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Abstract

The Internet of Things (IoT) has grown exponentially in recent years and it is predicted
that the number of devices will double again to 30 billion by 2030 [24]. At the same
time, the number of unpatched, vulnerable and infected devices connected to the Internet
is increasing exponentially as well. Famous malware incidents from the past like Mirai
have painfully illustrated how vulnerable IoT devices are on a broad scale. This work
examines how Moving Target Defense (MTD) can be used in a collaborative framework
for defense in depth and to thwart cyberattacks. For this purpose, a system prototype has
been implemented that is capable of autonomously learning to defend a set of IoT devices
(more specifically Radio Frequency Spectrum Sensors belonging to ElectroSense) from
a specific set of malware by selecting and deploying Moving Target Defenses (MTDs).
In scientific literature, usually individual MTDs optimized against specific attacks are
presented, but no collaborative framework that combines and orchestrates a set of MTDs.

In the prototypical implementation, an individual local agent is deployed on a set of
simulated device, monitoring the behavior of its host, according to 100 system parameters.
In case an attack is detected, the local agent is invoked in order to select from a set of
MTD to ward off the attack. If the post-MTD device behavior can be considered normal
again, the local agent receives a reward, which is used to update the local policy. Thanks
to the use of FL, all local agents contribute to learning one global defense policy together.

The project shows that a good attack mitigation probability can be achieved in non-
federated as well as federated learning setting. Furthermore, the system also proves to be
somewhat robust against locally and globally skewed sample distribution. Under certain
assumptions it can also be assumed that collaborative learning of an MTD selection policy
is faster and more robust than centralized learning. The findings on how FRL can be used
in IT security to collaboratively learn an MTD selection policy contribute to the state of
the art on MTD.
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Zusammenfassung

Das Internet der Dinge ist in den letzten Jahren exponentiell gewachsen, und es wurde
prognostiziert, dass sich die Anzahl der Geräte bis 2030 nochmal auf 30 Milliarden ver-
doppeln wird [24]. Dieses rasante Wachstum sorgt jedoch gleichzeitig für einen exponen-
tiellen Anstieg an anfälligen und infizierten Geräten, die mit dem Internet verbunden sind.
Berühmte Malware-Angriffe aus der jüngeren Vergangenheit wie Mirai haben schmerzhaft
verdeutlicht, wie anfällig IoT-Geräte für Cyberangriffe sind. Diese Arbeit untersucht, wie
Moving Target Defense (MTD) kollaborativ für Defense-in-Depth (DiD) und zur Ab-
wehr von Cyberangriffen eingesetzt werden kann. Zu diesem Zweck wurde ein prototyp-
isches System entwickelt, das in der Lage ist, autonom zu lernen, IoT Geräte (genauer
gesagt Hochfrequenz-Spektrum-Sensoren die zum ElectroSense Netzwerk gehören) durch
die geschickte Auswahl und den Einsatz von Moving Target Defenses (MTDs) vor bes-
timmten Schadsoftwares zu verteidigen. In der wissenschaftlichen Literatur werden meis-
tens einzelne MTDs, die gegen spezifische Angriffe optimiert sind, präsentiert. Ein kol-
laboratives Framework, das eine Reihe von MTDs kombiniert und orchestriert, fehlt hier
noch.

In der prototypischen Implementierung existiert jeweils ein lokaler Agent pro simuliertem
IoT Gerät, der wiederrum das Verhalten seines Hosts anhand von 100 Systemparametern
überwacht. Sollte ein Angriff detektiert werden, so wird der lokale Agent aufgerufen, um
ein MTD aus der gegebenen Menge an MTDs auszuwählen, um den Angriff abzuwehren.
Abhängig davon, ob das Geräteverhalten nach der Ausführung der MTD wieder als normal
angesehen werden kann, erhält der lokale Agent ein Feedback Signal, welches genutzt wird,
um die lokale Policy zu aktualisieren. Durch den Einsatz von Federated Learning tragen
alle lokalen Agenten zum gemeinsamen Lernen einer globalen Policy bei.

Es zeigt sich, dass es möglich ist zu lernen, die gegebenen Angriffe mit hoher Wahrschein-
lichkeit abzuwehren. Dies funktioniert sowohl gut zentralisiert als auch kollaborativ.
Darüber hinaus erweist sich das System auch gewissermassen robust gegenüber einer
lokal und global unbalancierten Klassenverteilung. Unter bestimmten Annahmen kann
auch davon ausgegangen werden, dass kollaboratives Lernen einer MTD-Policy schneller
und robuster ist als zentralisiertes Lernen derselbigen. Die Erkenntnisse, wie FRL in
der IT-Sicherheit eingesetzt werden kann, um gemeinsam eine MTD-Policy zu Erlernen,
erweitert den aktuellen Stand der Forschung.
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Summary of Notation

This work uses the mathematical notation by Sutton and Barto, 2014 [60]. The Capital
letters are used for random variables and major algorithm variables. Lower case letters
are used for the values of random variables and for scalar functions. Quantities that are
required to be real-valued vectors are written in bold and lower case letters (even if they
are random variables).

s state
a action
S set of all non-terminal states
S+ set of all states, including the terminal state
A(s) set of actions possible in state s
R set of possible rewards

t discrete time step
T final time step of an episode
St state at t
At action at t
Rt reward at t, depending on At−1 and St−1

Gt return (cumulative discounted reward) following t

G
(n)
t n-step return

Gλ
t λ-return

π policy, decision-making rule
π(s) action taken in state s under deterministic policy π
π(a|s) probability of taking action a in state s under stochastic policy π
p(s

′
, r|s, a) probability of transitioning to state s

′
, with reward r, from s, a

vπ(s) value of state s under policy π (expected return)
v∗(s) value of state s under the optimal policy
qπ(s, a) value of taking action a in state s under policy π
q∗(s, a) value of taking action a in state s under the optimal policy
Vt(s) estimate (a random variable) of vπ(s) or v∗(s)
Qt(s, a) estimate (a random variable) of qπ(s, a) or q∗(s, a)

v
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v̂(s,w) approximate value of state s given a vector of weights w
q̂(s, a,w) approximate value of state–action pair s, a given weights w
w, wt vector of weights underlying an approximate value function
x(s) vector of features visible when in state s
w⊤x inner product of vectors, w⊤x = Σiwixi

σt temporal-difference error at t
Et(s) eligibility trace for state s at t
Et(s, a) eligibility trace for a state–action pair
et eligibility trace vector at t

γ discount-rate parameter
ϵ probability of random action in ϵ-greedy policy
α, β step-size parameters
γ decay-rate parameter for eligibility traces
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Chapter 1

Introduction

1.1 Motivation

The exponential growth of the Internet of Things (IoT) during the recent years is expected
to continue in the future. In turn, the number of unpatched, vulnerable and infected de-
vices connected to the Internet increases constantly. The economic value that is generated
by the Internet of Things (IoT) is high, making it an attractive target for illegal cyber
activities. The devastating effects of specific cyber attacks in recent years underpin this
thesis and show that the problem still needs to be adequately addressed. Ransomware
like WannaCry has been able to spread and infect devices in a rapid fashion and cause
massive economic and social damage [70], [26]. According to a statistical study, the ma-
jority of cyber attacks remained undetected for and extended period of time and were
only recognized after they have caused significant damages to the IT systems [53]. Since
human operators cannot always react quickly enough to the spreading cyber infection,
they can often only clean up the incurred damage, once networks or systems have become
infected [53]. Traditional IT security systems are often susceptible to attacks based on
yet undisclosed vulnerabilities, better known as zero day exploits [22]. Therefore, more
dynamic and intelligent approaches, which also include defense-in-depth, are necessary [1].
This work proposes a novel approach using a combination of Federated Learning (FL) and
Reinforcement Learning (RL) in order to collaboratively learn to select Moving Target
Defense (MTD)s in order to counter malware attacks. Finding an optimal mapping be-
tween the high-dimensional state space and the set of possible counter actions is difficult
and brute force fails here. RL is a more intelligent strategy able to learn in an online
fashion, potentially allowing to react and mitigate even newly emerging attacks. In order
to protect the behavioral data of each device, the selection policy is learned in federated
fashion. Collaborative learning might enable to globally defend against an attack after
having it seen only locally. In addition to the lack of scientific work on the use of MTDs
in the context of the IoT, there is also still too little knowledge about the combination
and joint use of several MTD techniques [9]. This work extends the state of the art by
creating a framework combining and orchestrating multiple MTDs in order to provide
protection against a set of malware.

1



2 CHAPTER 1. INTRODUCTION

1.2 Targets and Goals

Firstly, in a research-oriented step this work assesses the current state of IoT-security,
-malware and cyber attacks on IoT. Furthermore, the current state of the art of Feder-
ated Learning (FL), Reinforcement Learning (RL) and Moving Target Defense (MTD)
is gathered and forms the theoretical foundation for this work. The goal is to build a
system that is capable of autonomously learning to defend a set of IoT devices (more
specifically Radio Frequency Spectrum Sensors belonging to ElectroSense) from a specific
set of malware by selecting and deploying MTDs.

The overarching idea is to have an individual agent deployed on a set of homogeneous
client devices. Each local agent monitors the behavior of its host device and can select
from a set of MTD when an attack is detected. The detection of an attack is based on the
monitoring of 100 system parameters that provide information about the current status
of the system. A local state anomaly detector, which is also running on each host device,
continuously checks whether the current state of the device deviates significantly from
the normal state. If this is the case, it is assumed that the host device is being attacked
by malware and the local RL agent is invoked to select one of the MTDs to ward off
the attack. After the MTD has been executed, the local state anomaly detection must
classify again whether the post-state of the host device can be regarded as normal again
and whether the selected MTD was successful. Depending on the success of the defense
mechanisms, the local agent receives a positive or negative reward, which will be used to
update the local policy. Thanks to the use of FL, all local agents contribute to learning one
global defense policy together. The performance in homogeneous vs. heterogeneous client
and federated vs. non-federated learning settings is evaluated, analyzed and compared.

The performance in federated vs non-federated learning settings as well as for different
sample distributions, including local and global class (im)balances, was examined. The
results show that a good attack mitigation probability can be achieved. Furthermore,
the system also proves to be somewhat robust against locally and globally skewed class
distribution. Under certain assumptions it can also be assumed that collaborative learning
of an MTD selection policy is faster and more robust than centralized learning. The
findings on how FRL can be used in IT security to collaboratively learn an MTD selection
policy contribute to the state of the art on MTD.
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1.3 Thesis Outline & Description of Work

Chapter 1 establishes the importance of IT security in the context of IoT and sets the
goals and expectations of this work in relation to the current state of the art.

Chapter 2 reviews the current state of IoT and how it is influenced by different economic,
technical and social factors. The potential negative effects of insufficient IoT security are
illustrated using examples of several large malware attacks from the past. Furthermore,
the necessary theoretical foundation, which is required to understand subsequent chapters,
is established. The moving target defense principle is explained along with the attacks
and mitigating MTDs featured in this work. The knowledge required to understand the
used RL and FL algorithms such as DQNs and FedAvg is also documented here.

Chapter 3 provides an overview of related scientific work. A special focus is placed on
works dealing with RL-based deployment of MTDs or works combining FL with RL.
This provides an insight into the current state of the art and helps to identify potential
difficulties in the combination of FL, RL with MTD early on.

Chapter 4 explains how the training data was generated and collected. Furthermore,
two metrics to quantify global and local class balance are defined. The five different
sample distribution scenarios used for the experiments are introduced. The overview of
all collected features is followed by an explanation of how the training data was pre-
processed. It is explained how outliers are handled, which features were selected for
training and how the training data was scaled.

In Chapter 5, the three different prototypes at the heart of this project are explained. For
each of the three different prototypes, the architecture and implementation are explained
in detail. Additionally, the state anomaly detector used to generate the reward signal
for the RL agent is described. Multiple FL experiments based on the various sample
distributions from Chapter 4 follow. The explanation and assessment of the seen results
conclude the chapter.

Chapter 6 summarizes the results of this work and concludes by discussing the limitations.
Based on the final project outcome, potential future work is outlined. The project schedule
that has been followed, is displayed by the Gantt chart in the Appendix B of this work.



Chapter 2

Background

The IoT can be seen as a large disseminated set of heterogenous physical devices, ve-
hicles, buildings connected to the Internet as illustrated by Figure 2.1. The IoT is a
major growth factor and seen as enabling technology for Industry 4.0 [31]. According
to forecasts, the number of Internet connected devices will increase from 13 billion (in
2022) to 29 billion (in 2029) [25]. This technology is increasingly used in security critical
domains like medical science (e.g continuous glucose monitoring), industrial applications
and critical infrastructures. Maintaining privacy and mitigating security threats are core
IoT issues that need to be adressed [58]. Recent malware attacks like Mirai have shown
how vulnerable IoT devices can be, even to unsophisticated attacks brute-forcing default
passwords [31].

Figure 2.1: Schematic Visualization of the Internet of Things [11]

This chapter is intended to lay the necessary theoretical foundation required to under-
stand the following work. First of all, it provides an overview of the current IoT landscape
and its security vulnerabilities to adversarial actors. Then, the most common types of
malware affecting IoT devices and specific malware attacks from the past, including coun-
termeasures, will be discussed. This is followed by an explanation of how Moving Target
Defense (MTD) can be used as a countermeasure fostering defense-in-depth. Timo Schenk
has shown that it is possible to use Reinforcement Learning (RL) to learn a policy to se-
lect MTDs in order to mitigate detected malware attacks [68]. Therefore, the necessary
concepts to understand the usage of RL are introduced and explained. Building on top of
Timo Schenk work, the goal is to extend it with federated learning for collaborative and
private training in order to decrease the training time.

4
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2.1 The Current State of IoT Security

Each new technology also comes paired with its own and possibly new security risks. The
IoT is no exception to this rule. Since IoT devices seamlessly integrate deeply into many
areas of our lives, they collect sensitive data and potentially uncover it. Although they
are supposed to make life more comfortable and effortless, they pose a potential threat
to privacy due to their constant Internet connection and lack of security [31]. Several
notable works declare security and privacy to be the two biggest challenges in the sphere
of IoT [22]. Captured IoT devices can be used to carry out further cyber attacks, since
they are permanently connected to the Internet. Several massive Distributed Denial of
Service (DDoS) attacks, for example, on the KrebsOnSecurity Blog and DNS provider
Dyn with more than 500 GBps/s in 2016, were launched by botnets mainly comprising
IoT devices [22].

A multitude of technical, economic, and social reasons complicate security in context of
IoT. First of all, the extreme heterogeneity caused by the high fragmentation of device
manufacturers, device types and versions results in a complex security landscape. Every
manufacturer has to take care of the security of their devices and applications (as well as
all different versions of the same device) themselves. IoT devices should make life more
convenient, meaning that security mechanisms must not reduce usability. Since usability
and security often pose conflicting requirements, the compromise is often made at the
expense of security [31]. Since most IoT devices are cheap and consumer grade, many
manufacturers decide to use their financial resources differently, for example, to lower the
cost or to increase the margin instead of increasing device security.

