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Abstract

This project applied a hierarchy-aware and cross-lingual approach to classify job

tasks (e.g.: Verpackungsarbeiten allgemein und in Medizinaltechnik) from German

job advertisements using the ONET English ontology which is a complex ontology

with three hierarchical level and fine-grained classes. Two methods, machine transla-

tion and multilingual models, are tested to bridge the language gap. The project con-

sisted of two sets of experiments: local classifier experiments using transformer-based

models at each hierarchical level, and global hierarchical models on the O*NET data.

This work yields several key findings:

Firstly, domain adaptation proved effective, with job domain-specific language mod-

els outperforming general domain models. Translation quality also influenced clas-

sification performance, with DeepL outperforming the SJMM engine.

Secondly, state-of-the-art models (TextRNN, TextRCNN, HMCN, HiAGM) were

used as global hierarchical models for task classification. These models effectively in-

corporated hierarchical information, addressing inconsistencies and overfitting through

recursive regularization.

Furthermore, the best model configurations from both series of experiments are

selected to predict job advertisement data, resulting in reliable classification using

the O*NET hierarchical ontology. Human post-evaluation, conducted by a German-

speaking domain expert, validates the accuracy of the models’ predictions. Overall,

while this project extensively tested the feasibility of hierarchy-aware classification

models, the transformer-based flat model Job-GBERT proves to be a more suitable

option for the hierarchical classification of Job Ads data, given its specificity.



Zusammenfassung

In diesem Projekt wurde ein hierarchiebewusster und sprachübergreifender Ansatz

zur Klassifizierung von Arbeitsaufgaben (z.B.: Verpackungsarbeiten allgemein und

in der Medizintechnik) aus deutschen Stellenanzeigen unter Verwendung der engli-

schen ONET Ontologie angewandt, einer komplexen Ontologie mit drei hierarchi-

schen Ebenen und feinkörnigen Klassen. Zwei Methoden, maschinelle Übersetzung

und multilinguale Modelle, werden getestet, um die Sprachlücke zu schließen. Das

Projekt bestand aus zwei Serien von Experimenten: lokale Klassifikationsexperi-

mente mit transformer-basierten Modellen auf jeder einzelnen Hierarchieebene und

globale hierarchische Modelle auf allen O*NET-Daten. Aus dieser Arbeit ergeben

sich mehrere wichtige Erkenntnisse:

Erstens erwies sich die Domänenanpassung als wirksam, wobei die jobdomänenspezifischen

Sprachmodelle die allgemeinen, domänenunspezifischen Sprachmodelle übertrafen.

Auch die Übersetzungsqualität beeinflusste die Klassifizierungsleistung, wobei Dee-

pL die SJMM-Engine übertraf.

Zweitens wurden modernste Modelle (TextRNN, TextRCNN, HMCN, HiAGM) als

globale hierarchische Modelle für die Aufgabenklassifizierung verwendet. Diese Mo-

delle berücksichtigten effektiv hierarchische Informationen, indem sie Inkonsistenzen

und Überanpassungen durch rekursive Regularisierung beseitigten.

Darüber hinaus werden die besten Modellkonfigurationen aus beiden Versuchsrei-

hen für die Vorhersage von Stellenausschreibungsdaten ausgewählt, was zu einer

zuverlässigen Klassifizierung unter Verwendung der hierarchischen Ontologie von

O*NET führt. Eine von einem deutschsprachigen Experten durchgeführte Nacheva-

luierung bestätigt die Genauigkeit der Vorhersagen der Modelle. Insgesamt wurde

in diesem Projekt die Machbarkeit hierarchiebezogener Klassifizierungsmodelle um-

fassend getestet, wobei sich das transformer-basierte flache Klassifikationsmodell

Job-GBERT aufgrund seiner Spezifität als geeignetere Option für die hierarchische

Klassifizierung von Stellenanzeigendaten erweist.
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1 Introduction

1.1 Motivation

In the labour market, job advertisement is the first connection between candidates

and human resources professionals. Human resources professionals use job adver-

tisements to find new hires, and candidates apply for a vacant position through a

job advertisement. Usually, job advertisement text is written in a highly standard-

ized way, it contains sufficient and certain information about the background and

value of the company; requirements, tasks and benefit sharing for candidates; pro-

cess of application and contact information of the talent acquisition. Thus, from an

IT perspective, this job advertisement information can be retrieved and processed

within an automatic system, in order to serve the labour market. For example, by

analyzing the data, the authority can know which field is the most trending one;

job seekers can find which skills are the most desired in the market, and human

resources professionals can design job listings as they need, etc.

The Swiss Job Market Monitor (SJMM)1 is an extensive database of job adver-

tisements with data dating from 1950 to the present. This system is dedicated to

the systematic monitoring and forward-looking analysis of the Swiss labour market.

Currently, the data collection of SJMM comes mainly from panel of job portals and

the corporate panel. Since 2006, the automated software has been collecting data

from job portals continuously. Now it stores more than 1.3 million new ads per

year, which ensures that 95% of the ads posted on Swiss websites are covered. At

the same time, the database collects around 4,700 ads per quarter from over 1,300

company websites. Since 2001, the database collection of open jobs has been ex-

tended from the German-speaking region to the whole of Switzerland. (Therefore,

the corpus languages, include several languages that are widely spoken in Switzer-

land: English, German, French, Italian, and Romance languages). The database

provides the Scientific Use File (SUF) as a database for various academic studies on

long-term trends in the Swiss labour market.

1https://www.stellenmarktmonitor.uzh.ch

1
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Chapter 1. Introduction

Some research work for automated structuring and processing based on SJMM has

already been done. Text zoning solution can be the starting point to achieve this

automation process. Based on Gnehm’s previous work on extraction, text zoning

has been implemented using neural networks to identify different paragraphs in the

advertisements, such as object, task, activity, etc. Furthermore, Named Entity

Recognition (NER) style extraction is applied for information and communica-

tions technology (ICT) terms to explore required skills (Gnehm et al. [2022b]). Since

tasks are the essential and practical section in a job ad to explain the position con-

tent, classifying tasks into some standardized categories is also an important step.

Gnehm et al. extracted the skills in job advertisements and classified into the Eu-

ropean Skills, Competences, Qualifications and Occupations(ESCO) ontology.

Kind of similar to Gnehm et al.’s previous classification, in this project, I plan to

classify the job task into O*NET work activities ontology. The task is one of the

most important parts of a job ad, and is where the company describes what the job

actually is, lists responsibilities and gives insight into what the candidate is expected

to do in the job. The task description usually makes up a large part of the job ad

text and can be formulated as running text, but is often also in a list format.

The Occupational Information Network (O*NET) is designed as a tool for career

exploration and job analysis that facing to the full market. It offers three O*NET

work activities and task statements, which can be used in this study as the stan-

dardized categories or hierarchical ontology data for classifying job ad tasks. The

O*NET ontology data contains task statements and a three-level hierarchy for work

activity categories. Around 18,000 task statements for professions are assigned to

one or more Detailed Work Activities (DWA) which is the lowest level in the hier-

archy. Besides the DWA, there are around 300 Intermediate Work Activities (IWA)

and around 40 Generalized Work Activities (GWA).

Compared to the conventional flat classification approach, which flattens hierar-

chical data and feeds it into machine translation models, employing hierarchical

classification for job advertisements offers several potential advantages:

• Data fitting: Job advertisements exhibit significant variations in the level

of detail within task descriptions due to the large number of ads and diverse

sources. Hierarchical classification enables the assignment of both detailed

and general task descriptions to appropriate categories, accommodating the

non-uniform nature of the data.

• Information gain: Previous research by Gnehm (2022) in skill classification

demonstrated improved results when considering parent-class labels. Hence,

2



Chapter 1. Introduction

leveraging the hierarchical structure of the ontology is expected to yield perfor-

mance benefits by capturing valuable information and relationships between

categories.

• Consistency in labels: Utilizing a single, relatively complex model that

considers the entire class hierarchy as a whole offers an appealing alternative

to employing multiple local classifiers (e.g., per node or per level). Imple-

menting several classifiers introduces challenges during implementation, such

as addressing the disregard of parent-child relationships in methods like Local

Classifier per Level (LCL). This omission potentially leads to a significant loss

of knowledge that the classification model could otherwise learn. Moreover,

the use of multiple classifiers may result in inconsistent categorizations for the

same task.

By employing hierarchical classification for job advertisements, these advantages

can be harnessed to enhance the accuracy, flexibility, and overall performance of the

classification process.

To explore the performance of the global model, we consider testing several newly

proposed methods in this study. Neural networks are widely used to solve hierarchi-

cal classification problems. In this project, I am going to test TextRNN, TextRCNN

and Hierarchical Multi-label Classification Network (HMCN). Another approach was

proposed in 2020, and the HiAGM (Zhou et al. [2020]) is a robust global hierar-

chical perception model that outperforms other models in many public datasets.

As the ontology data in O*NET is in English and the majority of the job adver-

tisement data in our corpus is in German, the language gap is another problem

that cannot be neglected. Therefore, the second aim of this study will address the

language gap between the Job Ad data and O*NET ontology data. In this study, I

am going to compare the performance of traditional machine learning methods with

transformer-based multilingual models.

1.2 Research Questions

The research questions for this study are as follows:

1. Assessing the suitability of hierarchical text classification approaches:

What is the effectiveness of hierarchical text classification approaches for the

task of classifying tasks from job advertisements into the O*NET hierarchical

ontology data? This research question examines the efficacy of hierarchical

3



Chapter 1. Introduction

text classification methods in categorizing job advertisement tasks into the

O*NET hierarchical ontology. Baseline models with flatten classifiers will

be established as a starting point, and their performance will be compared

against models that incorporate semantic similarity measures between classes

and textual data. Specifically, the approaches proposed by Zhou et al. [2020]

and Wehrmann et al. [2018] will be implemented and evaluated.

2. Addressing the language gap between job advertisements and ontol-

ogy data: How can the language gap between job advertisements and ontol-

ogy data be effectively addressed? This research question focuses on exploring

strategies to overcome the language disparity between job advertisements and

ontology data. Two approaches will be tested and compared: machine transla-

tion and multilingual models. For the machine translation approach, various

techniques, such as the SJMM domain-adapted machine translation system

and the DeepL API, will be employed to translate the ontology data into

German. The translated ontology data will then be utilized to train a model

for classifying German job advertisement task data. Alternatively, multilin-

gual modeling techniques, utilizing models like XML-RoBERTa-base, will be

trained directly on English ontology data to classify German job advertisement

tasks.

Through the investigation of these research questions, this study aims to determine

the effectiveness of hierarchical text classification approaches and identify the most

suitable approach for bridging the language gap between Job Ads data and O*NET

ontology data.

1.3 Thesis Structure

The remaining content of this report consists of five chapters:

Chapter 2 presents an overview of relevant previous studies related to the project.

This includes discussions on hierarchical text classification, recursive regularization,

and machine translation. It also explores various global hierarchical models such as

HMCN, HiAGM, and their variants.

Chapter 3 provides a comprehensive description of the SJMM and O*NET datasets.

Basic dataset analysis is presented, along with an explanation of the methods em-

ployed in the project.

Chapter 4 outlines the experiment design in detail. This chapter covers the ex-

4



Chapter 1. Introduction

perimental setup, data processing techniques, experiment flow, and the evaluation

metrics utilized in the project.

Chapter 5 presents a thorough analysis of the experimental results. It includes visual

analysis, explanations of the results, and detailed examples for better comprehen-

sion.

Chapter 6 concludes the report by summarizing the key findings of this work. Ad-

ditionally, it highlights areas for improvement and suggests future directions for

further research.

By organizing the report into these chapters, a comprehensive understanding of the

project, related studies, methodology, experimental results, and conclusions can be

achieved.

5



2 Related work

2.1 Hierarchical Text Classification (HTC)

Hierarchical Text Classification (HTC) is an important but challenging subtask of

Text Classification (TC), which is a common real-world problem that happens when

the targets of the classification task are organized in a hierarchical order instead of

flat. The taxonomic hierarchy is commonly modeled as a tree or a directed acyclic

graph, where each label is regarded as a node that may have children and can be

classified. Figure 2.1 is a visualized example from the O*NET dataset. The task

‘Review and analyze legislation, laws, or public policy and recommend changes to

promote or support interests of the general population or special group.’ is the input

text of the model and then it will be assigned to labels at three different hierarchical

levels. At the highest GWA level, this task is assigned to two classes ‘Analyzing

Data or Information’ and ‘Providing Consultation and Advice to Others’, similarly

in the fine-tuned IWA and GWA levels.

Figure 2.1: An example of hierarchical text classification task.

More particularly, HTC is a specific type of the Hierarchical Multilabel Classification

(HMC). Which means that if a label is classified as a child node, it’s also belonging

to the respective parent nodes. In figure 2.1, the input text is assigned to the label

‘Analyze impact of legal or regulatory changes’ at the lowest DWA level. So, it also

6
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classified to the corresponding parent labels at IWA and GWA levels respectively.

