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Abstract

The use of convolutional neural networks (CNNs) in image classification tasks is a rapidly pro-
gressing field of research, including the classification of facial attributes. However, it is not yet
completely understood how CNNs make decisions. To improve the transparency of the decision-
making process and thus enhance interpretability and trustworthiness of CNNs, methods have
been developed to visualize this process. In this thesis, we use the Gradient-weighted Class Acti-
vation Mapping (Grad-CAM) technique proposed by Selvaraju et al. (2017) to identify the regions
of an image that the CNN uses for classification. This technique produces class-specific heatmaps
that are intuitively interpretable. In order to evaluate the class activation maps, we define a set of
masks, one for each of the 40 facial attributes that we examine. By using an approach called Ac-
ceptable Mask Ratio (AMR) we quantify how much of the activated area lies within the masked
area. The higher the value of the AMR the more active is the CNN within the area that we ex-
pect, which usually corresponds to the location of the attribute being classified. We compare two
different CNNs, one considers the class imbalance inherent to the data set (balanced CNN), and
the other does not (unbalanced CNN). Our results show that overall the balanced CNN more
often uses image regions that lie within the masked area. Furthermore, the results show an unex-
pected pattern for the unbalanced CNN namely for highly biased attributes the Grad-CAMs for
the majority class show no activity at all.
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Chapter 1

Introduction

Convolutional neural networks (CNNs) have emerged as powerful tools for image classification
tasks because of their ability to recognize patterns. Various techniques have been explored to
improve CNN performance, including deeper architectures, residual connections (He et al., 2016),
and making use of large-scale data collections like CelebA (Liu et al., 2015).

Despite the tremendous progress that has been made in the past years, it is still not fully
understood what neural networks learn exactly, i.e. which part of an image they use to make
predictions. One approach to better understand which regions of an image a CNN uses to classify
it is by making use of a technique called Class Activation Mapping (CAM) introduced by Zhou
et al. (2016). It is able to identify the class-specific regions of an image, which the CNN uses
for classification. The method used in this thesis is called Gradient-weighted Class Activation
Mapping (Grad-CAM) (Selvaraju et al., 2017), which is similar to the CAM method, but it makes
use of the gradients. By combining the gradient information with the feature map activations,
this technique generates a heatmap that highlights the regions in the input image that are crucial
for the network’s decision-making process.

In this thesis, we perform facial attribute classification. This differs from default categorical
image classification in a few aspects. For categorical image classification, the output is a single
value representing the probability with which the image belongs to the predicted class or cate-
gory. For example, classifying images of cats and dogs into the categories "cat" and "dog". In facial
attribute classification, on the other hand, the output is a set of binary scores indicating the pres-
ence or absence of specific attributes. For example, predicting attributes like "Smiling", "Male" or
"Rosy Cheeks", each with its own binary prediction.

We use a binary classifier to perform facial image classification on the CelebA dataset predict-
ing 40 binary facial attributes in each image. As not all of the attributes are equally present in the
CelebA dataset we face the problem of class imbalance. Few attributes are overrepresented and
many are mostly absent throughout the dataset. This leads to a biased classifier because it sees
one of the two classes much more often during the training process. Rudd et al. (2016) showed
that such a biased classifier performs well on the majority class but rather poorly on the minority
class.

The experiments are conducted using two CNNs. They differ in that one considers the class
imbalance (balanced network) and the other one does not (unbalanced network). Both of them
employ the Alignment-Free Facial Attribute Classification Technique (Günther et al., 2017) to ex-
tract facial attributes. By utilizing the Grad-CAM method to visualize the discriminative image
regions we examine the following questions:

1. Is the classification accuracy correlated to a Grad-CAM that highlights the expected region1

1We expect the network to use the part of the image where the attribute being classified is located. E.g. when
classifying the attribute ’Bushy Eyebrows’ we expect the network to focus on the eye region rather than for example the
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for the balanced and the unbalanced network?

2. Are the balanced and the unbalanced network more likely to rely on the expected location
when classifying a sample correctly compared to classifying it incorrectly?

3. For the balanced and the unbalanced network: Do the Grad-CAMs for images where the
attribute is present highlight other regions than the Grad-CAMs for images where the at-
tribute is absent?

4. Does the balanced network more often rely on the expected location than the unbalanced
one?

5. Do the Grad-CAMs for the balanced and the unbalanced network differ?

mouth region.



Chapter 2

Related Work

2.1 Facial Attribute Classification
Over the past few years, there has been a growing focus on the prediction and classification of
facial attributes, primarily driven by the wide range of applications and extensive utilization of
facial attribute information for example for face verification (Kumar et al., 2009), face recognition
(Chan et al., 2017), face image retrieval (Nguyen et al., 2018), or face re-identification (Su et al.,
2018).

The progress in this research field is strongly influenced by the availability of large-scale data
collections of face images, such as Labeled Faces in the Wild (Huang et al., 2007) containing
roughly 13k images or the even larger dataset CelebA (Liu et al., 2015) which consists of over
200k images. The latter provides an extensive collection of images that exhibit a natural variabil-
ity in aspects like lighting, pose, expression, background, and other parameters. Furthermore,
the CelebA dataset is of great value for facial attribute classification because every image contains
manually annotated labels for all the attributes. For supervised machine learning1 in particu-
lar hand-labeled datasets represent a highly valuable resource because they offer a ground truth
reference for training neural networks and evaluating their performance.

As Günther et al. (2017) point out, contrary to many other facial features used in the field of
face recognition, facial attributes have a unique characteristic, they have a semantic meaning. This
property makes them interpretable for humans while also being detectable for neural networks.

Currently, the state-of-the-art method for classifying facial attributes is the utilization of CNNs.
They are a type of artificial neural network that consists of at least one convolutional layer, pooling
layers, and fully-connected layers (O’Shea and Nash, 2015). They find their primary application
in the domain of image pattern recognition, which is essential in facial attribute recognition and
classification.

According to Mao et al. (2020) there are two different approaches for facial attribute classi-
fication, namely single-label learning based methods which make predictions for each attribute
separately, thereby disregarding the relationships or correlations among them, and multi-label
learning based methods where multiple facial attributes are predicted concurrently. An example
of the use of the first approach is Zhong et al. (2016). But in the context of this thesis, we are more
interested in the second approach, since it is also applied in our work. Examples of the multi-
label approach are Hand et al. (2018) or Zhuang et al. (2018). Rudd et al. (2016) as well applied
the multi-label approach and they proposed a solution for the problem of imbalanced labels2 for

1In the case of supervised machine learning the neural network is trained with pre-labeled data (O’Shea and Nash,
2015).

2Class imbalance occurs when the number of samples for one class is significantly larger than that for the other class
for one attribute (Mao et al., 2020).
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Figure 2.1: CLASS ACTIVATION MAPPING. This figure by Zhou et al. (2016) illustrates the process of Class Acti-
vation Mapping. The class score predicted by the model is mapped back to the last convolutional layer. The resulting
Class Activation Map highlights the important image region for the predicted class.

some attributes, a difficulty inherent to this approach. They dealt with the class imbalance prob-
lem by introducing a novel multi-objective neural network architecture, which mixes the tasks of
multi-label classification and domain adaptation under one unified objective function. Another
example of the multi-label approach is Günther et al. (2017) who introduced the Alignment-Free
Facial Attribute Classification Technique (AFFACT). The two CNNs used in this thesis both use
this technique. This will be discussed in more detail in section 3.2.

2.2 Visualizing CNNs
When it comes to making the decision-making process of CNNs more transparent several ap-
proaches exist. Gradient-based methods (Simonyan and Zisserman, 2014), perturbations-based
methods (Ribeiro et al., 2016), and CAM-based methods are among the most popular ones. For
the sake of brevity, we will focus on the third kind. CAM stands for Class Activation Mapping, a
technique that computes a weighted linear sum of the feature maps of the last convolutional layer
which results in a heatmap highlighting the regions most relevant for the predicted class (Fig-
ure 2.1). After the introduction of this visualization technique by Zhou et al. (2016) researchers
have been developing other CAM-based methods attempting to further improve it. The pri-
mary distinguishing element among various CAM techniques lies in the approach employed
to calculate the mentioned weights, which as said before are utilized in combination with the
feature maps obtained from the convolutional layer being targeted (not always the last layer)
(Dugăes, escu and Florea, 2022). Selvaraju et al. (2017) introduced the Gradient-weighted CAM
(Grad-CAM) method that uses the gradients to compute the weights. Compared to the origi-
nal CAM method, Grad-CAM eliminates the need for a penultimate3 global average pooling4

layer directly following the last convolutional layer, thus making it available to a much broader

3As the penultimate layer the global average pooling layer passes its output to the fully-connected layer.
4Global average pooling is a dimensionality reduction technique that reduces each feature map to one single value. It

is explained in more detail in section 3.3.
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range of CNN architectures. However, Grad-CAM fails when there is more than one occurrence
of a specific class within one image. Furthermore, due to working with an unweighted average
of the gradients Grad-CAM often lacks to localize every part of an object. Building on the Grad-
CAM method Chattopadhay et al. (2018) presented Grad-CAM++, a slightly different approach
that takes a weighted combination of the gradients instead of a global average (like Grad-CAM)
which addresses the problem of partial object localization. Two years later Draelos and Carin
(2020) proposed HiRes-CAM, a method similar to Grad-CAM but instead of averaging over the
gradients they use them directly as weights. Another Grad-CAM-based approach is the so-called
Axiom-based Grad-CAM or XGrad-CAM introduced by Fu et al. (2020), further improving Grad-
CAM and providing clear theoretical support for it. One year later Jiang et al. (2021) proposed
a method called Layer-CAM which uses the class-specific gradients as weights in case of positive
gradients, for negative gradients the weight is zero.