Although most IoT devices sit inside private networks protected behind firewalls and
NAT where they are shielded from external access from the Internet, they are still vul-
nerable. To be able to access the devices from anywhere around the world, they need to
be exposed to the Internet. For this purpose, mechanisms like Universal Plug and Play
(UPnP), that automatically open ports on the firewall, were developed. This creates a
new entry point into the network and thus increases the attack surface. The end users of
the IoT devices also have different security needs and knowledge and are differently able
to protect their devices. In order to make it easier for non-technical users, insecure but
convenient configurations such as enabling UPnP by default are favored by manufacturers
over more complex and secure ones [56]. Often it would be enough to observe a few very
simple rules to counteract this, such as changing standard credentials, using a network
firewall, disabling UPnP and regularly installing software updates. However, most end
users are not IT security experts and for them, successfully installing, running and us-
ing their devices is their main objective. Investing time and thought into the security of
their devices plays a subordinate role for many inexperienced end users [62]. Therefore,
manufacturers should start to embrace security by design in order to support their least
tech-savvy customers. Automated measures such as those proposed and developed in this
work offer the advantage that they potentially require little or no human intervention,
making them attractive even for inexperienced users. As has been shown, the current
state of IoT security is inadequate and must be significantly improved in order to make
it as difficult as possible for malicious actors.
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2.2 Malware affecting IoT Devices

IoT devices are special purpose computers equipped with sensors and/or actuators, able
to communicate over the Internet. Therefore, they are just as vulnerable to malware as
general purpose computers [58]. Software that has been specifically designed to maliciously
alter a computers functional behaviour is denoted as malware [13]. As shown below,
malware can be classified into families based on their various characteristics.

2.2.1 IoT Malware Types

• Trojans: Malware that disguises itself as or hides itself in legitimate software is called
Trojan. Since they don’t usually spread on their own, they depend on someone giving
them access. Usually a regular user causes the malware infection by unknowingly
installing and launching the Trojan [50].

• Viruses: A virus is a self-replicating and self-distributing type of malware that can
perform various malicious tasks on an infected machine. The virus attaches itself
to a host program in order to get onto the victim’s computer. As soon as the host
program is executed for the first time, the virus also becomes active and performs
its evil actions and tries to infect other computers in the network [50].

• Worms: In contrast to the former two categories, a worm is a type of malware that
does not require a user to launch it to cause the infection. Since worms usually
tend to spread by exploiting security vulnerabilities to access host computers, it
can spread autonomously throughout the network. Their potential to infect a large
number of computers in a short period of time makes worms dangerous [50].

• Ransomware: is a type of malware used by cyber-criminals to infect systems and
hold them or their data as ransom. Usually the data on the system is encrypted
and in exchange for the decryption key a ransom payment in crypto-currency has
to be made. This type of malware has been a growing problem in recent years [50].

• Cryptojacking: This type of malware exploits infected devices to mine crypto-
currencies. A network of infected devices runs crypto-mining software for Bitcoin or
Ethereum while trying to stay undetected. The fact that electricity and the com-
puting power are paid for by the device owner, makes cryptojacking lucrative for
cyber-criminals. [64].

• Rootkits: A malware that provides the attacker with remote administrative access
to the target device is denoted as a rootkit. Hereby it tries to remain undetected,
while providing the attacker with privileged or even root access to the system. The
rootkit often comes bundled with different tools, allowing the attacker to perform a
wide variety of malicious actions [63].

• Botnet: comprises many infected devices that are used together to perform other
malicious activities such as large scale DDoS attacks. A command and control server
is used to instruct all slave devices on what to do [50].
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2.2.2 IoT Malware Attacks

Already since the advent of IoT, it has been target of many small and large attacks. Three
particularly well-known attacks with strong impact from the last few years are outlined
here in order to illustrate the extent of the problem.

The Stuxnet Worm

Most industrial IoT systems consider only partial security, relying on the premise of
“isolated” networks, and controlled access environments. In such an environment it is
closely monitored who can enter the facility and only these authorized people can access
the internal network’s IT resources. However, this did not stop the famous IoT Stuxnet
worm from infiltrating Irans’s uranium enrichment plant in 2010 [32]. The worm targeted
an industrial control software (called Siemens Step7) and ultimately damaged or destroyed
984 uranium-enrichment centrifuges, leaving lasting marks on the Iranian nuclear program.

The Stuxnet incident cleared up several popular but wrong assumptions. First of all, until
2010 it was considered highly unlikely that a cyberattack would target a highly specialized
software application. Usually, exploits of mass market software were preferred due to
their prevalence. Additionally, a “safe” environment (implying disconnected from the
Internet and with limited personnel access) was considered protection enough. Although
the Stuxnet incident was particularly targeted, which is something that rarely occurs, it
shows how serious the consequences of an attack can be.

The Mirai Botnet

Mirai is a malware, first discovered in May 2016, scanning the Internet for unsecured
IoT devices like networked cameras, digital video recorders, and home routers. Mirai
then propagates by using already infected devices for continuously scanning the Internet
for new devices to infect. A simple attack of at least 62 common default usernames
and passwords was used in 2016 to gain access to IoT devices with unchanged default
credentials. Through further propagation, Mirai has managed to enslave over 500,000 IoT
devices into the botnet. Interestingly, it contains a table of IP address ranges (e.g US
Postal Service, the Department of Defense) to avoid. The behaviour of enslaved devices
is controlled by a C&C server [80].

The IoT-based botnet was utilized to launch several large scale DDoS attacks against
KrebsOnSecurity, Dyn, OVH. With traffic rates exceeding 1 TBps these were larger than
ever seen before. Mirai can use multiple attack vectors simultaneously to attack a specific
target (e.g Syn Flood TCP/ UDP on network layer and low and slow attack on application
layer). It is conceivable that these could be used for large-scale IoT-based botnet DDoS
attacks on critical infrastructure. Since the Mirai malware infects IoT devices that have
common factory default usernames and passwords, the most obvious method for securing
IoT devices is to change the default credentials [22].
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The Operation Prowli

The so-called Operation Prowli was a traffic manipulation and cryptocurrency mining
campaign. The attacks were based on various attack techniques including common known
vulnerabilities, password brute-forcing and exploiting weak configurations. It managed to
compromise more than 40,000 machines from various industries that exposed different
services to the internet (Drupal, Wordpress, Servers with an open SSH port). The main
goal of the campaign was monetizing the computing power and control of the devices.
Using the devices under control in order to mine crypto currencies was the first source
of income. Typically, mining crypto-currency is a resource intensive operation as the
attacker has to pay for both hardware and the electricity consumed. However, none of
these expenses incurred to the attackers behind Prowli. The second stream of revenue
was getting payed for generating traffic for fraudulent websites. The incident illustrates
how profitable it can be to exploit IoT devices for revenue generation [21].

2.3 Moving Target Defense

This section discusses MTD as a novel cyber security paradigm able to complement or
outperform established approaches. Subsequently, a brief introduction to the MTD design
principle explains which elements constitute a complete MTD definition.

The static nature of most IT systems has many practical advantages, such as reduced
complexity and easier maintainability. However, this enables an attacker to systemati-
cally recon valuable information over a longer period of time, before launching a well-
informed attack. Given enough time, an attacker will likely be able to gather enough
information and identify enough vulnerabilities to ultimately be able to compromise the
system. MTD as a cyber-security paradigm has been first proposed in 2009 [20]. The
paradigm acknowledges that vulnerabilities can be present in any system and that there
is an information asymmetry favoring the attacker. The idea is to thwart cyber attacks
by periodically shifting system parameters and thereby constantly changing the attack
surface [27]. Against a system equipped with MTDs, an attacker only has a limited time
to find and exploit vulnerabilities, since these may no longer exist in the next system state
[51].

If security mechanisms are only implemented in one location (e.g. at the edge of a system/
network), once this line of defense has been crossed, the attack is very likely to succeed,
since it has reached the vulnerable core. Defense-in-Depth (DiD) is an information se-
curity principle addressing this issue by thoroughly distributing or layering the security
mechanisms throughout the computer network. By creating a digital version of a shell
game for the attacker. Therefore, MTD can also be seen as part of a DiD strategy. How-
ever, there are also a few disadvantages that should not go unmentioned. For example,
it results in an increased resource consumption due to the repeated execution of MTDs.
Furthermore, they not only increase the complexity for the attacker but also for harmless
users [51].
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2.3.1 MTD Design Principle

According to the MTD design principle by Cai et al., which is widely accepted in scientific
literature, three fundamental questions must be answered in order to completely specify
a technique: WHAT, WHEN, and HOW to move the system parameters [7].

• WHAT to move defines which features of the system will be altered over time by the
applied MTD technique (e.g IP address, port numbers), thus changing the attack
surface of the system. These variable properties are denoted as Moving Parameters
(MP) and for each one there exists a defined set of values that it can take on [7].

• WHEN to move is about the temporality of changing the Moving Parameters (MPs),
i.e. the frequency of moving. Finding an optimal moving frequency is important
to balance security and system performance. It would be optimal to have a high
moving frequency when the system is under attack and no adaptation otherwise [7].
According to Navas et al., the decision process that triggers the MP value to change
can either be time-based, event-based or hybrid [51].

• HOW to move defines how the set of valid values for each MP gets defined. Further-
more, it specifies how the next MP value is determined and how the transition from
the old to the new value takes place. Shuffling, Diversification, and Redundancy are
the main three methods used [23].

The three most common techniques to move system parameters are the shuffle technique,
the diversity approach and the redundancy tactic [23]. The Shuffle technique rearranges
the system configuration continuously by periodically and randomly reassigning the MP
values. The Diversity approach tries to provide functionally equivalent implementations
(e.g., operating systems, web servers) that can then be dynamically exchanged for one
another at runtime. The redundancy tactic aims at providing multiple functional backups
of each network component (e.g. nodes, routes) [23].

2.3.2 MTD Techniques

Since the number of existing MTDs for Cyber Physical System (CPS) is too large, this
work focuses on a subset of techniques that were developed by Jordan Cedeño at the UZH
[4]. The extensible MTDs framework is capable of dealing with four C&C based malwares,
one crypto ransomware and two user-level rootkits [4].

MTD against Command and Control (C&C) malware: This MTD that is effective against
C&C malware assumes that the connection between the infected host and the C&C server
has already been established. The aim is to disrupt the communication channel and
thereby prevent the victim device from receiving commands to be executed. The pri-
vate/local IP address acts as a moving parameter and is shifted to a new unoccupied
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value [4]. An arp-scan of the local network helps to determine which IP addresses have
already been taken and which are still unoccupied. To validate a successful transition, the
MTD tries to establish a successful Internet connection by pinging a Google DNS. If this
is the case, then the IP address change is successfully completed. This MTD technique
denoted as private IP address shuffling.

MTD against Rootkits: A rootkit tries to stay undetected and operates by unlinking or
manipulating ”/etc/ld.so.preload” in order use the dynamic linker to preload malicious
versions of shared libraries. Therefore, this MTD needs to be executed after the rootkit
has been installed and tampered with /etc/ld.so.preload. In order to sanitize the system
from the rootkit it is necessary to replace /etc/ld.so.preload with a sanitized version.
This is enough to break rootkits that work by unlinking /etc/ld.so.preload and linking to
another file of their own which points to their malicious shared libraries [4].

MTDs against Ransomware: Jordan Cedeño includes two promising MTD approaches
effective against ransomware. Their common goal is to minimize the number of valuable
user files that the ransomware is able to encrypt, and to terminate and isolate the en-
crypting process. Generally, the encrypting process is the one accessing and manipulating
the highest number of files amongst all processes. The MTD’s purpose is to bridge the
time passing between ransomware infection and the point where the encrypting process
can be identified and terminated. One approach focuses on keeping predefined data safe
from encryption by changing its file extensions, while the other focuses on trapping the
encrypting ransomware with dummy files, so that it gets stuck encrypting worthless data
instead of valuable user data [4].

Figure 2.2: Mapping between Attacks and mitigating MTDs



2.3. MOVING TARGET DEFENSE 11

2.3.3 Crowdsensing: ElectroSense

According to Navas et al., the amount of research conducted on MTDs for IoT device
protection is sparse and most works have a broader focus on general purpose systems.
Furthermore, there needs to be more work evaluating the effectiveness of MTDs in the
context of real world scenarios [51] [9]. Therefore, this work examines the effectiveness
of novel IoT-MTD techniques in the context of real world scenarios and applications like
ElectroSense, a crowdsensing system ”to collect and analyse spectrum data” [15]. The goal
of the initiative is to make spectrum data openly accessible to increase the understanding
of spectrum utilization over time and space [59].

The collaborative spectrum monitoring network consists of many inexpensive distributed
spectrum sensing devices, for example a Raspberry Pi with a radio frontend for collecting
spectrum information. The collected data is then sent to and processed by the backend.
The collected information is provided back to the community as a service through an open
Application Programming Interface (API) [59].
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2.4 Reinforcement Learning

In this section, the necessary theoretical foundations regarding Reinforcement Learning
(RL) is provided. This allows the reader to understand the conducted research in subse-
quent chapters. First, the idea behind RL and how it differs from other forms of machine
learning is explained. The connection between RL and Markov decision processes (MDPs)
is motivated and it is explained how RL manages to solve challenging sequential decision-
making problems.

According to Russell and Norvig, intelligence is ”an emergent property of the interaction
between an agent and its environment” [61]. Consequently, reinforcement learning is built
on the idea of having an agent that adapts its behaviour based on the feedback that it
receives as reward from interacting with its environment [60]. The interaction with the
environment provides a wealth of information about the effect of actions taken that can
be used to refine the strategy. The agent’s objective is to maximize the total cumula-
tive reward received over multiple interaction, which encodes a long-term objective [67].
Therefore, RL can be viewed as the computational approach to learning from interaction.
In human analogy, rewards fall into the categories of pleasure (positive reward) or pain
(negative reward). Therefore, RL is closest to the learning process performed by biological
agents, like humans and other animals.

Reinforcement learning is different from traditional machine learning approaches. Su-
pervised learning is using training data with ground truth labeled examples provided by
a knowledgeable external supervisor [60]. However, for interactive problems (e.g playing
video games) it is often impractical to obtain examples of all situations paired with desired
behaviour that the agent might have to act in. Therefore, the agent must be able to learn
from making its own experience [60]. Furthermore, it is also different from unsupervised
learning, which is typically about finding the structure hidden in collections of unlabeled
data. Reinforcement learning is trying to maximize a reward signal instead of trying to
find hidden structure. Therefore, reinforcement learning, as a semi-supervised learning
methodology, is considered to be a third machine learning paradigm alongside supervised
learning and unsupervised learning [60].

Since the system to be controlled is expected to be stochastic, the agent has to operate and
optimize its strategy under significant uncertainty about the environment [60]. Problems
with such characteristics can be best described as Markov decision processes (MDPs) [67].
An MDP is specified by a triplet M = (X,A, P ) where X denotes the countable set of
states and A denotes the countable set of actions. The standard approach to solving
MDPs is Dynamic Programming (DP). However, DP is a feasible solution method only
for MDPs with very few states and actions. Therefore, RL algorithms can be seen as
a transformation of infeasible dynamic programming approaches into practical methods
that can be applied to large-scale problems [67].
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2.4.1 The elements of Reinforcement Learning

In RL, the learner and decision-maker is called agent. The environment denotes everything
that the agent can observe and it is represented in form of a state vector. At time step
t, the environment that the agent is interacting with is in a state St. The agent receives
the system state St as input and then calculates an action At which is sent back to the
system. Action At performed by the agent causes the environment to transition to St+1

and the agent receives the reward Rt+1 [67]. The cycle is then repeated. Besides the
agent and the environment, a reinforcement learning system comprises four additional
main subelements: a reward signal, a policy, a value function and, optionally, a model of
the environment.

