs.

4.8.2 Running Trino

Every VM stores the above-specified configuration files inside the /etc/trino-server-416/etc
directory. We run the following command to start a Docker container running the Trino
image:

sudo docker run --name trino -d -p 100.76.172.123:8080:8080 --volume /etc/trino-server-416/

etc:/etc/trino trinodb/trino
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• --name: Name of the Docker process.

• -d: Run the container in detached mode.

• -p: Maps the Tailscale IP of the respecting VM and port 8080 to port 8080 inside
the docker container. This forces all communication with the Trino instance through
the IP of the zero-trust network. Note that this IP has to be changed for every VM
when running the command above. The example provided lists the IP of VM1.

• --volume: Mounts the folder at /etc/trino-server-416/etc on the host machine (VM)
to the folder /etc/trino inside the Docker container. This allows us to access the
configurations for the Trino instance by accessing /etc/trino-server-416/etc on the
host machine.

• trinodb/trino: Specifies the image used to run the container. This is the official
Trino image provided by the documentation [56].

4.9 Superset Deployment

Similarly to how we run a Trino instance on every VM, we also run a Superset instance
on every VM. This allows our domain teams to act on the combined DDoS data without
going through some centralized party. We also run Superset inside Docker containers
for the same reasons of efficient deployment and management. The Apache foundation
provides a git repository that contains all the necessary files to run Superset containerized
[7]. For the deployment in our data mesh, we cloned the git repository on all VMs.

4.9.1 Superset Configuration

Once the git repository has been cloned, there are two changes that we have to configure.
For one, Superset does not come pre-installed with built-in connectivity to databases. To
use Trino with Superset, we must first install the necessary drivers. Since we are running
Superset inside a Docker container, a simple pip install trino will not suffice. To install
the Trino drivers inside the container, we add the trino library to the docker/requirements-
local.txt file of the cloned repository. This ensures that the Trino library, including the
necessary drivers to use Trino with Superset, is installed within the Docker container
running Superset. The second change we have to configure is using the Tailscale IP.
In the docker-compose-non-dev.yml file of the cloned repository, we change the service
configuration for Superset to include the Tailscale IP of the respecting VM. We change
the ports field to include the IP. Note that the IP has to be changed for each VM to
match the assigned Tailscale IP for that VM. An excerpt of the service configuration for
Superset running on VM1 is depicted below:

docker-compose-non-dev.yml
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1 ...

2 superset:

3 env_file: docker /.env -non -dev

4 image: *superset -image

5 container_name: superset_app

6 command: ["/app/docker/docker -bootstrap.sh", "app -gunicorn "]

7 user: "root"

8 restart: unless -stopped

9 ports:

10 - 100.78.69.35:8088:8088

11 depends_on: *superset -depends -on

12 volumes: *superset -volumes

13 ...

Listing 4.8: Excerpt from Docker-Compose Configuration File

Once the above changes have been configured and Superset is running, we can add the
Trino database connection. In the settings of the Superset web app, we add the following
connection URL: trino://timportmann@100.76.172.123:8080

The connection URL points to the Trino coordinator node on VM1 on port 8080. We also
pass a user to establish the connection with. For our configuration of Trino, this user can
be any placeholder and is not configured in the Trino configurations. We will touch more
on Trino users in the Performance Analysis section of the evaluation chapter (see 5.3.1)

4.9.2 Running Superset

The previously cloned repository contains a docker-compose-non-dev.yml that runs all
necessary containers for Superset. We run the following command in that directory to
start the containers: sudo docker compose -f docker-compose-non-dev.yml up -d

• -f: Specifies that we want to execute the docker compose file with the given path.

• -d: Runs docker compose in detached mode.

The docker compose file does not only run a single container with Superset. A total of
six containers are started. These containers include the following images:

• apache/superset: superset app

• apache/superset: superset worker beat

• apache/superset: superset worker

• apache/superset: superset init

• postgres: suberset db

• redis: superset cache
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Once all containers are running, the Superset web application can be accessed at http

://<vm_tailscale_ip>:8088/login/. Note that <vm_tailscale_ip> is a placeholder for the
Tailscale IP address of the respecting VM where you run Superset.

4.10 Deployment Overview

The below deployment diagram depicts the services and their accessibility within our
implemented architecture. Each service has been configured as explained above. VMs
and Docker containers are represented by a rectangular box and are accessed through the
IPs and ports depicted above them. In section 4.9.2, we have described how Superset
starts multiple services inside separate Docker containers. In the deployment diagram,
however, Superset is depicted as a single container to reduce unnecessary cluttering of the
visualization.

Figure 4.5: Data Mesh Architecture Deployment

4.11 Discussion on Performance and Availability

The performance of this architecture can primarily be defined as the time it takes to submit
a query and receive the result. Trino plays a crucial role in handling this performance
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aspect, as Superset adds no significant overhead except for creating visualizations. Once
the data has been stored or cached in Superset, the retrieval process becomes instant, as
there is no need to re-run the query.

Performance is a crucial metric for the overall usability of this architecture. To optimize
performance, deploying the system as a cluster offers numerous benefits. By distributing
the workload across multiple worker nodes, the work can be divided into partitions and
parallelized, improving efficiency. Trino leverages this distributed nature to increase query
performance. When creating the query plan, Trino distributes the query based on several
criteria [59]:

• Minimizing data movement: Queries are distributed across worker nodes to minimize
data movement. Nodes located close to the data source needed for the query are
preferred [59].

• Maximizing parallelism: If parts of the query can be executed in parallel, these parts
are distributed across multiple worker nodes [59].

• Considering network latency: Trino considers network latency, which refers to the
time required for data to travel between worker nodes. The query optimizer aims
to minimize the impact of network latency by assigning tasks to worker nodes that
are geographically close or show low network latency between them [59].

• Node capabilities: When assigning query partitions, the resources of the worker
nodes are considered. The query optimizer considers CPU cores, memory capacity
and disk I/O capabilities to make informed decisions about worker node assignment
[59].

Furthermore, Trino employs multiple threads on each worker node (based on the specific
configuration) to fully utilize the available resources [59].