In view of the fact that gradient-based CAM methods too have their drawbacks, that is gradi-
ent saturation5 or false confidence6, gradient-independent approaches such as Score-CAM (Wang
et al., 2020), Eigen-CAM (Muhammad and Yeasin, 2020) or Ablation-CAM(Desai and Ramaswamy,
2020) have been developed.

However, all of these techniques typically visualize the class with the highest predicted proba-
bility for categorical classification tasks. So far there has been little research on visualizing binary
classifiers such as the ones used in this thesis.

5The gradient saturation problem causes the backpropagating gradients to diminish and therefore, adversely affect
the quality of visualizations (Desai and Ramaswamy, 2020).

6In cases of false confidence activation maps with higher weights show lower contribution to the network’s output
compared to a zero baseline (Wang et al., 2020).





Chapter 3

Background

This chapter talks about the data set, the CNNs, and the key methods used in this thesis.

3.1 Dataset
The CelebA dataset is the most widely used image dataset in the field of facial attribute classi-
fication. It originates from the CelebFaces dataset by Sun et al. (2014) and has been constructed
by Liu et al. (2015) as a large-scale data collection for the training of CNNs. It contains over 200k
images of approximately 10k different identities. In the field of machine learning it is common to
split the dataset into three distinct sets: the training set, the validation set, and the test set. Each of
these sets serves a specific purpose in the process. The CelebA dataset as well is divided into three
partitions. With 162’770 images (roughly 80%) the training set is by far the largest of the three and
is used to train the model. It is the set on which the model learns patterns, relationships, and rules
to make predictions. The validation set consists of 19’867 images (roughly 10%) and is typically
used to fine-tune the hyperparameters1, e.g. adjust the loss function. By evaluating the model’s
performance on the validation set, one can make adjustments to achieve better generalization
and avoid overfitting. The validation set helps in selecting the best-performing model architec-
ture and configuration. Eventually, the model is then tested on the test set. In the case of the
CelebA dataset, it is about the same size as the validation set, containing 19’962 images (roughly
10%). It represents new, unseen images of identities that the model has not encountered during
training or validation. The test set’s results give an indication of the model’s true performance
and help estimate its effectiveness in real-world applications. Since the experiments in this thesis
were done using a pre-trained network and there was no need for retraining, only validation and
test partition were used.

Each of the images of this dataset was hand-labeled with a binary label for each of the 40
facial attributes provided in Figure 3.1. These labels represent the ground truth. They serve as a
reference to measure the accuracy of the model. Furthermore, each image was annotated with 5
facial landmarks. They mark the location of the eyes, the tip of the nose, and the corners of the
mouth.

When working with the CelebA dataset it is important to consider its class imbalance. As
shown in Figure 3.1 many of the attributes such as "Bald", "Double Chin" or "Chubby" can hardly
be found in the dataset, while others such as "No Beard" or "Young" are overrepresented.

1Hyperparameters such as the depth or the stride are used to optimize the model output.



8 Chapter 3. Background

Figure 3.1: DISTRIBUTION OF ATTRIBUTES. This figure shows the distribution of the binary facial attributes
throughout the CelebA dataset.

3.2 CNNs
Residual networks (ResNets) are deep CNNs that use a residual learning framework introduced
by He et al. (2016). This learning framework enables the training of significantly deeper networks
and facilitates their optimization, considering that deeper neural networks are more challenging
to train. Furthermore, ResNets overcome the problem of vanishing or exploding gradients, by
inserting shortcut connections that skip a few layers. The skipped layers form a residual block
that allows the network to learn residual functions which represent the difference between the
input and output of a residual block. The ResNet architecture is typically composed of multiple
stacked residual blocks.

For this thesis, a CNN employing the Alignment-Free Facial Attribute Classification Technique
(AFFACT) (Günther et al., 2017) to extract attributes was used. AFFACT is a data augmentation
technique that applies random perturbations such as scaling, rotating, shifting, and blurring of
images during training. This approach makes the network less dependent on the alignment of
images. Predictions are made solely based on detected bounding boxes. Introduced by Günther
et al. (2017), the AFFACT network is based on a ResNet-50, which is a ResNet containing 50 lay-
ers. After pre-training the ResNet-50 on the ILSVRC2012 subset of Deng et al. (2009)’s ImageNet
dataset it was modified by adding an extra fully connected convolutional layer with 40 output
units (matching the 40 attributes), resulting in a ResNet-51 (Günther et al., 2017). In order to
fine-tune the network for facial attribute classification it subsequently was trained on the CelebA
dataset.

In this thesis, two CNNs using AFFACT were used. One, taking the class imbalance (Fig-
ure 3.1) present in the CelebA dataset into consideration, and another one, which does not. The
former is referred to as the balanced network or AFFACT-b and the latter as the unbalanced net-
work or AFFACT-ub. The reason for using two CNNs is that the AFFACT-ub while performing
well on majority class samples that dominate the training data, it often fails to correctly classify
samples of the minority class. Rudd et al. (2016) dealt with this by presenting a Mixed Objec-
tive Optimization Network (MOON) that uses a domain-adapted multitask loss function (3.1).
This network architecture incorporates attribute correlations and is able to adapt the bias of the
training dataset (comparable to the bias in Figure 3.1) to a desired target distribution.

L(X,Y) =
N∑
j=1

M∑
i=1

p(i|Yji) ||fi(Xj)− Yji||2 (3.1)

M represents the number of attributes, X the data tensor containing N input images, and Y a
N×M matrix with the corresponding labels. For each attribute i with target value Yji ∈ {−1,+1}
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Figure 3.2: GAP. This figure2shows how Global Average Pooling reduces dimensions. Each h × w feature map is
reduced to a single value and this is done for all channels d.

the error is only backpropagated with the probability p(i|Yji) (derived via sampling), otherwise
the gradient for attribute i is set to 0. The more the distribution of the attributes in the training set
differs from the desired target distribution, the more elements in the gradient are reset (Rudd et al.
(2016)). The AFFACT-b was designed based on a similar approach but remains yet unpublished.

3.3 Global Average Pooling
Global Average Pooling (GAP) is a pooling operation commonly used in CNNs performing im-
age classification tasks. It was first introduced by Lin et al. (2014) and has since become a popular
alternative to traditional pooling techniques like Global Max Pooling (GMP). The main idea be-
hind GAP is to summarize the entire feature map generated by the last convolutional layer into a
single value for each channel (Figure 3.2).

vk =
1

w · h
∑
x,y

fk(x, y) (3.2)

Here vk represents the average of the feature map fk(x, y) at spatial location (x, y) for channel
k (equal to d in Figure 3.2). This is done for all channels which results in a fixed-length vector
representation (Figure 3.2 right side) that can be fed into a fully-connected layer for classification.

Zhou et al. (2016) showed that GAP outperforms GMP when it comes to object localization.
GMP aims to identify only one discriminative region. Whereas in GAP the value can be maxi-
mized by finding all discriminative regions because all low-activation regions reduce the output
of the map. This is the reason why Zhou et al. (2016)’s Class Activation Mapping technique is de-
signed for a network architecture that contains a GAP layer. They use this characteristic of GAP
to enable their technique to localize objects.

As shown in Figure 3.3 the network architecture used in this thesis also contains a GAP layer
right before the fully-connected layer.

2Figure from: https://alexisbcook.github.io/assets/global_average_pooling.png

https://alexisbcook.github.io/assets/global_average_pooling.png
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3.4 Class Activation Mapping
Class Activation Mapping (CAM) is a technique introduced by Zhou et al. (2016). It reveals the
specific region in an image that a CNN utilizes to discern and identify a particular category. Given
a network architecture that performs a GAP on the feature maps of the last convolutional layer
and then passes them to a fully-connected layer to produce the final output, this technique deter-
mines the significance of image regions by projecting the weights of the output layer back onto the
convolutional feature maps. The GAP layer calculates the spatial average of the feature map for
each channel in the last convolutional layer. A weighted sum of these values is then employed to
generate the final output. Likewise, the class activation map is obtained by computing a weighted
sum of the feature maps in the last convolutional layer (Figure 2.1).

As stated in (3.3), every spatial element M c
CAM of the class activation map for class c at spatial

location (x, y), is calculated as the sum of the weighted activations fk, where wc
k represents the

weight factor, summed up over all channels k. Thus M c
CAM indicates the importance of the acti-

vation for the classification of an image to class c. The weights wc
k equal the predicted class score

that the fully-connected layer outputs for each class.

M c
CAM (x, y) =

∑
k

wc
kfk(x, y) (3.3)

Gradient-weighted Class Activation Mapping is a generalization to CAM since it does not re-
quire a specific network architecture3 or retraining4 (Selvaraju et al., 2017). As described in (3.4)
Grad-CAM computes the gradients by taking the partial derivative of the logit yc for class c (be-
fore the softmax function5), with respect to the partial derivative of the feature map of the last
convolutional layer fk(x, y) for channel k at spatial location (x, y), i.e. ∂yc

∂fk(x,y)
. Similarly to the

feature maps passing the GAP layer in the classification process, these gradients are global aver-
age pooled to derive the neuron importance weight αc

k corresponding to class c. Analogous to wc
k

in (3.3) αc
k represents the importance of feature map fk for target class c.

To obtain the final Grad-CAM M c
Grad−CAM a Rectified Linear Unit Activation Function6 (ReLU)

is applied to the weighted linear sum of the feature maps (3.5), because Grad-CAM is only inter-
ested in pixels that increase the score yc when their intensity is increased. Negative pixels are
likely to belong to another category (Selvaraju et al., 2017).