Figure 2.3: Interplay between Agent and Environment [60]

Every RL agent needs to have explicit goals, that they aim to achieve by interacting with
the environment, for example, reward maximization. The reward signals can be seen as a
stochastic function of the state of the environment and the actions taken. In mathematical
terms, the agent seeks to maximize the expected cumulative reward it receives in the long
run. The expected cumulative reward is defined as Gt = Rt+1 + γRt+2 + γ2Rt+3 + · · · =∑∞

k0
γkRt+k+1. Rt denotes the reward received at time step t. The value γ is the so

called discount factor, 0 ≤ γ ≤ 1, causing the infinite sum to have finite value [60]. The
parameter is needed for continuing tasks where the interaction does not break naturally
into episodes, but potentially goes on without limit [60].

In order to maximize the expected return Gt, the agent needs to optimize its behaviour
that is encoded in a so-called policy. Under deterministic policy π, the action a taken in
state s is denoted as π(s). A stochastic policy is a mapping from states to probabilities of
selecting each possible action: π(a|s) ∀s ∈ States, a ∈ Actions. The policy π(a|s) defines
the probability of taking action a in state s. Depending on the scenario, a policy can be a
simple lookup table that contains the appropriate action for the requested state. Alterna-
tively, a more complex method such as a neural network performing the mapping between
state and action can be used. Through learning from interaction with the environment
these probabilities are shifted towards actions which lead to higher cumulative rewards
[60].

Almost all RL algorithms involve estimating value functions. A function allowing the
agent to estimate how good it is to be in a certain state s is called state-value function
vπ(s) for policy π (Equation 2.1). A function allowing the agent to estimate how well it
is for it to perform action a in a given state s for a policy π is called action-value function



14 CHAPTER 2. BACKGROUND

qπ(s, a) (Equation 2.2). These estimations are done with respect to a particular policy π.
If such a function is used, the decision-maker is called value-based agent [60].

vπ(s) = Eπ[Gt|St = s] = Eπ[
∞∑
k=0

γkRt+k+1|St = s] (2.1)

qπ(s, a) = Eπ[Gt|St = s, At = a] = Eπ[
∞∑
k=0

γkRt+k+1|St = s, At = a] (2.2)

The fourth optional element of an RL algorithm is a model of the environment. Based
on this, the algorithm can be classified as either model-free or model-based. Such a
model mimics the behaviour of the environment and can be queried by the algorithm
for inferences about the expected environment response. For example, during learning or
acting the algorithm might use the model to predict the resultant next state and next
reward by providing a state and action. Alternatively, the full distribution of next states
and next rewards might be requested. This information can be used for planning ahead
for situations before they actually occur.

Algorithms that do not make use of a model or purely sample from experience such as
Monte Carlo Control, SARSA, Q-learning, Actor-Critic are called model-free. This is due
to the fact that they only use real samples from experience memory and never purely
artificially generated examples or predictions. On the other hand, planning algorithms
that make use of an environment model belong to the so-called model-based approaches.
The archetypical model-based algorithms are Dynamic Programming (Policy Iteration
and Value Iteration).

There are two key differences between DP and RL, which allow RL algorithms to deal
with large, high-dimensional state- and action-spaces. Instead of having a complete model
of the environment and transition probabilities, RL uses samples to compactly represent
the dynamics of the control problem. Furthermore, function approximation is used in
order to compactly represent action- and value-functions.

2.4.2 How to derive optimal policies

Different solution methods exist in order to find optimal policies. Due to the complexity of
the problem and the high-dimensional environment state, this work focuses on temporal-
difference learning methods that approximate the action-value function via a Deep Neural
Network (DNN). The method of choice is Deep Q-Networks (DQNs) aboutwhich more
details can be found in 2.4.5.

Finding a trade-off between Exploration and Exploitation

A challenge that arises for reinforcement learning, in contrast to the other machine learning
paradigms, is that a trade-off between exploration and exploitation has to be made. When
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maintaining expectations of action values, then at any point in time there is one with
the highest expected value, which is called greedy action. The simplest strategy is to
always select the action with the highest expected rewards, called greedy action selection
(Equation 2.3). This strategy exploits current knowledge and doesn’t spend time exploring
actions currently perceived as inferior [60].

At = argmax
a

Qt(a) (2.3)

When consciously choosing a non-greedy actions it is called exploration. It allows to
more precisely determine the action values of the non-greedy actions. The epsilon-greedy
policy (Equation 2.4) selects the best action (i.e associated with the highest estimated
reward) most of the time with probability (1− ϵ) ∈ [0, 1]. However, sometimes a random
action is chosen with small probability ϵ. The aim is to balance between exploration and
exploitation. By allowing to have some room for trying new things and questioning old
knowledge, ϵ-greedy methods eventually perform better [60].

At =

argmax
a

Qt(a) with probability (1− ϵ)

random action a with probability ϵ
(2.4)

2.4.3 Bellman Optimality Equation

A fundamental property of value functions used by reinforcement learning algorithms
is the recursive relationship between the value of a state and the value of its possible
successor states. The Bellman equation decomposes the value function into two parts,
the immediate reward r and the discounted future values of successor states γvπ(s′) when
following a certain policy π (Equation 2.5). Analogously, the Bellman equation can also
be defined for action-value functions qπ(s, a).

vπ(s) =
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a)[r + γvπ(s′)] (2.5)

qπ(s, a) =
∑
s′,r

p(s′, r|s, a)[r + γ
∑
a′

π(a′|s′)qπ(s′, a′)] (2.6)

The Bellman equation averages over all action-selection and transition-reward probabili-
ties, weighting each by its probability of occurring. The computation of the value function
is decomposed into recursive subproblems and finding their optimal solution. The state-
value vπ(s) or action-value function can then be computed as the the unique solution of
the respective defined Bellman equation, making it one central element of RL.
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2.4.4 Temporal Difference Learning

Amongst RL’s model-free methods is temporal difference (TD) learning, an unsupervised
learning technique capable of learning to predict the total discounted future reward (Equa-
tion 2.7).

Gt = Rt+1 + γRt+2 + γ2Rt+3 + · · · =
∞∑
k=1

γkRt+k+1 (2.7)

TD learning understands that the total future reward consists of immediate reward rt+1

plus future discounted reward
∑∞

k=0 γ
kRt+k+1. One characteristic of RL environments

are sparse rewards, which means that often a long sequence of zero-reward actions occurs
before a non-zero reward is received from performing an action. For example, in Tic-
Tac-Toe (and many others) the reward is zero until the winner is determined in the
last (terminal) state. This makes it more difficult to quantify the contribution of each
individual action to the final reward. The concept of how Temporal Difference (TD)
methods try to iteratively calculate the true action values is illustrated in Equation 2.8.

NewEstimate← OldEstimate + StepSize ∗ (Target−OldEstimate) (2.8)

Instead of trying to compute the total future reward directly, TD uses the sum of im-
mediate reward rt+1 plus an estimation of the future reward at the next moment in time
Q(st+1, at+1) as target. This value acts as a new reference point and is compared against
the previous estimation Q(st, at). The algorithm calculates the deviation from the old
estimate to the target, called temporal difference (TD) error, and adjusts the old estimate
in direction of the new prediction. This behaviour of updating the value function based
on one or more new estimated values is referred to as bootstrapping.

V (st) = V (st),+α(rt+1 + γV (st+1)− V (st)) (2.9)

Q(St, At) = Q(St, At) + α(Rt+1 + γQ(St+1, At+1)−Q(St, At)) (2.10)

This method can be defined analogously for state-value functions (Equation 2.9) as well
as for action-value functions (Equation 2.10). Iteratively executing this process moves
the entire chain of predictions gradually towards the true values. TD learning builds
the foundation of two important algorithms - Q-Learning and SARSA - which will be
explained in the following subsection.

Q-Learning

Q-Learning is a model-free off-policy TD algorithm that is able to approximate the optimal
action-value function Q ≈ q∗. It is an iterative algorithm that updates the action value
Q(S, A) in direction of the temporal difference error computed as the difference between
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the immediate reward R plus discounted future reward γQ(S ′, A′) minus the current
expected value Q(S,A) (Equation 2.11). Figure 1 shows the procedural version of the
algorithm.

Q(St, At) = Q(St, At) + α(Rt+1 + γmaxaQ(St+1, a)−Q(st, At)) (2.11)

Algorithm 1: Q-Learning Algorithm [60]

1 Initialize Q(s, a),∀s ∈ S, a ∈ A(s), arbitrarily, and Q(terminal-state, ·) = 0
2 Repeat (for each episode):
3 Initialize S
4 Repeat (for each step of episode):
5 Choose A from S using policy derived from Q (e.g., ϵ-greedy)
6 Take action A, observe R, S’
7 Q(S,A)← Q(S,A) + α[R + γQ(S ′, A′)−Q(S,A)]
8 S ← S ′;
9 until S is terminal

SARSA

The acronym SARSA stands for State, Action, Reward, State, Action and the name
stems from the (s, a, r, s′, a′) tuples taken by the algorithm as input. It is an on-policy
TD algorithm for estimating Q ≈ q* that derives from Q-Learning by using an on-policy
update rule to learn the Q-values. Comparing x with y, one can see that Q-learning always
selects the greedy action argmaxa′ Qt(s

′
, a

′
) for the next state s

′
irrespective of the initial

policy. SARSA stays on-policy and estimates the return for the next state-action pair
Q(s

′
, a

′
) by following current policy’s action a

′
.

Q(St, At) = Q(St, At) + α(Rt+1 + γQ(St+1, At+1)−Q(St, At)) (2.12)

Algorithm 2: SARSA Algorithm [60]

1 Initialize Q(s, a),∀s ∈ S, a ∈ A(s), arbitrarily, and Q(terminal-state, ·) = 0
2 Repeat (for each episode):
3 Initialize S
4 Choose A from S using policy derived from Q (e.g., ϵ-greedy)
5 Repeat (for each step of episode):
6 Take action A, observe R, S’
7 Choose A’ from S’ using policy derived from Q (e.g., ϵ-greedy)
8 Q(S,A)← Q(S,A) + α[R + γQ(S ′, A′)−Q(S,A)]
9 S ← S ′;A← A′;
10 until S is terminal
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2.4.5 How Deep Reinforcement Learning can help

Deep reinforcement learning is achieved by integrating Neural Networks (NNs) used by
Deep Learning (DL) into the framework of RL [37]. Mnih et al. proved in 2013 that deep
RL systems can learn to play Atari games based on raw pixels as visual inputs [48]. The
agent’s ability to learn directly from high-dimensional sensor inputs, was a breakthrough
in the field of RL. Several notable works of deep RL agents, like AlphaGo (Silver et al.
[66]) beating the former world champion Lee Sedol or AlphaStar mastering the real-time
strategy game StarCraft (Liu et al. [42]), have followed. Also it has shown huge potential
for real world applications like autonomous driving (Pan et al. [55]), robotics (Levine et al.
[38]), finance (Deng et al. [12]), automated surgery (Nguyen et al. [52]).

Figure 2.4: Schematic Representation of Deep Reinforcement Learning [72]

Algorithm 3: Deep Q-Learning with Experience Replay [60]

1 Initialize replay memory D with capacity N
2 Initialize online and target action-value functions QO and QT with random weights
3 Initialize exploration factor ϵ with a small value close to 1
4 for episode in episodes do
5 Initialize st
6 T = length(episode)
7 for t in {1, . . .T} do
8 With probability ϵ select a random action at
9 Otherwise select at = maxa(Q

O(st, a; θ))
10 step: Execute action at and observe reward rt and state st+1

11 Store transition (st, at, rt, st+1) in D
12 Sample random minibatch of transitions (st, at, rt, st+1) from D
13 Calculate targets:

14 yj =

{
rj for terminal st+1

rj + γmaxa′(Q
T (st+1, a

′
; θ)) for non-terminal st+1

}
15 Perform a batch gradient descent step using (yj −QO(st, aj; θ))2

16 st ← st+1

17 Perform ϵ− decay to minimize exploration over time
18 if tot steps mod update freq == 0 then
19 QT ← QO //Update target network QT

20 end

21 end

22 end
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The memory requirement of tabular RL methods grows exponentially with the input state
size. Therefore, methods like Q-Learning or SARSA are inefficient to solve problems
involving high dimensional or continuous state spaces [52]. As shown in Figure 2.4 the
Deep Neural Network (DNN) receives the state vector s as input and predicts the expected
value of taking each action ai in state s. By using a DNN in order to learn abstract
representation from data, it is capable of dealing with high-dimensional scenarios [37]. In
2015 DeepMind developed a deep version of Q-learning called DQN (Deep Q-Network).
Although this algorithm is very powerful, it is also often very data hungry and potentially
unstable [52]. The DQN algorithm in Figure 3 is extended with two additional techniques,
namely experience replay and the use of a separate target network, to stabilize learning
and improve performance [47]. How this works is explained in the following subsection.

Experience Replay & Target Networks

Experience replay denotes the idea of storing the past N experiences et = (st, at, rt+1, st+1)
in a buffer memory for reuse. The concept was first motivated by Lin for three main
reasons. Temporal difference learning is especially slow when the credit assignment needs
to be propagated back through a long sequence of actions. By accelerating the credit
propagation process, it is supposed to accelerate the learning. Secondly, some experiences
might be too rare or too costly to obtain through trial-and-error and then only used
once to adjust the networks before being thrown away. Furthermore, it helps to break
the correlation between subsequent samples [17]. For the previously mentioned reasons,
experience replay is an important improvement and extension of DQNs that is being used
in this work.

Another issue of DQNs is that according to the Bellman equation (2.6) the action-value
Q(s, a) is updated based on immediate reward plus the estimated target value Q(s’,
a’). However, since there is only one step between state s and s’, their action values
underlie some correlation. Hence, adapting the values for Q(s’, a’) indirectly influences
neighbouring action-values Q(s, a), potentially making training very unstable. The trick
to stabilize learning is to include two neural nets for the Q-value training and estimation.
The so called target network is used for the Q(s’, a’) estimation in the Bellman equation.
The Q-values predicted by the target Q-network are used to back propagate through and
train the online Q-network. However, the target network is not directly trained and kept
constant for a defined number of episodes. Its parameters are periodically overwritten
with the updated parameters of the online Q-network. Only the later network is trained
to learn the optimal state-action value function. The idea is that by using the Q values
estimated by the semi-static target network for the update rule, the training of the online
network becomes more stable [78].
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2.5 Federated Learning

Nowadays, billions of smartphones and IoT devices constantly collect and generate valu-
able data. Sensitive information like photos, text messages, and health data mostly resides
in isolated silos. New regulations, like the General Data Protection Regulation (GDPR),
increase user data protection and make the centralization of data more difficult. Contra-
dictory, traditional machine learning algorithms run on a single node and require the data
to be stored in scope [43]. These are contradicting requirements and would thus render
the data unusable. However, companies would still like to harness these dispersed data
pools to build better products and smarter models [45]. Due to this conflict, Bharati et al.
claim that privacy and security of data has become ”the most pressing issue that has to be
addressed” [6]. Federated learning was invented in order to make decentralized protected
data accessible as training data for machine learning, while maintaining user privacy [45].
FL makes it possible to align both requirements since the dispersed data can be used to
train a global model, while the sovereignty of local data can be retained [54].