HMC problem is defined by Vens et al. [2008] as whose samples satisfy i) may

belong to multiple classes simultaneously and ii) organized within a hierarchy. The

applications can be in many domains, like text classification (Rousu et al. [2006]),

image annotation (Dimitrovski et al. [2011]), and protein function prediction (Otero

et al. [2010]).

The existing approaches for HTC problems are commonly categorized as local or

global approaches. The local approaches usually construct multiple classifiers for

particular nodes or particular hierarchical levels. The local studies follow the top-

down strategy to generate hierarchy and overcome the data imbalance on child nodes

by learning from parent nodes (Wehrmann et al. [2018]). On the other hand, the

global approach uses single classifier for the whole hierarchy structure. Unlikely

to the early global approaches which treat the HTC as a flat multi-label classifi-

cation problem (Johnson and Zhang [2015]), some global studies take advantage of

hierarchical structure with specific strategies:

• Recursive regularization: Gopal and Yang proposed to combine the labels’

hierarchical dependencies with the regularization structure of the parameters.

In this way, they encourage classes nearby in the hierarchy to share similar

model parameters.

• Meta learning: Wu et al. applies a meta-learner to jointly learn the training

and prediction policies for different labels. Then, the training policies are used

to train the classifier with the cross-entropy loss function, and the prediction

policies are used for prediction process.

• Reinforcement learning: Mao et al. consider HTC as a Markov decision

process. They proposed the Hierarchical Label Assignment Policy (HiLAP)

model via deep reinforcement learning to determine where to place an object

and when to stop the assignment process.

Both local and global approaches have their own advantages and disadvantages.

Typically, local models are more prone to exposure bias as they lack holistic struc-

tural information (Zhou et al. [2020]). However, they are adept at extracting infor-

mation from different regions of the class hierarchy, until overfitting occurs. On the

other hand, global approaches are less likely to suffer from the error-propagation

problem, but are less capable of capturing local information, leading to underfitting

(Wehrmann et al. [2018]).

There are some popular data sets that are often used to test models’ performance

7
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on HMC tasks.

1. Reuters Corpus Volume I (RCV1) 1 is a benchmark dataset on text

categorization. It is a collection of newswire articles produced by Reuters in

1996-1997. It contains 804,414 manually labeled newswire documents and is

categorized with respect to three controlled vocabularies: industries, topics

and regions (Lewis et al. [2004]).

2. The Web of Science (WOS) Dataset 2 is a collection of data of published

papers available from the Web of Science. WOS has been released in three

versions: WOS-46985, WOS-11967 and WOS-5736. WOS-46985 is the full

dataset. WOS-11967 and WOS-5736 are two subsets of WOS-46985.

For example, WOS-11967 contains 11,967 documents with 35 categories which

include 7 parent categories. Domain is the root hierarchical level which in-

cludes 7 labels: Computer Science, Electrical Engineering, Psychology, Me-

chanical Engineering, Civil Engineering, Medical Science, Biochemistry. Area

is subdomain or area of the paper such as computer graphics (Kowsari et al.

[2017])

3. The New York Times (NYT) Annotated Corpus 3 contains over 1.8

million articles written and published by the New York Times between Jan-

uary 1, 1987 and June 19, 2007 with article metadata provided by the New

York Times Newsroom, the New York Times Indexing Service and the online

production staff at nytimes.com.

Data Set |L| Depth Avg(|Li|) Train Val Test

RCV1-V2 103 4 3.24 20833 2316 781265
WOS 141 2 2 30070 7518 9397
NYT 166 8 7.6 23,345 5,834 7,292

Table 2.1: Datasets Statistics. |L| is the number of classes. Depth is the maximum
level of hierarchy. Avg(|Li|) is the average number of classes per sample.
Train/Val/Test are the size of train/validation/test set respectively.

In 2018, Wehrmann et al. combined local and global optimizations in a hybrid

model called HMCN. This neural network architecture is specifically designed for

HMC problem. It can discover local hierarchical class relationships and capture the

entire class hierarchy while penalizing hierarchical violations.

1http://www.ai.mit.edu/projects/jmlr/papers/volume5/lewis04a/lyrl2004_rcv1v2_

README.htm
2https://data.mendeley.com/datasets/9rw3vkcfy4/6
3https://catalog.ldc.upenn.edu/LDC2008T19
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Some recent studies state that a structure encoder demonstrating the taxonomy

hierarchy structure directly can further improve the global models’ performance. In

2020, Zhou et al. design an encoder that integrates the label prior probability to

learn label hierarchy representations. Based on the hierarchy encoder, they propose

a hierarchy-aware global model (HiAGM) with two variants: a multi-label attention

variant (HiAGM-LA) and a text feature propagation model (HiAGM-TP).

Some further study conducted based on the HiAGM. Chen et al. embeds word and

label jointly in the hyperbolic space by considering this task as semantic matching

and applying BERT as encoder. Wang et al. propose Hierarchy-guided Contrastive

Learning (HGCLR) to embed the hierarchy into a text encoder directly. They train

the model constructively by constructing positive samples, so that the text encoder

can dispense with the redundant hierarchy.

Model
RCV1-V2 WOS NYT

Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

HMCN (Mao et al. [2019]) 80.80 54.60 - - - -
TextRCNN (Zhou et al. [2020]) 81.57 59.25 83.55 76.99 70.83 56.18
HiAGM (Zhou et al. [2020]) 83.96 63.35 85.82 80.28 74.97 60.83
HiMatch Chen et al. [2021] 84.73 64.11 86.20 80.53 - -

Table 2.2: Some experiment results of recent models on three public datasets.

In this project, we are going to apply some of these latest effective models to O*NET

ontology data and compare their performance on the job ads classification task.

2.2 Cross-lingual Transfer Approaches

Cross-lingual transfer learning aims to use models and resources in one language

and transfer them to a different language. In practice, collecting annotated data for

all targeted languages is too expensive and time-consuming. With the cross-lingual

transfer learning, it is possible for models to learn with the high-resource language

and then transferring it to other low-resource languages.

2.2.1 Multilingual Models

Some large pre-trained multilingual neural language models, like Multilingual

BERT (m-BERT) and XLM-RoBERTa (Conneau et al. [2020]) have been shown

to generalize in a zero-shot cross-lingual setting. This generalization ability has been
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attributed to the use of a shared subword vocabulary and joint training across mul-

tiple languages giving rise to deep multilingual abstractions (Artetxe et al. [2020]).

Cross-lingual transfer utilizes large pre-trained multilingual transformer models which

are fine-tuned with training data in a high-resource language and then used to pre-

dict entries from other languages than that used in training, often with satisfying

results (Pires et al. [2019], Wu and Dredze [2019]). As such, the current consensus

of the cross-lingual generalization ability of mBERT is based on a combination of

three factors: i) shared vocabulary items that act as anchor points; ii) joint training

across multiple languages that spreads this effect; which ultimately yields iii) deep

cross-lingual representations that generalize across languages and tasks (Artetxe

et al. [2020]).

2.2.2 Machine Translation

Recent studies in Machine Translation (MT) have brought forth a new paradigm

for building NLP applications in low-resource scenarios. To build a classifier for

a language with no labeled resources, one can translate labeled data from another

language, then train a classifier on the translated text. This can be viewed as a

domain adaptation problem, where labeled translations and test data have some

mismatch (Duh et al. [2011]).

Early studies from Wan, Mihalcea et al. address the Multilingual classification

problem using cross-lingual training with machine translation strategy. Instead of

using machine translation engines to translate labeled text, Blitzer et al. use it to

construct the word translation oracle for pivot words translation.

However, Artetxe et al. also claimed that domain mismatch was not caused by

machine translation (MT) errors, and accuracy degradation would occur even with

perfect MT.
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3 Data & Methods

3.1 Job Ad Data

The job advertisement data is originally from the SJMM database. The data I used

for this project is based on Gnehm and Clematide [2020]’s previous work.

sample id text label

1 sjmm-22011109412481
Verpackungsarbeiten allgemein und
in Medizinaltechnik

ActObjCont2 sjmm-22011109412481
Einrichten des eigenen Arbeit-
splatzes

3 sjmm-22011108302017
geophysikalischen Messungen (
Gravimetrie, Bohrlochgeophysik

4 sjmm-22011108302017
Erarbeitung und Umsetzung von
Explorations- / Untersuchungs
konzepten und Arbeitsprogrammen

5 sjmm-22011108302017
Planung und Durchführung von
Forschungsprojekten in Felslabors

Table 3.1: Examples of job ad data (with context).

Table 3.1 gives an overview of what the task in the Job Ads dataset looks like. In

this table, we can see that one job advertisement may contain several job tasks. In

this table, sample 1 and sample 2 are from the same advertisement because they

have identical id and samples 3,4,5 are from another one.

In Table 3.1, ‘id’ is the unique number of the job ad in the SJMM database. ‘label’

is used to indicate whether the text is with or without context. ‘text’ refers to the

‘task’ which is the most important and only used part in this work.

As Gnehm and Clematide’s description, the task is the extracted combination of

Object and Activity of one advertisement. In order to get the text spans (like task)

from the job ads, the authors first process the whole job ad texts with text zoning

into 8 different zones, e.g., the company description, skill requirements, job task

description, administrative parts, etc (Gnehm et al. [2022b]). Then, the next step is

similar to how the skills are extracted (Gnehm et al. [2022a]), where the authors have

a NER-style extraction of single job tasks. However, it is even more fine-grained,
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because it finally gets into single aspects or subspans of this job tasks, like Activity,

Objects, Responsibility Role and so on.

In this project, I work with a combination of the subspans, that are considered the

most relevant for the classification onto O*NET, namely the Activities, Objects,

ObjectActivities and Context.

Then, for all the job ads tasks with context (size: 4586), I plot the text length

distribution (see Figure 3.2). We can see that most data lengths are concentrated in

the range of 1 to 15 words. Table 3.2 gives more statistics details about the job ads

text length distribution. The average length in this data set is 5.6339 words, which

is a very short number compared to the text in the training O*NET dataset. In the

O*NET dataset, the average length for original English text is 13.82. For SJMM

and DeepL translated German data, these numbers are 14.2 and 14.9, respectively.
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400
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Figure 3.1: Job ads tasks length distribution

mean std min 25% 50% 75% max

length 5.6339 3.9836 1 3 5 8 29

Table 3.2: Statistics description of job ads text length distribution.

3.2 O*NET Data

Data set is available on Occupational Information Network (O*NET) 1 which is

a digital database containing occupational characteristics and worker requirements

1https://www.onetcenter.org/database.html
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information about American labor market. In this work, we use the collected TASK

and Work Activities data from The O*NET 27.2 Database.

In the Task Statement data file, there are eight columns for each row named O*NET-

SOC Code, Title, Task ID, Task, Task Type, Incumbents Responding, Date, and

Domain Source (see Fig 3.2).

Figure 3.2: Data Example - Task Statements

This database contains three different levels of job activities:

The Work Activities data is the hierarchical ontology that is considered as labels

for each task. There are three different levels of job activities from coarse-grained

to fine-grained: Generalized Work Activities (GWA), Intermediate Work Activities

(IWA), and Detailed Work Activities (DWA).

• 41 Generalized work activities (GWA):

Analyzing Data or Information / Working with Computers / Selling or Influ-

encing Others / . . .

• 332 Intermediate work activities (IWA):

Analyzing Data or Information: Analyze environmental or geospatial data. /

Analyze business or financial risks. / . . .

• 2,069 Detailed work activities (DWA):

Analyze business or financial risks: Assess risks to business operations. /

Analyze risks related to investments in green technology. / Analyze risks to

minimize losses or damages. / . . .

18,000 task statements that are assigned to one or more DWAs. For example,

task Review prescriptions to assure accuracy, to ascertain the needed ingredients,

and to evaluate their suitability (ID: 1808) is only assigned to Verify accuracy of

patient information. However the task Provide information and advice regarding

drug interactions, side effects, dosage, and proper medication storage.(ID: 1809) is

13
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assigned to both Communicate detailed medical information to patients or family

members and Advise patients on effects of health conditions or treatments. Same as

task 1809.

Figure 3.3: Data Example - Task to DWAs

Task

Review and analyze legislation, laws, or pub-
lic policy and recommend changes to pro-
mote or support interests of the general pop-
ulation or special group

DWA Direct financial operations
IWA Manage budgets or finances

GWA
Guiding, Directing, and Motivating Subordi-
nates

Occupation Chief Executives

Table 3.3: An example in Task Dictionary

Figure 3.4 shows the original English text length distribution where most data

lengths are concentrated in the range of 2 to 30 words. Table 3.7 gives more statistics

details of tasks about the task length distribution for three different versions.

3.2.1 Tasks Distribution

There are a number of different categories at each of the three levels of the clas-

sification hierarchy, and each category contains a different number of tasks. The

imbalance of task distribution among different classes and the sparse data would

make the work harder. Therefore, I visualized the distribution of tasks across the

different levels to get a whole picture of the data and also to understand the difficulty

of the task better.

Figure 3.5 is the distribution of tasks on the level of DWA, the lowest level in the
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Figure 3.4: Text length distribution of tasks (English).

classification hierarchy. This plot shows that on the DWA level, most categories

contain 1-20 tasks, but a few categories contain up to 122 tasks.
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Figure 3.5: Distribution of tasks in the level of DWA.