αc
k =

GAP︷ ︸︸ ︷
1

w · h
∑
x,y

∂yc

∂fk(x, y)︸ ︷︷ ︸
gradient

(3.4)

M c
Grad−CAM (x, y) = ReLU

(∑
k

αc
kfk(x, y)

)
(3.5)

3CAM is limited to CNNs with a Global Average Pooling penultimate layer.
4CAM requires retraining of one linear classifier for each class (Chattopadhay et al., 2018).
5The softmax function converts the logits to probabilities, i.e. normalizes them. The AFFACT network architecture

does not contain a softmax function, it directly outputs the logit for each attribute.
6ReLU(x) = max(0, x) (from https://pytorch.org/docs/stable/generated/torch.nn.ReLU.html)

https://pytorch.org/docs/stable/generated/torch.nn.ReLU.html
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Figure 3.3: AFFACT ARCHITECTURE WITH GRAD-CAM. This figure shows the AFFACT network architecture
with 16 residual blocks and shows where in the network architecture the Grad-CAM method acts.





Chapter 4

Approach

4.1 Image Preprocessing
For the experiments in this thesis, the images of the CelebA dataset were preprocessed in the
same way as in Günther et al. (2017). First, the center of the eyes te and the center of the mouth tm
along with their respective distance d are computed using the landmarks of the eyes tel, ter and
the mouth corners tml, tmr, with t = (x, y)T :

t⃗e =
t⃗er + t⃗el

2
, t⃗m =

t⃗mr + t⃗ml

2
, d = ||⃗te − t⃗m|| (4.1)

After aligning the eyes horizontally, a square bounding box with top left corner xl, yt and bottom
right corner xr, yb and edge length l is added:

xl = xe − 0.5 · l, yt = ye − 0.45 · l
xr = xe + 0.5 · l, yb = ye + 0.55 · l

Finally, the images are cropped to the size of the bounding box which results in 224 x 224 pixels,
and are saved as PNGs.

4.2 Landmarks
As described in section 3.1 each image was annotated with five landmarks: eyes, tip of the nose,
and mouth corners. Because these landmarks were marked before cropping the images to their
bounding box, they had to be shifted in order to match the cropped images that were used in
our experiments. Since the image size was known, a first estimation of how much the landmarks
had to be shifted could be done. After some fine-tuning, the results were evaluated by visually
checking a set of images that was randomly chosen from the data set. Eventually, they were
shifted as follows:

xshifted = xorignial + 24

yshifted = yoriginal − 10

The result can be found in Figure 4.1.
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Figure 4.1: LANDMARKS. This table shows the original landmarks as yellow dots (top) and the shifted landmarks as
green dots (bottom).

4.3 Grad-CAM
The implementation1 of the Grad-CAM technique that was used in this thesis needed some ad-
justments in order to fit our experiments.

4.3.1 Layer
As described in section 3.4 the feature maps of the last convolutional layer are used to derive the
class activation map. In the AFFACT network used in this thesis, this would correspond to the
output of the last residual block res5c (Figure 3.3). For implementational reasons, these feature
maps were initially not accessible. In order to access them we inserted an identity layer using
PyTorch’s identity operator2. The following line was inserted after loading the model:

model.identity = torch.nn.Identity()

Listing 4.1: Inserting an identity layer

This line was inserted in the forward pass function to retrieve the data stored in the variable
res5c:

res5c = self.identity(res5c)

Listing 4.2: Retrieve data from res5c via identity operator

4.3.2 Target Function
The Grad-CAM method contains a target function that is used to calculate the loss. At first, we
worked with the already implemented ClassifierOutputTarget target function. As shown
in Figure 4.2, it seems to not work properly whenever the prediction is negative (referring to the
activation in the lower left corner). If the prediction is negative, the output of the target function
is negative as well, since it simply returns the output of the model. We did not only observe
this behavior with the ClassifierOutputTarget but also with other target functions that we
implemented in attempting to solve this problem (Figure A.1, Figure A.2, Figure A.3). The Grad-
CAM method seemed to fail whenever the output of the target function was negative. Since all the
implementations we tested showed the same behavior for negative values, we decided to work
with the implementation shown in Listing 4.3 which always returns a positive value (Figure 4.3).

1The source code is available online: https://github.com/jacobgil/pytorch-grad-cam
2More information can be found at the following link: https://pytorch.org/docs/stable/generated/

torch.nn.Identity.html

https://github.com/jacobgil/pytorch-grad-cam
https://pytorch.org/docs/stable/generated/torch.nn.Identity.html
https://pytorch.org/docs/stable/generated/torch.nn.Identity.html
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Figure 4.2: AVERAGE GRAD-CAMS EXAMPLES. Average Grad-CAMs from AFFACT-ub for different attributes
when prediction > 0 (top) and when prediction < 0 (bottom). Attributes from left to right: "Bags Under Eyes", "Brown
Hair", "Oval Face", "Wavy Hair", "Wearing Necklace".

Prediction > 0 Prediction < 0 Prediction > 0 Prediction < 0

Ground Truth = 1

Ground Truth = -1

Figure 4.3: TARGET FUNCTION 2. Grad-CAMs when the target function returns the absolute model output for "5 o
Clock Shadow" (left square) and "Bushy Eyebrows" (right square).

This approach works for the AFFACT-b but for classification with the AFFACT-ub the Grad-CAM
method still returns Grad-CAMs with a sole activation in the corners (Figure A.5).

1 class BinaryCategoricalClassifierOutputTarget:
2 def __init__(self, category):
3 self.category = category
4
5 def __call__(self, model_output):
6 if len(model_output.shape) == 1:
7 return abs(model_output[self.category])
8 return abs(model_output[:, self.category])

Listing 4.3: Implementation of target function 2

4.4 Evaluation Metrics
The classification accuracy is evaluated by calculating the classification error rate.

ErrorRate(a) =
1

N

N∑
n=1

e(pra,n, la,n) (4.2)

e(pr, l) =

{
1, if (pr · l) < 0

0, if (pr · l) > 0
(4.3)
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AMR: 0.9

(1) (2) (3) (4) (5)

Figure 4.4: AMR. Top: this figure by Chen (2022) illustrates the concept of AMR. The blue box represents the masked
area, the red box represents the discriminative area. Bottom: these are the different components that are needed to
calculate the AMR. From left to right: (1) image, (2) Grad-CAM, (3) discriminative area, (4) mask with masked area
in white, (5) overlay of mask and Grad-CAM.

The error rate is calculated by summing up the errors over all images N in the filtered test set, and
then dividing by N to get the ratio. An error occurs when for attribute a and image n the value
pr that the model predicted does not have the same sign as the corresponding label l ∈ {−1, 1} in
the ground truth.

As for the Grad-CAMs, they are being evaluated using the Acceptable Mask Ratio which is
explained in the following subsection.

4.4.1 Acceptable Mask Ratio
In order to evaluate the accuracy of Grad-CAMs, an evaluation metric named Acceptable Mask
Ratio (AMR) proposed by Chen (2022) was used. It measures how much of the activation in
an image is located within a predefined masked area. The activated area is referred to as the
discriminative region and the mask simply as the masked area (Figure 4.4). The masks that were
used to calculate the AMR can be found in Figure A.4. There are two versions for each attribute.
Version 1 was calculated using the shifted landmarks; therefore the location differs slightly for
each attribute (Table A.1). The second version of masks consists of blocks of size 32 x 32 px and
is independent of the landmarks, hence exactly the same for all images (Table A.2). The latter
version takes into account that the feature maps from which the Grad-CAM is derived have a size
of 7 x 7 px (Figure 3.3). To derive the final CAM they are upsampled to the image size of 224 x
224 px (Zhou et al., 2016). It can therefore be concluded that activations in the 7 x 7 Grad-CAM
afterward correspond to an area of size 32 x 32 px. So activations probably tend to occur within
32 x 32 px areas and if the mask is smaller than that the AMR will likely be lower. As shown in
the attachments in Figure A.7 the AMR with the second version of masks improved for roughly
80% of the attributes.

As stated in (4.4), the AMR calculates the ratio of the intersection between the discriminative
area and the masked area to the discriminative area itself. Our approach is slightly different from
the one by Chen (2022), as we additionally consider the masked area in regard to the image size.
This adjustment makes the AMR from different attributes more comparable since the mask size
varies from attribute to attribute. The effect of this adjustment is shown in the attachments in
Figure A.6.

AMR =
#(Discriminative Area ∩Masked Area)

#Discriminative Area
· #Image Size−#Masked Area

#Image Size
(4.4)



4.4 Evaluation Metrics 17

Figure 4.5: EXAMPLE FRONTAL VS. NON-FRONTAL IMAGE. Examples for frontal image (left) and non-frontal
image (right). The yellow line represents the centerline of the face. In the frontal image, the ratio of the centerline and
the distance of the centerline to the tip of the nose is smaller than in the non-frontal image.

For a given image the AMR is calculated as follows:

0 ≤ AMR =

∑I
x,y f(gxy,mxy)

D
· I −M

I
≤ 1

f(gxy,mxy) =

{
1, if gxy > 0 and mxy = 255

0, otherwise

(4.5)

D is the number of pixels of the discriminative area, M represents the number of pixels of the
masked area, and I equals the number of pixels in the image (224·224). gxy represents a pixel of
the Grad-CAM at spatial location (x, y) and mxy represents a pixel of the mask at the same spatial
location. The Grad-CAM as well as the mask have dimension 224 x 224 px. Every pixel within
the masked area has the value 255 (white), and every pixel outside the masked area has the value
0 (black). Thus to get the number of pixels of the intersection between mask and discriminative
area it is checked for every pixel gxy at spatial location (x, y) in the grayscale version of the Grad-
CAM whether its value is greater than 0 and whether the pixel mxy at the same spatial location in
the mask is 255. If this is both the case, the pixel is part of the discriminative area and lies within
the masked area.