For traditional machine learning, in a first step the training data xi has to be accumulated
into one data set X = {xi|i ∈ N} residing on a single server. The training, evaluation and
validation of the model is then performed centrally. In a last step, the trained model is
then deployed somewhere for on-device inference [45]. However, centralized training might
infringe the privacy of user data. A federated learning network comprises multiple Edge
Devices (EDs). In contrast with FL, one model Mi is trained on every edge device Ci and
the client data remains stored privately on the device. Hereby, every participating node
remains the single owner of its data. In a second step, the models are sent to a central
server that aggregates them into a global model using a certain aggregation strategy (e.g
federated averaging). This process is run for multiple rounds until the global model has
converged. Then this global model can be deployed for on-device inference. By exploiting
the computing power of edge devices, the requirements for the central infrastructure can
potentially be lowered [3].

2.5.1 Definition of Federated Learning

Let there be N data owners {F1, . . . FN}, also called workers. Their shared objective
is to train a common machine learning model based on their respective individual data
sets {D1, . . . DN}. A conventional approach would be to aggregate all individual data
sets into D = D1 ∪ · · · ∪ DN and then use it to train a model MAGR. In case the data
aggregation is unfeasible, a federated learning can be used in order to collaboratively
train a common model MFED through a process where no data owner Fi exposes any of
its data Di to others. The performance VFED of MFED should be close to the performance
of MAGR, VAGR [77].
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2.5.2 Types of Federated Learning

Figure 2.5: Three types of federated learning [18]

As shown in Figure 2.5, depending on how the data is distributed across particpiating
worker nodes, FL may be classified as horizontal FL, vertical FL, or federated transfer
learning (FTL) [54] [6]. Let Di denote the data matrix of worker Fi where every row
represents an observation and each column represents a feature. The individual data sets
Di comprise the feature space denoted as X and the label space Y. Furthermore, every
sample is uniquely identified by an id from the sample ID space denoted I. The individual
worker’s data set is defined as Di = (Ii, Xi, Yi) analogously to the complete training data
set D = (I,X, Y ). The feature and sample space may differ amongst the various parties
[77].

Figure 2.5 shows the three different federated learning paradigms. In the case of horizontal
federated learning, the data sets share the same feature space but differ in sample space.
The name originates from the fact that the data is partitioned horizontally in feature
space. On the other hand, vertical federated learning is implemented when different
workers have collected distinct features about the same subjects. In this case, the data
sets share the same sample space but differ in feature space. The name originates from the
data set being vertically partitioned. It is denoted as federated transfer learning, when
neither the feature nor the sampling space is homogeneous across different workers [77]
[54].

• Horizontal federated learning: same feature space, different sampling space
⇔ (Xi = Xj, Yi = Yj, Ii ̸= Ij, ∀Di, Dj, i ̸= j)

• Vertical federated learning: different feature space, same sampling space
⇔ (Xi ̸= Xj, Yi ̸= Yj, Ii = Ij, ∀Di, Dj, i ̸= j)

• Federated transfer learning: different feature space, different sampling space
⇔ (Xi ̸= Xj, Yi ̸= Yj, Ii ̸= Ij, ∀Di, Dj, i ̸= j)
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2.5.3 Security & Privacy of Federated Learning

The most immediate privacy benefit of Federated Learning (FL) is that training data
does not need to be centralized and thus remains under full control of the data owner.
As a result, much less information is disclosed [3]. However, the parameter updates from
an optimization algorithm like Stochastic Gradient Descent (SGD) that are exchanged
between the individual clients and the aggregation server might indirectly lead to partial
information leakage [77]. As shown by Phong et al., malicious clients might be able
to infer important information like class membership of data subsets from these leaked
gradients [57]. To prevent this, several techniques like Differential Privacy, k-anonymity
and diversification have been developed. By adding a small amount of random noise to
the client-side data the client’s exact contribution during training gets obfuscated [77].
Although, FL has some inherent security advantages, recent works have uncovered several
vulnerabilities. Yang et al. developed a gradient inversion attack, allowing an adversary
to infer sensitive information about a client’s private data set [77]. Data poisoning as
well as model poisoning attacks have been shown to be effective in disturbing the FL
process even in robust training settings [16]. This vulnerability arises from the large
attack surface exposed by incorporating a large number of clients in the process [3].
The project focus is not on giving security or privacy guarantees, since honest clients
can be assumed in the experimental environment. This work tries to combine the self-
learning ability of RL with the high-level security and privacy benefits of FL. This work
makes use of the (probably) best known weight aggregation strategy called Federated
Averaging as shown by Algorithm 4. Hereby, the K clients are indexed by k, C denotes
the ratio of clients to select, B is the minibatch size and E is the number of local epochs.

Algorithm 4: FederatedAveraging (FedAvg) by McMahan et al. [46]

1 execute federated training():
2 initialize w0;
3 for each round t = 1, 2, . . . do
4 m ← max(C ∗K, 1);
5 St ← (random set of m clients);
6 for each client k ∈ St in parallel do
7 wk

t+1 ← client update(k, wt);
8 end
9 mt ← Σk∈Stnk;
10 wt+1 ← Σk∈St

nk

mt
wk

t+1;

11 end

12 function client update(k, w):
13 // Run on client k ;
14 B ← (split Pk into batches of size B);
15 for each local epoch i from 1 to E do
16 for batch b ∈ B do
17 w ← w − η∇l(w; b);
18 end

19 end
20 return w to server;
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Related Work

Machine Learning (ML) algorithms such as Deep Reinforcement Learning (DRL) and FL
have been deployed both on the attacking and defending side of cybersecurity. In order to
gain a better understanding of the domain, a first assessment of the current state of the
art from scientific literature was necessary. The considered work either had to be related
to RL based deployment of MTDs or combine FL with RL. Table 3.1 provides an overview
of related work and classifies it along seven important dimensions. The table contains the
references in order in which they appear in the text below. The index number links to the
textual description while the Ref. column connects to the associated reference. Each work
tries to mitigate certain Threats focusing on a subset of Devices in an certain Application
Domain. The Env. column classifies whether the experiments were performed in a real
(R), hybrid (H), or simulated (S) environment. The last three columns indicate whether
RL, FL or MTDs are used in the respective work (✓) or not (x).

23
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Table 3.1: Classification of Related Works

Ref. Publ.
Application
Domain

Device
Focus

Threat Env.
RL
Usage

MTD
Usage

FL
Usage

1.
[49]

2021
Anomaly
Detection

IoT
MitM,
DDoS

R x x ✓

2.
[29]

2013
Network
Security

Web
Servers

DDoS S x ✓ x

3.
[71]

2020
IT
Security

IoT
DDoS,
Spoofing,
Jamming

S ✓ x x

4.
[40]

2020 Optimal
Control

IoT None R ✓ x ✓

5.
[14]

2019
Policy
Planning

Servers
Probing
Adersarial
Actor

S ✓ ✓ x

6.
[36]

2021
Intrusion
Prevention

IP
Networks

DoS,
Network
Scanning

H ✓ ✓ x

7.
[76]

2022
Routing
Randomization

SDNs
Eaves-
dropping

R ✓ ✓ x

8.
[2]

2018
IT
Security

IP
Networks

DDoS,
Botnets

R ✓ ✓ x

9.
[39]

2023
System
Security

CPS
From
NVD

R ✓ ✓ x

10.
[82]

2022 IoV IoV DDoS S ✓ ✓ x

11.
[19]

2021
Network
Security

CPS DDoS S ✓ ✓ x

12.
[10]

2021
Policy
Planning

SDNs
XSS,
SQLI

R ✓ ✓ x

13.
[79]

2021
Network
Security

IoV Various H ✓ ✓ x

14.
[65]

2020
Web-App.
Security

Clients &
Servers

Various S ✓ ✓ x

15.
[68]

2022
System
Security

IoT
C&C,
Rootkits,
Ransomware

H ✓ ✓ x

Mothukuri et al. propose an FL-based anomaly detection approach aimed at detecting
and preventing intrusions in IoT networks. The implementation was done on top of the
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PySyft framework and evaluated on the Modbus ICS data set. For each considered at-
tack a separate global detection model exists. A random forest decision tree Ensembler
combines the predicted attack specific probabilities into a final prediction. Experimental
validation has shown that the proposed approach outperforms the classic centralized ma-
chine learning versions in privacy preservation of user data and provides higher accuracy
in attack detection [49].

The MOTAG system by Jia, Sun, and Stavrou uses dynamic, hidden proxies as an MTD
to mitigate network flooding attacks. Once a DDoS attack is launched against a proxy,
the client proxy assignment is adapted to protect the application server availability. To
retain service access, the legitimate and authenticated clients get re-assigned to yet hid-
den proxies [29]. To quarantine insider assisted attacks, Chai et al. developed a deep
Q-learning-based shuffle MTD capable of iteratively finding optimal user-to-proxy assign-
ments intended to isolate and block malicious clients [8].

Uprety and Rawat provide a comprehensive survey of RL methods for IoT security. Several
notable examples of RL systems defending IoT devices from various attacks like Jamming,
Denial-of-Service, Spoofing are listed [71].

Lim et al. advise a federated RL framework that allows multiple heterogeneous IoT de-
vices to collaboratively learn an optimal control policy by sharing parts of their learning
experience. A federated version of the actor–critic proximal policy optimization algorithm
was able reduce the training time required to learn an optimal control policy for multiple
connected rotary inverted pendulums by about 38%. The devices to be controlled were
of the same type but had slightly different dynamics, making it unfeasible to replicate a
mature policy from one device to the other. The collaboration amongst devices proved to
accelerate the learning process, mitigate training instability and increase generalization
[40].

Eghtesad, Vorobeychik, and Laszka propose a deep reinforcement learning based approach
to finding optimal strategies for defenders and adversaries in a game-theoretic moving
target defense model. In this environment two players - a defender and an adversary -
compete for control over a set of servers. Since finding optimal strategies for deployment of
MTDs analytically is difficult in a high dimensional state-action-space, the authors chose
a Deep-Q-Network Learning (DQL) (Mnih et al. 2013) method to find a good policy.
The policies found using Deep-Q-Learning outperform heuristic strategies for attacker
and defender. It was proven that finding such policies is computationally feasible even
in analytically complex environments. However, the experiments only consider a single
defending agent in a synthetic environment.

The ’DIVERGENCE’ framework by [36] is a DRL-based traffic inspection and intrusion
prevention system. It includes an ip-address-shuffling-based MTD that is used to prevent
intrusions and to defend against detected attacks. Since the network traffic is usually too
large to be completely analysed, a deep deterministic policy gradient (DDPG) algorithm is
trained to reroute suspicious traffic to the Intrusion Detection System (IDS) for inspection.
The underlying SDN allows the MTD for easy IP/MAC address management, and routing
path modification [36].
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Xu et al. propose a routing randomization MTD with packet level granularity that is effec-
tive against eavesdropping attacks. Deep Deterministic Policy Gradient (DDPG) is used
to generate random routing schemes which are then used in a SDN to route each individ-
ual packet independently through another routing path. Empirical results show that this
effectively prevents sequential packets from getting intercepted, thus making eavesdrop-
ping more difficult. To avoid initial poor defense performance due to slow convergence,
the model is pre-trained on a dual environment before being fine-tuned [76].

Albanese, Jajodia, and Venkatesan use MTDs to combat botnets that use stealthy commu-
nication methods to evade detection. Traffic inspection systems placed at central locations
in the network were supposed to identify potentially infected hosts by uncovering connec-
tions to a C&C server. The MTD periodically altered the placement of detectors in order
to force the stealthy botnet to periodically find unmonitored routes. In comparison to
different detector placement strategies, the RL-based one performed best [2].

Li and Zheng propose a robust MTD framework capable of defending against unknown
attacks. In contrast to other works, no a priori distribution is assumed over neither the
attacker type nor type of attack. Such an assumption might lead to a suboptimal solution
if the distribution shifts between the training of the MTD policy and its application.
Since it is often unfeasible to collect a large number of samples covering a large variety of
different attacks in security critical domains, a meta-policy is pre-trained in a simulated
environment and then fine-tuned to new attacks based on only a small number of samples
[39].

Zhang et al. focus on the emerging Internet of Vehicles (IoV) that relies on concurrent and
dynamic wireless vehicle-to-infrastructure and vehicle-to-vehicle communication. They
propose an intelligent MTD scheme on network level that is capable of defending against
DDoS attacks by identifying and separating benign from adversarial vehicles. This is
achieved by periodically mutating the SDN configuration based on DRL and then evalu-
ating the trust of each vehicular client [82].

Gao and Wang propose an RL based mobile MTD strategy capable of balancing system
security and system performance. The goal of the defender is to thwart DDoS attacks
by launching a network shuffling MTD before the attacker completes the reconnaissance
phase. However, taking defensive action without an attack happening has a negative effect
on system performance and, hence, should be avoided. Q-learning is used to iteratively
optimize and adapt to the attackers evolving strategy. Experiments in a simulated envi-
ronment have shown that this allows the defender to find a strategy balancing between
system security and performance [19].

Chowdhary et al. present a multi-agent reinforcment learning experiment that contains an
attacker and a defender capable of deploying MTDs in a SDN managed cloud environment.
The environment is fully observable for the defender whose goal is to defend against
the attacker’s actions such as reconnaissance, targeted attacks, etc. The attacker and
defender’s interactions are modeled in a two-player game theoretic model. The rewards
obtained by each player are modelled according to the Common Vulnerability Scoring
System (CVSS), taking into account the difficulty of compromising a vulnerability, the
effort spent by each actor and the success rate of MTDs. Taking observable performance
effects of the individual MTDs into account for reward calculation is novel. The empirical
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evaluation yields a higher reward for defenders when using a reinforcement learning derived
policy against an adaptive adversary [10].

Yoon et al. focus on strengthening the security on in-vehicle networks for autonomous
driving with respect to existing vulnerabilities. They propose a multi-agent deep rein-
forcement learning framework called DESOLATER. The agent is capable of slicing the
SDN-based in-vehicle network into isolated logical entities. For each slice a dedicated
DRL agent is used to derive the optimal triggering interval for periodically shuffling the
IP/MAC addresses by the SDN slice controller. The objective is to minimize security vul-
nerability while maintaining high Quality of Service (QOS). The viability of the proposed
technique was implemented and evaluated based on an in-vehicular SDN testbed [79].

Sengupta and Kambhampati model MTDs as a two-player leader-follower game between
a defender and an adversary. They incorporate uncertainty over attacker types into their
game-theoretical model called Bayesian Stackelberg Markov Games (BSMGs). Further-
more, they also deliver a solution method capable of finding the reward optimal policy in
presence of a rational and strategic adversary - Bayesian Strong Stackelberg Q-learning
(BSS-Q). The approach tries to cope with the insufficiency of existing models yielding
sub-optimal movement strategies when there is incomplete information about a rational
adversary. Experiments with MTDs conducted in two application scenarios showed that
policies learned using BSS-Q outperformed existing baselines [65].