Part of the performance of a system is also its availability. In the implementation described
in this chapter, we only deploy one Trino coordinator node. This creates a single point of
failure for all queries across the data mesh network. If the coordinator node is unavailable,
no data can be retrieved. One coordinator node is sufficient for this proof of concept
implementation, as high availability is not a primary concern.

In section 5.3 we will propose concrete measures that can be taken to increase the perfor-
mance, availability and security of your implementation.
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Evaluation

5.1 Deployment Specifications

Table 5.1 below provides an overview of the virtual machine specifications used to imple-
ment our data mesh architecture. These VMs were rented and operated with the Ubuntu
22.04 operating system, selected based on personal preference and familiarity with the
Ubuntu environment. Each VM has 4GB of RAM and runs on an Intel Haswell processor
with two physical cores operating at 2.394GHz. These specifications were the minimum
requirements to support this proof of concept implementation. Further, the VMs are
equipped with 85GB of storage, of which 15GB are used after all services for the DDoS
data mesh have been installed. It is important to note that this also includes the DDoS
fingerprints stored on each of the VMs. For our use case, the set of Fingerprints is rather
small. However, larger fingerprint datasets can quickly require more storage capacity.
To simulate decentralization and introduce additional latency challenges, we tried to dis-
tribute the VMs as much as possible globally. Given the decentralized nature of data
mesh networks, this approach aimed to create a more realistic environment.

Location OS CPU RAM Storage Tailscale IP
VM1 London (UK) Ubuntu 22.04.2 LTS Intel (Haswell, no TSX) (2) @ 2.394GHz 4GB 85GB 100.76.172.123
VM2 Singapore (SGP) Ubuntu 22.04.2 LTS Intel (Haswell, no TSX) (2) @ 2.394GHz 4GB 85GB 100.78.69.35
VM3 Beauharnois (CA) Ubuntu 22.04.2 LTS Intel (Haswell, no TSX) (2) @ 2.394GHz 4GB 85GB 100.93.249.10

Table 5.1: Virtual Machine Specifications

5.2 Data Discovery

As outlined in the requirements for the overall architecture designed and implemented
in this thesis, the architecture should also allow for data discovery capabilities. In this
chapter, we assess the effectiveness of our architecture in facilitating data discovery with
DDoS data. With the term data discovery, we specifically understand the ability to
join, analyze and visualize the decentralized DDoS data stored at the domain teams.

37
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To accomplish this, we conduct a series of concrete queries on the cluster, allowing us
to examine the ability to retrieve relevant information. Subsequently, we showcase the
process of visualizing the retrieved data.

5.2.1 Dataset

The DDoS fingerprints utilized for the queries have been generated with EDDD, a tool
created as part of a master thesis at UZH [17]. DDoS fingerprints are represented in a
JSON format. An overview of the fields contained in a fingerprint can be found in the form
of an example fingerprint in the appendix (A.1) of this thesis. To store the fingerprints,
we utilize the schema outlined in section 4.7. Therefore, the fingerprints are stored in the
MySQL instances on every VM and can be retrieved via the configured MySQL user with
remote access privileges. The base set of generated fingerprints consisted of a total of 596
DDoS fingerprints. To augment the base set, fingerprints have been duplicated at random
to increase the total number of fingerprints to 2051. For the duplicated fingerprints, the
key field has been newly generated. This means that in the augmented set of 2051 finger-
prints, some fingerprints contain the exact same information, but have a different unique
identifier key. In a real-world environment, repeated entries in the fingerprint dataset
could be attributed to malicious actors or any of the participants trying to manipulate
the data. This can provide an adversarial scenario for the evaluation of the data discovery
capabilities of the architecture. The base set of generated fingerprints only contains attack
vectors, including the TCP protocol. In order to make the data discovery in the following
sections more interesting, we have changed the protocol on random fingerprints to ICMP.
The remaining fields were left untouched. The augmented set of fingerprints has been
distributed across the VMs at random. This resulted in the following distribution: 609
fingerprints on VM1, 693 fingerprints on VM2 and 749 fingerprints on VM3.

5.2.2 Data Retrieval

The first step of the data discovery process is to define what information we would like
to retrieve from the DDoS attack data. Once we have a concrete idea of the information
we want to analyze, we can think about what data has to be extracted that yields the
information wanted. Based on that data, we can formulate queries that retrieve the data
from the data mesh. For this showcase, we are considering the following information we
would like to retrieve from the joint DDoS attack data:

• We want to find out which protocols are present in the attack data and how many
packets were received via each protocol on each VM.

• We want to get an impression of the magnitude of the attack and the total duration
that attack traffic data was recorded.

• We want to extract the maximum, minimum and average detection threshold values
for all attack vectors for each VM.
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The next step is to formulate the queries that allow for the retrieval of the necessary data.
For this, we utilize the Superset SQL Lab. We can directly formulate and run the queries
inside the SQL IDE. Below are the three queries that retrieve the data necessary for the
analysis outlined above.

Query 1 aggregates data from three different tables (vm1_ddos_data.AttackVector, vm2_ddos_data
.AttackVector, and vm3_ddos_data.AttackVector) that are located in three different databases
(vm1_data, vm2_data, and vm3_data). The query sums up the nr_packets field for each
protocol from each table. Additionally, the query also keeps track of the total num-
ber of packets per protocol (packets_total). The result is a list of protocols with the total
number of packets for each VM and the total number of packets across all VMs.