The CelebA dataset does mostly but not only contain frontal-pose images, some half-profile
and a few profile faces are also included. This posed a problem when defining the masks for cal-
culating the AMR. The non-frontal images were problematic as the mask would not fit properly.
Thus the validation and test partition were both filtered in order to only contain frontal-pose im-
ages. A frontal image was defined as follows. With the centerline3 of the face c and the distance
from the centerline to the tip of the nose s, the ratio c

s had to be smaller than 0.1 in order for the
image to be considered frontal (Figure 4.5). By using the vertical centerline of the face as a refer-
ence, we can expect the tip of the nose to be relatively centered and balanced. A threshold of 0.1
allows for minor natural variations while still ensuring a predominantly frontal view.

Through the filtering, the validation set was reduced to 10’539 which corresponds to approx-
imately 50% of the original amount. The test set was also reduced to roughly 50% of its original
size with 10’458 remaining images.

4.4.2 Statistical Methods
Research question 1 aims to determine whether there is a correlation between the two variables
classification error and AMR. In order to evaluate this correlation, Numpy’s cov function was
used which returns the covariance matrix and from that Pearson’s correlation coefficient ρ ∈

3A straight line from the center of the eyes to the center of the mouth (yellow line in Figure 4.5).
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[−1, 1] can be calculated. Pearson’s correlation coefficient measures the linear correlation between
two variables. In case of a positive slope, the closer the data points are to a straight line, the closer
ρ is to 1. In case of a negative slope, the closer the data points are to a straight line, the closer ρ is
to -1 (Fahrmeir, 2016). It is formally defined as:

ρXY =
cov(X,Y )

σXσY
(4.6)

Research question 5 aims to determine whether the Grad-CAMs from the AFFACT-b differ
from the ones from AFFACT-ub. In order to quantify this difference we made use of the Kullback-
Leibler (KL) information or distance. The KL distance quantifies the distance from one probability
distribution to another (Burnham, 2002). More formally speaking:

DKL(P ||Q) =
∑
x∈X

P (x) log
P (x)

Q(x)
(4.7)

where P and Q are discrete probability distributions and X is the space of the input data. The KL
distance is not symmetric, meaning KL(P ||Q) ̸= KL(Q||P ). Since the AFFACT-b considers the
class imbalance, we consider its Grad-CAMs as the base. We take the attribute-wise average of the
balanced Grad-CAMs and the attribute-wise average of the unbalanced Grad-CAMs and calculate
the distance from the balanced to the unbalanced ones leading to KL(Grad−CAMbalanced||Grad−
CAMunbalanced).

In order to calculate the KL distance, the rel_entr4 function from the subpackage ’special’
of the python library SciPy was used. It calculates the element-wise KL distance for two input
arrays.

4More information can be found at the following link: https://docs.scipy.org/doc/scipy/reference/
generated/scipy.special.rel_entr.html#scipy.special.rel_entr

https: //docs.scipy.org/doc/scipy/reference/generated/scipy.special.rel_entr.html#scipy.special.rel_entr
https: //docs.scipy.org/doc/scipy/reference/generated/scipy.special.rel_entr.html#scipy.special.rel_entr


Chapter 5

Experiments

In the beginning, some adjustments had to be made and tested in order to obtain optimal or at
least nearly optimal Grad-CAMs. Said adjustments were done using the validation partition of
the CelebA dataset, which is commonly used for fine-tuning and finding the best-performing
configurations. We filtered out non-frontal images, made the output of the last residual block of
the AFFACT networks accessible for the Grad-CAM method, and adapted the target function in
the Grad-CAM algorithm. The following experiments were all performed on the test partition of
the CelebA dataset. The filtered image set of the test partition was given to the AFFACT-b and
the AFFACT-ub and the Grad-CAM method was used to generate Grad-CAMs. For every image,
the following data was recorded for each attribute respectively: error (1)/no error (0), ground
truth value ∈ {−1, 1}, prediction value, and AMR ∈ [0, 1]. The diagrams, tables, and average
Grad-CAMs/AMR were all generated using the same set of results, but they were aggregated
in different ways, according to the research questions, which will be described for each research
question separately.

The masks used for calculating the AMR are shown in Figure A.4. For the sake of brevity,
we focus on the results obtained using the second version (consisting of 32 x 32 blocks) as they
achieve better AMRs and - unlike the first version - were derived in a logical and scientific manner.
The results for the experiments with the first version of masks can be found in the attachments in
Table A.3.

In all the diagrams (except for Figure 5.1 and Figure 5.2), figures, and tables of this chapter,
the attributes are ordered by increasing class imbalance to facilitate spotting patterns which are
connected to the class imbalance.

5.1 Experiment 1
Research question 1 aims to determine whether there is a correlation between the error rate of the
AFFACT-b and the AFFACT-ub and the AMR. In order to answer this research question the error
rate and the mean of the AMR were calculated for each attribute. Both can be found in Table 5.1.

Based on the research of Wu et al. (2023) we expected a negative correlation between the AMR
and the error rate. They showed that their modified version of the MOON network (Rudd et al.,
2016) with improved classification accuracy focused more on the mouth region when classifying
the attribute "Mouth Slightly Open". Therefore when the error rate is low meaning the attribute
is classified well, we expected the CNN to focus on the region where the attribute is located thus
leading to a high AMR. And when the error rate is high meaning the attribute is often classified
incorrectly, we expected the network to focus less on the location of the attribute and maybe focus
more on other locations thus resulting in a low AMR.
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Figure 5.1: AMR VS. ERROR RATE 1. AMR (blue) and error rate (red) for AFFACT-b ordered by ascending error
rate.

Figure 5.2: AMR VS. ERROR RATE 2. AMR (blue) and error rate (red) for AFFACT-ub ordered by ascending error
rate.

Figure 5.3: AMR VS. ERROR RATE 3. AMR (blue) and error rate (red) for AFFACT-ub ordered by increasing class
imbalance.

In a first step, we plotted the results in a grouped bar chart to check whether the data fitted
a straight line with a negative slope (which is the definition of the correlation coefficient). But
neither for the results of AFFACT-b nor for those of AFFACT-ub a negative linear correlation
became apparent. So in a next step we tried to order the bar chart by increasing error rate to maybe
make a hidden correlation more apparent. When the error rate was ordered in an ascending
fashion, the AMR was expected to be found in a descending fashion. But as shown in Figure 5.1
for the AFFACT-b and Figure 5.2 for the AFFACT-ub no negative correlation became apparent.
For the AFFACT-ub it actually looked more like a positive correlation. Besides a few exceptions,
the AMR seemed to increase together with the error rate. In Figure 5.3 a trend associated with
class imbalance can be observed. With increasing class imbalance the error rate and the AMR
both decrease.

Since it was difficult to make a statement solely based on the bar chart, the relationship be-
tween the two variables had to be quantified. In order to do so we calculated the covariance ma-
trix and the correlation coefficient. The covariance matrix for the AFFACT-b covb (5.1) indicates
that there is a negative correlation between error rate and AMR. But as the corresponding correla-
tion coefficient ρb shows, this correlation is very weak. The covariance matrix for the AFFACT-ub
covub (5.2) indicates that there is in fact a positive correlation between the AMR and the error rate.
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Figure 5.4: AMR PREDICTION CORRECT VS. INCORRECT. The AMR for AFFACT-b in blue and for AFFACT-ub
in red. For each pair of bars of the same color the left bar (darker) shows the AMR for correctly classified samples
and the right bar (more transparent) shows the AMR for incorrectly classified samples. The attributes are ordered by
increasing class imbalance.

But according to the correlation coefficient ρub the correlation is rather weak.

covb =

[
0.0477 −0.00287

−0.00287 0.0058

]
ρb = -0.1706 (5.1)

covub =

[
0.0451 0.0032
0.0032 0.0046

]
ρub = 0.2211 (5.2)

5.2 Experiment 2
Research question 2 compares the Grad-CAMs for correctly and incorrectly classified samples for
both the AFFACT-b and the AFFACT-ub. In order to do so the attribute-wise average Grad-CAM
for correctly classified samples and for incorrectly classified samples was calculated respectively
once for the AFFACT-b and once for the AFFACT-ub (Figure 5.8). Similarly, the mean of the
AMR was calculated for correctly and incorrectly classified images. The numbers can be found in
Table 5.1.

The results show that generally, the AMR is higher for the incorrectly classified samples with
an overall AMR value of 0.51 for AFFACT-b and 0.3 for AFFACT-ub. For the AFFACT-b 26 of
40 attributes have a higher AMR for the incorrectly classified samples, for the AFFACT-ub 30 of
40 have a higher AMR for the incorrectly classified samples. There are 7 attributes for which
the AMR is higher for the correctly classified samples for AFFACT-b as well as for AFFACT-ub,
namely "Heavy Makeup", "High Cheekbones", "Mouth Slightly Open", "Pointy Nose", "Smiling",
"Straight Hair", and "Wearing Lipstick" (Figure 5.4). They all happen to be rather balanced at-
tributes.

5.3 Experiment 3
Research question 3 attempts to determine whether the AFFACT-b and the AFFACT-ub more of-
ten use the expected area when the attribute is present compared to when it is not. To answer
this question the attribute-wise average Grad-CAM was calculated once for samples where the
attribute is present (ground truth = 1) and once for samples where the attribute is absent (ground
truth = -1). The Grad-CAMs for AFFACT-b and for AFFACT-ub can be found in Figure 5.9. Like-
wise, the mean of the AMR was calculated for both groups (Table 5.1).
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Figure 5.5: AMR GROUND TRUTH POSITIVE VS. NEGATIVE. The AMR for AFFACT-b in blue and for AFFACT-ub
in red. For each pair of bars of the same color, the left bar (darker) shows the AMR for samples where the attribute is
present and the right bar (more transparent) shows the AMR for samples where the attribute is absent. The attributes
are ordered by increasing class imbalance.