This work pays tribute to Timo Schenk’s work on optimizing MTD deployment on IoT
devices using RL. The aim of this work was to train an agent capable of thwarting various
cyber attacks by deploying MTDs on the target system. An online RL agent was trained
in a real world application scenario (Crowdsensing with ElectroSense) resulting in a high
probability of mitigating the launched cyber attack [68]. This work seeks to extend the
previous one to include collaborative and private policy training using FL [28].

The related works can be divided into three main subcategories. The first category com-
prises works dealing with either MTD, RL or FL in isolation. A small number of works
combining RL and FL form the second category. A large number of works using RL for
MTD deployment or optimization could be identified, constituting the third category. A
scientific work combining all three technologies has not been identified during the litera-
ture review.
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Data Collection and Feature Engineering

4.1 Data Collection

The data collection was performed by Timo Schenk during his master thesis. For the sake
of completeness the process is briefly described here. More detailed information about the
data collection can be found in his work [68]. The goal is to cover a wide range of system
features so that a large number of different attacks is reflected and can be recognized.
The data has been collected in order to be able to pre-train an agent in an offline manner,
which is required due to learning time constraints. The two linux commands, ’perf ’
and ’top’ were used to collect current status information about the system. Certain
hardware events like instructions executed, number of soft/hard CPU interrupts or cache-
misses are recorded in dedicated CPU hardware registers. perf provides access to these
native kernel performance monitoring capabilities [33]. Out of the six different event
types, only performance counters of type software events and kernel tracepoint events
are considered. The data was collected on a Raspberry Pi 3 Model B with 1,2 GHz
QuadCore 64Bit CPU. A recording period of 5 seconds was selected for data collection
with perf [68]. Complementary information about the dynamic real-time overview over
active linux processes, like CPU & memory usage, was recorded using top [44]. In total,
each sample contains 100 recorded features, and the full list can be found in Table 4.4.

Table 4.1: Data Set 01 (Unfiltered Sample Distribution)

Behavior Type #Samples
NORMAL decision state 14702
RANSOMWARE POC decision state 9381
ROOTKIT BDVL decision state 5698
ROOTKIT BEURK decision state 7358
CNC THETICK decision state 7704
CNC BACKDOOR JAKORITAR decision state 4312
CNC OPT1 decision state 5687
CNC OPT2 decision state 4162
TOTAL 59004

28
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The state samples are used to generate episodes of state transitions that mimic the state
transitions an online agent could encounter when interacting with his environment and
deploying MTDs. The more realistic the crafted data set is, the easier it is to transfer the
offline pre-trained agent and policy to an online setting. It is important to mention that
the performance counters collected by perf are affected by all processes and components
that are running simultaneously. Therefore, in order to build a realistic prototype, as
many real parts of the final overall system should be running during data collection. Data
set 01 shown in Table 4.1 was collected as raw behavior samples from an ElectroSense
device that was under attack by one of the seven malwares with no FL or RL system
components (e.g Agent, MTD deployment) running and influencing the system state.

Figure 4.1: Decision and Afterstate in MTD deployment [68]

A second, more realistic data set comprising decision and afterstate samples was collected
by Timo Schenk. As shown in Figure 4.1 the so-called decision state is the first state of
an episode when no MTD has been executed on the device but the malware attack has
potentially already begun. To collect the decision states, an RPi 3 Model B+ was set
up as an ElectroSense sensor and all required dependencies were installed. Each of the
seven malware attacks successively targeted a freshly setup device in order to record the
device behavior under attack. In order to monitor the afterstates shown in Table 4.3, first
of all the device had to be setup and brought into one of the respective eight decision
states (NORMAL, . . . , CNC OPT2). Then, one of the four MTDs was executed and
subsequently the performance counters signaling the device behavior were recorded again.
This procedure was performed for each available behavior × MTD combination.

Table 4.2: Data Set 02 (Decision State Samples)

Initial Behavior State Executed MTD #Samples
NORMAL decision None 4178
RANSOMWARE POC decision None 1804
ROOTKIT BDVL decision None 1658
CNC BACKDOOR JAKORITAR decision None 2018
ROOTKIT BEURK decision None 2012
CNC THETICK decision None 1507
CNC OPT1 decision None 2080
CNC OPT2 decision None 2075
TOTAL 17332
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Table 4.3: Data Set 02 (After State Samples)

Initial Behavior State Executed MTD #Samples
NORMAL after RANSOMWARE DIRTRAP 2084
NORMAL after RANSOMWARE FILE EXT HIDE 1971
NORMAL after ROOTKIT SANITIZER 1971
NORMAL after CNC IP SHUFFLE 2031
RANSOMWARE POC after RANSOMWARE DIRTRAP 2095
RANSOMWARE POC after RANSOMWARE FILE EXT HIDE 2092
RANSOMWARE POC after CNC IP SHUFFLE 636
RANSOMWARE POC after ROOTKIT SANITIZER 1812
ROOTKIT BDVL after RANSOMWARE DIRTRAP 1392
ROOTKIT BDVL after RANSOMWARE FILE EXT HIDE 624
ROOTKIT BDVL after CNC IP SHUFFLE 657
ROOTKIT BDVL after ROOTKIT SANITIZER 1995
CNC BACKDOOR JAKORITAR after RANSOMWARE DIRTRAP 2017
CNC BACKDOOR JAKORITAR after RANSOMWARE FILE EXT HIDE 2013
CNC BACKDOOR JAKORITAR after CNC IP SHUFFLE 2024
CNC BACKDOOR JAKORITAR after ROOTKIT SANITIZER 2085
ROOTKIT BEURK after RANSOMWARE DIRTRAP 1969
ROOTKIT BEURK after RANSOMWARE FILE EXT HIDE 1990
ROOTKIT BEURK after CNC IP SHUFFLE 1975
ROOTKIT BEURK after ROOTKIT SANITIZER 2081
CNC THETICK after RANSOMWARE DIRTRAP 2095
CNC THETICK after RANSOMWARE FILE EXT HIDE 2087
CNC THETICK after CNC IP SHUFFLE 2086
CNC THETICK after ROOTKIT SANITIZER 2093
CNC OPT1 after RANSOMWARE DIRTRAP 2091
CNC OPT1 after RANSOMWARE FILE EXT HIDE 2085
CNC OPT1 after CNC IP SHUFFLE 2079
CNC OPT1 after ROOTKIT SANITIZER 2081
CNC OPT2 after RANSOMWARE DIRTRAP 2072
CNC OPT2 after RANSOMWARE FILE EXT HIDE 2095
CNC OPT2 after CNC IP SHUFFLE 2089
CNC OPT2 after ROOTKIT SANITIZER 2082
TOTAL 60549
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4.2 Data Balance/ Imbalance

When having n devices participate in the learning process, n local data sets also exist.
Therefore, the intra- and inter-class balance of the n data sets must now be considered to
determine if the data distribution is balanced/ imbalanced. In the context of federated
learning, depending on the extent to which the data distributions of the individual n local
data sets deviate from one another, a distinction between IID vs non-IID is made. In
statistics, a set of random variables is denoted as Independent and Identically Distributed
(IID) if each random variable follows the same probability distribution as the others and
are all mutually independent. Real world data often does not fully satisfy the classic IID
assumptions that each sample has to be independently drawn from the same distribution.
Non-IID data is common when collected or generated by user devices. For example,
facial images collected by cameras represent the demographics of each camera’s location.
When collecting individual handwritten digits and letters, these will slightly differ for each
writer, making them non-IID [69].

Wang et al. briefly introduced local and global imbalance as the two most relevant types
of class imbalance that can influence FL [73]. However, they did not provide formulas
to quantify global and local imbalance. Global class imbalance looks at the entirety of
training data and measures how evenly each label class appears globally. If each label
appears globally at the same frequency, it is considered balanced. Additionally, the local
distribution of label classes between individual clients should be considered. It is denoted
as local imbalance when the sample distribution deviates significantly between individual
clients. Xiao and Wang define two metrics that can be used to measure the global and
local class imbalance [75].

MID =
C∑
c=1

nc

N
logC

Cnc

N
(4.1)

The Multiclass Imbalance Degree (MID) of a data set with N data samples and C possible
classes where nc denotes the number of samples with label c is defined as shown in Equation
4.1. However, the Multiclass Imbalance Degree (MID) is insensitive to the size of data
sets. MID eliminates the impact of the size of data set and ranges between 0 and 1. MID
equal to 0 implies a strictly balanced data set. The larger the MID, the more imbalanced
the data set is. In the experiments at hand, the MID value expresses how class imbalanced
the global data set D is [75] [83].

WCS =
1

||L||1||L||2

p∑
i=1

||li||1
||li||2

L ∗ li (4.2)

The Weighted Cosine Similarity (WCS) measures the class imbalance between all par-
ticipating clients. It takes into consideration the relationship between local and global
imbalance. For a set of P clients with local data set D1, . . . , DP the WCS is defined as
shown in Equation 4.2. The label distribution vector of client j is lj = [n1

j , ..., n
c
j, ..., n

C
j ]

where nc
j is the number of samples with label c. The global label distribution vector
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L = [
∑P

i=1 n
1
i , . . . ,

∑P
i=1 n

C
i ] where nc denotes the total number of samples with class c

[75].

Based on the two metrics MID, WCS, four kinds of class imbalance scenarios can be
derived [75]. To better visualize these four class imbalance scenarios in the context of our
scenario, suppose there are two devices {d1, d2} and seven different attacks {a1, . . . , a7}.
In Figure 4.2 to Figure 4.5, the left and middle column diagram show for d1 and d2 the
local frequency that the respective device is targeted by attack a1-a7. The rightmost
chart shows the global combined attack distribution, which is the addition of the two
local distributions.

4.2.1 Scenario 01 (Globally and Locally Balanced)

The global data is strictly class balanced and all local label distribution vectors follow the
same distribution. This is the case for MID = 0, WCS = 1. As shown in Figure 4.2, this
means that every attack is equally likely and targets each device with equal probability.

Figure 4.2: Globally and Locally Balanced Sample Distribution
(MID=0.0 and WCS=1.0)

4.2.2 Scenario 02 (Globally Imbalanced & Locally Balanced)

The global data distribution is imbalanced, but the local label distribution vectors are
balanced. This results in MID > 0, WCS = 1. As shown in Figure 4.3, this means that
each attack on a global scale has a different probability, but the distribution of the attacks
on the two devices follows the same probability distribution.
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Figure 4.3: Globally Imbalanced but Locally Balanced Sample Distribution
(MID=0.0267 and WCS=1.0)

4.2.3 Scenario 03 (Globally Balanced but Locally Imbalanced)

The global data is strictly class balanced but the local label distribution vectors follow
different distributions. This is reflected in a MID = 0 and WCS < 1. In Figure 4.4, it
can be seen that every attack is equally likely on a global scale, but they are divided
differently between the two local devices or their training data respectively.

Figure 4.4: Globally Balanced but Locally Imbalancd Sample Distribution
(MID=0.0 and WCS=0.9516)

4.2.4 Scenario 04 (Globally Imbalanced and Locally Imbalanced)

The global data presents to be class imbalanced as well as the local label distribution
vectors (MID > 0, WCS < 1). This means that the attacks on a global scale have different
probabilities and also target the individual devices with different frequency. This can be
considered the strongest form of imbalance overall in FL.
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Figure 4.5: Globally and Locally Imbalanced Sample Distribution
(MID=0.066 and WCS=0.9878)

4.2.5 Scenario 05 (Client Exclusive or Client Distinct Classes)

Client exclusive classes mean that at least one label class is not present in one of the n
local data sets. This also means that at least one of the n devices does not see at least one
of the m attacks during training. As shown in Figure 4.8, a particularly extreme case of
local imbalance is client distinct class setting, which means that each label class (attack)
is only seen by one device during training.

Figure 4.6: Weak Client Exclusive Sample Distribution

Figure 4.7: Medium Client Exclusive Sample Distribution
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Figure 4.8: Strong Client Exclusive Sample Distribution

Figure 4.9: Schematic representation of the four global/local imbalance scenarios
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4.3 Feature Engineering

Table 4.4: Overview of collected information and selected features

Feature Event
Source

Time
Status

(Quasi)
Constant

Highly
Correlated

Selected as
Feature

time ✓ x x x
timestamp ✓ x x x
seconds ✓ x x x
connectivity x ✓ x x
cpuUser x x x ✓
cpuSystem x x (✓) ✓
cpuNice x ✓ x x
cpuIdle x x (✓) ✓
cpuIowait x x (✓) ✓
cpuHardIrq x ✓ x x
cpuSoftIrq x x (✓) ✓
tasks x x (✓) ✓
tasksRunning x x (✓) ✓
tasksSleeping x x (✓) ✓
tasksStopped x ✓ x x
tasksZombie x x (✓) ✓
ramFree x x (✓) ✓
ramUsed x x (✓) ✓
ramCache x x (✓) ✓
memAvail x x (✓) ✓
iface0RX x x (✓) ✓
iface0TX x x (✓) ✓
iface1RX x x (✓) ✓
iface1TX x x (✓) ✓
numEncrypted x x (✓) ✓
alarmtimer fired alarmtimer x ✓ x x
alarmtimer start alarmtimer x ✓ x x
block bio backmerge block x x (✓) ✓
block bio remap block x x x ✓
block dirty buffer block x x (✓) ✓
block getrq block x x x ✓
block touch buffer block x x (✓) ✓
block unplug block x x x ✓
cachefiles create cachefiles x ✓ x x
cachefiles lookup cachefiles x ✓ x x
cachefiles mark active cachefiles x ✓ x x
clk set rate clk x x (✓) ✓
cpu-migrations x x (✓) ✓

Continued on next page
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Table 4.4 – continued from previous page
Feature Event

Source
Time
Status

(Quasi)
Constant

Highly
Correlated

Selected as
Feature

cs x x (✓) ✓
dma fence init dma fence x ✓ x x
fib table lookup xib x x x ✓
mm filemap add to page cache xilemap x x x ✓
gpio value gpio x x x ✓
ipi raise ipi x x x ✓
irq handler entry irq x x (✓) ✓
softirq entry irq x x (✓) ✓
jbd2 handle start jbd2 x x x ✓
jbd2 start commit jbd2 x x (✓) ✓
kfree kmem x x x ✓
kmalloc kmem x x x ✓
kmem cache alloc kmem x x (✓) ✓
kmem cache free kmem x x (✓) ✓
mm page alloc kmem x x (✓) ✓
mm page alloc zone locked kmem x x x ✓
mm page free kmem x x (✓) ✓
mm page pcpu drain kmem x x x ✓
mmc request start mmc x x x ✓
net dev queue net x x x ✓
net dev xmit net x x x ✓
netif rx net x x x ✓
page-faults x x x ✓
mm lru insertion pagemap x x x ✓
irq enable preemptirq x x (✓) ✓
qdisc dequeue qdisc x x x ✓
get random bytes random x x x ✓
mix pool bytes nolock random x x x ✓
urandom read random x x (✓) ✓
sys enter raw syscalls x x (✓) ✓
sys exit raw syscalls x x (✓) ✓
rpm resume rpm x x x ✓
rpm suspend rpm x x x ✓
sched process exec sched x x x ✓
sched process free sched x x x ✓
sched process wait sched x x x ✓
sched switch sched x x (✓) ✓
sched wakeup sched x x (✓) ✓
signal deliver signal x x x ✓
signal generate signal x x x ✓
consume skb skb x x (✓) ✓

Continued on next page
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Table 4.4 – continued from previous page
Feature Event

Source
Time
Status

(Quasi)
Constant

Highly
Correlated

Selected as
Feature

kfree skb skb x x x ✓
skb copy datagram iovec skb x x x ✓
inet sock set state sock x x (✓) ✓
task newtask task x x x ✓
tcp destroy sock tcp x x x ✓
tcp probe tcp x x x ✓
hrtimer start timer x x (✓) ✓
timer start timer x x x ✓
udp fail queue rcv skb udp x ✓ x x
workqueue activate work workqueue x x x ✓
global dirty state writeback x x (✓) ✓
sb clear inode writeback writeback x x x ✓
wbc writepage writeback x x x ✓
writeback dirty inode writeback x x x ✓
writeback dirty inode enqueue writeback x x x ✓
writeback dirty page writeback x x x ✓
writeback mark inode dirty writeback x x x ✓
writeback pages written writeback x x x ✓
writeback single inode writeback x x x ✓
writeback write inode writeback x x x ✓
writeback written writeback x x x ✓

4.3.1 Outlier Handling

Filtering Samples affected by External Events

The first N and the last sample for every behavior are possibly influenced by the required
user interaction with the device, like logging in and starting the data collection. It is
unknown whether these samples are representative of the behavior or whether they are
potentially adulterated. Therefore, the data provider contains an optional flag that can be
set to remove them during the data pre-processing [68]. In the course of the experiments,
however, it becomes clear that the prototypes can also handle a certain degree of outliers.
Since a prototype that has a certain robustness against outliers is considered advantageous
in the IT security context, these samples were kept in the training data set.