1 SELECT

2 protocol ,

3 SUM(packets_vm_1) AS packets_vm_1 ,

4 SUM(packets_vm_2) AS packets_vm_2 ,

5 SUM(packets_vm_3) AS packets_vm_3 ,

6 SUM(packets_total) AS packets_total

7 FROM

8 (

9 SELECT

10 protocol ,

11 nr_packets AS packets_vm_1 ,

12 0 AS packets_vm_2 ,

13 0 AS packets_vm_3 ,

14 nr_packets AS packets_total

15 FROM

16 vm1_data.vm1_ddos_data.AttackVector

17 UNION ALL

18 SELECT

19 protocol ,

20 0 AS packets_vm_1 ,

21 nr_packets AS packets_vm_2 ,

22 0 AS packets_vm_3 ,

23 nr_packets AS packets_total

24 FROM

25 vm2_data.vm2_ddos_data.AttackVector

26 UNION ALL

27 SELECT

28 protocol ,

29 0 AS packets_vm_1 ,

30 0 AS packets_vm_2 ,

31 nr_packets AS packets_vm_3 ,

32 nr_packets AS packets_total

33 FROM

34 vm3_data.vm3_ddos_data.AttackVector

35 )

36 GROUP BY

37 protocol

Listing 5.1: Data Discovery Query 1: Packets per Protocol

Query 2 aims to retrieve data that allows us to get an overview of the duration and gravity
of the attack. The query consists of multiple subqueries that join attack data from all
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three data sources:

• The innermost subquery (CombinedAttackVectors) combines data from the AttackVector
tables of all three VMs. The subquery selects the VM ID (vm_id), the number of
packets (nr_packets) and the start time of the attack (time_start).

• The next subquery (BaseQuery) is aggregating this combined data. The subquery
counts the number of vectors from each VM and the total number of packets,
grouped by the start time.

• The outermost query is then joining this base query with three other subqueries
(vm1_duplicates, vm2_duplicates, vm3_duplicates), each of which calculates the dupli-
cate rate for each VM. The duplicate rate is calculated as the total count of packets
divided by the distinct count of packets, multiplied by 100. This results in the
percentage of total attack vectors that are duplicates per VM per second. If there
are no duplicates for a VM, the rate is set to 0 using the COALESCE function. In
order to gain insight into how unique the recorded attack vectors are, you need to
specify what makes them unique. In our case, we chose that if two attack vectors
have the exact same amounts of packets, they are treated as duplicates. Since we
are working with a generated dataset, we allow for this abstraction. When dealing
with a complex dataset, it could be advantageous to more carefully define when two
attack vectors are considered to be duplicates.

• The final result of the query is a table with the following columns: time_start,
vm1_vector_count, vm2_vector_count, vm3_vector_count, total_packets, vm1_duplicate_rate
, vm2_duplicate_rate, vm3_duplicate_rate. Each row in the table represents a unique
start time and for each start time, it shows the count of vectors from each VM, the
total number of packets and the duplicate rate for each VM.

1 SELECT

2 BaseQuery.time_start ,

3 BaseQuery.vm1_vector_count ,

4 BaseQuery.vm2_vector_count ,

5 BaseQuery.vm3_vector_count ,

6 BaseQuery.total_packets ,

7 COALESCE(vm1_duplicates.duplicate_rate , 0) AS vm1_duplicate_rate ,

8 COALESCE(vm2_duplicates.duplicate_rate , 0) AS vm2_duplicate_rate ,

9 COALESCE(vm3_duplicates.duplicate_rate , 0) AS vm3_duplicate_rate

10 FROM (

11 SELECT

12 time_start ,

13 SUM(CASE WHEN vm_id = ’vm1 ’ THEN 1 ELSE 0 END) AS

vm1_vector_count ,

14 SUM(CASE WHEN vm_id = ’vm2 ’ THEN 1 ELSE 0 END) AS

vm2_vector_count ,

15 SUM(CASE WHEN vm_id = ’vm3 ’ THEN 1 ELSE 0 END) AS

vm3_vector_count ,

16 SUM(nr_packets) as total_packets

17 FROM (

18 SELECT

19 ’vm1 ’ as vm_id ,
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20 nr_packets ,

21 time_start

22 FROM

23 vm1_data.vm1_ddos_data.attackvector

24 UNION ALL

25 SELECT

26 ’vm2 ’ as vm_id ,

27 nr_packets ,

28 time_start

29 FROM

30 vm2_data.vm2_ddos_data.attackvector

31 UNION ALL

32 SELECT

33 ’vm3 ’ as vm_id ,

34 nr_packets ,

35 time_start

36 FROM

37 vm3_data.vm3_ddos_data.attackvector

38 ) AS CombinedAttackVectors

39 GROUP BY

40 time_start

41 ) AS BaseQuery

42 LEFT JOIN (

43 SELECT

44 time_start ,

45 COUNT (*) * 100 / COUNT(DISTINCT nr_packets) as duplicate_rate

46 FROM

47 vm1_data.vm1_ddos_data.attackvector

48 GROUP BY

49 time_start

50 ) AS vm1_duplicates ON BaseQuery.time_start = vm1_duplicates.time_start

51 LEFT JOIN (

52 SELECT

53 time_start ,

54 COUNT (*) * 100 / COUNT(DISTINCT nr_packets) as duplicate_rate

55 FROM

56 vm2_data.vm2_ddos_data.attackvector

57 GROUP BY

58 time_start

59 ) AS vm2_duplicates ON BaseQuery.time_start = vm2_duplicates.time_start

60 LEFT JOIN (

61 SELECT

62 time_start ,

63 COUNT (*) * 100 / COUNT(DISTINCT nr_packets) as duplicate_rate

64 FROM

65 vm3_data.vm3_ddos_data.attackvector

66 GROUP BY

67 time_start

68 ) AS vm3_duplicates ON BaseQuery.time_start = vm3_duplicates.time_start

69 ORDER BY

70 BaseQuery.time_start

Listing 5.2: Data Discovery Query 2: Attack Overview

Query 3 retrieves the average, maximum and minimum detection thresholds for the set
of fingerprints on each of the three virtual machines. It does this by querying three differ-
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ent tables (vm1_data.vm1_ddos_data.attackvector, vm2_data.vm2_ddos_data.attackvector and
vm3_data.vm3_ddos_data.attackvector), each representing a different VM. The result of the
query is a list of VMs with the maximum, minimum and average detection threshold
values.