The results show that the overall AMR is higher when the ground truth is positive, so when the
attribute is present. For the AFFACT-b 31 of 40 attributes have a higher AMR when the attribute
is present, resulting in an overall AMR value of 0.56. For the AFFACT-ub 36 of 40 attributes have
a higher AMR when the attribute is present, leading to an overall AMR value for ground truth
positive of 0.43. There are 3 attributes for which the AMR is higher for the ground truth negative
samples for AFFACT-b as well as for AFFACT-ub, namely "Mouth Slightly Open", "Young", and
"Straight Hair" (Figure 5.5). They all happen to be rather balanced attributes. "Mouth Slightly
Open" is the second most balanced attribute and "Young" and "Straight Hair" follow on rank 15
and 16.

5.4 Experiment 4
Research question 4 aims to explore whether the Grad-CAMs of AFFACT-b focus more on the ex-
pected location than those from AFFACT-ub. The focus here lies on the AMR, which can be found
in the columns "o" of Table 5.1.

Wu et al. (2023) showed that models with higher accuracy also produce CAMs (they used
Score-CAM) where the discriminative area corresponds to the location where the attribute is lo-
cated. Therefore we expected the balanced Grad-CAMs all to highlight more or less the expected
area. And for the unbalanced Grad-CAMs, we expected those for rather balanced attributes to
highlight the expected area and those for more unbalanced attributes to maybe highlight different
areas. The results show that the more unbalanced the attribute, the lower the AMR for the unbal-
anced Grad-CAMs (Figure 5.6) and the less intense the heat maps. For the balanced Grad-CAMs,
the AMR varies from attribute to attribute and there is no trend apparent. For the unbalanced
Grad-CAMs a trend is apparent, the AMR decreases with increasing class imbalance. With an
overall value of 0.46, the AMR for the balanced Grad-CAMs is higher than for the unbalanced
Grad-CAMs with an overall value of 0.19.

5.5 Experiment 5
Research question 5 also compares the results of AFFACT-ub and AFFACT-b, but here the focus
lies on the Grad-CAMs themselves. The average Grad-CAM for each attribute for AFFACT-b and
AFFACT-ub are shown in Figure 5.10. As described in section 4.4.2 we used the Kullback-Leibler
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Figure 5.6: AMR AFFACT-B VS. AMR AFFACT-UB. The overall AMR for AFFACT-b in blue and for AFFACT-
ub in red. The attributes are ordered by increasing class imbalance.

Figure 5.7: KL DISTANCE. This diagram shows the attribute-wise Kullback-Leibler distance. It denotes the distance
from the probability distribution of the balanced Grad-CAM to the probability distribution of the unbalanced Grad-
CAM. Blue represents the value for the overall average Grad-CAMs, red represents the values for the average Grad-
CAMs of correctly classified samples and green represents the values for the average Grad-CAMs of negative samples.
The attributes are ordered by increasing class imbalance.

distance to quantify how much the unbalanced Grad-CAMs (from AFFACT-b) differ from the
balanced Grad-CAMs (from AFFACT-ub). As shown in Figure 5.7 (blue bars) the KL distance
for the rather balanced attributes is fairly small so the two Grad-CAMs do not differ much. To-
wards the unbalanced side (on the right) the KL distance and therefore the difference increases.
The attributes for which the Grad-CAMs differ the most are "Brown Hair", "No Bread", "Bangs",
"Narrow Eyes", "5 o Clock Shadow", "Receding Hairline", "Eyeglasses", "Goatee", "Sideburns",
"Blurry", "Pale Skin", and "Mustache". This is also apparent when looking at the Grad-CAMs
(Figure 5.10). In these cases, there is a clearly visible activity in the balanced Grad-CAM and no
visible activity in the unbalanced Grad-CAM.
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Attribute
balanced unbalanced

ER AMR ER AMR
o gt p gt n pr c pr nc o gt p gt n pr c pr nc

Attractive 0.17 0.32 0.35 0.29 0.31 0.35 0.17 0.29 0.33 0.26 0.3 0.25
Mouth Slightly Open 0.05 0.84 0.79 0.88 0.84 0.69 0.05 0.83 0.8 0.86 0.84 0.6

Smiling 0.06 0.83 0.8 0.87 0.84 0.72 0.07 0.78 0.81 0.74 0.79 0.55
Wearing Lipstick 0.05 0.58 0.6 0.57 0.59 0.4 0.05 0.52 0.55 0.49 0.53 0.26

High Cheekbones 0.12 0.79 0.79 0.79 0.8 0.71 0.11 0.75 0.79 0.71 0.77 0.59
Male 0.01 0.38 0.39 0.38 0.38 0.38 0.01 0.36 0.38 0.35 0.36 0.38

Heavy Makeup 0.07 0.69 0.8 0.61 0.69 0.64 0.07 0.45 0.72 0.26 0.45 0.37
Wavy Hair 0.13 0.23 0.36 0.15 0.22 0.26 0.13 0.16 0.3 0.07 0.16 0.12
Oval Face 0.31 0.43 0.48 0.41 0.42 0.47 0.25 0.21 0.32 0.15 0.2 0.22

Pointy Nose 0.24 0.53 0.58 0.52 0.54 0.52 0.21 0.32 0.39 0.3 0.34 0.27
Arched Eyebrows 0.19 0.53 0.77 0.42 0.49 0.7 0.16 0.29 0.62 0.14 0.26 0.42

Big Lips 0.3 0.28 0.3 0.27 0.28 0.29 0.26 0.15 0.19 0.13 0.15 0.15
Black Hair 0.12 0.2 0.2 0.19 0.19 0.22 0.09 0.1 0.2 0.06 0.1 0.17

Big Nose 0.24 0.56 0.66 0.52 0.53 0.63 0.18 0.27 0.54 0.19 0.24 0.43
Young 0.14 0.31 0.3 0.35 0.3 0.37 0.12 0.18 0.13 0.34 0.17 0.28

Straight Hair 0.21 0.32 0.28 0.33 0.33 0.28 0.15 0.23 0.2 0.24 0.24 0.18
Brown Hair 0.19 0.22 0.28 0.21 0.2 0.29 0.11 0.1 0.23 0.07 0.09 0.2

Bags Under Eyes 0.2 0.51 0.5 0.51 0.53 0.43 0.16 0.2 0.44 0.14 0.17 0.35
Wearing Earrings 0.12 0.38 0.62 0.32 0.36 0.58 0.09 0.23 0.6 0.13 0.21 0.42

No Beard 0.04 0.73 0.76 0.56 0.74 0.46 0.03 0.24 0.19 0.51 0.24 0.33
Bangs 0.05 0.78 0.84 0.77 0.78 0.79 0.04 0.15 0.77 0.03 0.14 0.39

Blond Hair 0.06 0.11 0.06 0.12 0.11 0.1 0.04 0.02 0.07 0.01 0.01 0.08
Bushy Eyebrows 0.12 0.45 0.77 0.4 0.42 0.72 0.07 0.11 0.59 0.03 0.1 0.31

Wearing Necklace 0.22 0.41 0.65 0.37 0.37 0.57 0.11 0.1 0.41 0.04 0.08 0.25
Narrow Eyes 0.18 0.76 0.7 0.77 0.81 0.56 0.11 0.07 0.28 0.04 0.06 0.15

5 o Clock Shadow 0.1 0.59 0.54 0.59 0.59 0.51 0.05 0.1 0.46 0.05 0.08 0.32
Receding Hairline 0.13 0.57 0.74 0.55 0.54 0.72 0.06 0.06 0.48 0.02 0.05 0.31

Wearing Necktie 0.06 0.28 0.86 0.23 0.25 0.81 0.03 0.07 0.73 0.01 0.06 0.43
Rosy Cheeks 0.14 0.49 0.78 0.47 0.46 0.72 0.05 0.06 0.5 0.02 0.05 0.35

Eyeglasses 0.01 0.59 0.87 0.57 0.59 0.81 0.0 0.06 0.86 0.0 0.06 0.49
Goatee 0.07 0.63 0.69 0.63 0.63 0.64 0.03 0.04 0.54 0.02 0.03 0.4

Chubby 0.15 0.29 0.38 0.29 0.28 0.39 0.05 0.03 0.23 0.02 0.02 0.19
Sideburns 0.07 0.12 0.26 0.11 0.1 0.28 0.02 0.02 0.29 0.01 0.02 0.25

Blurry 0.11 0.3 0.37 0.29 0.29 0.37 0.03 0.03 0.25 0.02 0.02 0.19
Wearing Hat 0.02 0.5 0.67 0.49 0.49 0.64 0.01 0.03 0.64 0.0 0.03 0.42
Double Chin 0.14 0.07 0.3 0.05 0.03 0.28 0.04 0.01 0.07 0.0 0.0 0.06

Pale Skin 0.14 0.57 0.67 0.57 0.56 0.66 0.03 0.02 0.35 0.01 0.02 0.16
Gray Hair 0.06 0.05 0.07 0.05 0.04 0.12 0.02 0.0 0.06 0.0 0.0 0.05
Mustache 0.08 0.76 0.81 0.76 0.76 0.74 0.03 0.03 0.39 0.01 0.02 0.24

Bald 0.03 0.43 0.8 0.42 0.42 0.75 0.01 0.02 0.63 0.0 0.02 0.4
OVERALL 0.12 0.46 0.56 0.44 0.45 0.51 0.08 0.19 0.43 0.16 0.19 0.3

Table 5.1: AMR AND ERROR RATE MASK VERSION 2. This table shows the error rate and the AMR for the
AFFACT-b and the AFFACT-ub (with masks version 2). The attributes are ordered by increasing class imbalance. The
greater value of the column pairs o/o, gt p/gt n, and pr c/pr nc is highlighted with bold font and exceptions from the
norm are in color. o = overall, gt p = ground truth positive, gt n = ground truth negative, pr c = prediction correct, pr
nc = prediction not correct