Detecting and Removing Outliers

The data provider includes the option to detect outliers and to delete them from the data
set. This pre-processing step can be switched on or off by setting a flag. The Z-Score
method or standard score method works best for data that follows a normal distribution
[68]. When enabled, the Z-Score method removes any sample that deviates more than
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3 standard deviations from the mean. However, as shown inFigure 4.10, the individual
feature values do not necessarily follow a normal distribution. Therefore, the Z-Score
method is not used. Outliers are not removed, since the system should be somewhat
robust to outliers.

Figure 4.10: Kernel Density Estimation of Training Data

4.3.2 Feature Selection

Table 4.4 contains all features and displays which features were removed due to what
reason and which were retained for training. First of all, all time status features (time,
timestamp seconds) were dropped, since their variation in value is only explained by time
and not connected to the device state. Secondly, all quasi constant features (connectivity
alarmtimer fired, alarmtimer start, cachefiles create, cachefiles lookup, cachefiles mark active,
cpuHardIrq, cpuNice, dma fence init, tasksStopped, udp fail queue rcv skb) were detected
and removed. The threshold for this operation was set to 99%, meaning that 99% of this
feature’s values have to be identical. Last but not least, there would be the removal of
the highly correlated features. If three random variables A, B and C are highly correlated
(>95%), then two out of three could be dropped without losing too much information.
However, the correlation of the features would likely differ from scenario to scenario.
Therefore, since it was desired to build a model with as few prior assumptions as possible,
this was not done and the variables are marked in round brackets in Table 4.4.
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4.3.3 Feature Scaling

Two different feature scaling methods were tried - MinMax- and Standard-Scaling. These
can either be fitted to the entire data set (all behaviors) or to just one data set. The scaler
was programmed to only fit the samples representing normal behavior and then apply it
to all samples. It is important to have enough representative samples for fitting the scaler
as this step would also have to be performed in an online setting. If the min/max values or
mean and standard deviation of the online samples would deviate significantly from those
used for the offline prototype, it would probably degrade performance. However, as shown
in Table 4.1 to Table 4.3, enough training data should be available for realistic scaling.
Using Standard Scaler ensures that the training data has zero mean (µ = 0) and unit
variance (σ = 1) [69]. MinMax-Scaling, on the other hand, ensures that all features lie in
the range from 0 to 1. Since the scaler fitting is performed only on the normal training
data and not on the entire data set, this is a certain simplification, but it is permissible.
During the course of this work it has been shown that MinMax scaling has a better effect
on the test performance than the standard scaling, and therefore it was preferred. Three
different boxplots of the features after min-max scaling can be found in Appendix A of
this work. Each boxplot compares the range of features under normal behavior with the
range of features when the device is affected by either rootkit BEURK, BDVL or C&C
OPT2. The behavioral fingerprint of C&C OPT2 differs greatly (Figure A.3), while the
behavioral fingerprint of rootkit bdvl differs only slightly (Figure A.2) from the normal
device state. However as shown in Figure A.1 the device behavior when infected with
rootkit BEURK resembles the normal device state very closely, making it probably the
most difficult one amongst all attacks to recognize and mitigate.



Chapter 5

Design & Implementation

The design and implementation of the individual FL clients, which consist of a local agent,
state anomaly detector and the local environment of the host device was shaped by Timo
Schenk’s non federated, single agent system architecture, as shown in Figure 5.1. Figure
5.1also shows that for experimental purposes a total of seven different malware attacks
exist. Since the experiments run in a simulated environment, it can be ensured that at
least one mitigating MTD is available for every attack. This means that it is guaranteed
that the agent has the ability to ward off all existing attacks with its four MTDs. Of
course, this assumption does not hold in a real network environment.

Figure 5.1: Single Agent System Architecture proposed by Timo Schenk [68]

In RL it is important to balance exploration and exploitation. A simple epsilon decay
strategy was implemented on each local agent to manage this trade-off. As shown in Table
5.1, the initial value of epsilon is 1 on each device which means that initially each local
RL agent only selects random actions in order to explore his options. For the first 80% of
the total per client trained episodes, a small linear epsilon decay is performed at the end
of each individual episode. A minimum value for epsilon of 0.01 is never undercut. This
means that every local agent slowly moves from exploration of options to exploitation of
already acquired knowledge. During the last 20% of episodes per client, training is carried
out with the maximum exploitation ratio.

41
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5.1 Prototype 01

The first FL prototype uses a supervisor that is capable of labeling every state-action-
reward transition with perfect accuracy for the generation of the reward signal. Therefore,
this prototype serves as a baseline under ideal conditions. The federated architecture
extends the stand-alone architecture with a central coordinator, managing the training of
all participating agents and updating the global agent. Each training round follows the
same five steps as shown in Figure 5.2. At the beginning of each round, the current global
model is sent to all clients (1). Each local agent is then trained for a specified number of
episodes in order to obtain the next model version (2). The coordinator then fetches the
locally updated model from all clients. A simple federated averaging (FedAvg) algorithm
where each locally trained model is weighted equally is used for aggregation (3). The
aggregated model then replaces the old global model as the new global model (4). This
cycle is repeated until the number of global training rounds is reached (5). The raw device
behaviors from data set 1 (see Table 4.1) are used as training data. These were divided
equally into 10 strides and distributed to the 10 participating clients.

This architecture was implemented locally with four different client simulation strategies.
The training of the individual clients can be performed sequentially, multi threaded (each
in a single threat), as individual processes or as part of a multiprocessing pool.

Figure 5.2: Prototype 01 / Federated Architecture
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5.1.1 Experiment 1.1

The first experiment was supposed to investigate how individual clients can be simulated
locally and what performance implications the FL has. In a first step, the performance
of single-threaded and multi threaded client simulation was compared. A total of 10,000
episodes were used for training on i ∈ {1, . . . , N} clients distributed over 10 rounds.
This means that the number of episodes per global training round decreases linearly with
increasing number of clients. The initial hypothesis was that training time would decrease
as the number of clients trained in parallel increased.

Listing 5.1: Python Multithreading Implementation

case Execution .SINGLE THREADED:
f o r c l i e n t in s e l f . c l i e n t s :

c l i e n t . t r a i n ag en t ( nr epochs per round )

case Execution .MULTI THREADED:
threads = [ ]
f o r c l i e n t in s e l f . c l i e n t s :

t = thread ing . Thread ( t a r g e t=Cl i en t . t ra in agent , args=( c l i e n t ,
nr epochs per round ) )

t . s t a r t ( )
threads . append ( t )

f o r t in threads :
t . j o i n ( )

Figure 5.3: Total training time depending on the number of clients
(Single vs. Multi-Threading)

Figure 5.3 shows the total training time for 10,000 episodes using different numbers
of participating clients. Contrary to the initial hypothesis, it can be seen that multi-
threaded training (blue curve) consistently takes more time than single-threaded training
(red curve) across the whole researched range of participating clients. This unexpected
behavior has prompted further investigations. Literature research uncovered that there
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exists a Mutex that allows only one thread to hold the control over the Python interpreter
at the time, called the Python Global Interpreter Lock (GIL). Therefore, only one thread
at a time can be in a state of execution. The GIL prevents deadlocks and protects the
reference count variables from race conditions [5]. This creates a performance bottleneck
in CPU-bound and multi-threaded code, effectively making any CPU-bound Python pro-
gram single-threaded. However, not every implementation of the Python interpreter is
using the GIL, but CPython as the standard and most common reference implementation
does. Hence, Python multi-threading is not an intelligent option to simulate multiple
clients and at the same time reduce the training time. Therefore, different methodologies
for simulating individual workers on one machine had to be implemented and evaluated.

Figure 5.4: Time elapsed after nth training round
(Single-Threaded)

In Figure 5.4, the time elapsed until the end of the nth global training round was recorded
for {1, 2, 4, 8} sequentially trained clients. A relevant observation is that the total training
time increases with the number of clients even in single threaded execution. This can be
attributed to the administrative overhead caused by managing multiple clients including
the distribution of and aggregation of models. Since Python multi-threading did not
turn out to be a viable option for simulating multiple local clients, multiprocessing was
evaluated as an alternative. As shown in Listing 5.2, multiprocessing uses process-based
parallelism. Although the Process and Pool class give the possibility to execute CPU-
bound tasks in parallel, the execution is slightly different. Pool manages a pool of worker
processes and waits until all processes have run until the end before returning the result.
In order to aggregate all local models into a new global model, all local training processes
must have been completed. Therefore join() needs to be called for each child process to
block the parent process until the aggregation can safely be performed.
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Listing 5.2: Python Multiprocessing Implementation

case Execution .MULTI PROCESSING:
threads = [ ]
f o r c l i e n t in s e l f . c l i e n t s :

thread = mul t i p ro c e s s i ng . Process ( t a r g e t=Cl i en t . t ra in agent ,
args=( c l i e n t , nr epochs per round ) )

thread . s t a r t ( )
threads . append ( thread )

f o r thread in threads :
thread . j o i n ( )

case Execution .MULTI PROCESSING POOL:
pool = mu l t i p ro c e s s i ng . Pool ( p r o c e s s e s=n r c l i e n t s )
pool . starmap ( C l i en t . t ra in agent , s e l f . c l i e n t s )
pool . c l o s e ( )
pool . j o i n ( )

Figure 5.5: Total training time depending on the number of clients
for different execution methods

Figure 5.5 compares the total training time for a range of workers across the four im-
plemented training methodologies (Sequential, Multi-Threaded, Multi-Processing, and
Multi-Processing Pool). Consistent with the first observation, the multi-threaded train-
ing times here are the highest as well. The multiprocessing with pooling achieves slightly
lower training times than sequential training for small number of clients (approx. <=5).
In comparison, regular multiprocessing achieves lower training times than sequential train-
ing for higher number of clients (approx. >=5). Therefore, regular multiprocessing seems
to be the most promising approach for local FL training simulation. Since the pre-training
time is still in the lower three-digits range, it does not pose a bottleneck for the first proto-
type and does not have to be further optimized yet. However, it is conceivable, especially
in a later prototype with real physical clients, that the training time poses a bottleneck
that can be reduced by using FL.



46 CHAPTER 5. DESIGN & IMPLEMENTATION

5.1.2 Experiment 1.2

Experiment 1.2 was about finding the best hyperparameter combination in order to build
later experiments on top of them. The 30,000 training samples were divided between
10 clients and subsequently each client was trained for 3,000 episodes distributed over
30 FL rounds of 100 episodes each. In Table 5.1, the best hyperparameter combination
found by manual hyperparameter search is shown in bold. Since the total number of
customizable and optimizable hyperparameter is over 20, an exhaustive search was not
possible to perform and therefore a manual hyperparameter search focusing on the DQN
architecture and the most important training hyperparameter was performed.

Table 5.1: Hyperparameter Search Combinations

Server Hyperparameter
NR CLIENTS 10
NR ROUNDS 30
NR EPISODES PER ROUND 100
NR EPISODES PER CLIENT 3000
TOTAL NR EPISODES 30.000
DQN Hyperparameter
NR NEURONS PER LAYER (128, 64), (128, 64, 32), (128, 64, 32, 16)
ACTIVATION FUNCTION ReLU, Tanh, Sigmoid, SELU
DROPOUT 0, 0.2, 0.5
Training Hyperparameter
OPTIMIZER SGD, Adam, RMSprop, Adagrad
LOSS FUNCTION MAE, MSE, RMSE
GAMMA 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9
LEARNING RATE 1e-2, 1e-3, 1e-4, 1e-5
L2 REGULARIZATION 0, 1e-1, 1e-2, 1e-3, 1e-4
EPSILON START 1.0
EPSILON DEC 0.8/NR EPISODES PER CLIENT
EPSILON END 0.01
AGGREGATION STRATEGY FedAvg

The curves in the following two Figures 5.6 & 5.7 show the test mitigation performance for
each of the seven malware attacks. The last curve shows the micro accuracy of the entire
system, which is calculated according to Equation 5.1 as the ratio of repelled attacks to
the total number of seen attacks.

Micro Accuracy =
1

N

N∑
i=1

I(ypred(xi) = ytrue(xi)) (5.1)

In this experiment, a globally and locally balanced sample distribution from scenario 01
is used (see Figure 4.2). The goal is to allow a baseline comparison between centralized
and federated training.
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Experiment 2.2.1 - Centralized Training Baseline (One Client)

Figure 5.6: Prototype 01 Cenralized Training Baseline
(Attack Mitigation Performance over multiple Training Rounds)

(a) ROOTKIT BDVL (b) ROOTKIT BEURK

(c) CNC BACKDOOR JAKORITAR (d) CNC THETICK

(e) CNC OPT1 (f) CNC OPT2

(g) RANSOMWARE POC (h) GLOBAL
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Experiment 2.2.2 - Federated Training Baseline (10 Clients)

Figure 5.7: Prototype 01 Federated Training Baseline
(Attack Mitigation Performance over multiple Training Rounds)

(a) ROOTKIT BDVL (b) ROOTKIT BEURK

(c) CNC BACKDOOR JAKORITAR (d) CNC THETICK

(e) CNC OPT1 (f) CNC OPT2

(g) RANSOMWARE POC (h) GLOBAL
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When looking at the test curves of Experiment 1.2 in Figure 5.6 & 5.7, which reflect
the test performance for each class over all training rounds, it is noticeable that after
the first two training rounds (200 locally trained episodes) the mitigation test accuracy
for ROOTKIT BDVL, CNC THETICK, CNC OPT1, and CNC OPT2 is already over
99%. A horizontal, dashed line in each diagram marks this self-defined 99% mitigation
performance threshold. Should this threshold be exceeded at some point during training,
then a second vertical dotted line will be displayed, indicating the training round during
which this was achieved for the first time. However, for ROOTKIT BEURK, this is
neither the case for part 1 (Figure 5.6b) nor part 2 (Figure 5.7b) of the experiment, which
is why no vertical line is displayed.