1 SELECT

2 ’VM1 ’ as VM,

3 CAST(AVG(detection_threshold) as DECIMAL (10,2)) as

Average_Detection_Threshold ,

4 CAST(MAX(detection_threshold) as DECIMAL (10,2)) as

Max_Detection_Threshold ,

5 CAST(MIN(detection_threshold) as DECIMAL (10,2)) as

Min_Detection_Threshold

6 FROM

7 vm1_data.vm1_ddos_data.attackvector

8 UNION ALL

9 SELECT

10 ’VM2 ’,

11 CAST(AVG(detection_threshold) as DECIMAL (10,2)),

12 CAST(MAX(detection_threshold) as DECIMAL (10,2)),

13 CAST(MIN(detection_threshold) as DECIMAL (10,2))

14 FROM

15 vm2_data.vm2_ddos_data.attackvector

16 UNION ALL

17 SELECT

18 ’VM3 ’,

19 CAST(AVG(detection_threshold) as DECIMAL (10,2)),

20 CAST(MAX(detection_threshold) as DECIMAL (10,2)),

21 CAST(MIN(detection_threshold) as DECIMAL (10,2))

22 FROM

23 vm3_data.vm3_ddos_data.attackvector;

Listing 5.3: Data Discovery Query 3: Detection Thresholds

When we enter and run the queries in the Superset SQL Lab, the result is displayed in
a table below the SQL IDE. From there, the result data, as well as the query, can be
saved for future use. A Screenshot of the interface of Superset displaying a Query and
the structure of the resulting data can be found in the appendix of this thesis (A.4).

5.2.3 Data Visualization

Once we have the data from the queries in Superset, we can create visualizations based
on that data directly inside Superset. Superset offers the ability to create interactive
visualizations based on the data queried. For each of the queries above, we have created
a separate visualization.

For Query 1, we have created a grouped bar chart 5.1. Each Protocol retrieved from
the combined set of fingerprints is one group. Inside a group, we display the number of
packets monitored per VM as individual bars. With the augmented set of fingerprints,
two protocols are present: TCP and ICMP. The total number of packets received via TCP
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amounts to 2.18 billion, while the total number of packets received via ICMP amounts to
275 million. The visualization allows you to see that the total amounts of packets received
per protocol is not dominated by a single VM. Additionally, the majority of the packets
were received via the TCP protocol.

Figure 5.1: Number of Packets per Protocol per Source

For Query 2, we chose to visualize the data retrieved as a mixed chart. Figure 5.2 depicts
a close-up of the created visualization. The complete visualization can be found in the
appendix of the thesis A.5. On the x-axis of the chart is the duration of the attack in
seconds. Each attack vector present in the dataset has a timestamp. An attack vector
refers to a specific type of DDoS attack, including details like the service protocol used,
source IPs involved and their corresponding real IPs if any. In the dataset we use, the
attack vectors are either ICMP- or TCP-based, involving multiple source IPs. For each
second of the attack, we present specific data. The total count of attack vectors for each
virtual machine is visualized as a stacked bar. The percentage of duplicate attack vectors
for each virtual machine is depicted as a line. Hovering over one of the visual features
allows you to see the specific values as a tooltip menu. From the visualization, we can
see that each of the VMs recorded a similar amount of attack vectors throughout the
attack. We can also see that each VM has quite a high attack vector duplication rate.
For example, a duplication rate of 315% for VM1 in second two of the attack means that
each distinct attack vector appears 3.15 times in the attack vector set of that second.
In other words, for every unique attack vector, there are approximately two additional
duplicates in the data of that time frame. This makes sense, given that we have artificially
augmented the dataset from 596 to 2051 fingerprints.

For Query 3, we chose to visualize the results as a grouped bar chart 5.3. The average,
maximal and minimal detection thresholds retrieved from each VM are represented as
individual bars. The three resulting bars are then grouped per VM from where they
have been retrieved. This visualization lets the user get a quick overview of how the
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Figure 5.2: Close up: Attack Vector Counts and Duplication Percentages per VM over
the Attack Duration

detection thresholds compare between the domain teams. Unusually high or low detection
thresholds can be seen at a quick glance.

5.2.4 Query Performance

In this section, we evaluate the query performance for the queries specified earlier. To
gain insights into the overall performance of the architecture, we measured several met-
rics of the queries. The dataset outlined in section 5.2.1 consists of 2051 fingerprints and
collectively amounts to a total data size of 8.924 megabytes. The distribution of these
fingerprints, as detailed in Section 5.2.1, resulted in the following data distribution: 2.612
megabytes on VM1, 3.064 megabytes on VM2 and 3.248 megabytes on VM3. Table 5.2
shows the evaluation results. All data has been read from the Trino cluster dashboard.
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Figure 5.3: Detection Thresholds by Source

Each query was run five times to ensure accuracy and reliability. The time measurements
were then averaged over these five runs. The input and output row measurements re-
mained consistent across all the runs. For all three queries, we measured the following
metrics:

• Elapsed Time: Total time of the query, from when it was submitted to when the
final results were returned.

• Queued Time: The time the query spent waiting in a queue before it started pro-
cessing. This time depends on the availability of worker nodes and the overall load
the coordinator node faces.

• Analysis Time: The time required for analyzing the query, including tasks such as
parsing the SQL query and doing semantic analysis.

• Planning Time: The time taken to formulate an execution plan for the query.

• Execution Time: The time taken to execute the query based on the formulated
execution plan. This includes retrieving data from decentralized data repositories,
processing it and aggregating the results.

• No. Input Rows: Represents the number of rows processed for the aggregation
operations within the query. It is not the total number of rows read from the
data sources. For example, in Query 3, the aggregation operations involve grouping
the attack vectors by VM and calculating the average, minimum and maximum
detection thresholds for each VM. The number of input rows counts the number of
rows involved in this grouping and aggregation process, corresponding to the number
of unique VMs in the data mesh.
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• No. Output Rows: Represents the number of rows that are effectively returned
from the query.

It is important to note that the elapsed time can be shorter than the sum of the other
times. This is because some of these stages can happen concurrently. For instance, while
the query is being analyzed (Analysis Time), the system might already start planning
(Planning Time) for the parts of the query that have already been analyzed. Similarly,
some parts of the query might start executing (Execution Time) while others are still
being planned [53]. Additionally, we took the averages over five runs which may also
lead to the times not adding up to the total elapsed time. The average of sums is not
necessarily equal to the sum of averages.