Following Table 3.4 provides the statistics details of tasks distribution on the three

different hierarchy levels.
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Level mean std min 25% 50% 75% max

GWA 636.30 604.69 44 168 395 800 3055
IWA 70.91 68.66 3 28 52 87 545
DWA 11.29 10.37 1 6 8 13 122

Table 3.4: Statistics description of tasks distribution at different classification levels.

3.2.2 Multilabel Situation

One of the biggest features of this project is that this is a multilabel classification

problem which means in the O*NET data set, one task may have more than one

label.

I counted the task multilabel distribution situation on each hierarchical level, as in

Table 3.5. In the GWA level, 2723 tasks have two activity labels and 211 tasks have

three labels. While in the IWA level, other than 3150 and 374 tasks are assigned

to two and three labels respectively, 5 tasks are assigned to four IWA classes. The

situation is similar in the fine-grained DWA level, only the number of max activities

assigned to one task peaks at 5. From the highest GWA level to the fine-grained

DWA level, the percentage of multilabel increases from 13.35% to 17.33%. This is

understandable, in Table 3.6, five different DWAs are assigned to task 22935, while

only 4 and 3 activities are assigned to it on the IWA and GWA levels respectively.

Level Categories Percent multi (%) 1 2 3 4 5

GWA 37 13.35% 15897 2723 211 - -
IWA 332 15.52% 15302 3150 374 5 -
DWA 2085 17.33% 14752 3453 620 5 1

Table 3.5: Details at different classification levels. 1-5 is the number of class one
task belongs to on a certain level. ’Percent multi’ is the percent of tasks
have more than one label.

Task 22935 ‘Analyze burn conditions and results, and prepare postburn reports’ has

the most labels in the O*NET data set, the only task which has 5 different DWA

labels. Table 3.6 gives the details of it. The task 22935 is assigned to five different

DWA labels and two of the DWA labels belong to the same IWA class while others

do not. Similarly, these four IWA labels come from three different GWA classes.
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Task DWA IWA GWA

(22935) Analyze
burn conditions
and results, and
prepare postburn
reports.

(4.A.1.a.2.I07.D10)
Locate fires or fire
danger areas.

(4.A.1.a.2.I07) Moni-
tor safety or security of
work areas, facilities,
or properties.

(4.A.1.a.2) Monitoring
Processes, Materials,
or Surroundings

(4.A.1.a.2.I09.D02)
Monitor environmen-
tal conditions to detect
hazards.

(4.A.1.a.2.I09)
Monitor
environmental
conditions

(4.A.1.a.2.I09.D05)
Assess characteristics
of fires.

(4.A.3.a.1.I02.D03)
Perform forest fire-
fighting activities.

(4.A.1.a.1.I02) Protect
people or property
from threats such as
fires or flooding.

(4.A.3.a.1) Performing
General Physical Ac-
tivities

(4.A.3.b.6.I15.D04)
Prepare operational
reports.

(4.A.3.b.6.I15) Pre-
pare reports of oper-
ational or procedural
activities.

(4.A.3.b.6) Docu-
menting/Recording
Information

Table 3.6: An example for multi-labels: labels of task (ID: 22935) at different hier-
archy levels.

3.2.3 Machine Translation

To address the language gap between the job ads and O*NET ontology data, the

first solution we tried is to translate the ontology data from English to German. At

this step, we test two different machine translation methods.

• SJMM translation This is a task-specification translation model proposed

by Magaldi for job advertisements of the Swiss Job Market Monitor. This

model is trained with very low amount of in-domain parallel data and sup-

ported by fine-tuning with out-of-domain data.

• DeepL translation: Using the DeepL API 2 for python, the original ontol-

ogy data is translated to German version.

I compared the text length of original English tasks and two translated German

version.

Following is an example of the translation in two ways, including the the text of

task and its corresponding labels in three different levels.

In this example, we can find out that the translated German version for ontology

2https://github.com/DeepLcom/deepl-python
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Level mean std min 25% 50% 75% max

English 13.82 5.50 2 10 13 18 45
SJMM 14.20 5.75 1 10 14 18 42
DeepL 14.90 6.12 1 10 14 19 47

Table 3.7: Statistics description of tasks length (word) with different translation
system
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Figure 3.6: German tasks length distribution

English German SJMM German DeepL

Task

Review and analyze leg-
islation, laws, or pub-
lic policy and recommend
changes to promote or
support interests of the
general population or spe-
cial groups

Überprüfung und Analyse von
Rechtsvorschriften, Gesetzen
oder der öffentlichen Politik und
Empfehlung von Änderungen zur
Förderung oder Unterstützung
der Interessen der Allgemeinheit
oder bestimmter Gruppen.

Überprüfung und Analyse von
Rechtsvorschriften, Gesetzen
oder der öffentlichen Ord-
nung und Empfehlung von
Änderungen zur Förderung oder
Unterstützung der Interessen
der allgemeinen Bevölkerung
oder spezieller Gruppen.

GWA
Analyzing Data or Infor-
mation

Analysieren von Daten oder In-
formationen

Analysieren von Daten oder In-
formationen

IWA
Assess characteristics or
impacts of regulations or
policies.

Beurteilung von Merkmalen oder
Auswirkungen von Verordnun-
gen oder Polizisten.

Bewertung von Merkmalen oder
Auswirkungen von Vorschriften
oder Politiken.

DWA
Analyze impact of legal or
regulatory changes.

Analyse der Auswirkungen von
rechtlichen oder regulatorischen
Veränderungen.

Analyse der Auswirkungen von
rechtlichen oder regulatorischen
Veränderungen.

Table 3.8: An examples of machine translation on ontology data

labels are exactly same with two methods. There is only some difference in the

text of task. After examing other tasks in data set, I found this situation is very

common. This is reasonable, because the length of ontology text is much shorter

compared with task text.
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3.3 Methods

3.3.1 Neural Networks

It is a common way to solve NLP problems with neural models. In this part, I mainly

explain theRecurrentNeuralNetwork (RNN) andRecurrentConvolutionalNeural

Networks (RCNN) models, because these two models play important roles in the

following experiments. By combining with recursive regularization, these models

can also be applied to the hierarchical text classification problem.

1. RNN

RNN is one of the most popular architecture used in NLP problems because

their recurrent structure is very suitable to process the variable-length text.

As mentioned in section 2.1, hierarchical text classification is a special case

of the multi-label classification problem. In 2016, Liu et al. proposed to

solve text classification with RNNs using Multi-Task learning. In their work,

based on recurrent neural networks, they created three different multi-task

learning mechanisms that learn jointly across multiple related tasks. Their

work first integrates RNNs into a multi-task learning framework to learn to

map arbitrary text to semantic vector representations with specific tasks and

shared layers.

Model-I is a single LSTMmodel and all tasks share the same LSTM layer. For

each input character, a trainable vector is concatenated after the embedding

vector to represent the particular task. And the last moment of the hidden

state is passed as input to the softmax and results for the different tasks.

x̂t = x
(m)
t ⊕ x

(s)
t

where x
(m)
t denotes the specific task embedding, and x

(s)
t denotes the shared

word embedding, ⊕ denotes the concatenation operation.

Model-II contains a two-layer LSTM and assigns one LSTM for each task.

To connect the two LSTM models, there is a gate between each cell in the

LSTM models to decide how much information it can accept from another

task model. The new memory content in the LSTM layer at m-th task is

re-defined as follow:

c̃
(m)
t = tanh(W (m)

c xt +
∑

i∈{m,n}

g(i→m)U (i→m)
c h

(i)
t−1)
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Figure 3.7: Three architectures for modelling text with multi- task learning (Liu
et al. [2016]).

Model-III Besides a separate LSTM layer for each task, there is also a shared

bidirectional LSTM layer to capture the global information of all the tasks.

The output of step t is denoted as h
(s)
t =

−→
h

(s)
t ⊕

←−
h

(s)
t , where

−→
h

(s)
t and

←−
h

(s)
t

denote the outputs of forward and backword respectively.

2. RCNN

Lai et al. [2015] firstly proposed the RCNN for text classification. A CNN

model is usually composed of a convolutional layer and a pooling layer. How-

ever, in their work, the convolutional layer is replaced by a bidirectional RNN,

resulting in a model consisting of a bidirectional RNN and a pooling layer

(see figure 3.8). In their model, a recurrent structure is applied to capture the

contextual information when learning word representations. In this way, it
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may introduce considerably less noise compared to traditional window-based

neural networks. Also, they capture the key components in texts by employing

a max-pooling layer that automatically judges which words play key roles in

text classification.

Figure 3.8: The overall structure of RCNN (Lai et al. [2015]). This figure is a partial
example of the sentence “A sunset stroll along the South Bank affords an
array of stunning vantage points”, and the subscript denotes the position
of the corresponding word in the original sentence.

The first part of the model is the recurrent structure. In this network, the

hidden state of the i-th position is affected by the context at both the left and

right sides:

cl(wi) = f(W lcl(wi−1)) +W sle(wi−1)

cr(wi) = f(W lcr(wi+1)) +W sre(wi+1)

where wi−1, wi+1, e(wi−1), e(wi+1) denote the hidden state and word embed-

dings at position i− 1 and i+ 1, respectively.

In Zhou et al. [2020], they report their implementation of the TextRCNN

encoder on several public datasets and compared it with the new method (Hi-

AGM) they proposed. Tencent implemented the TextRCNN model Liu et al.

[2019] reached 0.8313 of Micro-F1 on the RCV1 dataset. This modelreachesh

the best score (Micro-F1: 0.5526) on the O*NET training subset.

3.3.2 Recursive Regularization

This method is initially proposed by Gopal and Yang [2013]. This method incorpo-

rates the hierarchical dependencies between the class labels into the regularization

structure of the parameters thereby encouraging classes nearby in the hierarchy to

share similar model parameters. Intuitively, it is based on the assumption that the
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nearby classes in the hierarchy are semantically close to each other and hence share

similar model parameters.

The Structural Risk Minimization framework prescribes choosing f to minimize a

combination of the Empirical Risk based on the training dataset and a regulariza-

tion term to penalize the complexity of f . Typically the prediction function f is

parameterized by an unknown set of parameters w which are then estimated in the

learning process. The estimated parameters ŵ is given by:

ŵ = argmin
w

λ(w) + C ×Remp

where Remp denotes the Empirical Risk or Loss on the training dataset, λ(w) denotes

the regularization term and C is a parameter that controls the trade-off between

fitting to the given training instances and the complexity of f .

The most innovative point is the regularization form they introduced:

λ(W ) =
∑
n∈N

1

2
||wn − wπ(n)||2

The idea of introducing regularization terms works very well because it introduce

hierarchical dependencies between the class labels into the regularization structure,

and therefore determine similarity and shared parameters.

This work inspired a lot of following studies for hierarchical text classification, some

models incorporate this approach directly, like HiAGM.

3.3.3 HMCN

Hierarchical Multi-Label Classification Networks is proposed by Wehrmann et al.

in 2018. This network is designed for HMC problem specifically and reach state-

of-the-art results on HMC datasets, e.g.: CELLCYCLE, EISEN, GASH and so on.

The most innovative point of HMCN is designed to optimize local and global loss

functions simultaneously while penalizing hierarchical violations. For each hierar-

chical level, there is one local output and a local loss function for backpropagating

the gradients from classes at the specific level. For the entire network, the global

output captures the cumulative information and the function backpropagates the

gradients from all classes over the whole hierarchy.

According to whether there is a recurrent architecture, they proposed two variants

of HMCN: a feed-forward HMCN-F and a recurrent architecture HMCN-R.
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Figure 3.9: HMCN-F architecture (Wehrmann et al. [2018]).

Figure 3.10: HMCN-R architecture (Wehrmann et al. [2018]).

1. HMCN-F As shown in Figure 3.9, there are two main data flows in HMCN-F.

• The global flow. It starts from the input layer x and traverses all fully-

connected (FC) middle layers Ai
G, and reaches the output layer PG.

• The local flows. Starting from the inputs layer x, then pass by corre-

sponding middle layers Ai
G and the specific local FC layers Ai

L. It ends

at the local output layers P i
L.

In the final step, all the local outputs are concatenated and pooled with global

output to generate a consensual prediction as the final output.

2. HMCN-R Inspired by LSTM networks, Wehrmann et al. proposed the re-

currnt version of HMCN). In HMCN-R, the output of each iteration from the

unrolling recurrent network concerns a hierarchical level. As shown in Figure

3.10, the architecture of HMCN-R is quite similar to the original LSTM net-

works. For the hth level, the output Ah is computed by Ch and output gate

Oh, where Ch denotes the cell state and is modified by forget gate F h and
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input gate Ih.

Compared to HMCN-F, whose amount of parameters grows with the hierar-

chical levels increase, HMCN-R keeps the number unchanged even for very

deep hierarchies.