5.5 Experiment 5 25

Attractive Mouth Slightly Open Smiling Wearing Lipstick High Cheekbones

Male Heavy Makeup Wavy Hair Oval Face Pointy Nose

Arched Eyebrows Big Lips Black Hair Big Nose Young

Straight Hair Brown Hair Bags Under Eyes Wearing Earrings No Beard

Bangs Blond Hair Bushy Eyebrows Wearing Necklace Narrow Eyes

5 o Clock Shadow Receding Hairline Wearing Necktie Rosy Cheeks Eyeglasses

Goatee Chubby Sideburns Blurry Wearing Hat

Double Chin Pale Skin Gray Hair Mustache Bald

Figure 5.8: GRADCAMS PREDICTION CORRECT VS. INCORRECT. Each group of four shows the attribute-wise
average GradCAM for correctly classified samples (left) and incorrectly classified samples (right). The upper pair is
from AFFACT-b, the lower pair from AFFACT-ub. The attributes are ordered by increasing class imbalance.
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Attractive Mouth Slightly Open Smiling Wearing Lipstick High Cheekbones

Male Heavy Makeup Wavy Hair Oval Face Pointy Nose

Arched Eyebrows Big Lips Black Hair Big Nose Young

Straight Hair Brown Hair Bags Under Eyes Wearing Earrings No Beard

Bangs Blond Hair Bushy Eyebrows Wearing Necklace Narrow Eyes

5 o Clock Shadow Receding Hairline Wearing Necktie Rosy Cheeks Eyeglasses

Goatee Chubby Sideburns Blurry Wearing Hat

Double Chin Pale Skin Gray Hair Mustache Bald

Figure 5.9: GRADCAMS ATTRIBUTE PRESENT VS. ABSENT. Each group of four shows the attribute-wise average
GradCAM for presence (left) and absence of the attribute (right). The upper pair is from AFFACT-b, the lower pair
from AFFACT-ub. For the pair from AFFACT-ub, the majority class is indicated with a red frame. The attributes are
ordered by increasing class imbalance.
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Attractive Mouth Slightly Open Smiling Wearing Lipstick

High Cheekbones Male Heavy Makeup Wavy Hair

Oval Face Pointy Nose Arched Eyebrows Big Lips

Black Hair Big Nose Young Straight Hair

Brown Hair Bags Under Eyes Wearing Earrings No Beard

Bangs Blond Hair Bushy Eyebrows Wearing Necklace

Narrow Eyes 5 o Clock Shadow Receding Hairline Wearing Necktie

Rosy Cheeks Eyeglasses Goatee Chubby

Sideburns Blurry Wearing Hat Double Chin

Pale Skin Gray Hair Mustache Bald

Figure 5.10: CAMS BALANCED VS. UNBALANCED. This figure shows the attribute-wise average Grad-CAMs for
AFFACT-b (left) and AFFACT-ub (right). The attributes are ordered by increasing class imbalance.





Chapter 6

Discussion

The main finding of the experiments that were conducted as part of this thesis is that for the
AFFACT-ub the Grad-CAMs for the majority class show less activity the more the class imbalance
increases while for the minority class, it is rather stable. As already mentioned the AFFACT-ub
performs well on the majority class but rather poorly on the minority class. Considering this
together with the findings of Wu et al. (2023) which showed that the Class Activation Map im-
proves1 when the classification accuracy improves, we expected the Grad-CAMs of the majority
class to highlight the expected region while for the minority class, we expected the discriminative
area to may be somewhere else.
This is primarily important for experiment 3, but indirectly it also affects the other experiments. In
the following, we will discuss the results of each experiment and try to establish the link between
the respective results and this main finding.

In the first experiment the results are not very clear, the negative correlation between the AMR
and the error rate for the AFFACT-b is not significant and for the AFFACT-ub the correlation
coefficient even indicated a positive relationship. A positive correlation means, that the error rate
and the AMR increase/decrease simultaneously and it can be observed in Figure 5.3 that they
both decrease with increasing class imbalance. With increasing imbalance, the overall error rate
decreases because the majority class which has a low error rate becomes bigger and therefore has
a bigger impact. For example for the attribute "Bald" the dominant class makes up about 98% of
the samples so the network performs well on almost all of the samples and achieves a very low
error rate. The AMR also decreases with increasing class imbalance because of the phenomenon
that we observed for the Grad-CAMs of the AFFACT-ub namely that the Grad-CAMs for the
majority class do hardly show any activity. E.g. for the attribute "Bald" 9’931 of 10’548 Grad-
CAMs show no activity at all which results in an AMR of 0 and of the remaining 527 Grad-CAMs
many have an activity in the corner of the image which also results in an AMR of 0. This explains
its extremely low AMR of 0.02.

The results for the second experiment show that the AMR is generally higher for the incorrectly
classified samples. While for the results of the AFFACT-b, it is hard to spot a pattern that would
somehow explain the results for the AFFACT-ub it seems to be a similar pattern that we also ob-
served in other experiments. That is with increasing class imbalance the heatmaps of the average
Grad-CAMs for correctly classified samples tend to become weaker and weaker and with them
decreases the AMR. The decreasing AMR is nicely shown in Figure 5.4 as the darker red bars.
Now how could this be explained. As already discussed, the Grad-CAMs for the dominating
class of highly imbalanced attributes seem to often show no activity at all leading to an AMR of
0 which then results in a low average AMR. And we know that the network performs well on
the dominating class. Therefore the average Grad-CAM of correctly classified samples mainly

1e.g. is located at the mouth region when classifying "Mouth Slightly Open" rather than at the eye region



30 Chapter 6. Discussion

contains samples of the dominating class which leads to a mostly blue average Grad-CAM and
a low average AMR. The increasing difference between the correctly and incorrectly classified
average Grad-CAM of the AFFACT-ub can be observed in Figure 5.7 (red bars). Even though it
was initially not planned to calculate the KL distance for this experiment, it helps to emphasize
the observed pattern.

In the third experiment, the results indicate that the average AMR for positive samples (attribute
present) is higher than for negative samples (attribute absent). In case of the AFFACT-ub, this
contradicts what we expected because we know that the network predicts the majority class well
and with increasing accuracy the Class Activation Map should be more likely to actually highlight
the expected area (Wu et al., 2023). Interestingly the opposite can be observed in the results in
Figure 5.9. In order to quantify the difference between the positive and negative average Grad-
CAM of AFFACT-ub we calculated the KL distance (Figure 5.7, green bars). Even though it was
initially not planned to calculate the KL distance for this experiment, it helps to visualize the
observed pattern. It can be observed in Figure 5.7 that for the rather balanced attributes, the
difference between the positive and negative AFFACT-ub-Grad-CAMs is fairly small. Towards
the unbalanced side, the difference increases. For most of the highly imbalanced attributes, the
average Grad-CAM for the positive samples looks close to what we expected while the average
Grad-CAM for the negative samples is almost completely blue (Figure 5.9. At first, this looks
like the Grad-CAM for the negative class is always the better one. But there are three exceptions
namely "Attractive", "No Beard", and "Young". In exactly these three cases the positive class is the
dominating class while for all other attributes, it is the negative class. It seems like for classifying
the majority class the network does not use much of the image to classify. The question is why this
happens. A first theory could be that the network does not do much when the feature maps show
patterns that are characteristic of the majority class because this is the default. But the network
looks closer when the feature maps show patterns that are different from the default. We leave it
for future research to further examine this phenomenon.

The results of the fourth experiment show that the overall AMR is higher for AFFACT-b than
for AFFACT-ub. This is because especially for the highly unbalanced attributes the average AMR
for AFFACT-ub is fairly small. This again can be explained by the phenomenon we observed
in experiment 3. As already discussed, the average Grad-CAM for the dominating class shows
little to no activity the more unbalanced the attribute. So when the AMR of the dominating
class - which mainly contributes to the average - decreases then consequently the average AMR
decreases as well.

The fifth experiment’s results confirm what we already saw in the other experiments, namely
that the heatmaps of the average Grad-CAMs generated by AFFACT-b do not vary much through-
out the attributes (except for the location of course) while those of AFFACT-ub get weaker with
increasing class imbalance until they as of the attribute "Eyeglasses" visually disappear.

Besides the results of the single experiments, for some attributes, the discriminative area does
not correspond exactly to the location of the attribute. There are a few attributes for which the
focus lies mainly on the mouth rather than the respective attribute location. E.g."High Cheek-
bones", "Rosy Cheeks", "Sideburns" and "Big Nose". Also for "Male" the focus is on the mouth
instead of - as one may expect - the whole face. Despite "Wavy Hair" and "Straight Hair" for all
the other hair-associated attributes the discriminative area is located at the forehead, apparently
ignoring hair on the side of the head. Other than that for most attributes the AFFACT-b as well as
the AFFACT-ub indeed use the part of the image where the attribute to be classified is located.
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Conclusion

In this thesis, the goal was to gain a deeper understanding of the decision-making process of two
binary classifiers when classifying 40 binary facial attributes. We used two pre-trained CNNs
which are both based on a ResNet-50 structure and apply the AFFACT technique to classify at-
tributes (Günther et al., 2017). One of them, referred to as the AFFACT-b, considers class imbal-
ance inherent to the dataset while the other one, the AFFACT-ub, does not. We then conducted
several experiments on the CelebA dataset, used the Grad-CAM method to identify the discrimi-
native regions by generating a heatmap for every image, and created masks built of 32 x 32 pixel
blocks to evaluate the heatmaps. With the Acceptable Mask Ratio (AMR), we measured how
much of the discriminative area lies within the masked area. Through these experiments, we
sought to answer five research questions for the AFFACT-b and the AFFACT-ub. First, we ex-
amined whether there is a correlation between the classifier’s error rate and the location of the
discriminative area. The results indicated an insignificantly weak negative correlation for the
AFFACT-b and a fairly weak positive correlation for the AFFACT-ub. Second, the location of the
discriminative area between correctly classified and incorrectly classified samples was inspected
and we observed that for both the AFFACT-b and the AFFACT-ub the incorrectly classified sam-
ples are more likely to rely on the area of the image where the attribute is located. Third, we
compared the Grad-CAMs for samples containing the attribute to samples where the attribute is
absent and discovered that when the attribute is present the classifier is more likely to rely on
the expected area when the attribute is present. Fourth, we contrasted the Grad-CAMs of the
AFFACT-b and the AFFACT-ub and found that the discriminative area of the balanced Grad-
CAMs more often lies within the masked area. Fifth, we measured the difference between the
Grad-CAMs from AFFACT-b and those from AFFACT-ub. The results showed that the more un-
balanced the attribute, the more different the Grad-CAMs of the two CNNs. Throughout all five
experiments, we observed the phenomenon that for highly biased attributes the Grad-CAMs for
the dominant class do not show any activity. It remains to be explained why this happens.