Elapsed Time: Queued Time Analysis Time Planning Time Execution Time No. Input Rows No. Output Rows
Query 1 5.11s 0.00676s 3.17s 1.20s 1.94s 2’050 2
Query 2 6.82s 0.00127s 3.13s 1.33s 3.68s 4’100 11
Query 3 4.97s 0.00163s 3.16s 1.14s 1.81s 3 3

Table 5.2: Query Performance Evaluation

The above table offers several interesting insights into the overall performance of the
architecture:

• The total execution times for all queries were remarkably short, considering that
this decentralized architecture fetches data from three different data sources within
a single query.

• The short execution times can largely be attributed to the relatively small size of
the dataset. Despite the complexity of the queries, the small data size allows for
fast processing. Query 2, the most complex query with the highest execution time,
also shows the largest number of input rows.

• The analysis and planning times are consistent across all queries. These times are
directly influenced by the layout and architecture of the data mesh.

• The execution time consistently remained lower than the combined analysis and
planning times. This indicates that the overhead associated with querying differ-
ent data sources and the planning costs inherent to Trino running as a cluster may
surpass the execution time itself. This suggests potential room for optimization,
especially for small queries where the cluster handling overhead might not be justi-
fiable.

In conclusion, the evaluation highlights the tradeoffs involved in utilizing a decentralized
data mesh architecture with a Trino cluster for query processing. While the overall exe-
cution times are short, there exists a balance between the benefits of cluster performance
and the overhead incurred. This may be more favorable for larger, more complex datasets
and clusters. As with many things in system design this is a tradeoff. You trade a sub-
stantial overhead for small datasets with the potential performance benefits that a cluster
offers for larger datasets.
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5.2.5 Data Discovery Discussion

The data discovery and visualization sections demonstrate the data discovery capabilities
of this architecture. Query 2 shows that we can specify complex Queries that retrieve
multidimensional datasets. With Superset, we are then able to visualize these complex
datasets. Superset also offers powerful interactive features that can help with the data dis-
covery. However, we have also noticed that we started to reach the limits of Superset with
the visualization for Query 2. It seemed that Superset does not always offer the degree of
flexibility one might need when working with complex datasets. While multidimensional
visualizations are possible, we got the impression that this is not what the tool was built
for. However, this is also where the modularity of the architecture comes into play. If a
user thinks that the visualization possibilities of Superset are not enough, the tool can
simply be used as a SQL IDE to run queries against the data mesh. Superset allows you
to get a quick overview over the results of the queries. Once the user is satisfied with the
resulting data, the data can be exported as a .csv or a .json file. This then allows you to
use whatever visualization tool or library that fits the needs of the user. It is important
to note that the queries and visualizations presented here demonstrate the data discovery
possibilities within the architecture. More complex visualizations and interactive features
can be developed with a more complex dataset to extract even deeper insights from the
data.

5.3 Analysis

In this section, we aim to provide an in-depth analysis of the general performance, security
and deployment aspects of the DDoS data mesh service. Many of these aspects are
configuration- and deployment-specific. By discussing them, we aim to address aspects
that are not necessarily important in our use case, but are important to consider if the
design is replicated with a different use case at hand.

5.3.1 Performance Analysis

In this part of the thesis, we will discuss the performance of the architecture based on
the implementation and deployment outlined in the previous chapters. Our goal is to
provide an overview of configuration-based performance factors that may influence the
overall performance of the architecture.

5.3.1.1 Maximum Query Size

The evaluation of query times in section 5.2.4 shows that the overall performance for data
retrieval is reasonably good. Since DDoS fingerprints are already a condensed representa-
tion of network traffic data, these datasets should always be reasonably sized. Nonetheless,
it is important to test the limits of the architecture to rule out potential shortcomings.
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Trino supports a connector for the TPC-H benchmark dataset. The connector offers
a collection of schemas specifically designed to facilitate the TPC-H benchmark. When
querying a TPC-H schema, the connector dynamically generates data in real-time through
a deterministic algorithm [58]. TPC-H serves as a benchmark for decision support. The
selection of queries and database content aims for wide applicability across industries.
This benchmark showcases the capabilities of decision support systems that handle sub-
stantial data volumes, execute intricate queries and provide solutions to vital business
inquiries [48]. An overview of the tables contained in the TPC-H benchmark dataset can
be found in the appendix of this thesis A.6

The TPC-H connector allows us to test the limits of our architecture without having to
generate extremely large datasets ourselves. Instead of measuring the query times and
comparing them with other architectures, we can use the dataset to find out at which
point the architecture struggles. Each TPC-H schema consists of a standardized set of
tables. The size of the schemas can be scaled arbitrarily by including the scaling factor in
the schema name. For example, the default TPC-H schema can be queried using tpch.sf1.
The same dataset scaled by a factor of two can be queried using tpch.sf2. For the evalua-
tion, we used the below query. The query has been taken from a pre-defined collection of
sample queries [16]. It joins the three tables customer, orders and lineitem and retrieves
the shipping priority and potential revenue. This query has been selected, as it is similar
in complexity to queries that might be performed with DDoS data. Further, the query
has been adapted to fit the syntax of Trino.

1 SELECT

2 l.orderkey ,

3 sum(l.extendedprice * (1 - l.discount)) as revenue ,

4 o.orderdate ,

5 o.shippriority

6 FROM

7 tpch.sf2.customer c

8 JOIN

9 tpch.sf2.orders o ON c.custkey = o.custkey

10 JOIN

11 tpch.sf2.lineitem l ON l.orderkey = o.orderkey

12 WHERE

13 c.mktsegment = ’BUILDING ’

14 AND o.orderdate < date ’1995-03-15’

15 AND l.shipdate > date ’1995-03-15’

16 GROUP BY

17 l.orderkey ,

18 o.orderdate ,

19 o.shippriority

20 ORDER BY

21 revenue desc ,

22 o.orderdate;

Listing 5.4: TPC-H Example Query

Table 5.3 depicts the time taken to execute the query and the total number of input rows
for each schema size queried. The queries were run 5 times and the time measures were
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averaged across the five runs. The time and the number of input rows were taken from
the Trino cluster dashboard.