Loss Function plays an important role in HMCN. It minimize the sum of local and

global loss as following:

min
W

(LL + LG + LH)

These are how the local and global loss computed:

LL =

|H|∑
h=1

[ε(P h
L , Y

h
L )]

LG = ε(PG, YG)

where ε(Ŷ , Y ) denotes the binary cross entropy, which has to be minimized:

ε(Ŷ , Y ) = − 1

N

N∑
i=1

|C|∑
j=1

[Yij × log(Ŷij) + (1− Yij)× log(1− Ŷij)]

LH indicates the hierarchical violation loss, which happens when the generated pre-

diction score of a child node Yin is larger than the score of its parent node Yip. It is

calculated as:

LHi
= λmax{0, Yin − Yip}2

In this formula, λ ∈ R is employed for regulating the import of the penalty for the

hierarchical violations in the final loss function. If the λ is too large, the result may

be biased towards predicting smaller values within deeper layers. However, if the

λ is too small, the network may result easier in inconsistent paths which means it

tends to ignore the hierarchical structure compared to the statistical characteristics.

Among most of the datsets they experiment on, HMCN-F always report better

results compared with HMCN-R (λ = 0.1). In our experiment, we applied the

implementation of HMCN-F from Tencent 3. During all the training process on the

O*NET dataset, the value of λ is set to 1e-5.

3https://github.com/Jinqiao-Li/NeuralNLP-NeuralClassifier/tree/master
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3.3.4 HiAGM

Hierarchy-Aware Global Model (HiAGM) combines a traditional text classification

model with a hierarchy encoder. With the predefined hierarchy and corpus, HiAGM

leverages the prior hierarchy information based on Bayesian statistical theory. (Zhou

et al. [2020])

Figure 3.11: The overall structure of HiAGM (Zhou et al. [2020]).

As depicted in Figure 3.11, HiAGM models adopt two types of structure encoders

with prior hierarchy information to aggregate node information: Tree-LSTM and

graph convolutional neural networks (GCN). For the top-down dataflow, encoders

employ the prior hierarchy information as fc(ei,j) =
Nj

Ni
, and fp(ei,j) = 1.0 for the

bottom-up direction.

1. Bidirectional Tree-LSTM

HiAGM models employ the Tree-LSTM similar to syntax encoders (Tai et al.

[2015]). It allows the mini-batch training for the recursive computational mod-

ule, because the predefined hierarchy is identical to all samples. The transfor-

mation between nodes is as follows:

ik = σ(W(i)vk + U(i)h̃k + b(i)),

fk,j = σ(W(f)vk + U(f)hk + b(f)),

ok = σ(W(o)vk + U(o)h̃k + b(o)),

uk = tanh(W(u)vk + U(u)h̃k + b(u)),

ck = ik ⊙ uk +
∑
j

fk,j ⊙ cj,

hk = ok ⊙ tanh(ck),
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where hk represent the hidden state and ck refers to the memory cell state of

node k.

Also, the HiAGM implement the bidirectional Tree-LSTM to induce label

correlations with the following formulas:

h̃↑
k =

∑
j∈child(k)

fp(ek,j)h̃
↑
j ,

h̃↓
k = fc(ek,p)h̃

↓
p,

hbi
k = h↑

k ⊕ h↓
k,

where h↑
k and h↓

k represent the bottom-up and top-down manners respectively,

and hk is calculated as TreeLSTM(h̃k). hbi
k represent the final hidden state

of node k and ⊕ indicates the hidden states concatenation computaion.

2. Hierarchy-GCN

HiAGM models introduce the hierarchy-GCN to represent the prior hierar-

chy information. The GCN integrates the text semantics with prior hierarchy

information. In the Hiearchy-GCN, edges contains three hierarchy path direc-

tion: top-down, bottom-up, and self-loop. Each edge represents a pair-wise

label correlation feature (as dipicted in Figure 3.11). In order to avoid over-

parameterized edge-wise weight matrixes, a weighted adjacent matrix is used

to simplify the transformation process.

The hidden state of node k is encoded as: N(k) = {nk, child(k), parent(k)}.

uk,j = ak,jvj + bkl ,

gk,j = σ(W d(j,k)
g vk + bkg),

hk = ReLU(
∑

j∈N(k)

gk,j ⊙ uk,j),

where W
d(j,k)
g ∈ Rd, bl ∈ RN×d, and bg ∈ RN . ak,j represent the hierarchy

probability from node k to node j: fd(k,j)(ekj). According to the Bayesian

theory, the top-down direction employs fc(ej,k) = Nk

Nj
, and bottom-up edges

use fp(ej,k) = 1, and the self-loop is ak,k = 1. Also, d(j, k) denotes the three

hierarchical directions from node j to node k.

Also, as shown in Figure 3.11, there are two variants of HiAGM for hybrid informa-

tion aggregation:
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1. Hierarch-Aware Multi-Label Attention (HiAGM-LA) This is a multi-

label attention model. It updates label representations with the structure en-

coder and generates label-aware text features with multi-label attention mech-

anism. The calculation of attention value αkj is as follows:

αkj =
esjh

T
k∑n

j=1 e
sjhT

k

, vk =
n∑

i=1

αkisi

where αkj denotes the attention of the i− th text feature vector for the k− th

label. S ∈ Rn×dc indicates the text representation. The inductive label-aligned

text features V ∈ RC×dc is calculated based on the αkj.

2. Hierarchical text feature propagation (HiAGM-TP) Another is a text

feature propagation model. It propagates text representations throughout the

holistic hierarchy, so that it can get label-wise text features with the fusion of

label correlations. With a single linear transformation, the node inputs V is

calculated as follows:

V = MS

where V ∈ RC×dv indicates the node inputs, M ∈ R(n×dc)×(C×dv) is the train-

able weight matrix, S ∈ Rn×dc is the text features.

In this work, I run both variants combined with different encoders (Tree-LSTM and

GCN)on the O*NET sub-training set.
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4 Experiment

In our experiments, I first carry out a series of experiments with transformer-based

flat classification models on O*NET training data to find the best way of addressing

the language gap problem in this task. In addition, these flat classification models

serve as the baseline for evaluating the performance of hierarchical models, expecting

to demonstrate the effectiveness of global hierarchical models. These hierarchical

models report good results on the public datasets mentioned in section 2.1 and were

state-of-the-art models when it was proposed.

We selected the two best-performing models from baseline and hierarchical exper-

iments separately to classify the job ads data. These predictions are evaluated

manually as our ground truth.

As some hierarchical models (like HiAGM) require too much GPU memory during

the encoding and training process, I cannot experiment with these models success-

fully on our hard device with the whole O*NET ontology hierarchy. Considering

the hardware limitation, I create subsets from the training data set to compare all

the models’ performance directly. Figure 4.1 gives an overview of our experiments.

(DE) DeepL-trans

(DE) SJMM-trans

Job-GBERTGBERT

Multi-BERT Job-Multi-RoBERTa

HiAGM HMCN

RCNN RNN

…

(DE) Job ads data

Transformer-based 
Flat ModelsHierarchical Models

best best
Inference Inference

O*NET Data
train train

(EN) Original Data

Sub1 Sub2Sub3

eval eval

Job domain adapted

Multilingual

Figure 4.1: Experimental pipeline.
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4.1 Baseline Experiments

Flat classification models were trained on each hierarchical level as the baseline for

later comparison with hierarchical classification models. In addition, at this phase,

we compared two methods to address the language gap between O*NET ontology

data and job advertisements. 1) One method is to employ German transformer-

based models, like the German BERT model (for convenience, I call it ‘gbert’ in

the following report). These models are trained with German o*NET data that

is translated by two machine translation engines: SJMM and DeepL. Translation

qualities of these two versions of German O*NET data are also compared. 2) The

second method to address the language gap is to apply multilingual transformer-

based models, like XML-RoBERTa. These multilingual models are trained on the

original English O*NET data and then evaluated on the German test set.

Furthermore, inspired by Gnehm et al.’s previous work, which proved the effective-

ness of job-ads domain adaption for transformer-based models, I also experiment

with transformer-based models trained with in-domain job ads data. As a result,

both GBERT and Multi-BERT models can be compared with job ads adapted mod-

els respectively.

Overall, as depicted in Figure4.1, there are four transformer-based flat models

trained with three versions of O*NET data in this series of experiments.

In the training process, all these experiments are only conducted on the highest

GWA level for simplicity. Then, we run experiments on the IWA and DWA labels

only with the best configuration from gained GWA experience. After that, we

selected the best three models from different levels to create predictions on job ads

separately.

4.1.1 Experimental Data

4.1.1.1 O*NET Data

As mentioned in Section 3.2.3, the original ontology English data is translated to

German using the SJMM system and DeepL API. The baseline models are also

trained with these two translated German ontology data. In this way, we could

examine how the quality of translation affects the classification results.

We divided the data into training, validation and test sets in a ratio of 7:1:2 (see table

4.1). Each splitted data set contains the original English, sjmm-translated German
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and DeepL-translated German data of text and label. Table 4.2 gives details about

the three different version of O*NET text data.

Set Train Validation Test

Size 16480 2354 4708

Table 4.1: Overview of O*NET data sets.

Text Label Language Avg len(word) Note

Task GWA Title EN 13.82 original ontology text
Task de GWA de DE 14.20 translated by SJMM system

Task deepl de GWA deepl de DE 14.90 translated by DeepL API

Table 4.2: Training data on the GWA level. Label only denotes its name on the
GWA hierarchial level. Avg len is the average length of text among all
samples.

4.1.1.2 Job Ads Data

As shown in the diagram 4.1, the best-performing model from baseline and hierar-

chical models are selected to do inference on job ads data.

As the baseline models are trained separately on different classification levels, we

predicted the top5 best classes for each sample at three levels. The last layer of

baseline models is softmax, so the model also gives a probability score for each

prediction. The five predictions are listed in descending order of probability.

For 200 samples on three hierarchical levels, the top three predictions are noted by

one annotator, who is a German-speaking domain expert. Each predicted label is

notes as one of: {1: ‘totally right’, 0.5: ‘acceptable’, 0: ‘wrong’}.

Table 4.3 gives an example of what the inferred job ads data looks like.

4.1.2 Training Models

In this work, for better comparison, four models pre-trained with different methods

were selected and fine-tuned with ontology data. Overall, these models were trained

based on transformer: BertForSequenceClassification and XLMRobertaForSequence-

Classification. These two transformers add a sequence classification head on top of

BERT Model (Devlin et al. [2019]) and XLM-RoBERTa Model (Conneau et al.

[2020]) respectively.
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Text Level Predicted label Score Eval

Verpackungsarbeiten
allgemein und in
Medizinaltechnik

GWA

Handhabung und Bewegung von Ob-
jekten

0.6834 1

Ausführen allgemeiner körperlicher Ak-
tivitäten

0.1804 0.5

Reparatur und Wartung von mechanis-
chen Geräten

0.0376 0

IWA

Bedienung von industriellen
Verarbeitungs- oder Produktion-
sanlagen.

0.1911 0.5

Objekte verpacken. 0.1189 1
Industrielle Materialien für die Verar-
beitung oder Verwendung vorbereiten.

0.0686 0.5

DWA

Führen eines Inventars an medizinis-
chem Material und Ausrüstung.

0.0847 0

Medikamente oder medizinische Lösun-
gen zubereiten.

0.0346 0

Entfernen von Produkten oder
Werkstücken aus Produktionsanla-
gen.

0.0231 0

Table 4.3: Details about job ads data evaluation. Eval is the human annotation.

Before putting text into transformers, I encoded the inputs with tokenizer which split

it into a series of tokens for later training. Considering the tasks’ length distribution

(see figure: 3.6), I set the max length as 64.

I applied Pytorch Lightening 1for training models, which is a lightweight Pytorch

library and provides structured modules for model, data loader, etc. In this way, I

am able to build the transformer-based code in a very clean and efficient way.

In the forwarding process, as this is a classification problem, I calculated the cross

entropy loss of unnormalized logits value in each step.

When training these baseline models for flatten classification, I use the AdamW

optimizer and learning rate of 2e-5. The maximum number of 10 epochs set to 10

with early stopping strategy and the batch size is 16.

During the training process, I also applied the early stop strategy which is integrated

into the callback class in the Pytorch lightening structure. Validation loss is set

as monitor, minimum delta as 0.01, and patience as 2, which means the training

process may stop early if the validation loss has not improved more than 0.01 in two

continuous epochs.

1. GBERT Considering the job ads data and translated ontology data are both

1https://www.pytorchlightning.ai
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in German, we select the transformer-based German model which was pub-

lished by Chan et al. [2020] in 2020. This language model was trained collab-

oratively by the makers of the original German BERT and the dbmdz BERT

and shown as the best German model at this time. In the experiments, I im-

ported the pre-trained model from HuggingFace 2 and finetuned it with our

own tasks data. In this report, this model is called ‘GBERT’ for simplicity.

2. Job-GBERT In Gnehm et al. [2022b], they applied transfer learning and

domain adaptation based on the GBERT with job ads corpora with the masked

language modeling task. They proved the efficiency of domain-adaptation

of language models via continued pre-training and vocabulary customization.

In this experiment, I also employed the Job-GBERT model 3 they released,

and expect an improvement for this job classification task based on previous

GBERT model.