The training of the entire system can be considered complete when this convergence
threshold has been exceeded for both micro and macro accuracy. When comparing the
global micro accuracies with each other, it can be seen that centralized learning requires
twice as many training rounds (12 rounds equals 1200 local episodes) compared to col-
laborative learning (6 rounds equals 600 local episodes). Exactly the same relationship
can also be observed for ROOTKIT BDVL. Overall, based on experiment 1.2, it can be
concluded that centralized and federated training both work well. However, the training
time required to reach convergence is about 50% lower in the federated setting, making it
faster than centralized setting training.

The learning curve of the individual client from experiment 2.1 in Figure 5.8 shows how
average received return (blue) over the last 10 episodes evolves during training. A clearly
positive correlation can be seen in how the average return increases with the total number
of trained episodes. Furthermore, it additionally becomes evident that the average return
also increases with decreasing epsilon (red), meaning that exploitation is slowly favored
over exploration.

Figure 5.8: Learning Curve of Single Client from Experiment 2.1

Establishing Time Estimation Limits

In order to translate episodes trained into time estimates, an upper and lower limit for
the time it takes to run a single episode has to be established. In the chosen application
scenario, an episode consists of at least one but up to maximally four individual MTD
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deployments. The script used to record the current status of the local host device runs for
5 seconds. In an episode with n MTD deployments, this monitoring must be carried out
exactly n+1 times. The average time that the n MTD deployments within one episode
require has to be added on top. Since individual MTD technologies (such as the rootkit
sanitizer) only run for a very short time (a few ms) while others potentially run for a
very long time, for example several seconds or minutes (ransomware trapping), this time
is more difficult to quantify. Upper and lower time limits could be estimated, but for the
sake of simplicity it is assumed that each individual MTD deployment is allowed to use
5 seconds for its moving phase of before the afterstate monitoring starts to run. Thus,
the time required for running through an episode with n steps (Equation 5.4) can be
calculated as the monitoring time (Equation 5.2) plus the total time required for MTD
execution (Equation 5.3)

tmonitoring(n) = (n + 1) ∗ 5s (5.2)

tdefense(n) = n ∗ 5s (5.3)

tepisode(n) = (2n + 1) ∗ 5s (5.4)

When assuming that the average episode completed after at least one, but no more than
two MTD deployments, the average episode length becomes approximately 1.5. This
allows to estimate the average time required to run through an average episode according
to Equation 5.4 as (2 ∗ 1.5 + 1) ∗ 5s = 30 seconds. For example, in experiment 2.2 a total
of 600 training episodes are needed to exceed the desired attack mitigation performance
of 99%. This would translate to an online training time of around 300 minutes or 5
hours. This episode-to-time conversion factor can also be applied to the results of other
experiments.

5.1.3 Experiment 1.3

The experiments in this section are supposed to evaluate the effects that different data
splits between clients might have on the training and the performance of the final agent.
Scientific literature indicates that FedAvg has particular problems when dealing with
non-identical and even disjoint sets of classes (i.e. client-exclusive classes) [81]. Various
assumptions can be made for the training - for example that the data is either IID or
non-IID. A mild case of non-IID data would be if every client would face each attack with
a slightly different frequency. One of the most extreme non-IID cases would be if each
individual client only saw a disjoint set of attacks during training as shown in Figure 4.8.
It would be desirable and interesting do to a full sweep of MID × WCS ∈ [0, 1]× [0, 1]
and then display global model performance after the last training round in a 2d heat map.
However, in a multi class classification scenario it is not feasible to construct such a full
sweep due to the complexity of the calculation formulas for MID and WCS. However, it
is possible to carry out two separate sweeps, one over MID and one over WCS.
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Both micro and macro accuracy were used for the evaluation. The macro accuracy Equa-
tion 5.5 computes the accuracy class by class and takes the average, which is why it is
also called mean class accuracy. The micro accuracy is simply computes according to
Equation 5.1 as the ratio of correct predictions to total sample size.

Macro Accuracy =
1

|C|

C∑
c=1

1

|xi : ypred(xi) = c|
∑

xi:ypred(xi)=c

I(ytrue(xi) = c) (5.5)

For the MID and the WCS sweep, 11 different sample distributions were created with
different MID or different WCS values. Only one metrics was varied at a time while the
other one was kept constant. For each of the 11 different MID and WCS distributions, the
entire system comprising 10 clients, was trained for a combined total of 30.000 episodes in
order to record the final accuracy. The results of the two sweeps consisting of final micro
and macro test accuracy at the end of the training can be found in Figure 5.9 & 5.10.

Experiment 1.3.1 - MID Sweep

Based on sample distribution scenario 2, 11 globally unbalanced data splits of different
strengths were created with MID values ranging approximately from 0 to 1. Since each
client received the same class sample distribution, the data split is locally balanced with
a WCS value of 1. As can be seen in Figure 5.9, a good final test performance is still
achieved for MID values of less than 0.7. The final performance is significantly worse,
for data distributions with a global imbalance of MID > 0.7. Therefore these should be
avoided, although such sample distributions are rather unrealistic in the chosen application
scenario.

Figure 5.9: Sweep over multiple globally imbalanced data distributions
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Experiment 1.3.2 - WCS Sweep

Based on sample distribution scenario 2, 11 locally unbalanced data splits of different
strengths were created with WCS values ranging approximately from 0.7 to 1. Since it
was ensured that each attack is seen with equal frequency on a global scale, the data split
is globally balanced with a MID value of 0. As can be seen in Figure 5.10, a good final
test performance is still achieved for WCS values greater than or equal to 0.8. The final
performance is significantly worse, for data distributions with a local imbalance of WCS <
0.8. Although, such sample distributions could occur in the chosen application scenario,
it is still safe to assume that prototype 01 has a certain robustness against locally skewed
sample distributions.

Figure 5.10: Sweep over multiple locally imbalanced data distributions

5.1.4 Experiment 1.4

The three different client exclusive sampling probabilities from scenario 5 were used for
this experiment and goal was to check how well prototype 01 can handle such sampling
probabilities. The individual graphs show the test performance of the global agent as well
as the individual local agents after each training round. The total 30.000 state samples
were distributed among 10 local agents and used to train them for 30 rounds of 100
episodes each. As shown in Figure 5.11, the training with weak client exclusive sampling
still converges approximately as fast as training with uniform distribution.



5.1. PROTOTYPE 01 53

Figure 5.11: Experiment 1.4.1 Results
(Weak Client Exclusive Sampling Probabilities)

(a) Micro Test Accuracy (b) Macro Test Accuracy

The training with two client exclusive attacks as shown in Figure 5.12 does not reach
the accuracy threshold of 99%, but stays around 90% attack mitigation performance.
Interestingly, the test performances of the individual agents in the diagram form a corridor
around those of the global agent. Individual local agents achieve better attack mitigation
performances than the global agent, while others achieve worse ones.

Figure 5.12: Experiment 1.4.2 Results
(Medium Client Exclusive Sampling Probabilities)

(a) Micro Test Accuracy (b) Macro Test Accuracy

In contrast to the two previous sub-experiments, when trained on strong client exclusive
sampling probabilities (i.e. 3 client exclusive classes), the system does not even achieve a
constant attack mitigation performance of 90%. As shown in Figure 5.13, there is a much
larger fluctuation in test accuracy at both the local and global agent level.
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Figure 5.13: Experiment 1.4.3 Results
(Strong Client Exclusive Sampling Probabilities)

(a) Micro Test Accuracy (b) Macro Test Accuracy

Nevertheless, it can be said that the proposed system can handle client exclusive classes
and attacks to a certain degree. In case of client distinct classes, as in scenario 5.3
(see Figure 4.8), the performance drops significantly and the training process does not
converge. A setting with such a class distribution should therefore be avoided.

5.2 Prototype 02

Figure 5.14: Prototype 02 / Federated Architecture
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In prototype 01, where each state action reward sequence was generated synthetically,
the reward singal was accurate with perfect certainty. In order to build a more realistic
prototype, behavioural fingerprinting was used in order to generate the reward signal
should based on the state St+1 resulting after MTD execution. For this purpose a state
anomaly detector, capable of classifying if a seen device state should be considered normal
or abnormal, was added.

Figure 5.15: Prototype 02 / Individual Client with Anomaly Detector

As shown in Figure 5.15, the takes the following state St+1 as input and has to classify if
it can be considered normal. Based on the outcome of this binary classification, either a
positive or negative reward is then yielded to the local agent. The MTD selecting agent
is only invoked if the state anomaly detector classifies the current state of the device as
abnormal/under attack. Therefore, it is sufficient to train the state anomaly detector
only on normal behavioral samples, such that it learns to flag significantly differing test
samples. Only if this is the case, the agent gets notified and receives the respective state
sample as input in order to select an appropriate MTD in response. If the selected MTD/
action At was correct for state St, the behavior of the host devices should go back to
normal (afterstate) and the episode should terminate. For this, the afterstate still has
to be correctly classified as normal by the state anomaly detector (True Negative (TN)).
However, it can also happen that the afterstate is incorrectly classified as non normal,
which means that no reward is yielded and the episode does not terminate (False Positive
(FP)). Alternatively, it may also be the case that the wrong MTD was selected for the
observed state and the afterstate is incorrectly classified as normal (False Negative (FN)).
FNs are considered worse than FPs, because for a FN classification the attack can continue
unnoticed and the agent even stops deploying further MTDs.

For each episode the agent remembers which MTDs has already been deployed, which
ensures that no MTD will be deployed twice per episode. In case all MTDs have been
selected once by the agent within one episode, the episode terminates and is marked as a
FP. Since it is ensured that for every attack in this controlled environment a mitigating
MTD exists, it is safe to say that at some point during this episode the state anomaly
detector gave a false positive classification. This means that the attack was definitely
repelled, but the afterstate was incorrectly classified as not normal.
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5.2.1 Evaluation of Autoencoder Models for State Anomaly Detection

In order to determine the reward Rt+1 for the agent, the state anomaly detection must
assess whether state St+1 after MTD execution can be considered normal. If this is the
case, then the agent receives a positive reward for his action selection and a negative one
otherwise. Such a task is also called novelty detection, since it must be decided if a yet
unseen sample deviates significantly from the known ”normal” state. In other words, the
model has to classify whether a test sample deviates significantly from the seen training
samples.

This works uses a generative unsupervised model called AutoEncoder. The model ar-
chitecture, as shown in Figure 5.16, is based on a neural network with an equal number
of input and output neurons and a bottleneck in the middle. The objective is to learn
a compact latent representation of the input space. The encoder compresses the high-
dimensional input in order to fit through the central bottleneck and the decoder tries to
reconstruct the original input from the compressed representation [35].

Figure 5.16: Autoencoder Architecture [74]

The AutoEncoders training objective is trying to minimize the reconstruction error. Ac-
cording to one-class classification, the model is only shown normal state samples and the
encoder learns to compress them and the decoder to reconstruct them from the latent rep-
resentation. However, an unseen abnormal state sample will be different from a normal
transaction. The idea behind the anomaly detection is that the AutoEncoder has learned
to process normal state samples better than unseen abnormal ones [35].

Anomalies are detected by comparing the magnitude of the reconstruction loss with a
baseline reconstruction loss, gathered on a holdout validation set. The model was not ex-
plicitly trained to compress & reconstruct abnormal samples, and hence the reconstruction
error is expected to be higher. If a samples reconstruction loss deviates from the baseline
for more than n standard deviations, it is considered an anomaly [35]. Since incorrect
classifications of the state after MTD execution by the state anomaly detection have a
negative impact on the overall performance, the anomaly detection is very important.
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Approximating the bottleneck size

In this case the bottleneck size might be the most important training hyperparameter. If
it is chosen too small, not enough variance is retained to fully reconstruct the compressed
information. If chosen too large, the training objective might be too easy to reach for the
AutoEncoder and the information is not compressed enough. In order to get an initial
approximation for a suitable bottleneck size, a Principal Component Analysis (PCA)
was performed on data set 1 (Figure 5.17). The Figure 5.17a on the left shows the
individually explained variance of each principal component, while Figure 5.17b displays
the cumulative explained variance of the first n principal components. Most interestingly,
it is shown that already 14 of the 85 features can explain 95% of the variance in the data
set.

Figure 5.17: Principal Component Analysis (PCA) Result

(a) Individual Explained Variance (b) Cumulative Explained Variance

For the anomaly detection any sample reflecting abnormal behavior is considered positive
(labeled with 1) and any sample of normal behavior is considered negative (labeled with
0). When performing a class wise evaluation as shown in Table 5.2 and for example only
passing positive samples, then no false positives can exist by definition, since no sample
with negative label has been passed during this part of the evaluation process. Therefore,
precision, recall and f-1 score were only computed for the whole test data set. Although
True Positive (TP) and False Negative (FN) classifications both occur, the recall per class
is not explicitly given, since it equals the class wise accuracy. The 60.000 samples from
data set 01 were split equally into two subsets, one for training the anomaly detection
and a second one for training the RL agents.

Trying an Initial Model for the AutoEncoder based State Anomaly Detection

An initial autoencoder model, which is supposed to be used for anomaly detection, was
trained using the hyperparameters mentioned by Timo Schenk [68]. For optimization,
SGD with learning rate 1e-4 and momentum 0.9 was used. The model was trained for a
maximum of 100 epochs with a batch size of 64. 2.5 standard deviations were used as the
reconstruction error threshold. Considering the fact that the state anomaly detection is
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crucial for the performance of the entire system, the detection accuracy of 80.61% as shown
in table Table 5.2 is not yet sufficient. Therefore, in the following, several hyperparameter
combinations were evaluated and compared.

Table 5.2: Initial Anomaly Detection Rate

Behavior Accuracy Precision Recall F1-Score #Samples
NORMAL 99.66% x x x 7382
ROOTKIT BDVL 21.98% x x x 2844
ROOTKIT BEURK 100.00% x x x 3730
CNC BACKDOOR JAKORITAR 100.00% x x x 2149
CNC THETICK 100.00% x x x 3834
CNC OPT1 12.75% x x x 2893
CNC OPT2 53.52% x x x 2046
RANSOMWARE POC 100.00% x x x 4624
GLOBAL 80.61% 99.85% 74.26% 85.17% 29502

Finding the best Hyperparameter Combination for the State Anomaly Detection

Since the anomaly detection performance of the initial model (Table 5.2) was not yet
sufficient, a hyperparameter search was carried out. The full set of hyperparameter com-
binations, was inspired by Keshtkaran and Pandarinath work [34] and can be found in
Table 5.3. Sklearns GridSearchCV with five fold cross validation was used in order to try
all different hyperparameter combinations. Early stopping with a patience of five was used
in order to prevent overfitting. Each trained model was scored using the mean validation
accuracy. The result of the hyperparameter search is shown in Table 5.4.