No. Input Rows Time Executed
tpch.sf1 7’710’000 8.48s
tpch.sf2 15’600’000 17.84s
tpch.sf3 22’900’000 N/A

Table 5.3: Performance Comparison of TPC-H Schemas in Terms of Number of Input
Rows and Execution Time

Based on the performance measurements of the TPC-H schemas, we observed that queries
for tpch.sf1 and tpch.sf2 executed within a reasonable time, given the input size. However,
when executing the query for tpch.sf3, Trino encountered an error due to insufficient
memory allocation on the worker nodes. The current configuration limits the worker
nodes to allocate a maximum of 614.40 MB of memory for query execution. This is
insufficient for the query using tpch.sf3. Therefore, our proposed implementation can
comfortably handle an input size of up to 15.6 million rows. It is important to consider
that memory allocation directly affects the capability to handle larger queries. Adjusting
the -xmx field in the jvm.config file of every Trino instance, allows you to directly adjust how
much memory Trino uses. If your hardware allows for more memory to be used, you can
increase this value. This allows the cluster to handle larger queries. As a reference, Trino
recommends this value to be between 70 and 85 percent of the total available memory.
In addition, Trino recommends memory allocations beyond 32GB for large production
clusters [55].

5.3.1.2 Increasing Availability

As mentioned in the discussion on performance in Chapter 4.11, a single coordinator
node introduces a single point of failure for the whole architecture. Nonetheless, there
are approaches to avoid this single point of failure. Multiple coordinator nodes can be
deployed inside the same cluster. Coordinator nodes do not interfere with the queries
of other coordinator nodes. At any point, they can allocate available worker nodes for
their query. Once a worker node is assigned a query, it becomes unavailable for other
queries. This allows you to deploy multiple coordinator nodes to mitigate the single point
of failure. However, it is important to note that you must keep track of which domain
team accesses which coordinator. In our implementation, the URL of the coordinator node
is configured in the Superset instance. If you have multiple coordinator nodes, you have
multiple URLs that you can configure (one per coordinator node). In Superset, you can
configure multiple database connections, allowing you to configure multiple coordinator
nodes. For each SQL Lab query, one can select which database connection you want to
use. If a query fails due to an unavailable coordinator node, you can switch to another
database connection and re-run the query.

An alternative approach would be to deploy a load balancer in front of the coordinator
nodes. The load balancer can then be configured to dynamically distribute incoming
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queries across the coordinator nodes based on availability. This would minimize the
possibility of receiving a query error due to the unavailability of a coordinator node.

As is often the case when designing system architecture, performance is a tradeoff accom-
panied by other considerations such as deployment complexity, security, or high availabil-
ity. The design taken in this thesis offers the flexibility to address these tradeoffs and
adapt to specific performance requirements. Increasing the number of worker or coordi-
nator nodes increases the performance of the cluster at the cost of deployment complexity
and security. Placing the cluster behind a load balancer increases the availability at the
cost of deployment complexity.

5.3.1.3 Performance and Resource Management Considerations

In the decentralized and multi-party environment of our data mesh architecture, care-
ful consideration of resource management and accountability is crucial. As discussed in
the section on Trino concepts (4.1), worker nodes are allocated to queries based on their
availability. If there are not enough workers available, a query is held in a queue until
enough worker nodes are available. Worker nodes can therefore be considered as a shared
resource across the data mesh. This opens up the mesh for potential denial of service,
if this shared resource is intentionally, or unintentionally, wasted. For example, if some
domain teams submit inefficient queries that occupy worker nodes longer than necessary,
they block the allocation for other incoming queries. An example of such an inefficient
query would be cross joining the largest tables from all data sources as depicted below.
If each attackvector table had one million rows, the result of this query would have a
staggering quintillion (1018) rows. We did not manage to come up with an infinite query,
as recursions quickly hit recursion depth-limits and for-loops are not supported by Trino.
Nonetheless, such resource-intensive queries can still cause significant strain on the cluster.

1 SELECT a.*, b.*, c.*

2 FROM vm1_data.vm1_ddos_data.attackvector AS a

3 CROSS JOIN vm2_data.vm2_ddos_data.attackvector AS b

4 CROSS JOIN vm3_data.vm3_ddos_data.attackvector AS c

Listing 5.5: Example of an inefficient SQL Query

To address these concerns, the Trino dashboard becomes an essential tool for tracing ac-
countability. It records queued, running and finished queries alongside their performance
metrics, offering transparency into the cluster usage. This information may be leveraged
in a business setting to enforce payment based on query runtimes. This, in return, dis-
courages the (un)intentional wasting of shared resources. From a technical perspective, it
is also possible to configure the maximum total runtime of queries on the cluster. How-
ever, Trino is designed to run longer queries, so overly restrictive settings might not be the
most suitable solution, as wasteful queries can be restarted once they time out. There-
fore, balancing performance and resource accountability becomes a crucial consideration
for optimizing the effectiveness and efficiency of the architecture.
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5.3.2 Security Analysis

As mentioned earlier, there is always a tradeoff in system design. With decentralization,
security concerns increase due to the larger number of components within the system. The
deployment in this thesis maximizes openness, allowing all domain teams to access all data
sources. Consequently, all database access credentials must be configured in the catalog
configurations of all Trino instances. While this approach maximizes decentralization and
performance, it also increases the overall vulnerability of the system. In our proof of
concept implementation, we mitigated this tradeoff by implementing a zero-trust network
to restrict unwanted external access. Generally, with the design proposed in this thesis,
the following trade-off about security can be stated:

• The higher the degree of decentralization, the higher the number of components in
the architecture and the higher the overall vulnerability of the architecture.

• The lower the degree of decentralization, the lower the number of components in
the architecture, and the lower the overall vulnerability of the architecture.

By default, Trino runs with no security measures. However, you can improve security by
forcing communication via HTTPS. Trino coordinator and worker nodes can be configured
to use TLS certificates. This adds a layer of security to cluster-internal communication. If
you expand the implementation to use a load balancer in front of the cluster, as explained
previously, you may also terminate TLS at the load balancer. This introduces a layer of
security between clients and the load balancer and removes the need to add complexity
to the configurations of the Trino instances. For this proof of concept deployment, we
decided against the implementation of TLS. This is mainly because we aim to keep the
configuration of all services as small and replicable as possible. Since this is not a produc-
tion deployment, security is not a priority of the architecture. Nonetheless, it is important
to address how security shortcomings might be mitigated.