3. Multi-BERT As this work involves two different languages (English & Ger-

man), I also used a multilingual model4 from HuggingFace to see if it has any

help in later evaluation on job ads data. This BERT model is pre-trained on

the top 104 languages with the largest Wikipedia using a masked language

modeling (MLM) objective.

4. Job-Multi-RoBERTa The Multilingual job model is shared by Gnehm et al.

in 2022. They fine-tuned the XLM-RoBERTa Model transformer (Conneau

et al. [2020]) with the job in-domain data. Similarly to the first two models, we

expect the Job-Multi-RoBERTa model outperforms the Multi-BERT model by

getting improvement from domain-adaption.

4.2 Hierarchical Classification Experiments

Besides the first series of experiments about flat classification, I also designed ex-

periments with hierarchical models. As these models are designed to capture the

hierarchical relations, they are expected to have better performance on this hierar-

chical text classification task.

In addition, according to the baseline experiments, all models perform better on

DeepL engine translated German data. Therefore, we only conduct further hierar-

chical experiments on the DeepL translated data.

2https://huggingface.co/deepset/gbert-base
3https://huggingface.co/agne/jobGBERT
4https://huggingface.co/bert-base-multilingual-cased
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4.2.1 Data Preprocessing

After careful examination of DeepL translated German data, we find it is kind of

noisy. During the translation process, some irrelevant characters are added. Also,

there are some German stop words in the Task text which do not help models

understand the text. Therefore, data is pre-processed before experimenting with

hierarchical models.

Overall, there are two steps in the data preprocessing pipeline: data cleaning and

creating input data format. O*NET training data pass through the two steps to fit

with hierarchical classification models. While the job ads data only goes through

the data cleaning step and the inference are made based on the cleaned data.

For all the hierarchical classification models, we used the same pre-processed O*NET

training data. However, there are two types of input formats to fit different models’

requirements.

4.2.1.1 Data Cleaning

As mentioned before, according to baseline modes’ results, I only clean the DeepL

translated German data at this phase.

For the text of Task, I removed both the special characters and stop words. While

for the labels, I only removed the special characters. This is because the labels are

usually shorter phrases rather than full sentences and there are few stopping words.

Besides, in this task, labels are transformed into numerical representations instead

of treated as a sequence.

• Special characters The translated data is kind of noisy. For example, there

are periods at the end of all the labels at the IWA and DWA levels, while none

for the GWA level. In order to compare the translation qualities, DeepL trans-

lator adds some special characters to keep consistency with previous SJMM

translated text. Therefore, I removed these special characters to keep the data

clean and format uniform before experimenting with hierarchical models. Ta-

ble 4.4 gives an example of what a DWA label looks like after pre-processing.

• Stop words Following the operation that is carried out by all the hierarchical

classification models (like HMCN, HiAGM), I remove the stop words from

all the train, validation and test sets. I used the NLTK (Natural Language

Toolkit) 5 package and its inner German stop words list which contains 232

5https://www.nltk.org/
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most common words, including aber, denn, muss, zwar, etc.

DeepL translated DWA Preprocessed DWA
[‘Analyse der Auswirkungen von
rechtlichen oder regulatorischen
Änderungen.’]

Analyse der Auswirkungen von
rechtlichen oder regulatorischen
Änderungen

Table 4.4: An example of data cleaning.

4.2.1.2 Input Data Format

I create the train.json, val.json and test.json files for each hierarchical model. Over-

all, there are two input formats for all the hierarchical models whicle training with

O*NET data. Table 4.5 gives an example of the first input format. doc token is

the list of tokens of cleaned Tasks and all the German stop words are removed.

doc label is the list of all labels assigned to the task. In order to make the hier-

archical relations more clear, the doc label is organized as [‘GWA’, ‘GWA–IWA’,

‘GWA–IWA–DWA’]. For samples which are assigned to more than one hierarchical

label path, it is organized like: [‘GWA1’, ‘GWA1–IWA1’, ‘GWA1–IWA1–DWA1’,

GWA1–IWA2’, ‘GWA1–IWA2–DWA2’]

However, in the training set, there are a few samples that have identical IWA and

DWA labels. In the pre-processing phase, I delete the DWA labels that are the same

as the IWA labels. As a result, there are only two levels for these samples: [‘GWA’,

‘GWA–IWA’].

{
“doc token”: [“Einsatz”, “Geräten”, “Gabelstaplern”, “automatischen”, “Zügen”, “Trans-
port”, “Postcontainern”],
“doc label”: [“Betrieb von Fahrzeugen mechanisierten Geräten oder Ausrüstungen”,
“Betrieb von Fahrzeugen mechanisierten Geräten oder Ausrüstungen–Bedienen von Trans-
portmitteln oder Fahrzeugen”,
“Betrieb von Fahrzeugen mechanisierten Geräten oder Ausrüstungen–Bedienen von Trans-
portmitteln oder Fahrzeugen–Bedienung von Fahrzeugen oder Materialtransportgeräten”]
}

Table 4.5: A pre-processed sample for input format1. This format is used for Tex-
tRNN, TextRCNN with recursive regularization. It also serves the HMCN
model without recursive regularization.

Table 4.6 gives an example of another input format. This format mainly serves for

hierarchical models which are trained without recursive regularization. Generally, it

is organized as: [‘GWA’, ‘IWA’, ‘DWA’]. In this example, as it is assigned to more

than one hierarchical path, it ends more than the normal three labels.
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{
“doc token”: [“Überprüfen”, “Sie”, “endgültigen”, “Entwürfe”, “schlagen”, “Sie”, “Bedarf”,
“Verbesserungen”],
“doc label”: [“Informationen erhalten”, “Studieren Sie Details von künstlerischen Produk-
tionen”, “Überprüfen Sie Kunst oder Designmaterialien”, “Kommunikation mit Vorgeset-
zten Kollegen oder Untergebenen”, “Kommunizieren Sie mit anderen über Spezifikationen
oder Projektdetails”, “Arbeiten Sie mit anderen zusammen um Entwürfe zu entwickeln oder
zu verfeinern”]
}

Table 4.6: A pre-processed sample for input format2. This format is used for
TextRNN, TextRCNN without recursive regularization, and the HiAGM
model.

4.2.1.3 Creating Taxonomy Structure

Like the implementation in the previous studies about hierarchical classification, I

need to create a file describing the hierarchical structure before starting training

models. The file serves for all the hierarchical models we tested in this project

and it is called ‘onet de.taxonomy’. Tablel 4.7 gives an example of the taxonomy

structure of a small part of the DeepL translated German O*NET sub3. We follow

this structure to create the taxonomy files for the whole and subset of O*NET data

separately.

In Appendix, table 1 gives part of the ontology structure of the RCV1 dataset.

Labels in this dataset are more simple and easier for understanding.

4.2.2 Sub-Dataset

The O*NET ontology has a much larger and more complex hierarchy than the public

dataset we talked about in Section 2.1. As a result, some global hierarchical models,

such as HiAGM, cannot be directly applied to the entire training set, as their GPU

memory requirements exceed the hardware availability we have at hand. Since I

want to compare different models as a proof of the concept, I perform a vertical

slice of the original dataset and extracted three subsets for training.

Three different subsets are extracted from O*NET ontology data. For each subset,

I extracted five GWA labels and then find all the samples from the train, validation

and test sets that are assigned to any of the GWA labels.

Sub1 contains the five most frequent GWA labels and their child labels in IWA and

DWA levels. Sub2 is composed of the five least frequent GWA labels and their child
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Parent Node Level Children Nodes

Root GWA
Konflikte lösen und mit anderen verhandeln
Verkaufen oder Beeinflussen anderer

Konflikte lösen und mit anderen
verhandeln

IWA
Verträge oder Vereinbarungen aushandeln
Lösen Sie personelle oder betriebliche Probleme
Schlichtung von Streitigkeiten

Verträge oder Vereinbarungen
aushandeln

DWA
Aushandeln von Verträgen für Transport Vertriebs
oder
Logistikdienstleistungen Aushandeln von Kauf oder
Leasingverträgen für Produkte oder Dienstleistun-
gen

Verkaufen oder Beeinflussen
anderer

IWA
Werbung für Produkte Dienstleistungen oder Pro-
gramme
Verkaufen Sie Produkte oder Dienstleistungen

Werbung für Produkte
Dienstleistungen oder Programme

DWA
Produkte Dienstleistungen oder Veranstaltungen
vermarkten
Durchführung von Marketingaktivitäten

Verkaufen Sie Produkte oder
Dienstleistungen

DWA
Vermarktung von Gesundheitsprodukten oder dien-
stleistungen
Anpassung von Finanzprodukten oder dienstleistun-
gen an die Bedürfnisse der Kunden

Table 4.7: Sample taxonomy structure of sub-O*NET dataset. Level refers to Chil-
dren Nodes’ hierarchical level in the O*NET structure.

labels in two lower hierarchical levels. And then I randomly generated 5 numbers

between 0 to 37, which are [0, 10, 15, 26, 33]. Using these numbers as the index, I

select the corresponding GWA labels to form the sub3 which are sorted in a descent

order by frequency. Table 4.8 shows the size of these three subsets. It includes

number of labels at each hierarchical level and also the number of samples in each

data set. The details about these three subsets and their corresponding appearance

times are in Table 4.9.

As sub3 is selected randomly, it can represent the label imbalance distribution in

the whole O*NET ontology set better. Therefore, sub3 is used as a generic dataset

and compared the performance of all models on it (see results in 5.8). In addition, in

order to find out global hierarchical models’ performance in more extreme situations,

I experiment HiAGM-LA model on three datasets that contain labels with different

frequencies and compared their performance.
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Subset GWA IWA DWA Train Val Test

sub1 5 123 765 6295 943 1806
sub2 5 10 51 324 44 96
sub3 5 70 450 3412 512 971

Table 4.8: O*NET subsets statistics. GWA, IWA and DWA means the number of
classes at each level. Train, Val, Test corresponding to the samples in
each set.

Subset GWA Label Num(Train) Num(Val) Num(Test)

sub1

Handhabung und Bewegung von Objekten 2120 319 616
Dokumentieren Aufzeichnen von Informatio-
nen

1217 196 345

Führung Leitung und Motivation von Un-
tergebenen

1002 156 287

Kreativ denken 978 150 279
Ausführen allgemeiner körperlicher Ak-
tivitäten

978 122 279

sub2

Besetzung der Organisationseinheiten 90 12 19
Konflikte lösen und mit anderen verhandeln 89 17 21
Identifizierung von Objekten Aktionen und
Ereignissen

75 6 32

Coaching und Entwicklung anderer 40 5 14
Aufbau und Pflege von zwischenmenschlichen
Beziehungen

30 4 10

sub3

Handhabung und Bewegung von Objekten 2120 319 616

Überwachung von Prozessen Materialien oder
Umgebungsbedingungen

548 89 163

Andere ausbilden und unterrichten 484 72 131
Verkaufen oder Beeinflussen anderer 171 15 40
Konflikte lösen und mit anderen verhandeln 89 17 21

Table 4.9: Details in three subsets. Num(Train), Num(Val), Num(Test) are the
numbers the corresponding GWA label appeared in the train, validation
and test sets.

4.2.3 Implementation Details

I mainly employed the NeuralClassifier Tookit6 (Liu et al. [2019]) for implement-

ing these models. This is an open-source hierarchical multi-label classifier toolkit

provided by Tencent.

Overall, on the whole O*NET training dataset, I build three following classifiers:

1. A hierarchical classifier with HMCN. HMCN model calculate the training loss

by combining global and local loss as indicated in the work Wehrmann et al.

6https://github.com/Tencent/NeuralNLP-NeuralClassifier
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[2018]. We used the implementation by Tencent directly and set the parame-

ters according to the size of O*NET training set.

2. A hierarchical classifier using hierarchical penalty. This kind of model is called

as hierar model for simplicity. Many models can be used for this classifier:

TextCNN, TextRNN, TextRCNN, AttentiveConvNet, Transformer and so on.

In this project, I mainly tried the TextRNN and TextRCNN models. In the

previous study (Liu et al. [2019]), TextRCNN model report best results on the

RCV1 data sets. Compared to the non-hierarchical classifier, this classifier

applied hierarchical penalty (set to 1e-5) and recursive regularization while

calculating loss during training process.

3. A non-hierarchical classifier. In the later results tables, I call it as flat model

for simplicity. This kind of classifiers are employed to evaluate the effect of

hierarchical penalty, by comparing with the hierarchical models combined with

recursive regularization.

Furthermore, I also run the HiAGM with two different variants (HiAGM-LA and

HiAGM-TP) and two encoding methods (Tree-LSTM and GCN) on sub-O*NET

ontology data to compare their performance. Overall, three different configurations

of HiAGM: HiAGM-LA treela, HiAGM-LA gcn, HiAGM-TP treela and HiAGM-

TP gcn.

For hierarchical multi-label classifiers, I use BCELoss as the loss function and add a

recursive regularization. With this regularization framework, the model encourages

the nearby hierarchical classes to share similar parameters. In addition, using such a

regularization, is more suitable for large-scale hierarchical multi-label classification

tasks, like O*NET training data. In the training process, I set the maximum number

of epochs as 100, and the batch size is 64. According to the tasks length distribution

analysis, I set the maximum length of encoding to 64.