While the experiments conducted in this thesis have provided valuable insights, there remain
potential areas for improvement that could enhance the robustness and comprehensiveness of the
results. For example, the threshold for defining the discriminative area could be raised. For our
experiments, any value greater than zero was counted as part of the discriminative area. Also,
one could consider the shape of an attribute and design the masks respectively instead of creating
them all in a rectangular shape. Moreover, our findings leave us with some questions that have
yet to be explored. For instance, it is to be examined whether the Grad-CAM method is suited
for binary classifiers. Because we did not manage to completely solve the problem of activations
in the corners of images. Some adjustments in the code of the Grad-CAM method might be able
to solve this issue. In addition, it would be of utmost interest to further examine the observation
that the AFFACT-ub’s average Grad-CAMs for the majority class do not highlight any area when
the attribute is highly biased.
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Attachments

Prediction > 0 Prediction < 0 Prediction > 0 Prediction < 0

Ground Truth = 1

Ground Truth = -1

Figure A.1: TARGET FUNCTION 1. CAMs when the target function returns the raw model output (as in ’Classifier-
OutputTarget’) for "5 o Clock Shadow" (left square) and "Bushy Eyebrows" (right square).

Prediction > 0 Prediction < 0 Prediction > 0 Prediction < 0

Ground Truth = 1

Ground Truth = -1

Figure A.2: TARGET FUNCTION 3. CAMs when the target function returns the absolute model output multiplied by
the ground truth value for "5 o Clock Shadow" (left square) and "Bushy Eyebrows" (right square).

Prediction > 0 Prediction < 0 Prediction > 0 Prediction < 0

Ground Truth = 1

Ground Truth = -1

Figure A.3: TARGET FUNCTION 4. CAMs when the target function returns the model output multiplied by the
ground truth value for "5 o Clock Shadow" (left square) and "Bushy Eyebrows" (right square).
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5 o Clock Shadow Arched Eyebrows Attractive Bags Under Eyes

Bald Bangs Big Lips Big Nose

Black Hair Blond Hair Blurry Brown Hair

Bushy Eyebrows Chubby Double Chin Eyeglasses

Goatee Gray Hair Heavy Makeup High Cheekbones

Male Mouth Slightly Open Mustache Narrow Eyes

No Beard Oval Face Pale Skin Pointy Nose

Receding Hairline Rosy Cheeks Sideburns Smiling

Straight Hair Wavy Hair Wearing Earrings Wearing Hat

Wearing Lipstick Wearing Necklace Wearing Necktie Young

Figure A.4: MASKS. These are the masks used to calculate the AMR, version 1 (left) and version 2 (right).
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Attributes xl xr yt yb
5 o Clock Shadow xm,l − 25 xm,r + 25 ye,c + 4 ym,c + 32
Arched Eyebrows xe,l − 13 xe,r + 13 ye,c − 18 ye,c − 2

Attractive xn − 80 xn + 75 yn − 100 224
Bags Under Eyes xe,l − 13 xe,r + 13 ye,c + 4 ye,c + 15

Bald xhead,c − 55 xhead,c + 55 yhairline − 30 yhairline + 15
Bangs xe,l − 15 xe,r + 15 yf,c − 12 yf,c + 15

Big Lips xm,l − 6 xm,r + 6 ym,c − 10 ym,c + 15
Big Nose xn − 15 xn + 15 yn − 15 yn + 8

Black Hair maskglobal − ellipse(center = (xn, yn − 15), rlong = 60, rshort = 45)
Blond Hair maskglobal − ellipse(center = (xn, yn − 15), rlong = 60, rshort = 45)

Blurry xn − 80 xn + 75 yn − 100 224
Brown Hair maskglobal − ellipse(center = (xn, yn − 15), rlong = 60, rshort = 45)

Bushy Eyebrows xe,l − 13 xe,r + 13 ye,c − 18 ye,c − 2
Chubby xn − 80 xn + 75 yn − 100 224

Double Chin xm,l − 6 xm,r + 6 ym,c + 30 ym,c + 60
Eyeglasses xe,l − 22 xe,r + 22 ye,c − 15 ye,c + 15

Goatee xm,l xm,r ym,c ym,c + 30
Gray Hair maskglobal − ellipse(center = (xn, yn − 15), rlong = 60, rshort = 45)

Heavy Makeup xn − 50 xn + 55 ye,c − 45 ym,c + 35
High Cheekbones (left) xe,l − 25 xn ye,c + 4 yn + 5

High Cheekbones (right) xn xe,r + 25 ye,c + 4 yn + 5
Male xn − 80 xn + 75 yn − 100 224

Mouth Slightly Open xm,l − 6 xm,r + 6 ym,c − 10 ym,c + 15
Mustache xm,l − 10 xm,r + 10 ym,c − 15 ym,c

Narrow Eyes xe,l − 13 xe,r − 13 ye,c − 10 ye,c + 10
No Beard xm,l − 25 xm,r + 25 ye,c + 4 ym,c + 32
Oval Face xn − 50 xn + 55 ye,c − 45 ym,c + 35
Pale Skin xn − 50 xn + 55 ye,c − 45 ym,c + 35

Pointy Nose xn − 15 xn + 15 yn − 15 yn + 8
Receding Hairline xhead,c − 55 xhead,c + 55 yhairline − 30 yhairline + 15
Rosy Cheeks (left) xe,l − 25 xn ye,c + 4 yn + 5

Rosy Cheeks (right) xn xe,r + 25 ye,c + 4 yn + 5
Sideburns (left) xe,l − 25 xe,l − 5 ye,c + 4 yn + 28

Sideburns (right) xe,r + 5 xe,r + 25 ye,c + 4 yn + 28
Smiling xm,l − 6 xm,r + 6 ym,c − 10 ym,c + 15

Straight Hair maskglobal − ellipse(center = (xn, yn − 15), rlong = 60, rshort = 45)
Wavy Hair maskglobal − ellipse(center = (xn, yn − 15), rlong = 60, rshort = 45)

Wearing Earrings (left) xe,l − 34 xe,l − 12 yn − 15 yn + 42
Wearing Earrings (right) xe,r + 12 xe,r + 34 yn − 15 yn + 42

Wearing Hat xhead,c − 70 xhead,c + 70 5 yhairline + 15
Wearing Lipstick xm,l − 6 xm,r + 6 ym,c − 10 ym,c + 15

Wearing Necklace xm,l − 30 xm,r + 30 ym,c + 30 224
Wearing Necktie xm,l − 30 xm,r + 30 ym,c + 30 224

Young xn − 80 xn + 75 yn − 100 224

Additional Variables

ye,c =
ye,l+ye,r

2

xhead,c =
xe,l+xe,r

2

yhairline =
ye,l+ye,r

2
yf,c = ye,c − 27

ym,c =
ym,l+ym,r

2
maskglobal : xl = xn − 80, xr = xn + 75, yt = yn − 100, yb = 224

Table A.1: MASKS VERSION 1 COORDINATES. This table shows the corner coordinates of the masks (version 1).
They are computed using the shifted landmarks. Every variable that is not mentioned in the last row is a landmark. e
= eyes, n = nose, m = mouth, l = left, r = right, c = center
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Attributes xl xr yt yb
5 o Clock Shadow 2 · 32 5 · 32 3 · 32 5 · 32
Arched Eyebrows 2 · 32 5 · 32 2 · 32 4 · 32

Attractive 1 · 32 6 · 32 1 · 32 7 · 32
Bags Under Eyes 2 · 32 5 · 32 2 · 32 4 · 32

Bald 2 · 32 5 · 32 0 · 32 3 · 32
Bangs 2 · 32 5 · 32 2 · 32 4 · 32

Big Lips 2 · 32 5 · 32 4 · 32 5 · 32
Big Nose 2 · 32 5 · 32 3 · 32 5 · 32

Black Hair maskglobal −maskface
Blond Hair maskglobal −maskface

Blurry 1 · 32 6 · 32 1 · 32 7 · 32
Brown Hair maskglobal −maskface

Bushy Eyebrows 2 · 32 5 · 32 2 · 32 4 · 32
Chubby 1 · 32 6 · 32 1 · 32 7 · 32

Double Chin 2 · 32 5 · 32 5 · 32 6 · 32
Eyeglasses 2 · 32 5 · 32 2 · 32 4 · 32

Goatee 3 · 32 4 · 32 4 · 32 6 · 32
Gray Hair maskglobal −maskface

Heavy Makeup 2 · 32 5 · 32 3 · 32 5 · 32
High Cheekbones 2 · 32 5 · 32 3 · 32 5 · 32