Alternatively, access to the Trino cluster can be made more restrictive. Trino accounts
can be created for each domain team that only grant access to the data sources that the
respecting domain team requires. The username of the account can then be passed as an
argument in the Trino connection URL used to query the cluster.

A further approach to enhancing security and limiting access is to divide the cluster into
subparts. By configuring only a share of all catalogs (data sources) on worker nodes,
you can restrict access to specific data sources. For example, dividing the cluster by
geographical region ensures that worker nodes in each region only have access to the data
sources from that same region. This approach eliminates the need to configure the access
credentials of all data sources on all Trino instances. Trino supports this capability as the
coordinator knows which worker node can access which data source. The query optimizer
then creates a plan based on data access and geographical location (see 4.11).

It is important to note that trust plays a crucial role among the participants of the collab-
orative DDoS defense. The nature of a decentralized system involves granting a significant
degree of autonomy to the involved parties. While certain aspects like tracing accountabil-
ity, resource allocation or data privacy and security can be controlled with the precautions



CHAPTER 5. EVALUATION 52

mentioned above, the topic of trust extends beyond these measures. Specifically data in-
tegrity is a critical consideration. There is a risk that some domain teams may not store
accurate or appropriate data, whether due to human error, deliberate manipulation or
technical storage issues. Additionally, non-compliance with agreed-upon security proto-
cols or best practices by some domain teams could expose vulnerabilities in the entire
architecture.

These are inherent concerns that come with decentralized systems and must be carefully
addressed based on the level of trust established among the participants. Trust is a
fundamental aspect that underpins the effectiveness and reliability of the architecture
proposed in this thesis.

5.3.3 Deployment Considerations

For this proof of concept implementation, we chose to deploy Trino and Superset in a
containerized environment. While we have already touched on the motivations behind
this choice, below we list further deployment considerations that highlight some of the
deployment possibilities of the architecture and the effects that might come with them:

• The architecture relies entirely on open-source tools. This reduces costs but may lead
to potential maintenance challenges, as the maintenance for the tools is community-
driven.

• Not every domain team needs to run their own Trino instance. While each domain
team requires to run its own data storage solution, deploying a Trino cluster with
coordinator and worker nodes should be carefully evaluated. The number of worker
nodes directly impacts deployment complexity and query overhead. Assessing the
appropriate number of worker nodes is crucial for achieving the desired degree of
decentralization while optimizing performance.

• The number of components, particularly Trino instances, should be determined
based on the performance requirements. This decision is a tradeoff specific to the
use case of the architecture.

• Similarly, not every domain team needs to run a Superset instance (see 4.4). In-
stances can be shared across domain teams.

• Any of the services within the architecture may also be installed from scratch. The
configurations proposed in chapter 4 can also be used if the services are installed
from scratch.

• The entire architecture can be deployed on a Kubernetes cluster. This may offer in-
creased security, performance and availability. However, this approach also requires
a significant initial investment to set the cluster up and configure network policies.

• It is important to consider that this collaborative DDoS defense architecture using a
data mesh is most effective when implemented in a domain-driven environment with
independent domain teams. Otherwise, alternative centralized data architectures or
other solutions might be more suitable.
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Final Considerations

In the subsequent sections, we draw conclusions from our achievements, evaluate the ful-
fillment of our goals and outline potential directions for future research and improvement.

6.1 Summary

This thesis offers insights into the research of collaborative DDoS defense, focusing on
data-centric and decentralized approaches. The initial phase involved creating an overview
on DDoS attack and defense mechanisms, data mesh networks and collaborative defenses.
This knowledge formed the foundation for the subsequent tasks. During the research on
related literature, we focused on existing tools that could be used to design and implement
our DDoS data mesh. However, we discovered a lack of suitable solutions for our specific
use case. This challenge led us to build a custom stack tailored to our needs. With the
insights on existing tools, we designed an architecture according to what may be possible
with the tools evaluated in the related works part. Trino quickly emerged as the central
component of the architecture, allowing for the decentralized querying of DDoS attack
data. Using Trino as a core component, we iteratively assembled the rest of the stack, cre-
ating a fully functional DDoS data mesh that met our requirements. During the design of
the architecture, we were able to test the functionality of single components of the design.
However, it was in the implementation part where we got to see how these components
interact with each other for the first time. This step would decide whether adjustments
to the design were necessary to continue with the evaluation of the architecture. In the
evaluation part, we aimed to demonstrate the functionality and performance of the archi-
tecture. The data discovery phase involved exploring various query iterations, ultimately
selecting three representative queries to showcase the capabilities of the architecture.

Throughout the thesis, we focused on the expandability and modularity of the architec-
ture. This allowed us to create a solution according to the specified requirements, which
can also be adapted to suit different requirements.

53
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6.2 Conclusions

This thesis focused on a specific use case where parts of a collaborative DDoS defense
architecture already existed. The main goals of this thesis were to:

• Give an overview of DDoS attack basics and associated related work. Produce
a basis for the comparison of a DDoS data mesh approach, listing its associated
advantages and drawbacks.

• Design and implement a data mesh architecture, including a discovery service to
find information about the nature and characteristics of DDoS attacks.

We have successfully met these goals. Through the background and related works section,
we explored key topics and tools relevant to designing and implementing DDoS data mesh
architectures. The design and implementation outlined in this thesis offer a viable solution
for our goals. With the ability to query and join DDoS fingerprints stored in decentralized
repositories over our data mesh network, we provide the baseline functionality that was
required. With Trino, we provide a standardized way to retrieve data from multiple
decentralized data sources in a single statement. The integration of Superset on top of
the data mesh provides data discovery capabilities, allowing seamless access to the data
mesh within the discovery service.

Over the course of the thesis, we encountered the following challenges and difficulties:

• Trade-off Situations: We encountered various trade-off situations while designing
and implementing the final solution. These trade-offs involved the performance and
the overall complexity of the architecture. In some cases, we knew where to position
ourselves in the trade-off based on the requirements and overall prototype-setting
of the thesis. However, oftentimes there was no right or wrong regarding these
situations. The only approach then was to weigh the implications carefully, and
then reason about our choice.