4.3 Evaluation Metrics

To evaluate the quality of the model’s classification, I applied some metrics, including

precision, recall, accuracy, f1 score, and hamming loss which is specifically for multi-

label classification problems. Same as many previous studies, we mainly refer to the

micro-F1 score to decide the best model in the same configurations.

The four components of confusion matrix are used to compute these metrics:

• True Positives (TP): Number of samples correctly predicted as “positive.”
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• False Positives (FP): Number of samples wrongly predicted as “positive.”

• True Negatives (TN): Number of samples correctly predicted as “negative.”

• False Negatives (FN): Number of samples wrongly predicted as “negative.”

4.3.1 F1 Score

The goal of the F1 score is to combine the precision and recall metrics into a single

metric. The F1 score is defined as the harmonic mean of precision and recall. At

the same time, the F1 score also work well on imbalanced data.

The calculations for precision and recall:

Precision =
TP

TP + FP
, Recall =

TP

TP + FN

So, the formula for F1 Score is:

F1 Score = 2 ∗ Precision ∗Recall

Precision+Recall
=

TP

TP + 1
2
(FP + FN)

F1-score range from 0 to 1, where 0 is the worst value and the best is 1.

1. Macro-averaged F1 Score

The macro-averaged F1 score of a model is just a simple average of the class-

wise F1 scores obtained.

Macro F1 =

n∑
i=1

F1 Scorei

n

where n is the number of classes in the data set.

2. Micro-averaged F1 Score

Micro-averaging essentially computes the proportion of correctly classified

samples out of all samples in the data set. Actually, this definition is equal to

what is used to calculate overall accuracy and precision with micro strategy.

Compared to other computing strategies, micro-averaging gives each sample

the same importance. And it is also the preferred behavior to assess the quality

of multi-label classification problems.

In this project, I mainly referred to the micro F1-score while evaluating the

models’ performance. In this whole experiment, while I talk about the ‘best’
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model, it always means the model that gets the highest micro-F1 score in the

configurations.

3. Support-weighted F1 score

This weighted strategy is ideal for computing the F1 score of imbalanced data.

It computes class-wise F1 score, and the weights are based on the number of

samples in each class.

Weighted F1 Score =
n∑

i=1

wi × F1 Scorei

where n is the number of classes, wi is the ratio of the number of samples in

class i in the total number of samples.

Three of the computation strategies are all applied and compared while eval-

uating the baseline models on the IWA and DWA level (see Table 5.2).

4.3.2 Hamming Loss

The Hamming loss is the fraction of labels that are incorrectly predicted. The loss

value range from 0 to 1, where 1 is the worst value and 0 is the best value.

In multiclass classification, the Hamming loss corresponds to the Hamming distance

between y true and y pred which is similar to the Zero one loss function. However,

the Hamming loss penalizes individual labels, instead of penalizing predictions that

do not strictly match true sets in zero-one loss.

Computing the average Hamming distance in pytorch 7 for multiclass tasks:

Hamming loss =
1

N · L

N∑
i

L∑
l

1(yil ̸= ŷil)

Where y is a tensor of target values, ŷ is a tensor of predictions, and • il refers to
the l-th label of the i-th sample of that tensor.

7https://torchmetrics.readthedocs.io/en/stable/classification/hamming_distance.

html
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4.3.3 Average Precision Score

In evaluating the model’s predictions for the job advertisement data, I also used the

average precision (AP) metric from the scikit-learn package. In the actual calcula-

tions, I obtained two versions of the average accuracy figures: hard and soft, i.e.,

considering ”half correct” as ”wrong” and ”totally correct”, respectively. Here, ”half

correct”, ”wrong” and ”totally correct” refer to the human annotations discussed in

the section 4.1.1.2”.

Average precision summarizes the precision-recall curve as a weighted average of the

precision achieved at each threshold, with the increase in recall over the previous

threshold as the weight:

AP =
∑
n

(Rn −R− n− 1)Pn

where Pn denotes the precision and Rn denotes the recall.
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5 Results

In this Chapter, I am going to analyze all models’ performance on the O*NET test

set and Job Ads set. First, I compared four baseline models’ performance on the

GWA hierarchical level of the O*NET dataset and discussed how that influenced the

choices of training data and the best baseline model for the IWA and DWA levels.

Besides, I used sample data on the GWA level to show how is the translation quality

effect prediction results. Second, I analyzed hierarchical models’ performance on the

O*NET set. In order to compare well with baseline models, I also create an O*NET

subset where I experiment with all models on it. Third, I analyze the trained models’

predictions on the Job Ads set which is also the essential goal of this project. In

the end, based on the previous results, I analyze the difficult points of this project,

especially the O*NET ontology hierarchy.

5.1 Baseline Results

Model Trainging Data Micro-F1 Macro-F1 Recall Precision Hamming loss

GBERT

task en

0.5291 0.3780 0.4400 0.3827 0.4709
Job-GBERT 0.5138 0.3719 0.4373 0.3901 0.4862
Multi-BERT 0.5070 0.3417 0.3989 0.3429 0.4930

Multi-Job-RoBRETa 0.5340 0.3852 0.4374 0.3799 0.4660
GBERT

task sjmm de

0.5458 0.4751 0.4803 0.4888 0.4542
Job-GBERT 0.533 0.4535 0.4507 0.4879 0.467
Multi-BERT 0.5317 0.4371 0.4347 0.4845 0.4683

Multi-Job-RoBRETa 0.5453 0.4549 0.4524 0.488 0.4547
GBERT

task deepl de

0.5804 0.5037 0.5089 0.5074 0.4196
Job-GBERT 0.5819 0.5068 0.5103 0.5208 0.4181
Multi-BERT 0.5487 0.4704 0.4801 0.481 0.4513

Multi-Job-RoBRETa 0.5763 0.4862 0.4866 0.5057 0.4237

Table 5.1: Models’ scores on the GWA level with different training data. ‘task en’
means the original text in English. ‘task sjmm de’ means German text
translated by SJMM system. ‘task deepl de’ means German text trans-
lated by DeepL API. Recall and Precision are computed with ‘macro’
strategy.

Table 5.1 gives the performance of the baseline model at the GWA level, including
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the raw English data and the German data translated by SJMM and DeepL. It

reports the F1 scores calculated with the micro and macro strategies, as well as the

recall and precision scores calculated with the macro strategy. For more information,

Table 2 and Table 3 in the Appendix give all metrics calculated with the three

average strategies on the two versions of the German data.

Looking at the results of the three versions of the O*NET data, we can see that the

comparison of all metrics is relatively consistent across the four models. In general

task/en < task/sjmm/de < task/deepl/de. Take the Job-GBERT model as an

example, because it gets the best scores for all metrics and for the German data

translated by DeepL. The difference between the Job-GBERT model on the English

and the German data translated by DeepL is quite large, almost getting a 7% score

distance. I assume the main reason for this phenomenon is that Job-GBERT (and

also GBERT) model is pre-trained in German.

While we look at the German versions data, it is clear that the Job-GBERT model

trained with DeepL translated data gets the highest scores and lowest Hamming

loss on all the evaluation metrics. This result is understandable. In the previous

section 3.2.3 ‘Machine Translation’, I already explained that German data trans-

lated by DeepL API has a higher quality as it is a more mature translation engine

compared with SJMM. So, all the models’ performance on the DeepL translated

German data is better than SJMM translated one. Furthermore, in another com-

parison, both job domain-adapted models outperform the general domain models

in all the settings: Job-GBERT model outperforms the GBERT model, and Multi-

Job-RoBERTa outperforms the Multi-BERT model. This is a very valuable and

interesting phenomenon. Although the field of O*NET is similar to the field of job

advertisements, there are some differences: 1) O*NET data is based on the USA

job market, not Switzerland; 2) The text types are different. O*NET is an ontology

compiled by experts, rather than job advertisements written by individual compa-

nies. Considering the good performance of the Job-GBERT model based on these

gaps, I am hopeful and excited about the application of the Job-GBERT model to

job advertisement data.

Another interesting point is that the both multilingual models seems to handle the

SJMM-translated data better than other models. I assume this is because SJMM

engine’s specificity: it keeps the original English text when it’s hard to translate.

So the result is the final output contains two languages.

As discussed in 4.3.1, with the micro strategy, the accuracy, f1-score, recall, and

precision have exactly identical numbers. Therefore, in Table 5.1 I only report the

Micro-F1 score for the micro strategy. However, for the next step, I applied the
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Job-GBERT model on the other two hierarchical levels with DeepL translated data.

Table 5.2 reports the Job-GBERT model’s results on the GWA, IWA and DWA

levels with different weighted strategies for computation.

Level Weighted Strategy Accuracy F1-score Recall Precision Hamming loss

GWA
macro 0.5819 0.5068 0.5103 0.5208 0.4181
micro 0.5819 0.5819 0.5819 0.5819 0.4181
support 0.5819 0.5709 0.5819 0.5670 0.4181

IWA
macro 0.413 0.3048 0.3107 0.3313 0.587
micro 0.413 0.413 0.413 0.413 0.587
support 0.413 0.4004 0.413 0.4147 0.587

DWA
macro 0.2151 0.0988 0.1353 0.0953 0.7849
micro 0.2151 0.2151 0.2151 0.2151 0.7849
support 0.2151 0.1711 0.2151 0.1694 0.7849

Table 5.2: Job-gbert model’s performance on the IWA and DWA levels with DeepL
translated training data. support refers to the ‘support-weighted’ strat-
egy.

Comparing the results at three levels, it is noticeable that on the GWA level, the

model gets the highest scores comprehensively and lower Hamming loss, and IWA

level next, the GWA level worst. This result is consistent with our intuition, as the

number of labels at the GWA level (37) is much lower than at the IWA level (332)

and DWA level (2085), and therefore less difficult to classify.

5.1.1 Example Analysis

In order to understand the baseline models’ performance better, especially about the

multi-label situation, I select a task (ID: 8783) as an example for further analysis.

Table 5.3 gives the details about a multi-labeled task in the test set, including its

three different GWA classes (GWA Title), and the translated GWA label by SJMM

system (GWA de) and DeepL API (GWA deepl de).

In this table, we can clearly see the difference differences between the two systems

translating ontology data from English to German. Compared to the DeepL API, the

SJMM system has a obvious under-translation issue who use the original English

text directly when meet the text is hard to translate (see red text in table 5.3).

The problem with this solution is that the final translation contains two languages:

German and a small part of English. This situation is kind of proved by models’

performance on test dataset.

In Table 5.1, when trained with German ontology data translated by the DeepL

API, the Multi-BERT model performed worse than the other three models, while
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when trained with data translated by the SJMM system, the performance of these

models has no significant difference.

Task GWA Title GWA sjmm de GWA deepl de

(8783) Wrap, weigh,
label, and price cuts of
meat. (DE-sjmm) Wrap,
Gewichte, Label- und
Preissenkungen von
Meatas. (DE-deepl)
Fleischstücke verpacken,
wiegen, etikettieren und
auszeichnen.

(4.A.3.a.2) Handling
and Moving Objects.

Handling and Moving
Objects.

Handhabung und Be-
wegung von Objekten

(4.A.1.b.1) Identifying
Objects, Actions, and
Events.

Identifizierung von Ob-
jects, Actions- und
Events.

Identifizierung von Ob-
jekten, Aktionen und
Ereignissen.

(4.A.1.b.3) Estimating
the Quantifiable Char-
acteristics of Products,
Events, or Informa-
tion.

Schätzen der quanti-
tativen Eigenschaften
von Produkten,
Events, oder Informa-
tionen.

Schätzung der quan-
tifizierbaren Merkmale
von Produkten,
Ereignissen oder Infor-
mationen.

Table 5.3: A task with multi-labels in test set

Table 5.4 and Table 5.5 give the GWA title predicted by four models trained with

two versions of German data respectively. In brackets are the probability values

given by the models for that prediction. All the predictions are sorted by the value

of probabilities, and these predictions with the highest probability are considered as

the models’ final decisions for calculating the automated metrics. As task 8783 has

more than one correct class (multi-label task), in the following tables, I highlighted

all the correct predictions as blue in the top 5 answers provided by each model.

5.2 Hierarchical Classification Results

5.2.1 O*NET Data

As mentioned about before, all the hierarchical models only experiment on the

DeepL-translated German version of O*NET data. In this part, when we talk about

O*NET data, it refers only to this particular version.