Male 1 · 32 6 · 32 1 · 32 7 · 32
Mouth Slightly Open 2 · 32 5 · 32 4 · 32 5 · 32

Mustache 2 · 32 5 · 32 4 · 32 5 · 32
Narrow Eyes 2 · 32 5 · 32 2 · 32 4 · 32

No Beard 2 · 32 5 · 32 3 · 32 5 · 32
Oval Face 2 · 32 5 · 32 1 · 32 6 · 32
Pale Skin 2 · 32 5 · 32 1 · 32 6 · 32

Pointy Nose 2 · 32 5 · 32 3 · 32 5 · 32
Receding Hairline 2 · 32 5 · 32 0 · 32 3 · 32

Rosy Cheeks 2 · 32 5 · 32 3 · 32 5 · 32
Sideburns (left) 1 · 32 3 · 32 3 · 32 6 · 32

Sideburns (right) 4 · 32 6 · 32 3 · 32 6 · 32
Smiling 2 · 32 5 · 32 4 · 32 5 · 32

Straight Hair maskglobal −maskface
Wavy Hair maskglobal −maskface

Wearing Earrings (left) 1 · 32 3 · 32 3 · 32 6 · 32
Wearing Earrings (right) 4 · 32 6 · 32 3 · 32 6 · 32

Wearing Hat 1 · 32 6 · 32 0 · 32 3 · 32
Wearing Lipstick 2 · 32 5 · 32 4 · 32 5 · 32

Wearing Necklace 2 · 32 5 · 32 5 · 32 7 · 32
Wearing Necktie 2 · 32 5 · 32 5 · 32 7 · 32

Young 1 · 32 6 · 32 1 · 32 7 · 32

Additional Variables
maskface = xl = 2 · 32, xr = 5 · 32, yt = 2 · 32, yb = 7 · 32
maskglobal = xl = 1 · 32, xr = 6 · 32, yt = 1 · 32, yb = 7 · 32

Table A.2: MASKS VERSION 2 COORDINATES. This table shows the corner coordinates of the masks (version 2).
They are built of multiples of 32 because initially, the Grad-CAMs have a size of 7 x 7 px, which after upsampling them
to image size corresponds to an area of 32 x 32. e = eyes, n = nose, m = mouth, l = left, r = right, c = center
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Figure A.5: GRAD-CAM ERROR EXAMPLES. Grad-CAMs for the attribute "Bald" from AFFACT-b (left of pair)
and AFFACT-ub (right of pair) generated with target function 2. For the AFFACT-ub the Grad-CAM method still fails
sometimes (activation in image corner).

Figure A.6: AMR CORRECTED (AFFACT-B). This diagram compares the attribute-wise average AMR when using
the formula from Chen (2022) (blue) to the attribute-wise average AMR obtained using our adjusted formula (red)
which considers the various sizes of the masks w.r.t. the image size. Both AMRs were calculated from CAMs generated
using the Grad-CAM method and the AFFACT-b. It shows that when using the formula from Chen (2022) attributes
like "Attractive", "Blurry", "Chubby" whose masked areas contain almost the whole image have a very high AMR
compared to other attributes. This makes it hard to compare them to other attributes whose masks are considerably
smaller. As shown in this diagram our formula relativizes the AMR of attributes with a big mask, i.e. "Attractive",
"Blurry", "Chubby", "Male", and "Young".

Figure A.7: AMR MASK 1 VS. MASK 2. This diagram compares the attribute-wise average AMR when using the
first version of masks (blue) to the attribute-wise average AMR when using the second version of masks consisting of
multiples of 32 (red). Both are obtained from Grad-CAMs of AFFACT-b. The AMR with the second version of masks
improves for roughly 80% of the attributes.
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Attribute
balanced unbalanced

ER AMR ER AMR
o gt p gt n pr c pr nc o gt p gt n pr c pr nc

5 o Clock Shadow 0.1 0.61 0.71 0.6 0.61 0.65 0.05 0.12 0.61 0.06 0.1 0.42
Arched Eyebrows 0.19 0.09 0.14 0.06 0.08 0.13 0.16 0.06 0.15 0.02 0.06 0.1

Attractive 0.17 0.32 0.35 0.29 0.31 0.35 0.17 0.29 0.33 0.25 0.3 0.25
Bags Under Eyes 0.2 0.18 0.18 0.18 0.19 0.14 0.16 0.07 0.15 0.05 0.06 0.12

Bald 0.03 0.16 0.19 0.16 0.16 0.17 0.01 0.01 0.23 0.0 0.01 0.14
Bangs 0.05 0.6 0.7 0.58 0.6 0.65 0.04 0.11 0.53 0.02 0.1 0.3

Big Lips 0.3 0.2 0.22 0.19 0.2 0.2 0.26 0.11 0.13 0.1 0.11 0.1
Big Nose 0.24 0.13 0.18 0.11 0.12 0.16 0.18 0.07 0.16 0.04 0.06 0.11

Black Hair 0.12 0.18 0.19 0.18 0.18 0.21 0.09 0.08 0.15 0.05 0.08 0.14
Blond Hair 0.06 0.1 0.06 0.11 0.1 0.09 0.04 0.02 0.08 0.01 0.02 0.08

Blurry 0.11 0.3 0.36 0.29 0.29 0.36 0.03 0.03 0.24 0.02 0.02 0.19
Brown Hair 0.19 0.2 0.27 0.18 0.19 0.26 0.11 0.09 0.21 0.07 0.08 0.17

Bushy Eyebrows 0.12 0.09 0.18 0.08 0.09 0.17 0.07 0.03 0.15 0.01 0.02 0.08
Chubby 0.15 0.29 0.37 0.28 0.27 0.38 0.05 0.03 0.23 0.02 0.02 0.19

Double Chin 0.14 0.03 0.14 0.03 0.02 0.12 0.04 0.0 0.02 0.0 0.0 0.02
Eyeglasses 0.01 0.4 0.63 0.39 0.4 0.57 0.0 0.04 0.63 0.0 0.04 0.36

Goatee 0.07 0.39 0.41 0.39 0.39 0.38 0.03 0.02 0.3 0.01 0.02 0.22
Gray Hair 0.06 0.05 0.08 0.05 0.05 0.11 0.02 0.0 0.07 0.0 0.0 0.06

Heavy Makeup 0.07 0.62 0.73 0.54 0.61 0.68 0.07 0.42 0.68 0.23 0.42 0.4
High Cheekbones 0.12 0.09 0.11 0.07 0.08 0.12 0.11 0.07 0.1 0.05 0.07 0.09

Male 0.01 0.38 0.38 0.38 0.38 0.37 0.01 0.36 0.38 0.34 0.36 0.37
Mouth Slightly Open 0.05 0.69 0.64 0.74 0.7 0.52 0.05 0.72 0.65 0.77 0.73 0.49

Mustache 0.08 0.3 0.31 0.3 0.3 0.28 0.03 0.01 0.15 0.0 0.01 0.09
Narrow Eyes 0.18 0.35 0.3 0.35 0.37 0.22 0.11 0.03 0.13 0.02 0.03 0.07

No Beard 0.04 0.77 0.78 0.75 0.78 0.65 0.03 0.28 0.2 0.69 0.27 0.46
Oval Face 0.31 0.41 0.46 0.38 0.39 0.45 0.25 0.2 0.33 0.14 0.2 0.21
Pale Skin 0.14 0.59 0.7 0.59 0.57 0.7 0.03 0.02 0.38 0.01 0.02 0.17

Pointy Nose 0.24 0.19 0.17 0.2 0.21 0.15 0.21 0.08 0.1 0.06 0.08 0.07
Receding Hairline 0.13 0.14 0.18 0.14 0.14 0.17 0.06 0.02 0.17 0.01 0.02 0.11

Rosy Cheeks 0.14 0.16 0.28 0.15 0.15 0.26 0.05 0.02 0.16 0.01 0.01 0.12
Sideburns 0.07 0.05 0.07 0.05 0.05 0.08 0.02 0.01 0.1 0.0 0.01 0.08

Smiling 0.06 0.66 0.62 0.71 0.67 0.52 0.07 0.64 0.63 0.65 0.66 0.41
Straight Hair 0.21 0.3 0.27 0.31 0.31 0.27 0.15 0.23 0.2 0.24 0.24 0.17

Wavy Hair 0.13 0.23 0.36 0.16 0.23 0.27 0.13 0.16 0.3 0.07 0.16 0.13
Wearing Earrings 0.12 0.17 0.28 0.14 0.16 0.25 0.09 0.11 0.29 0.06 0.1 0.2

Wearing Hat 0.02 0.14 0.19 0.14 0.14 0.36 0.01 0.01 0.27 0.0 0.01 0.26
Wearing Lipstick 0.05 0.46 0.43 0.48 0.47 0.27 0.05 0.41 0.38 0.43 0.42 0.18

Wearing Necklace 0.22 0.37 0.62 0.32 0.32 0.52 0.11 0.09 0.39 0.04 0.08 0.24
Wearing Necktie 0.06 0.24 0.73 0.2 0.21 0.69 0.03 0.06 0.67 0.01 0.06 0.39

Young 0.14 0.31 0.3 0.34 0.3 0.37 0.12 0.18 0.13 0.34 0.17 0.28
OVERALL 0.12 0.3 0.36 0.29 0.3 0.33 0.08 0.13 0.28 0.12 0.13 0.2

Table A.3: ERROR RATE AND AMR 1. This table shows the error rate and the amr for the AFFACT-b and the
AFFACT-ub (with masks version 1). In the "OVERALL" row the greater value of the column pairs o/o, gt p/gt n,
and pr c/pr nc is highlighted with bold font and color. o = overall, gt p = ground truth positive, gt n = ground truth
negative, pr c = prediction correct, pr nc = prediction not correct
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