• Position in Existing Collaborative DDoS Defense: Another difficulty was the posi-
tion of this work in an already existing collaborative DDoS defense setting. This
meant we had to thoroughly consider which aspects of the architecture may be
assumed and where the relevance of the work of this thesis lies.

• Edge-Cases and What-if Scenarios: A typical difficulty when designing system ar-
chitecture is to think about edge cases and ”what-if” scenarios. When designing or
implementing system architecture, it is easy to be satisfied once the main function-
ality is given. However, a thorough examination of the scenarios where certain parts
may not be available, potential vulnerabilities, or performance implications required
extensive consideration.

Throughout the design and implementation of the architecture, performance and usability
were central considerations. Alongside achieving the main goals of the thesis, we contin-
uously considered ways to enhance performance and usability. This focus significantly
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influenced the overall outcome, as the provided solution achieves the set goals while being
performant and usable within the testing scope. During the process of designing, im-
plementing and evaluating the architecture, we encountered several key takeaways that
shape how we approach similar projects in the future:

• Data Mesh Potential: Exploring data mesh architectures as decentralized alter-
natives for collaborative DDoS defenses allowed us to recognize the potential of
data-centric solutions. Such solutions can be effective in sharing DDoS-related in-
formation. This realization opens up new possibilities for future research in data
mesh networks and their applications in cybersecurity and collaborative defense
strategies.

• Thorough Evaluations and Trade-offs: We undertook a comprehensive evaluation,
meticulously assessing different trade-offs, evaluating performance metrics, and con-
sidering the implications of various architectural choices. These evaluations provided
important insights and empowered us to refine the system, ensuring its adaptability
and robustness.

• Challenges of Heterogeneous Environments: Working on the thesis highlighted the
complexities and challenges of designing a service within a highly heterogeneous
environment. For instance, in line with the heterogeneity of the environment, we
envisioned the domain teams to have a large degree of autonomy in how they store
their DDoS attack data. However, this comes with a high price in architectural
complexity. Addressing this challenge required careful consideration in selecting the
right tools and technologies to streamline the architecture effectively.

We carefully followed the proposed schedule at the beginning of the thesis. Regular
interactions with my supervisor and staying on schedule were essential in maintaining
focus on relevant topics and keeping the project on track.

6.3 Future Work

One potential area for future work is to use larger and more realistic datasets with the
architecture proposed in this thesis. This will enable a more comprehensive evaluation
of data discovery and performance of the architecture. The evaluation conducted in this
thesis was limited to the use case presented by the generated DDoS Fingerprint dataset.
This may not accurately represent real-world scenarios. By incorporating more data and
diverse use cases, a more thorough evaluation of the performance and data discovery
capabilities can be achieved.

The work done in line with this thesis is a first step into the research of collaborative
DDoS defense architectures utilizing data mesh networks. In order to motivate future
research, we have created a complementary GitHub repository. The repository contains
all necessary files and instructions for replicating the architecture proposed in this thesis.
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This effort reflects our commitment to initiating further progress in the field of collabo-
rative DDoS defense architectures. The repository can be accessed under the following
URL: https://github.com/tportmann-uzh/ddos-data-mesh-network

There is a noticeable lack of research on Data Mesh networks specifically used in col-
laborative DDoS defense architectures. Particularly, research is scarce addressing the
possibilities of generating DDoS defense information in decentralized systems. This area
of research may not only focus on how relevant data can be retrieved from the parties of
the collaborative defense architecture. It can also explore how that data can be structured
or which analyses offer the most useful insights into DDoS attacks. Moreover, the related
works chapter revealed a scarcity of single-tool solutions or suitable tools for quick and
straightforward deployments of data mesh networks. Although this work shed light on
this research area, it goes beyond the scope of just DDoS defense. Data mesh networks
represent a novel approach that counters large centralized data architectures. Further
research could explore ways to provide the necessary knowledge and tools for implement-
ing such networks. Establishing this foundation with existing research would significantly
lower the barrier to entry for decentralized architectures, making data mesh networks
more prevalent and suitable for various applications.

https://github.com/tportmann-uzh/ddos-data-mesh-network
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Figure A.2: Trino Query Details (1)

Figure A.3: Trino Query Details (2)
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Example DDoS Fingerprint:

1 {

2 "attack_vectors ":[

3 {

4 "service ":null ,

5 "protocol ":" ICMP",

6 "source_ips ":[

7 "110.30.152.226" ,

8 "112.167.110.73" ,

9 "128.0.203.96" ,

10 "128.235.229.87"

11 ],

12 "source_ips_real ":{

13 "128.0.203.96":"10.0.17.165" ,

14 "128.235.229.87":"10.0.17.165" ,

15 "110.30.152.226":"10.0.17.165" ,

16 "112.167.110.73":"10.0.17.165"

17 },

18 "ttl":{

19 "128":1

20 },

21 "ttl_by_source ":{

22 "128.0.203.96":[

23 128

24 ],

25 "128.235.229.87":[

26 128

27 ],

28 "110.30.152.226":[

29 128

30 ],

31 "112.167.110.73":[

32 128

33 ]

34 },

35 "time_start ":"1970 -01 -01 T00 :00:03.171650" ,

36 "duration_seconds ":35.15932 ,

37 "nr_packets_by_source ":{

38 "128.0.203.96":29752.58823529412 ,

39 "128.235.229.87":29752.58823529412 ,

40 "110.30.152.226":29752.58823529412 ,

41 "112.167.110.73":29752.58823529412

42 },

43 "nr_packets ":505794 ,

44 "nr_megabytes ":411.28 ,

45 "detection_threshold ":1

46 }

47 ],

48 "target ":"75.220.17.56" ,

49 "location ":"10.0.17.165" ,

50 "key ":"066 eff111e1b0833abbd340f52557f2d"

51 }

Listing A.1: Example DDoS Fingerprint
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Superset SQL Lab Environment

Figure A.4: Superset SQL Lab Environment
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Complete Visualization for Query 2 (5.2)

Figure A.5: Complete: Attack Vector Counts and Duplication Percentages per VM over
the Attack Duration
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TPC-H Benchmark Schema:

Figure A.6: TPC-H Benchmark Schema [48]
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