Table 5.6 shows the RNN, RCNN and HMCN models’ performance on the whole

O*NET data set within a maximum of 50 training epochs (except the last row that

shows the HMCN trained on 100 epochs). According to our principles, while we

compare several models’ performance, only the micro-f1 scores matter most and

other scores are for reference only. Therefore, on the complete O*NET ontology set,

the TextRNN model with recursive regularization reached the highest micro-f1 score:

0.3038 in 50 training epochs. This configuration is also used as the best hierarchical

model to predict Job Ads data. In the following discussion, I used ‘hierar’ to refer to

the configuration that models are trained with recursive regularization, while ‘flat’

means not.
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Model pred la1 pred la2 pred la3 pred la4 pred la5

GBERT

Schätzen der
quantitativen
Eigenschaften
von Produkten,
Events, oder
Informationen
(0.516)

Dokumentation/
Recording In-
formation.
(0.0755)

Beschlüsse
fassen und
Probleme lösen.
(0.0641)

Processing
information.
(0.0634)

Handling
and Moving
Objects.
(0.0586)

Job-GBERT

Monitoring
and Control-
ling Resources.
(0.2376)

Schätzen der
quantitativen
Eigenschaften
von Produkten,
Events, oder
Informationen
(0.2118)

Processing
information.
(0.1299)

Handling and
Moving Ob-
jects. (0.0866)

Beschlüsse
fassen und
Probleme
lösen.
(0.0831)

Multi-BERT
Monitoring and
Controlling Re-
sources. (0.567)

Handling and
Moving Ob-
jects. (0.17)

Beschlüsse
fassen und
Probleme lösen.
(0.1446)

Schätzen der
quantitativen
Eigenschaften
von Produkten,
Events, oder
Informationen.
(0.0288)

Processing
information.
(0.0182)

Job-Multi-BERT

Schätzen der
quantitativen
Eigenschaften
von Produkten,
Events, oder
Informationen.
(0.4998)

Handling and
Moving Ob-
jects. (0.2074)

Identifizierung
von Objects,
Actions- und
Events. (0.075)

Beschlüsse
fassen und
Probleme lösen.
(0.0547)

Processing
information.
(0.0324)

Table 5.4: An examples of baseline prediction on GWA level. Models are trained
with data translated by SJMM system.

For a better understanding of how models are trained, Figure 5.1 visualized the

micro-f1 score during the training process of TextRNN flat, TextRNN hierar, Tex-

tRCNN flat, TextRCNN hierar.

Combining Table 5.6 and Figure 5.1, we can find that ‘flat’ models have a ten-

dency to perform best out of shorter epochs compared to the ‘hierar’ models. This

situation can be explained by the recursive regularization technique which is only

applied to the ‘hierar’ models. This regularisation technique limits the extent to

which the model parameters are updated during training and in this way controls

overfitting. Take a look at the graph 5.1, which also supports the hypothesis that

the ‘hierar’ model achieves around 0.8 on the training set, while the ‘flat’ model

achieves a figure of around 0.9.

However, what is more important is that compared to ‘flat’ models, ‘hierar’ models

can achieve higher f1-scores in the same 50 training epochs. For the TextRCNN
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Model pred la1 pred la2 pred la3 pred la4 pred la5

GBERT

Handhabung
und Bewegung
von Objekten.
(0.7288)

Schätzung der
quantifizier-
baren Merkmale
von Produkten,
Ereignissen oder
Informationen.
(0.0934)

Identifizierung
von Objekten,
Aktionen und
Ereignissen.
(0.0442)

Beurteilung der
Qualitäten von
Objekten, Di-
enstleistungen
oder Personen.
(0.014)

Ausführen
allgemeiner
körperlicher
Aktivitäten.
(0.0136)

Job-GBERT

Dokumentieren
/Aufzeichnen
von Informatio-
nen. (0.2876)

Identifizierung
von Objekten,
Aktionen und
Ereignissen
(0.2765)

Handhabung
und Bewegung
von Objekten.
(0.2252)

Schätzung der
quantifizier-
baren Merkmale
von Produkten,
Ereignissen oder
Informationen.
(0.0484)

Kreativ
denken.
(0.0302)

Multi-BERT

Identifizierung
von Objekten,
Aktionen und
Ereignissen.
(0.5779)

Handhabung
und Bewegung
von Objekten.
(0.1827)

Verarbeitung
von Informatio-
nen. (0.0435)

Durchführung
von Verwal-
tungstätigkeiten.
(0.0359)

Dokumentieren
/Aufzeich-
nen von
Informa-
tionen.
(0.0258)

Job-Multi-BERT

Handhabung
und Bewegung
von Objekten.
(0.6087)

Identifizierung
von Objekten,
Aktionen und
Ereignissen.
(0.1878)

Schätzung der
quantifizier-
baren Merkmale
von Produkten,
Ereignissen oder
Informationen.
(0.038)

Durchführung
von Verwal-
tungstätigkeiten.
(0.0268)

Dokumentieren
/Aufzeich-
nen von
Informa-
tionen.
(0.0233)

Table 5.5: An examples of baseline prediction on GWA level. Models are trained
with DeepL translated data.

Model Conf Precision Recall Micro-f1 Macro-f1 Time Best

TextRNN
flat 0.3952 0.2179 0.2809 0.0499 55 6

hierar 0.4740 0.2235 0.3038 0.0591 100 31

TextRCNN
flat 0.3494 0.2612 0.2989 0.0801 55 13

hierar 0.2463 0.3781 0.2983 0.0999 110 27

HMCN
- 0.4142 0.2307 0.2963 0.0611 65 43
- 0.3724∗ 0.2569∗ 0.3041∗ 0.0877∗ 65 86(-100)

Table 5.6: Models’ results on the whole O*NET ontology dataset. Precision and
Recall are calculated with micro-strategy. Time refers to the seconds
cost each epoch. Best is the epoch that gets the best performance during
50 training epochs. ∗ means this score is got within a maximum of 100
training epochs, instead of 50.

model, ‘RCNN flat’ and ‘RCNN hierar’ achieve nearly identical scores. The ‘Tex-

tRNN hierar’ gets 2 percentage points higher f1-score compared with ‘RNN flat’,

which is also the highest score among all the models.
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Figure 5.1: Micro-F1 score visualization during training process.
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(a) Micro-F1 for 50 epochs
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(b) Micro-F1 for 100 epochs

Figure 5.2: Micro-F1 score visualization of HMCN model.

Figure 5.2a shows the micro-f1 scores of the HMCN model during 50 epochs. It can

be seen that the f1-score pattern of the HMCN model during training differs from

that of TextRNN and TextRCNN models. Overall, its f1-score climbs more slowly.
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It was not until the 43/50th epoch that the best score was achieved. Therefore, I

continue to train the HMCN model with identical parameters over 100 epochs. As

I expected, the best F1-score over 100 epochs improved by nearly 1 percent point

compared to 50 training epochs. 0.3041 is also the highest f1-score I get on the

complete O*NET ontology set. Meanwhile, as shown in Figure 5.2b, the F1-score

of HMCN has stabilized after 100 training epochs.

5.2.2 On the Subset

Table 5.7 gives the results of HiAGM-LA with Tree-LSTM as encoder on three

subsets. In this table, the HiAGM-LA model gets the highest precision, recall, and

micro-f1 scores on subset3 and the best macro-f1 score on subset2. There are several

possible reasons for this situation: i) Sub1 is more structurally complex because it

has nearly 900 child labels for 5 GWA labels. Therefore, it is more difficult to classify

compared with sub3. ii) There are only 300 training samples in sub2 resulting in

the model not being fully trained on this subset.

Subset Precision Recall Micro-F1 Macro-F1

sub1 0.4240 0.2927 0.3463 0.0737
sub2 0.4710 0.2655 0.3395 0.1505
sub3 0.4862 0.3694 0.4198 0.0838

Table 5.7: HiAGM-LA results on three O*NET subsets. Precision and Recall are
calculated with micro-strategy.

In Table 5.8, an overview of the model’s performance on O*NET subset 3 is re-

ported, with several interesting facts. First, the HiAGM model was successfully

experimented with on the subset in four different configurations. HiAGM model

integrates the encoded hierarchical information with textual input and therefore

takes much longer compared to the other three models. Although the difference in

time cost for different configurations is almost consistent with that reported by the

authors in their previous study, the results of HiAGM on the sub-O*NET training

set are somewhat different from what they reported on the RCV1 V2. The high-

est micro-f1 score was obtained for HiAGM-TP with the Tree-LSTM encoder, but

not for HiAGM-TP with the GCN encoder. Furthermore, although HiAGM reports

better results on public datasets (e.g. RCV1), it can not outperform others on the

subset of O*NET ontology data.

Second, experiments on the subset further demonstrate the effectiveness of the re-

cursive regularization technique. For both the TextRNN and TextRCNN model,
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configuring with ‘hierar’ get higher scores than ‘flat’ comprehensively. And the

TextRCNN hierar gets the highest micro-f1 score 0.5526 among all the models and

configurations.

Third, the HiAGM, HMCN, TextRNN and TextRCNN models employ different

strategies for precision and recall trade-offs. Some of these models (e.g. TextRCNN)

have more of a trade-off between recall and precision, while others (e.g. TextRNN)

seem to focus more on precision. TextRNN hierar receives the highest precision

score of 0.722, which is 0.24 points higher than the lowest HiAGM-TP model with

GCN encoder. However, recall is also an important metric for evaluating model

performance in this project, so the TextRCNN model, which focuses more on the

balance of precision and recall, receives the best micro-F1 scrore 0.5526, and Tex-

tRCNN hierar is considered to be the best configuration.

Last, notably, all the models that experiment on both complete and O*NET subset,

achieve higher scores on the subset. I assume that this situation is because the larger

hierarchical label structure contains more semantically similar labels, which makes

accurate classification more difficult.

Model Conf Precision Recall Micro-F1 Macro-F1 Time Best

TextRNN
flat 0.6583 0.3893 0.4893 0.0949 5 88
hiear 0.7220 0.3976 0.5128 0.0835 7 42

TextRCNN
flat 0.6409 0.4597 0.5354 0.1082 5 20
hiear 0.6794 0.4656 0.5526 0.1156 8 19

HiAGM-LA
tree 0.4862 0.3694 0.4198 0.0838 160 78
gcn 0.5404 0.3639 0.4350 0.0823 60 53

HiAGM-TP
tree 0.5493 0.3701 0.4422 0.0840 170 96
gcn 0.4860 0.3853 0.4299 0.0876 170 95

HMCN - 0.6483 0.4308 0.5176 0.0943 5 86

Table 5.8: Models’ results on the O*NET subset. precision and recall are calculated
with micro-strategy. Time refers to the seconds cost each epoch. Best is
the epoch get best performance during 100 training epochs.

5.3 Reference on the Job Ads Data

The Job Ads data is predicted by selected baseline and global hierarchical models

separately.
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5.3.1 Baseline Model’s Predictions

From the four baseline models, the Job-GBERT model gets the highest scores on

DeepL training data, so it is selected to infer the job ads data on three hierarchi-

cal levels separately. A German-speaking domain expert manually evaluated the

top 3 predictions of 200 samples on 3 hierarchical levels (4.1.1.2 gives the informa-

tion about the Job Ads data). Overall, 1800 (3 × 3 × 200) model predictions are

evaluated and another 197 samples with the top 3 predictions made by the best

hierarchical model are evaluated. Table 4.3 shows an example that contains the

prediction and evaluation details. The overall evaluation results are in Table 5.9.

Precision and Precision soft mean the percentages of samples in the first prediction

(highest probability) that are ‘totally right’ and ‘acceptable’ respectively. Similarly,

Precision soft and Precision t3 soft refer to the percentages in the top three pre-

dictions. scores t3 is the average precision score for the top three predictions and

considers the ‘acceptable’ predictions as wrong, while scores t3 soft is a more lenient

metric that considers all ‘acceptable’ predictions as right. And both two precision

scores employ ‘samples’ as the average strategy.

Level Precision Precision soft Precision t3 Precision t3 soft scores t3 scores t3 soft

GWA 0.5909 0.7929 0.7424 0.9394 0.9811 0.9705
IWA 0.5859 0.7879 0.7525 0.9242 0.9662 0.9598
DWA 0.4697 0.6717 0.5909 0.8081 0.9725 0.9577

Table 5.9: Job ads evaluation statistics. -soft means considering the ‘acceptable’
predictions as ‘right’. -t3 means considering the top 3 predictions.

Surprisingly, we find that the trained Job-GBERT model performs much better on

the Job Ads dataset than the O*NET ontology set. Even though looking at the

most strict metric ‘Precision’, it reaches 0.5909, 0.5859 and 0.4697 on GWA, IWA

and DWA levels respectively, which are all higher than that at the O*NET data set

(micro-f1 scores: 0.5819, 0.413 and 0.2151, see Table 5.2). To be more specific, this

gap between two data sets increases the lower down the classification level it goes:

0.08 at the GWA level, 0.1749 at the IWA level and 0.2547 at the DWA level. I

assume that this is because our domain expert does not exactly classify on the same

criteria as the O*NET. In O*NET dataset, most Tasks are assigned to only one

(14752/15721, see Table 3.5) or two DWA labels (of course, also their corresponding

parent IWA and GWA labels), but some other Work Activities (WA) seem also be

‘right’ or ‘acceptable’.

Furthermore, the gap between GWA and IWA is much smaller than that between

IWA and DWA. Except for the scores, all the gaps between GWA and IWA levels

are less than 1 percent point, while the gaps normally achieve 10 percent points for
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IWA and DWA levels. I assume this is because the number of labels at the GWA

level (37) and IWA level (332) are less than that at the DWA level (2085). Due to

the huge number of labels, there are more semantically similar labels at the DWA

level which is quite difficult to classify.