Table 5.3: Hyperparameter Combinations for AutoEncoder State Anomaly Detection

Model Hyperparameter
NR NEURONS PER LAYER (64, 32), (64, 16), (64, 8)
ACTIVATION FUNCTION Sigmoid, Tanh, ReLU, ELU, GELU
BATCH NORMALIZATION False, True
Optimization Hyperparameter
LOSS FUNCTION MAE, MSE, RMSE
OPTIMIZER SGD, Adam, RMSprop
LR 1e-3, 1e-4, 1e-5
MOMENTUM 0.9
L2 REGULARIZATION 1e-1, 1e-2, 1e-3, 1e-4
CV 5
MAX EPOCHS 100
EARLY STOPPING False, True (patience=5)
BATCH SIZE 32, 64
Prediction Hyperparameter
N STD 1, 2, 3
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Table 5.4: Highest Anomaly Detection Rate

rank mean validation accuracy n hidden 1 n hidden 2 n stds optimizer loss function

1 99.67% 64 16 2 RMSprop RMSE
2 99.66% 64 32 2 Adam RMSE
3 99.64% 64 8 3 RMSprop MSE
4 99.63% 64 32 2 RMSprop RMSE
5 99.43% 64 16 2 Adam RMSE
6 99.35% 64 8 2 RMSprop RMSE
7 99.34% 64 16 3 RMSprop RMSE
8 99.33% 64 8 2 Adam MSE
9 99.29% 64 16 2 RMSprop MSE
10 99.13% 64 32 1 Adam RMSE

Since the best hyperparameter combination shown in Table 5.4 only achieved 92% test
accuracy, the second best hyperparameter combination (with rank 2) was also evaluated.
As shown in Table 5.5,this model achieved a 99.88% evaluation accuracy and was therefore
used during the following experiments.

Table 5.5: #2 Hyperparameter Evaluation

Behavior Accuracy Precision Recall F1-Score #Samples

NORMAL 99.54% x x x 7382
ROOTKIT BDVL 100.00% x x x 2844
ROOTKIT BEURK 100.00% x x x 3730
CNC BACKDOOR JAKORITAR 100.00% x x x 2149
CNC THETICK 100.00% x x x 3834
CNC OPT1 100.00% x x x 2893
CNC OPT2 100.00% x x x 2046
RANSOMWARE POC 100.00% x x x 4624
GLOBAL 99.88% 99.85% 100.00% 99.92% 29502
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5.2.2 Experiment 2.1

This experiment is about reproducing the results from experiment 1.2 for the second
prototype for analysis and comparison. Therefore, this experiment was carried out in a
completely analogous way with the using the same hyperparameters and unit sample class
distribution. Since the results turned out to be very similar, a separate curve is not given
for each individual attack, but only the global micro and macro test accuracy are plotted
in Figure 5.18 and Figure 5.19.

Figure 5.18: Prototype 02 Cenralized Training Baseline
(Attack Mitigation Performance over multiple Training Rounds)

(a) E2.1.1 Micro Test Accuracy (b) E2.1.2 Macro Test Accuracy

Figure 5.19: Prototype 02 Federated Training Baseline
(Attack Mitigation Performance over multiple Training Rounds)

(a) E2.1.2 Micro Test Accuracy (b) E2.1.2 Macro Test Accuracy

The fact that the graphs of the micro and macro accuracy are almost identical makes the
analysis easier, since only the graph of the micro test accuracy needs to be considered
here. as can be seen in Figure 5.18a, the test accuracy reaches a maximum 97.34% and
never exceeds the 99% threshold. As shown in Figure 5.19a, the federated version of this
experiment achieves a maximum test accuracy of 99.49%. Both sub-experiments achieve
good accuracy after 300 episodes, but they differ by more than 2 percent. This means
that the collaboratively learned policy is superior.
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5.2.3 Experiment 2.2

This experiment follows the experimental setup (used hyperparameters and sample dis-
tributions) of experiment 1.3. Therefore, for a more detailed understanding, please refer
to experiment 1.3, because only the results will be explained here.

Experiment 2.2.1 - MID Sweep

As shown in Figure 5.20, the final test performance drops significantly for data sets with
a global imbalance of MID > 0.6. Thus, it be claimed that prototype 02 is reasonably
robust against global class imbalance.

Figure 5.20: Sweep over multiple globally imbalanced data distributions

Experiment 2.2.2 - WCS Sweep

As shown in Figure 5.21, the final test performance drops significantly for data sets with
a local imbalance of WCS < 0.7. Thus, it be claimed that prototype 02 is also reasonably
robust against local class imbalance.

Figure 5.21: Sweep over multiple locally imbalanced data distributions

Due to the results from experiment 2.2, it is safe to claim that prototype 02 also has a
certain robustness against locally and globally imbalanced data distributions.
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5.2.4 Experiment 2.3

The setup of this experiment is very similar to Experiment 1.4. Therefore it is recom-
mended to read this section before proceeding. The objective of this experiment is also
to investigate how well prototype 02 (including the state anomaly detection) can handle
different client exclusive sampling probabilities. In contrast to Experiment 1.4, the graphs
do not show the individual test performances of the each local agent. The graph for the
training with the weak client exclusive sampling probabilities was omitted because it looks
like Figure 5.11 and therefore does not provide any new information. As shown in Figure
5.22, the overall system is still able to handle medium client exclusive sampling probabili-
ties (2 client exclusive classes each). The test accuracy is continuously increasing slightly
and one does not know if the maximum has been reached after 3000 episodes. On the
other hand, Figure 5.23 shows that prototype 02 also has its problems with stronlgy client
exclusive sampling probabilities. The test accuracies alternate strongly and the training
does not seem to converge.

Figure 5.22: Experiment 2.3.2 Results
(Medium Client Exclusive Sampling Probabilities)

(a) Micro Test Accuracy (b) Macro Test Accuracy

Figure 5.23: Experiment 2.3.3 Results
(Strong Client Exclusive Sampling Probabilities)

(a) Micro Test Accuracy (b) Macro Test Accuracy
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5.3 (Hardware) Prototype 03

In contrast to the software based prototypes 01 and 02, this the only hardware based pro-
totype that has been built for this project. As shown in Figure 5.24, the setup comprises
four ElectroSense sensors, each consisting of a RPi paired with a suitable RF antenna.
The idea behind this prototype is to get one step closer to a full online version of the
collaborative FedRL system for MTD selection. This prototype can be used for several
different purposes in the future, for example to collect an even more realistic training
data set from a homogeneous set of devices instead of collecting it from a single isolated
device. Alternatively, the offline trained policy can be transferred to this context in order
to examine how well this policy transfer works and how much fine tuning would still be
required.

Figure 5.24: Prototype 03 (Schematic Representation)

5.3.1 Setup

As shown in Figure 5.24 & Figure 5.25, four Raspberry Pis (RPis) together with an Radio
Frequency (RF) antenna combined were set up in the ElectroSense network. They are
linked via Ethernet to a 5-port switch that is connected to the Internet. A fifth, older
generation RPi 2 takes on the role of the coordinating server. The current status of the
sensor according to the state anomaly detector can be signaled by a red and a green Light
Emitting Diode (LED). For this purpose, the LEDs need to be connected to the RPi’s
GPIO pins, so that they can draw power and can be controlled. In order to protect the
LEDs from excessive current, a pre-resistor of 220Ω for green and 330Ω for the red LEDs
need to be used. The resistor needs to be placed in sequence with the LEDs.
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Figure 5.25: Prototype 03 (Implemented Configuration)

5.3.2 Comparing different FL-frameworks

The first prototype simulated each FL worker locally as individual threats each running
on a physically separate CPU-core. This can be considered realistic for centralized pre-
training of the agent, but less so when aiming to implement a fully online prototype.
An important design decision that has to be taken is how to optimally implement and
orchestrate the federated learning process. There are several approaches to this. A custom
version of the federation learning could be implemented, or existing FL frameworks could
be used.
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The goal is to train a global deep neural network model (based on PyTorch) in a federated
fashion on 5 RaspberryPis. In the search for the best federated learning framework to
support this endeavor, the following seven FL have been identified as viable options.
It remains unclear, however, which one would be best suited for federated training of
PyTorch models. (still needs a finishing touch)

Framework
Explicit support for RL/ DQN?
(✓. . . Yes, o . . . Unkown, x . . . No)

Developing
Organization

1. TensorFlow Federated ✓ Google
2. IBM federated-learning ✓ IBM
3. OpenFL ✓ Intel
4. PySyft o OpenMined
5. FATE o Webank
6. Flower o Adap
7. Substra x

5.3.3 Constraints

Since the given ElectroSense OS image does not grant easy write access, a new image
would have to be created. Due to a lack of time, this prototype could not be extended
further than described until here.
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Discussion

6.1 Summary & Conclusions

This work showcases that it is possible to collaboratively learn an MTD selection policy
in a real world IoT scenario like ElectroSense. So far, it is one of the few works that use
a combination of FL and RL in a real world scenario in order to boost IT security.

• Experiment 1.2 showed that collaboratively learning a selection policy can achieve
a good calculatory speedup of about 50% over centralized learning.

• Experiment 2.1 proved that collaboratively learning an MTD selection policy can
potentially outperform a centralized approach. The test attack mitigation perfor-
mance of the multi-agent system consistently exceeded the one of the single-agent
system by more than 2%.

• Experiment 1.3 & 2.2 revealed that the proposed FedRL system has a certain robust-
ness against local and global class imbalance. The performance of the entire system
only begins to degrade if a strongly locally or globally imbalanced distribution is
used.

• Experiment 1.4 & 2.3 demonstrated that learning a common MTD policy still works
for some distributions with client exclusive classes.

The main goals formulated at the beginning of this thesis have been largely achieved.
However, more work and research is needed as the good anomaly detection and attack
mitigation performance on data set 01 has not yet been achieved on the more realistic
and fine granular data set 02. This would be an important next step on the way to a
collaborative online system for MTD selection. A hyperparameter search was performed
for four different anomaly detection models (OneClassSVM, IsolationForest, LocalOut-
lierFactor, and Autoencoder) to identity the most suitable one, together with the best
combination of hyperparameter. Unfortunately, none of the four models could achieve an
anomaly detection accuracy of over 60% considering all tested hyperparameter combina-
tions. Further limitations that have been noticed in the course of this thesis and their
implications for future work are discussed in the next section.
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6.2 Limitations & Future Work

In the following, the limitations of this work, that either represent a deviation from the
originally defined goals or have arisen in the course of this work, are described. These open
problems or newly found tangents can motivate future research. It must be noted that
data set 01 consists of only 8 behaviors that can be separated particularly well from one
another and therefore work well for anomaly detection and RL agent. As the evaluation
of the anomaly detection on data set 2 has shown, training using a more realistic data set
is much more difficult.

Although it was shown that FedAvg in this scenario is reasonably robust with respect to
locally and globally imbalanced class distributions, there are still many other aggregation
functions for which it would also be very interesting to try them out.

The MTDs are static and do not yet adapt to the attacks, which poses a problem if a
new attack arises or an attacker is smart enough to understand and evade the MTD. For
some mtds, such as ransomware trapping, it is crucial that they are started at the right
moment. Timing aspects, such as when an mtd is best to be deployed, have not been
taken into account so far.Another specific problem is the fact that the cnc ip shuffle MTD
can mitigate 4 out of 7 possible attacks and, therefore, is actually too powerful in this
scenario. A trivial but stupid agent could always deploy this MTD first since it is a good
first guess.

It also has to be admitted that so far every experiment was running in a virtually simulated
environment and has not yet been trained online on a real set of host devices. Trying to do
this would also result in a number of other technical problems and hurdles, such as selecting
the right FL framework. All in all, it can be said that it is extremely difficult to build
a working online FL framework based on DQNs for the collaborative selection of moving
target defense mechanisms as part of a master’s thesis. The number of hyperparameters
for such a system is very high (>20) and there is a multitude of small technical details
that need to be considered, making the system challenging to build and optimize. Since
no functioning online prototype exists yet, it was not possible to examine how well the
transfer of the offline pre-trained policy would work.
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API Application Programming Interface.

C&C Command and Control.

CPS Cyber Physical System.

CPU Central Processing Unit.

CSG Communication Systems Research Group.

DDoS Distributed Denial of Service.

DDPG Deep Deterministic Policy Gradient.

DiD Defense-in-Depth.

DL Deep Learning.

DNN Deep Neural Network.

DoS Denial of Service.

DP Dynamic Programming.

DQN Deep Q-Network.

DRL Deep Reinforcement Learning.

ED Edge Device.

FL Federated Learning.
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FRL Federated Reinforcement Learning.

GIL Global Interpreter Lock.

GPIO General-Purpose Input/Output.
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IDS Intrusion Detection System.

IID Independent and Identically Distributed.

IoT Internet of Things.

IoV Internet of Vehicles.

IP Internet Protocol.

IT Information Technology.

LED Light Emitting Diode.

MAE Mean Absolute Error.

MID Multiclass Imbalance Degree.

MitM Man-in-the-middle.

ML Machine Learning.

MP Moving Parameter.

MSE Mean Squared Error.

MTD Moving Target Defense.

NN Neural Network.

PCA Principal Component Analysis.

QOS Quality of Service.

RF Radio Frequency.

RL Reinforcement Learning.

RMSE Root Mean Squared Error.

RPi Raspberry Pi.

SARSA State–action–reward–state–action.

SDN Software-Defined Networking.

SGD Stochastic Gradient Descent.

SQLI SQL Injection.

TD Temporal Difference.

TN True Negative.
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TP True Positive.

UPnP Universal Plug and Play.

UZH University of Zurich.

WCS Weighted Cosine Similarity.

XSS Cross Site Scripting.



Glossary

Artificial Intelligence : is a discipline concerned with building computer systems able
to perform tasks normally requiring human intelligence, such as visual perception,
speech recognition, decision-making, and translation between languages.

Machine Learning : refers to the use and development of systems that are able to learn
and adapt without following explicit instructions, by using algorithms and statistical
models to analyse and draw inferences from patterns in data.

Deep Learning : is a subfield of machine learning concerned with algorithms and models
inspired by the function of the human brain called artificial neural networks. These
are built up in layers and when the number of layers becomes large, this is called
Deep Learning.

Malware : is software that is specifically designed to disrupt, damage, or gain unautho-
rized access to a computer system.

Ransomware : is a type of malware that blocks the access to information and demands
the payment of ransom for potentially regaining access.

Defense-in-Depth : Defense in Depth (DiD) refers to an information security approach in
which a series of security mechanisms and controls are thoughtfully layered through-
out a computer network to protect the confidentiality, integrity, and availability of
the network and the data within.

Software Defined Networking : is an approach to networking that uses software-based
controllers or application programming interfaces (APIs) to communicate with un-
derlying hardware infrastructure and direct traffic on a network.

Differential Privacy : is a method for being able to publicly share information about
a data set by describing patterns of groups (e.g median, mean) while withholding
information about individual observations.

Independent and Identically Distributed (IID) : a set of random variables is denoted as
IID, if each random variable has the same probability distribution as the others and
all are mutually independent from each other.
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Figure A.1: Boxplot Comparison (Behavior.NORMAL vs. Behavior.BEURK)
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Figure A.2: Boxplot Comparison (Behavior.NORMAL vs. Behavior.ROOTKIT BDVL)
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Figure A.3: Boxplot Comparison (Behavior.NORMAL vs. Behavior.CNC OPT2)
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