5.3.2 Global Hierarchical Model’s Predictions

RNN hierar model outperforms all the global hierarchical models (see Table 5.6)

in 50 training epochs, so it is selected to predict the Job Ads data. The biggest

difference compared to the previous baseline model is that global hierarchical models

predict all-layer labels together. We manually evaluate the top 3 predictions for 197

samples in job ads data, so there are 591 (3×197) evaluated predictions. Table 5.10

reports its results based on our annotator’s evaluation.

There are several interesting points of global hierarchical models’ prediction. First,

the overall scores are lower than the baseline models’ predictions even compared with

the DWA level. This result is contrary to our initial expectations: with hierarchical

information, global hierarchical models are expected to outperform baseline models.

Several points may contribute to this situation:

1. Global hierarchical models put all levels of labels together for prediction, rather

than concentrating on one particular level. Therefore, one global model needs

to consider more labels at the same time, which leads to even worse results.

2. The RNN hierar model is a general domain model, whereas Job-GBERT is

pre-trained with job domain data. This is why the Job-GBERT model gives

better results on Job Ads data than on the O*NET dataset. This comparison

also shows the effectiveness of the domain-adapted technique.

Second, the majority of predictions from the RNN hierar model are GWA-level labels

(468/591). This is because all predictions are ranked according to the likelihood

scores calculated by the model. Because there are only 37 GWA labels with the

same amount of training data, but over 2000 child-labels at the IWA and DWA

levels, it is reasonable for the model to have more confidence in the GWA labels.

Therefore, the GWA labels appear more frequently in the first 3 predictions made

by the RNN hierar model.
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Model Precision Precision soft Precision t3 Precision t3 soft

RNN hierar 0.3198 0.467 0.5228 0.7259

Table 5.10: Statistics of RNN hierar predictions of Job Ads data. -soft means
considering the ‘acceptable’ predictions as ‘right’. -t3 means considering
the top 3 predictions.

Task Model prediction Eval score

Verpackungsarbeiten allgemein und in
Medizinaltechnik

Anderen helfen und für sie sorgen 0
Analysieren von Daten oder Informationen 0
Kommunikation mit Personen au erhalb der
Organisation

0

Planung Durchführung und
Auswertung von hochauflösenden 2D
und 3D seismischen Messungen zur
Charakterisierung potentieller
Standorte für geologische Tiefenlager

Analysieren von Daten oder Informationen 1
Kreativ denken 0.5
Analysieren von Daten oder Informationen–
Analysieren Sie Daten um den Betrieb zu
verbessern

0.5

sortieren

Verarbeitung von Informationen–Materialien
oder Produkte sortieren

1

Verarbeitung von Informationen–Materialien
oder Produkte sortieren–Sortieren von Ma-
terialien oder Produkten zur Verarbeitung
Lagerung zum Versand oder zur Sortierung

1

Reparatur und Wartung von mechanischen
Geräten

0

Daten
Handhabung und Bewegung von Objekten ×
Informationen erhalten 0
Dokumentieren Aufzeichnen von Informatio-
nen

×

Table 5.11: Examples of Job Ads with the RNN hierarchy model’s predictions

5.4 O*NET Ontology Data Difficulties Analysis

For these two series of experiments we did on the O*NET dataset, the result scores

(see Table 5.1 and Table 5.6) are relatively lower than scores reported on public

datasets (like RCV1) by previous studies 2.2). For example, the HMCN model

achieves 83.96 on the RCV1-V2 dataset (Mao et al. [2019]), however, the score on

the complete O*NET ontology set is only 30.41. Therefore, I did some analysis to

find out the stumbling blocks for global hierarchical models to classify successfully

on the O*NET dataset.
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5.4.1 Complex Ontology Hierarchy

First of all, I pay attention to the hierarchy structure which is the main heart of

this task. In almost all the previous studies, the key to their methods is successfully

making use of hierarchical information, in different ways though.

However, O*NET ontology hierarchical structure is much more complex than most

public datasets. Table 5.12 compares the statistical characters of the O*NET dataset

with other public datasets that are mentioned in the section 2.1. It is clear that the

number of classes in the O*NET ontology set is much more than other sets and the

number of training samples also less than others, which makes it considerably more

difficult to classify.

Data Set |C| Depth Avg(|Ci|) Train Val Test

RCV1-V2 103 4 3.24 20,833 2,316 781,265
WOS 141 2 2 30,070 7,518 9,397
NYT 166 8 7.6 23,345 5,834 7,292

O*NET 2454 3 3.97 16,480 2,354 4,708

Table 5.12: O*NET dataset statistics comparison. |C| is the number of classes.
Depth is the maximum level of hierarchy. Avg(|Ci|) is the average
number of classes per sample. Train/Val/Test are the size of the
train/validation/test set respectively.

5.4.2 High Semantic Similarity of Text & Classes

There exist many semantically similar classes. And this phenomenon is more pro-

nounced at the level further down the hierarchy.

In Table 5.13, there are five tasks and the DWA labels that they are assigned to

in the O*NET test set. All these DWA labels belong to one IWA label. These

labels are quite difficult to distinguish even for humans. For example, Task1 is

only assigned to DWA ‘Direct organizational operations, activities, or procedures’,

but DWA3 ‘Direct organizational operations, projects, or services’ also seems right.

Also, Task2 ‘Inspect meals served for conformance to prescribed diets and standards

of palatability and appearance’ which is only assigned to DWA2 ‘Manage preparation

of special meals or diets’ is also suitable for DWA5 ‘Manage food service operations

or parts of operations’. Accurate classification in this case requires too much of the

model to extract the semantics of the text, so the overall performance of both types

of models (baseline and global hierarchical models)on the O*NET dataset is not as

high as other public datasets.
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While we are manually evaluating job tasks from job ads, this kind of situation may

be classified as 1, ‘totally right’ or 0.5, ‘acceptable’. This is also one of the reasons

why the Job-GBERT model gets much higher on the Job Ads data than the O*NET

dataset.

Number Task DWA Title IWA Title

1

Determine response requirements and
relative priorities of situations, and dis-
patch units in accordance with estab-
lished procedures.

Coordinate operational
activities. Direct orga-

nizational
operations,
activities, or
procedures.

2
Inspect meals served for conformance
to prescribed diets and standards of
palatability and appearance.

Manage preparation of
special meals or diets.

3
Coordinate activities of departments,
such as sales, graphic arts, media, fi-
nance, and research.

Direct organizational op-
erations, projects, or ser-
vices.

4
Route proofs with marked corrections
to authors, editors, typists, or typeset-
ters for correction or reprinting.

Coordinate operational
activities.

5
Plan, organize, and control the opera-
tions of a cocktail lounge or bar.

Manage food service oper-
ations or parts of opera-
tions.

Table 5.13: Examples of tasks that are assigned to semantically similar DWA labels.
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6 Conclusion

In summary, it is feasible to apply a hierarchy-aware classification and cross-linguistic

approaches to classify job tasks from job advertisements into O*NET ontology data.

In this project, I designed two series of experiments to achieve this goal. First,

transformer-based classification models were employed independently at each level,

working as baseline models. In this part, four different models were trained on

three different versions of O*NET data. And these experiments demonstrated the

following points:

1. Machine translation methods are more effective than multilingual models when

dealing with language gaps between ontology data and job advertisement data.

2. Domain adaptation is an effective mechanism. Two of the four baseline mod-

els that are pre-trained with job domain data both perform better than the

corresponding general domain models.

3. The quality of the translated text affects the performance of the model classi-

fication. All transformer-based models perform better on the German O*NET

data translated by DeepL compared to the data translated by the SJMM en-

gine.

Second, some state-of-the-art models, such as the TextRNN, TextRCNN, HMCN

and HiAGM, are used as global hierarchical models to classify the tasks. This series

of experiments contribute to this goal in several ways:

1. Using hierarchical information. These global models mentioned above deal

with hierarchical information in different ways, however, they all treat the

hierarchy as a whole, rather than building separate classifiers for each level or

node.

2. Demonstrating the effectiveness of recursive regularization which is a widely

used technique for hierarchical classification task. The use of hierarchical

penalty during training avoids common inconsistencies and overfitting prob-

lems.
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Last but not least, the best configurations from these two series of experiments on

O*NET data are selected to predict the Job Ads data separately and achieve the

final classification. Relying on the annotation of these predictions by our German-

speaking domain expert, we demonstrate that our models are able to provide reliable

classification of Job Ads data in the O*NET hierarchical ontology.

The specificity of this task makes it much harder than other similar hierarchical

classification problems: i) the gap between the training data and the final inference

data. Since there is no existing Job Ads data available for model training, we

can only train the model on a similar O*NET dataset. However, different regions

(Switzerland and USA), and different languages (German and English) all add to

the difficulty of the task. ii) Complex hierarchy of O*NET data. task data in the

O*NET ontology set is not only hierarchical but also multi-label in the sense that

one task can belong to several work activities. Combined with this the large number

of the classes, and the task becomes even more difficult. iii) The similarity between

tasks and classes in the O*NET data makes it difficult for the model to correctly

classify exactly according to the O*NET standard.

By comparing the performance of the two families of models on the job advertise-

ment dataset, it can be seen that applying global hierarchical models does not im-

prove the quality of the task classification, although these models report very good

scores on some public datasets. In the following SJMM study, I recommend using

the best baseline model Job-GBERT for the job advertisements classification task.

Compared to the state-of-the-art hierarchical classification models, the transformer-

based Job-GBERT model’s specificity is more relevant to our task, because this

model is pre-trained using data from within the German language and advertising

domains. However, in this way, extra attention should be paid to inconsistency that

could result from building local classifiers at each level.

6.1 Future Work

For future work, there are three points that can be considered in further research to

improve classification performance.

First, future work could make use of the semantics of the labels. In this study, I

processed all WA labels numerically, ignoring the semantics in the tags. However,

considering that some labels, especially low-level tags like DWA, are even longer

than the extracted work task, it is interesting to examine these labels.

Second, in the current study, only one German-speaking domain expert annotated
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the first three predictions of a sample of approximately 200 job advertisements. Nat-

urally, it would be better to have more annotators to annotate the job advertisement

data. In this way, the inter-annotator agreement (IAA) can also be calculated to

assess the quality of the predictions.

Finally, the Job Ads data used in this project is based on the previous zoning task

of Gnehm and Clematide [2020], so task is a bit over-processed for this hierarchical

classification problem. In some cases, task is even shorter than its label’s text (see

Table 5.11).
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A Appendix

Parent Node Children Nodes
Root CCAT ECAT
CCAT C12 C13 C15 C18 C22 C24 C31 C33 C41
C15 C151 C152
C151 C1511
C18 C181
C31 C311
C41 C411

ECAT E12 E21 E51 E71
E21 E211 E212
E51 E512

Table 1: Sample taxonomy structure of RCV1 dataset.

Level Weighted Strategy Accuracy F1-score Recall Precision Hamming loss

GBERT
macro 0.5458 0.4751 0.4803 0.4888 0.4542
micro 0.5458 0.5458 0.5458 0.5458 0.4542

weighted 0.5458 0.5252 0.5458 0.5158 0.4542

Job-GBERT
macro 0.533 0.4535 0.4507 0.4879 0.467
micro 0.533 0.533 0.533 0.533 0.467

weighted 0.533 0.5134 0.533 0.5078 0.467

Multi-BERT
macro 0.5317 0.4371 0.4347 0.4845 0.4683
micro 0.5317 0.5317 0.5317 0.5317 0.4683

weighted 0.5317 0.5086 0.5317 0.5068 0.4683

Multi-Job-RoBERTa
macro 0.5453 0.4549 0.4524 0.488 0.4547
micro 0.5453 0.5453 0.5453 0.5453 0.4547

weighted 0.5453 0.5311 0.5453 0.5308 0.4547

Table 2: All metrics of models trained on the SJMM translated O*NET data.

Table 2 shows four baseline models’ results on the German O*NET data which is

translated by the SJMM system. For more information, all the metrics are computed

with three different average strategies.
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Level Weighted Strategy Accuracy F1-score Recall Precision Hamming loss

GBERT
macro 0.5804 0.5037 0.5089 0.5074 0.4196
micro 0.5804 0.5804 0.5804 0.5804 0.4196

weighted 0.5804 0.5690 0.5804 0.5645 0.4196

Job-GBERT
macro 0.5819 0.5068 0.5103 0.5208 0.4181
micro 0.5819 0.5819 0.5819 0.5819 0.4181

weighted 0.5819 0.5709 0.5819 0.5670 0.4181

Multi-BERT
macro 0.5487 0.4704 0.4801 0.481 0.4513
micro 0.5487 0.5487 0.5487 0.5487 0.4513

weighted 0.5487 0.5379 0.5487 0.5391 0.4513

Multi-Job-RoBERTa
macro 0.5763 0.4862 0.4866 0.5057 0.4237
micro 0.5763 0.5763 0.5763 0.5763 0.4237

weighted 0.5763 0.5646 0.5763 0.5631 0.4237

Table 3: All metrics of models trained on the DeepL translated O*NET data.

Table 3 gives all the metrics of four baseline models on the DeepL translated German

O*NET data.
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